ELEC 4708: Advanced Digital Integrated Circuits

Objectives

Lectures

Analysis, Design and Implementation of Modern VLSI Circuits and Systems

Labs

Use of a Modern IC Technology and Professional Cadence Tool for Designing a Circuit from a Functional Description to Final Chip Layout

Expected Learning Outcome

- VLSI Functionality, Speed, Energy and Reliability
- Device, Circuit, Logic and System Level Design
- Circuit Simulation, Layout Editor, HDL Design (RTL) and Chip Tape-out

Marking Scheme

Laboratory	25%	Attendance and performing all labs is mandatory. Not doing a single lab equals failure in course. No lab exemptions are given. Lab reports should be submitted online.
Quizzes	7%	Pop-up at the start of lectures
Assignments	5%	Expect 3 to 5
Midterm Exam	18%	Thu Oct 28, 2024
Final Exam	45%	Final Exam paper is for evaluation only, and will not be returned to students. Students have to pass the final exam to pass the course.

Topics

- 1. Review CMOS Logic
- 2. Review CMOS Latches and Flip-Flops
- 3. CMOS Layout
- 4. Review Hardware Description Language
- 5. MOSFET Current and Capacitances
- 6. Non-Ideal MOSFET Effects
- 7. CMOS Delay Estimation
- 8. Introduction to Logical Effort
- 9. Delay Optimization with Logical Effort
- 10. Power Estimation: Static and Dynamic
- 11. Low-Power Design
- 12. Static Combinational CMOS Logic Styles
- 13. Dynamic Combinational CMOS Logic Styles
- 14. Static and Dynamic Sequential Circuit Design
- 15. Testing and Design for Testability
- 16. Technology Scaling
- 17. VLSI Design Methodologies
- 18. VLSI Design Flow

Textbook

N. Weste and D. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective," 4th Edition, Addison Wesley, 2011.

Reference

J. Rabaey, A. Chandrakasan, and B. Nikolic, "Digital Integrated Circuits," 2nd Edition, Pearson Education, 2003.