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Abstract

The equilibrium in the standard New Keynesian (NK) model with Calvo pricing becomes explosive
at low levels of trend inflation (4 to 7 percent). Even halfway before this threshold, optimal prices,
price dispersion, and costs rise rapidly to large values, while output plummets. We show that these
well-known issues stem not from Calvo pricing itself but from its interaction with the widely used
Dixit-Stiglitz demand structure in NK models. Using a framework with general firms’ demand
functions and Calvo pricing, we demonstrate that for NK models to have a stable equilibrium at
any level of trend inflation, the demand function must not increase unboundedly as relative prices
decrease — a condition the Dixit-Stiglitz structure fails to meet. We propose a model with price
wedges to modify existing demand structures to satisfy this condition. Applying this approach
to models with Dixit-Stiglitz and Kimball-demand aggregators, we show that the generalized NK
model with price wedges stabilizes price dispersion under rising trend inflation and prevents out-
put from collapsing. Moreover, this model exhibits superior theoretical and empirical properties,
aligning better with micro and macro evidence. It also introduces new implications for the slope of
the Phillips curve and the effects of monetary shocks.
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1 Introduction

The literature on positive trend inflation has long recognized that the standard New Keynesian

(NK) model with Calvo (1983) price setting does not have a stable solution if trend inflation exceeds

some low single-digit threshold (in the 4% to 7% range).1 Even halfway to the threshold where the

steady state ceases to exist, optimal prices, price dispersion, and costs all rise rapidly to very high

levels, output plummets, the slope of the Phillips curve becomes arbitrarily close to zero, and the role

of expectations in driving inflation sharply increases. These problems mean that NK model cannot

be used readily when trend inflation is not very low. Most of the existing literature agrees that these

properties arise from the assumption of Calvo pricing which implies that a forward-looking firm

might not receive the exogenous signal to re-optimize its price for a long period of time, even though

with low probability. At the same time, Calvo pricing to characterize nominal rigidity remains popular

for monetary policy analysis. So ad hoc remedies like indexation or mechanically increasing price-

adjustment frequency are typically adopted to avoid the issues, both of these have little empirical

support. Thus, the non-existence of the steady state—the steady state problem—remains embedded at

the core of NK models.

In this paper, we show that the steady state problem under trend inflation arises not because of

the Calvo pricing assumption but due to its interaction with another modelling assumption com-

monly used in macroeconomic models, namely, the Dixit and Stiglitz (1977) constant-elasticity-of-

substitution (CES) consumption aggregator. The CES assumption leads to a tractable constant-elasticity

demand function for all goods in the economy and allows for adding monopolistic competition to

macroeconomic models. However, under trend inflation and Calvo pricing the implied demand func-

tion diverges to infinite relative demand when relative prices approach zero. This property simulta-

neously creates several problems for the NK model as mentioned above.

We start by considering a model with a general demand structure, in the spirit of Gagliardone,

Gertler, Lenzu and Tielens (2023), and prove that the condition for a steady-state equilibrium to always

exist independently of the level of trend inflation is that demand remains finite when relative prices

approach zero. The CES demand structure fails to satisfy this condition, which is the source of the

1While the threshold is somewhat higher (7-9%) in models with strategic substitutability in pricing decisions such as King
and Wolman (1996) and Ascari (2004), when strategic complementarities are present, as recommended in Woodford (2003),
Bakhshi, Burriel-Llombart, Khan and Rudolf (2007) show that the threshold becomes quite low, about 4-5%, especially if
output growth is also taken into consideration. See the first part of Section 4 for an analytical discussion on this threshold.
Cogley and Sbordone (2008) find that in the US, the time-varying trend in inflation was never above 5% (their Figure 1)
between 1960 and 2003, and hence the condition for the existence of the steady state is satisfied for this low trend inflation
period.
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steady state problem. This is the main theoretical result of our paper.2

We then use our result to assess demand structures implied by consumption aggregators. In mod-

els with the Kimball (1995) aggregator, for example, Kurozumi and Van Zandweghe (2016, 2024) note

that positive trend inflation does not cause the steady state problem. We provide the underlying rea-

son why the Kimball demand function avoids the steady state problem: it is finite only only when

the curvature is sufficiently large. But the empirical evidence does not support large curvature, as

shown in Klenow and Willis (2016) and Dossche, Heylen and Van Den Poel (2010). Assuming a large

curvature leads to an additional issue. It truncates the distribution support of the relative prices and,

therefore, cannot match the price distribution observed in microdata. Thus, simply replacing the

Dixit-Stiglitz demand structure with the Kimball aggregator does not offer a compelling solution to

the steady state problem.

We, therefore, propose a novel approach to augment any existing demand function used in the

literature (e.g. Dixit and Stiglitz (1977) or the Kimball (1995)) to make NK models consistent with

any level of trend inflation. Our premise is that agents never face infinite demand, for consuming

requires extra costs that creates a wedge between the sticker price and the effective price. Those

costs can arise either from direct monetary causes or from efforts, which then can be translated into a

monetary price. And more importantly, they might be resilient even if the sticker price is set at zero.

For instance, apple trees can be very tall, requiring an effort to pick apples even when they are free.

And an orange tree about the same height requires the same effort, even though being a different

good. Since there is only so much fruit individuals can carry down the trees, the extra costs should

increase with consumed fruit volumes, as consuming more fruit requires more climbing. This price

wedge prevents individuals from consuming infinite amounts of goods, as it keeps the effective price

at a strictly positive level even if the sticker price reduces to zero.

Applying price wedges to Kimball aggregation, the elasticities and superelasticities decrease, align-

ing more closely with micro evidence. In the simpler Dixit-Stiglitz aggregation, price wedges make

superelasticities rise to positive levels, inducing the demand function to have a smoothed-out kinked

form that does not diverge to infinity. This feature allows Calvo model, augmented with price wedges,

2Our solution strongly departs from the two usual remedies to mechanically resolve the steady state problem. First, by
assuming full price indexation to trend inflation. Empirical evidence from macro and microdata, however, suggests that
there is very small indexation on individual prices (see e.g., Bils and Klenow (2004), Cogley and Sbordone (2005), Klenow
and Kryvtsov (2008), Klenow and Malin (2010), and Levin et al. (2005)). So, this is not a satisfactory resolution. Second, by
mechanically increasing the Calvo probability of price adjustment with trend inflation, that is, by introducing some state-
dependence with respect to trend inflation. But, as Bakhshi, Burriel-Llombart, Khan and Rudolf (2007) show, the elasticity
of the Calvo probability with respect to trend inflation needs to be very high. Put differently, one has to assume essentially
that prices are near-flexible even at single-digit trend inflation rates, rendering the NK model not useful for any monetary
policy analysis since nominal rigidity is essential to account for the effects of monetary policy on an economy.
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to be used for all levels of trend inflation. Importantly, this property holds for any level of price

wedges, no matter how small. We also find that price wedges strongly attenuate welfare losses and

the increase in price dispersion as trend inflation rises, making them more in line with the findings

of Nakamura, Steinsson, Sun and Villar (2018) and Sheremirov (2020). We embed the augmented de-

mand function based on Dixit-Stiglitz with price wedges in a textbook general equilibrium NK model

as a proof of concept and study the consequences for the output-inflation tradeoff (the slope of the

Phillips curve) and the effects of monetary policy shocks at low (3% to 6%), medium (6% to 10% ), and

high rates (beyond 10%) of trend inflation.

The price-wedge model offsets the decrease in the slope of the Phillips curve that occurs when

trend inflation rises. Thus, for any given level of trend inflation, the slope is larger relative to the

standard Phillips curve under trend inflation. We also find that, when considering the model as the

economy’s true data-generating process under different levels of trend inflation, common empirical

approaches to estimate the slope of a simple Phillips curve lead to the same pattern found in the

literature,3 i.e. the empirical-based estimated slopes increase with trend inflation. They gradually

increase over the low and medium inflation levels. Only in the high inflation range, though, the

pattern becomes negatively correlated. These correlations arise independently of the degree of price

stickiness, which by construction does not change with the trend inflation in the model.

When the level of trend inflation exceeds about 10%, we find that inflation becomes less responsive

to a monetary policy shock, more persistent, and harder to tame, as it lingers much longer and requires

a much greater output sacrifice to bring it down. These properties are in line with recent empirical re-

sults found by Canova and Forero (2024). The authors estimate a Markov-Switching model for the US

with two states (high and low inflation) from 1960 to 2023. They find that, after contractionary mon-

etary policy shocks, inflation rates do not fall as much and become more persistent in high-inflation

states when compared to low-inflation states. These results align well with the experience of many

countries whose inflation rates that have faced high double-digit inflation rates.

One of the main advantages of our proposed solution is that we can maintain the Calvo pricing

assumption while enrich the demand side of the NK model. The Calvo assumption to characterize

nominal rigidity remains popular not only in the academic literature on NK models but also in mod-

els used at central banks for monetary policy analysis. Besides the well-known theoretical elegance

in modelling nominal rigidity, the Calvo model also does a decent job of matching empirical micro

evidence. In addition, the time-dependent Calvo model is also shown to be equivalent to a large class

of state-dependent pricing models. Klenow and Kryvtsov (2008) show that the Calvo model matches

3See e.g. Kurozumi and Van Zandweghe (2024) and Hazell et al. (2022).
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six of the eight stylized facts in the microdata underlying the Consumer Price Index, being even better

than some state-dependent models. In line with this result, Costain and Nakov (2011, 2023) build and

test a model nesting both Calvo (time-dependent) and Golosov and Lucas (2007) fixed menu costs

(state-dependent) models. They find that the parameterization that best fits microdata has low state

dependence, implying a Phillips curve closer but not the same as the one implied by the Calvo model.

Similarly, Gautier and Le Bihan (2022) estimate a industry-specific Calvo Plus model (based on Naka-

mura, Steinsson, Sun and Villar (2018) hybrid model with time-and state-dependent pricing) with

French micro data on prices and find that 60% of price changes are triggered by the Calvo mechanism.

Previously, Bakhshi, Khan and Rudolf (2007) showed that the Calvo model approximates the inflation

dynamics generated from the Dotsey, King and Wolman (1999) state-dependent model. More recently,

Auclert, Rigato, Rognlie and Straub (2024) show that in a broad class of menu cost models, the first-

order dynamics of aggregate inflation is first-order equivalent to a mixture of two time-dependent

models (e.g. the Calvo model), reflecting the extensive and intensive margins of price adjustment.

Our proposed approach, therefore, supports the use of Calvo pricing in a log inflation environment.

The remainder of the paper is organized as follows: Section 2 reviews related literature on micro

and macro evidence. In Section 3, we present the model with a general preference structure, assess

how marginal costs increase with trend inflation and discuss how Calvo (1983) price setting is affected

in this general framework. Section 4 presents the main result of our paper, in the form of a theorem

that describes the general conditions that demand functions must satisfy so that there always exists a

determinate steady-state equilibrium independently of the level of trend inflation. Section 5 discusses

demand functions compatible with the theorem, assessing models such as Kimball aggregation (Sec-

tion 5.1) and presenting another contribution of our paper, i.e., models with price wedges (Section

5.2). Section 6 presents simulations, and Section 7 concludes.

2 Micro and Macro Empirical Evidence

Before presenting the formal model, in which we consider a general form for demand functions,

we present some micro and macro evidence. This evidence motivates the features demand functions

should comprise and the macro predictions they should imply when used in NK models.

Recent empirical literature using large scanner data generally finds relatively low, but still positive,

values for elasticities (ξ) and superelasticities (η). Micro evidence (e.g. Burya and Mishra (2022),

Dossche et al. (2010), Beck and Lein (2015)) suggests that price elasticities likely range in ξmicro ∈

[1.0, 5.0], while superelasticities lie in the narrower interval of ηmicro ∈ [1.5, 2.0]. It implies that actual
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demand functions are “kinked”, in the sense that superelasticity (curvature) is positive. As for the

distribution of relative prices in the US, Kaplan and Menzio (2015) results suggest it is approximately

symmetric, leptokurtic (fat-tailed), has large dispersion, even when controlling for exactly the same

product (same UPC barcode - Universal Product Code) or allowing for strong substitutability. Most

importantly, the authors find that the distribution has a large support, with some actual prices being

about twice as large as the average price.

Turning to macro evidence, price dispersion slightly rises at larger levels of trend inflation. For

instance, while Nakamura et al. (2018) find that the size of price changes did not increase in response

to the Great Inflation of the late 1970s and early 1980s in the United States, Sheremirov (2020) finds that

the positive relationship between price dispersion and inflation is only significant for regular prices.

Sale prices, which are included in analyses with all prices, actually dampen this effect. And lastly,

international evidence from different countries suggests that trend inflation is negatively correlated

with per capita consumption levels (e.g., Bleaney (1999)). Even though standard trend-inflation NK

models also predict a fall in consumption as trend inflation rises,4 the predicted fall is implausibly

strong.

3 The NK Model with General Demand Functions

Following textbook expositions as in Woodford (2003), Galı́ (2015) and Walsh (2017), we describe

the standard NK model with Calvo (1983) price setting and flexible wages. The economy consists of a

representative infinitely-lived household that consumes an aggregate bundle and supplies differenti-

ated labor to a continuum of differentiated firms indexed by z ∈ [0, 1]. Firms produce and sell goods

in a monopolistic competition environment. We depart from this structure by considering a broader

class of demand functions.

3.1 Households

The representative household consumes ct (z) units of each differentiated good z ∈ [0, 1] at price

pt (z). Consumption over all differentiated goods is aggregated into a bundle Ct. Prices across all

firms are aggregated into a consumption price index Pt, which is defined as PtCt ≡
∫ 1

0 pt (z) ct (z) dz.

The household supplies ht (z) hours of labor to each firm z, at a differentiated nominal wage

Wt (z) = Ptwt (z), where wt (z) is the real wage. Disutility over hours is υt (z) ≡ χht (z)
1+ν / (1 + ν),

4See e.g., Ascari (2004), Levin, Lopez-Salido and Yun (2007), Yun (2005), Bakhshi, Burriel-Llombart, Khan and Rudolf
(2007), Ascari and Sbordone (2014), Alves (2014, 2018), and Khan, Phaneuf and Victor (2020).
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where ν−1 is the Frisch elasticity of labor supply. The household’s aggregate disutility function is

υt ≡
∫ 1

0 υt (z) dz. The aggregate consumption bundle Ct provides utility ut ≡ ϵt

(
C1−σ

t − 1
)

/ (1 − σ),

where σ−1 is the intertemporal elasticity of substitution and ϵt is a preference shock. The household’s

instantaneous utility is ut − υt.

The budget constraint is PtCt + Etqt+1St+1 + Bt ≤ St + It−1Bt−1 + Pt
∫ 1

0 wt (z) ht (z) dz + dt, where

Et is the time-t expectations operator, St is the state-contingent value of the portfolio of financial

securities held at the beginning of period t, Bt is the stock of government-issued bonds held at the

end of period t, dt denotes nominal dividend income, It = (1 + it) is the gross nominal interest rate

at period t, it is the riskless one-period nominal interest rate, and qt+1 is the stochastic discount factor

from (t + 1) to t. Financial markets are complete.

The household chooses the sequence of Ct, ht (z), Bt, and St+1 to maximize its welfare measure

Wt ≡ max Et
∞
∑

τ=t
βτ−t (uτ − υτ), subject to the budget constraint and a standard no-Ponzi condition,

where β ∈ (0, 1) denotes the subjective discount factor. In equilibrium, the Lagrange multiplier λt on

the budget constraint and the optimal labor supply function satisfy λt = u′
t/Pt and wt (z) = υ′

t (z) /u′
t,

where u′
t ≡ ∂ut/∂Ct is the marginal utility of consumption, υ′

t (z) ≡ ∂υt (z) /∂ht (z) is the marginal

disutility of hours.5 The optimal consumption plan and the dynamics of the stochastic discount factor,

which satisfies Etqt+1 = 1/It, are described by the Euler equations 1 = βEt

(
u′

t+1
u′

t

It
Πt+1

)
and qt =

β
u′

t
u′

t−1

1
Πt

, where Πt ≡ Pt
Pt−1

= 1 + πt is the gross inflation rate at period t.

3.1.1 General Demand Functions

Recall that Pt is the average price of the household’s expenditure basket. Let ℘t (z) ≡ pt(z)
Pt

denote

the relative price of firm z’s good. For demand considerations, it is also convenient to define an

additional price aggregate Ps,t, describing the state of prices in the economy. It can be implicitly

defined as a weighted average of individual prices, with state-dependent weights:

Ps,t ≡
∫ 1

0
g (℘t (z) ,℘s,t) pt (z) dz (1)

where ℘s,t ≡ Ps,t
Pt

is the relative price of Ps,t and g (℘ (z) ,℘s) are weights, satisfying g (1, 1) = 1,

g (℘ (z) ,℘s) ∈ [0, 1], and
∫ 1

0 g (℘ (z) ,℘s) dz = 1. For instance, after considering a particular case of

Kimball (1995) consumption aggregation, Dotsey and King (2005), Levin et al. (2007), Harding et al.

(2022), and Kurozumi and Van Zandweghe (2024) find a utility-based demand function that depends

5As usual, an equilibrium is defined as the equations describing the first-order conditions of the representative household
and firms, a transversality condition lim

T→∞
ETqt,TST = 0, where qt,T ≡ ΠT

τ=t+1qτ , and the market clearing conditions.
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not only on the aggregate price Pt but also the simple arithmetic average of prices Ps,t =
∫ 1

0 pt (z) dz.

In these cases, g (℘t (z) ,℘s,t) = 1 for all ℘t (z) and ℘s,t.

In the spirit of Gagliardone et al. (2023), we consider a general class of relative demand func-

tions ct(z)
Ct

= f (℘t (z) ,℘s,t), where f (℘,℘s) is continuous and differentiable, satisfying f (℘,℘s) ≥ 0,

f (1, 1) = 1 and f1 (℘,℘s) ≤ 0, ∀ (℘,℘s) in its domain, where f1 (℘,℘s) ≡ ∂ f (℘,℘s)
∂℘ .

Since the aggregate price satisfies Pt =
∫ 1

0 pt (z)
ct(z)

Ct
dz, we obtain a general formulation for Pt:

Pt ≡
∫ 1

0
pt (z) f (℘t (z) ,℘s,t) dz (2)

where we assume that Ps,t and Pt grow at the same rate in the steady state. Finally, firm z’s price

elasticity ξt (z) ≡ − pt(z)
ct(z)

∂ct(z)
∂pt(z)

and the superelasticity of demand ηt (z) ≡ pt(z)
ξt(z)

∂ξt(z)
∂pt(z)

are:

ξt (z) = − f1(℘t(z),℘s,t)
f (℘t(z),℘s,t)

℘t (z) ; ηt (z) = 1 + ξt (z) +
f11(℘t(z),℘s,t)
f1(℘t(z),℘s,t)

℘t (z) (3)

3.2 Price Setting

Each firm z ∈ [0, 1] produces a differentiated good using the technology yt (z) = Atht (z)
ε, where

ht (z) is its demand for labor, At is the aggregate technology shock and ε ∈ (0, 1). The market clearing

condition ct (z) = yt (z), ∀z, implies that the aggregate output across all firms satisfies Yt = Ct.

Since firm-specific hours ht (z) are the only production input, the firm’s real payroll cost is cot (z) =

wt (z) ht (z). Taking wages as given, the firm’s real marginal cost mct (z) ≡ ∂cot(z)
∂yt(z)

is mct (z) =

wt (z)
∂ht(z)
∂yt(z)

= χ
ε

(Yt)
(σ+ω)

ϵt(At)
(1+ω) [ f (℘t (z) ,℘s,t)]

ω, where ω ≡ (1+ν)
ε − 1 is a composite parameter. As for

the firm’s real payroll cost, it can be written as cot (z) = (Yt)
(1+σ+ω)

ϵt(At)
(1+ω) [ f (℘t (z) ,℘s,t)]

(1+ω), where again

℘t (z) ≡ pt(z)
Pt

and ℘s,t ≡ Ps,t
Pt

.

Under flexible prices, all firms set the same price when maximizing profits pt (z) yt (z)− Ptcot (z).

Optimal pricing requires
(

1 − 1
ξn

t (z)

)
℘n

t (z) = mcn
t (z), where superscript ‘n’ denotes natural equilib-

rium and ξn
t (z) is the firm price-demand elasticity. Since all optimal prices are the same, ξn

t (z) = ξn

is constant and we have ℘n
t (z) = 1, ℘n

s,t = 1, and f
(
℘n

t (z) ,℘n
s,t
)
= 1. Therefore, the monopolistic

static markup under flexible prices is µ ≡ ℘n
t

mcn
t
= 1(

1− 1
ξn

) . In addition, under flexible prices, all firms

produce the same level in equilibrium yn
t = Yn

t =
(

1
µ

ε
χ ϵt (At)

(1+ω)
) 1

(σ+ω) , where Yn
t is the natural

output. Therefore, the marginal cost is mct (z) = 1
µ (Xt)

(σ+ω) [ f (℘t (z) ,℘s,t)]
ω, where Xt ≡ Yt

Yn
t

is the

gross output gap.

For the remainder of this paper, we consider the particular time-dependent Calvo price setting
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before we formally address the steady state problem under general demand functions. With standard

Calvo (1983) pricing, with probability (1 − α), the firm optimally readjusts its price to pt (z) = p∗t .

With probability α, the firm sets the price with partial indexation according to pt (z) = pt−1 (z)Πind
t ,

where Πind
t ≡ Πγ

t−1 is the gross indexation rate, Πt ≡ Pt
Pt−1

is the gross inflation rate, and γ ∈ (0, 1).6

When optimally readjusting at period t, price pt (z) = p∗t maximizes the present value of nomi-

nal profit flows Et
∞
∑

j=0
αjqt,t+j

[
Πind

t,t+j pt (z) yt+j (z)− Pt+jcot+j (z)
]
, given the demand function and the

price setting structure, where qt,t+j is the cumulated nominal stochastic discount factor from period

(t + j) to t, recursively defined as qt,t = 1, qt,t+1 = qt+1, and qt,t+j ≡ qt+1qt+1,t+j for j ≥ 1.

After last optimally readjusting at period t, the marginal cost and demand function at (t + j) are

mct,t+j (z) = 1
µ

(
Xt+j

)(σ+ω)
[

f
(

Πind
t,t+j

Πt,t+j
℘t (z) ,℘s,t+j

)]ω

and yt+j(z)
Yt+j

= f
(

Πind
t,t+j

Πt,t+j
℘t (z) ,℘s,t+j

)
,7 where

Πt,t+j and Πind
t,t+j, for j ≥ 1, are the cumulated gross inflation and indexation rates from period t to

(t + j), recursively defined as Πt,t = Πind
t,t = 1, Πt,t+1 = Πt+1, Πind

t,t+1 = Πind
t+1, Πt,t+j ≡ Πt+1Πt+1,t+j =

Πt,t+j−1Πt+j, and Πind
t,t+j ≡ Πind

t+1Πind
t+1,t+j = Πind

t,t+j−1Πind
t+j. Most importantly, note that mct,t+j (z) is not

the marginal cost mct+j (z), as the former depends on the state at period t and cumulated rates from t

to (t + 1).

In this context, all optimally readjusting firms have the same first order condition for pt (z) = p∗t

in equilibrium. Therefore, it can be conveniently written as in the following system:

1 =

1
µ Et

∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j f1

(
Πind

t,t+j
Πt,t+j

℘∗
t ,℘s,t+j

) [
f
(

Πind
t,t+j

Πt,t+j
℘∗

t ,℘s,t+j

)]ω (
Xt+j

)(σ+ω)

Et
∞
∑

j=0
αjqt,t+jGt,t+jΠind

t,t+j

[
f
(

Πind
t,t+j

Πt,t+j
℘∗

t ,℘s,t+j

)
+

(
Πind

t,t+j
Πt,t+j

℘∗
t

)
f1

(
Πind

t,t+j
Πt,t+j

℘∗
t ,℘s,t+j

)] (4)

where ℘∗
t ≡ p∗t

Pt
, Gt ≡ Yt

Yt−1
denotes the gross output growth rate, and Gt,t+j is the cumulated gross

growth rate, defined as Gt,t = 1, Gt,t+1 = Gt+1, and Gt,t+j ≡ Gt+1Gt+1,t+j for j ≥ 1.

Note that infinite sums involving f
(

Πind
t,t+j

Πt,t+j
℘∗

t ,℘s,t+j

)
, f1

(
Πind

t,t+j
Πt,t+j

℘∗
t ,℘s,t+j

)
and mc∗t,t+j do not gener-

ally allow for recursive representations, and so steady state computations must be done numerically

after considering a finite sum j = {0, ..., J}, for a large J. This is true even in commonly used models

based on Kimball aggregation. Lastly, price aggregations (1) and (2) imply

℘s,t
(1−α)

=
∞
∑

j=0
αjg
(

Πind
t−j,t

Πt−j,t
℘∗

t−j,℘s,t

)
Πind

t−j,t
Πt−j,t

℘∗
t−j ; 1

(1−α)
=

∞
∑

j=0
αj f
(

Πind
t−j,t

Πt−j,t
℘∗

t−j,℘s,t

)
Πind

t−j,t
Πt−j,t

℘∗
t−j (5)

6We allow for price indexation even though empirical evidence from macro and micro data suggest that there is very
small indexation on individual prices. Full indexation is the particular case in which γ = 1.

7That is, considering cumulative indexation, the relative price is
Πind

t,t+j pt(z)
Pt+j

=
Πind

t,t+j
Πt,t+j

pt(z)
Pt

.
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The Online Appendix A assesses how general demand functions affect real rigidity.

3.3 Quarterly Benchmark Calibration

We calibrate the model parameters at the quarterly frequency. As in Cooley and Prescott (1995),

we set the subject discount factor at β = 0.99 and the elasticity to hours at the production function

at ε = (1 − 0.36). We set α = 0.70 as the degree of price stickiness, which is consistent with micro

and macro evidence.8 Since empirical evidence from macro and micro data suggest that there is non-

existent or very small indexation on individual prices, we set γ = 0.9 Using central estimates (the

modes of the posterior distributions) obtained by Smets and Wouters (2007), we set the reciprocal of

the elasticity of intertemporal substitution at σ = 1.39. As for the reciprocal of the Frisch elasticity,

we set it at ν = 1 for a compromise between micro estimates and macro evidence on total hours

fluctuation over the business cycle.10 Finally, based on median estimates from Cogley and Sbordone

(2008) and Ascari and Sbordone (2014), we set the monopolistic static markup of µ = 1.12.11

4 Steady State Convergence

We search for conditions the demand function f (℘t (z) ,℘s,t) must meet in order to always ensure

the existence of a determinate steady-state equilibrium, with no output growth (Ḡ = 1), regardless

the value of the parameter set [β, σ, ν, χ, ε, α, γ, µ] and the level of trend inflation Π̄ = (1 + π̄). We

define determinate steady-state equilibria as those in which all infinite summations in the steady-

state equation implied by (4) and (5) converge. For notation purposes, barred variables stand for

steady state level.

Except for the general demand function, the model previously described is otherwise a typical

example of the standard NK model with Calvo staggered price setting: it has monopolistic compe-

8Using US microdata from 1980 to 2023 Blanco et al. (2024) find the average quarterly frequency of price changes to be
29.4%, which implies α = 0.706. Nakamura and Steinsson (2008), using microdata from 1988 to 2005, estimate the median
duration between price changes at roughly 4.5 months (including sales) and 10 months (excluding sales). Their findings are
similar to those obtained in Bils and Klenow (2004). The median durations τm are consistent with α = 0.63 and α = 0.81
in quarterly fequency, using τm = − log (2) / log (α). As for the macro evidence, Cogley and Sbordone (2008), for instance,
report α = 0.588 as their median estimate, while Smets and Wouters (2007) report α = 0.65 as the mode estimate, using the
full sample period from 1966:1 to 2004:4.

9For instance, this evidence is found in Bils and Klenow (2004), Cogley and Sbordone (2005), Cogley and Sbordone
(2008), Klenow and Kryvtsov (2008), Klenow and Malin (2010), Levin et al. (2005) and Smets and Wouters (2007).

10In this regard, even though Chetty et al. (2011) finds a smaller value for ν−1 (i.e. a larger value for ν) on the micro side,
recent evidence suggests that earlier estimates of micro elasticities for ν−1 might be downwardly biased, as their inference
approaches did not account for important features in households composition between: (i) male and female workers; (ii) age;
and (iii) primary and secondary earners. See, for example, Keane and Rogerson (2012), Peterman (2016), and Bredemeier
et al. (2023).

11In a Dixit and Stiglitz (1977) aggregation model, with the elasticity of substitution set at θ = 9.5, the markup is µ =
θ

(θ−1) = 1.12.
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tition, standard functional forms, only one source of nominal rigidity and shocks to preferences and

technology. Under those circumstances, the generally accepted paradigm in the literature on trend

inflation is that there is a low upper limit for trend inflation consistent with a determinate steady-

state equilibrium (see e.g. Ascari and Sbordone (2014)). In the standard NK model with Dixit and

Stiglitz (1977) aggregator, the demand function is f (℘t (z) ,℘s,t) = (℘t (z))
−θ , where θ = µ

(µ−1) .

Given a trend inflation level Π̄, the steady state equilibrium with no output growth only exists if

Π̄ < min
[( 1

α

) 1
(θ−1)(1−γ) ,

(
1

αβ

) 1
θ(1+ω)(1−γ)

]
. Using the benchmark calibration, the annualized upper limit

for trend inflation is 5.16%. If we had assumed a calibration more compatible with micro evidence in

the labor market,12 with ν = 1
0.59 = 1.69, the annualized upper limit would be much smaller, at 3.80%.

As we formally show below, this inflation upper bound in standard NK models arises because the

usual Dixit and Stiglitz (1977) demand function have a singularity point at ℘t (z) → 0. In Theorem

1, we formalize the idea that convergence at any level of trend inflation requires the general demand

function to be always finite, even in the limits ℘t (z) → 0 and ℘t (z) → ∞.

Assumption 1: Under the Calvo staggered price setting (α > 0) with partial indexation (γ < 1), as

previously described, consider the generic relative demand function y
Y = f (℘,℘s) described in Sec-

tion 3.1.1, where ℘s ≡ Ps
P , where Ps and P grow at the same rate in any steady state, such that f (℘,℘s)

is a non-negative, continuous and differentiable function in (℘,℘s) ∈ (R∗
+ × R∗

+) and non-increasing

in ℘ ∈ R∗
+. Let f1 (℘,℘s) ≡ ∂ f (℘,℘s)

∂℘ denote the partial derivative of f with respect to ℘. In addition,

as we assume in Section 3.1.1, the weight function is bounded, i.e. g (℘,℘s) ∈ [0, 1]. And so, g (0,℘s)

and lim
℘→∞

g (℘,℘s) exist and are both finite.

Theorem 1 If f (℘,℘s) and ℘ · f1 (℘,℘s) are finite and defined at all their domain, including at ℘ → 0

and ℘ → ∞, according to Assumption 1, there always exists a steady state equilibrium for any value of the

parameter set and any level of trend inflation (Π̄ = 1 + π̄), provided that it is not extremely negative, i.e.

Π̄ > (α)
1

(1−γ) . For any other level of trend inflation, including all positive values, both the optimal relative price

and the output-gap converge to finite steady state levels.

Proof. Consider that all shocks are kept at their means, i.e. ϵt = ϵ̄ and At = A , at all periods, so

that there are no stochastic uncertainties. Also consider that gross trend inflation is kept constant at

Π̄ = 1 + π̄. Since we assume that Ps and P grow at the same rate in any steady state, it must be the

case that ℘̄s is independent of j.

For simplicity sake, let us define the function f̃ (℘,℘s) ≡ ℘ · f1 (℘,℘s). Given the theorem as-

sumptions, for a fixed value ℘̄s, let f0 ≡ lim
℘→0

f (℘, ℘̄s), f∞ ≡ lim
℘→∞

f (℘, ℘̄s), f̃0 ≡ lim
℘→0

f̃ (℘, ℘̄s),

12See Table 1 in Chetty et al. (2011).
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f̃∞ ≡ lim
℘→∞

f̃ (℘, ℘̄s), g0 ≡ lim
℘→0

g (℘, ℘̄s), and g∞ ≡ lim
℘→∞

g (℘, ℘̄s) denote the implied finite limits.

In this case, the cumulated rates satisfy q̄t,t+j =
(

β
Π̄

)j
, Π̄ind

t,t+j = (Π̄γ)
j, and Ḡt,t+j = 1. Therefore, if

existent, the pricing steady state relations implied by the system in (4) and (5) are:

1 =
− (X̄)(σ+ω)

µ℘̄∗
∞
∑

j=0
(αβ)j

[
− f̃
(

℘̄∗

Π̄(1−γ)j ,℘̄s

)][
f
(

℘̄∗

Π̄(1−γ)j ,℘̄s

)]ω

∞
∑

j=0

(
αβ

Π̄(1−γ)

)j
f
(

℘̄∗

Π̄(1−γ)j ,℘̄s

)
−

∞
∑

j=0

(
αβ

Π̄(1−γ)

)j[
− f̃
(

℘̄∗

Π̄(1−γ)j ,℘̄s

)]
℘̄s

(1−α)
= (℘̄∗)

∞
∑

j=0

(
α

Π̄(1−γ)

)j
g
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
; 1

(1−α)
= (℘̄∗)

∞
∑

j=0

(
α

Π̄(1−γ)

)j
f
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)

where f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
=
(

℘̄∗

Π̄(1−γ)j

)
f1

(
℘̄∗

Π̄(1−γ)j , ℘̄s

)
.

This pricing system involves five types of different non-negative power series. Each has a gen-

eral format 𭟋
(

ρ; ℘̄∗, Π̄(1−γ), ℘̄s

)
≡

∞
∑

j=0
(ρ)j b

(
j; ℘̄∗, Π̄(1−γ), ℘̄s

)
, where ρ ∈

{
αβ, αβ

Π̄(1−γ) ,
α

Π̄(1−γ)

}
, and

b
(

j; ℘̄∗, Π̄(1−γ), ℘̄s

)
≥ 0 is a well-defined, finite and non-negative sequence in j, that can be one

of the following functions: f
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
,
[
− f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)]
,
[
− f̃
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)] [
f
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)]ω
, or

g
(

℘̄∗

Π̄(1−γ)j , ℘̄s

)
.

In order to show that all five power series converge, we use the Ratio test. But before, some

considerations are necessary. Since the relative demand and weight functions are general, there is

nothing precluding b
(

j; ℘̄∗, Π̄(1−γ), ℘̄s

)
to be zero at some points. Therefore, we resort to an auxiliary

power series 𭟋ζ (ρ) ≡
∞
∑

j=0
(ρ)j ζ, defined for an arbitrary fixed and strictly positive value ζ > 0.

Obviously, 𭟋ζ (ρ) converges as long as |ρ| < 1. We need it to be the case for all ρ ∈
{

αβ, αβ

Π̄(1−γ) ,
α

Π̄(1−γ)

}
.

And so, since β < 1, the condition is α < Π̄(1−γ).

Let us consider the augmented power series F
(

ρ; ℘̄∗, Π̄(1−γ), ℘̄s

)
≡ 𭟋ζ (ρ)+𭟋

(
ρ; ℘̄∗, Π̄(1−γ), ℘̄s

)
.

By construction, all terms in this power series are strictly positive. It implies that convergence can

be verified using the Ratio test. That is, F
(

ρ; ℘̄∗, Π̄(1−γ), ℘̄s

)
=

∞
∑

j=0
(ρ)j

[
ζ + b

(
j; ℘̄∗, Π̄(1−γ), ℘̄s

)]
converges if Tratio ≡ lim

j→∞

∣∣∣∣ (ρ)(j+1)[ζ+b((j+1);℘̄∗,Π̄(1−γ),℘̄s)]
(ρ)j[ζ+b(j;℘̄∗,Π̄(1−γ),℘̄s)]

∣∣∣∣ < 1, and diverges if Tratio > 1.

Note that lim
j→∞

℘̄∗

Π̄(1−γ)j = 0 if Π̄(1−γ) > 1, whereas lim
j→∞

℘̄∗

Π̄(1−γ)j = ∞ if Π̄(1−γ) < 1, and lim
j→∞

℘̄∗

Π̄(1−γ)j = 1

if Π̄(1−γ) = 1. Therefore, since the limits f0, f∞, f̃0, f̃∞, g0, and g∞ exist and are finite, it is easy to

verify that the limiting ratio is Tratio = |ρ| for all five augmented power series, regardless the level of

gross trend inflation Π̄. And so, the ratio test predicts that each augmented power series converge if

|ρ| < 1 and diverge if |ρ| > 1. Since the auxiliary power series 𭟋ζ (ρ) converges, it implies that all five

original power series also converge under the same conditions.

Therefore, we conclude that the system implies a convergent relation and provides an implicit
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solution for the steady state levels ℘̄∗, ℘̄s and X̄, as long as α < Π̄(1−γ). Since Π̄ = 1 + π̄, convergence

is achieved if trend inflation π̄ is not extremely negative, i.e. when π̄ > (α)
1

(1−γ) − 1.

The requirement that trend inflation is extremely negative is easily satisfied, and so the feasibility

inequality in Theorem 1 does not pose a practical restriction. For instance, if α = 0.60 and γ = 0 (no

indexation), the steady state levels cease to exist if π̄ > α − 1 = −40% in quarterly frequency (−97%

annually).

Hahn (2022) adopts an alternative approach to cope with the fact that the Dixit and Stiglitz (1977)

demand function diverges to infinity when relative prices approaches zero. His approach, however,

is to keep the standard demand function while allowing firms not to satisfy demand all the times.

The author introduces an optimal rationing mechanism, by curtailing supply to its optimal level. By

contrast, our approach is to investigate the root of the steady state problem, and propose conditions

for demand functions in the standard approach used in the literature of supply meeting demand at

any price level in equilibrium.

5 Demand Functions Consistent With Theorem 1

Here, we focus on demand functions that simultaneously satisfy: (i) Theorem 1 conditions, es-

pecially those related to finite demand and slope at zero relative price; and (ii) micro and macro

empirical support, as described in Section 2.

Under monopolistic competition models with a continuum of firms, as we consider in this paper,

the class of Kimball (1995) demand functions, especially the one proposed by Dotsey and King (2005),

has been often used in recent literature.13 Using Theorem 1, we show that having a sufficiently large

curvature parameter is the necessary condition for Kimball demand functions to be consistent with

all levels of trend inflation. However, under large curvature, Kimball demand functions have three

features that are at odds with what micro and macro evidence suggests (see Section 2): (i) supere-

lasticities become much larger than the micro evidence range; (ii) they fail to accommodate a sizable

mass of relative prices found in the US empirical distribution; and (iii) if used in NK macroeconomic

models with Calvo pricing in lieu of Dixit and Stiglitz (1977) demand functions, Kimball-based NK

models predict that the distorted output (due to nominal rigidities) becomes much larger than the

flexible-prices output as trend inflation rises. These facts are in line with the recent critiques and find-

13If we were to extend our modelling approach to also consider oligopoly models with a finite number of firms, instead
of only monopolistic competition models with an infinite number of firms in the continuum z ∈ (0, 1), we have a broad set
of demand functions satisfying Theorem 1 conditions, as oligopoly demand functions are typically bounded. In this regard,
the Atkeson and Burstein (2008) and Wang and Werning (2022) oligopoly models with N firms are strong candidates to be
applied to NK models with trend inflation in future extensions.
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ings on Kimball-based NK models found in the literature (see e.g., Dossche et al. (2010), Beck and Lein

(2015), Klenow and Willis (2016), and Kurozumi and Van Zandweghe (2016, 2024)).

5.1 Kimball Aggregator

Within the broad class of Kimball (1995) consumption aggregation, Dotsey and King (2005) pro-

pose a particular functional form that has been frequently used in the literature (e.g. Levin et al. (2007),

Harding et al. (2022) and Kurozumi and Van Zandweghe (2016, 2024)). As we present in detail in the

Online Appendix B, the implied demand function is ct(z)
Ct

= 1
(1+φ)

(
℘t(z)
℘k,t

)ϖ
+ φ

(1+φ)
if
(
℘t(z)
℘k,t

)
≤ (−φ)

1
ϖ ,

or ct(z)
Ct

= 0 otherwise. Here, ℘t (z) ≡ pt(z)
Pt

is the relative price of firm z, ℘k,t =
Pk,t
Pt

is the auxiliary

composite relative price of Pk,t ≡ (1 + φ) Pt − φPs,t, Ps,t ≡
∫ 1

0 pt (z) dz is the average price, and Pt is

the aggregate price, implicitly defined by (Pk,t)
(1+ϖ) =

∫ 1
0 (pt (z))

(1+ϖ) dz. The composite parameters

are ϖ ≡ µk(1+φ)
(1−µk)

and m ≡ µk(1+φ)
(1+µk φ)

, where µk ≥ 1 is the elasticity parameter, which matches the implicit

markup rate µ under flexible prices, and φ ≤ 0 sets the aggregation curvature. If φ = 0, the demand

curve simplifies into the standard Dixit and Stiglitz (1977) form. When φ < 0, Kimball demand func-

tion has positive superelasticities (see the Online Appendix B), which makes it qualitatively in line

with micro evidence, as described in Section 2.

Note that f (℘,℘s) = 1
(1+φ)

(
℘

(1+φ)−φ℘s

)ϖ
+ φ

(1+φ)
if
(

℘
(1+φ)−φ℘s

)
≤ (−φ)

1
ϖ , or f (℘,℘s) = 0 oth-

erwise. Therefore, Theorem 1 conditions are satisfied only when its curvature is sufficiently large,

i.e. when φ < −1. This condition is generally met in the macroeconomic literature for the US, as

φ is usually estimated/calibrated at large values, typically set in the range φ ∈ [−16,−2].14 Large

curvature levels, however, lead to elasticities and superelasticities that are much larger than their em-

pirical microdata counterparts, i.e. ξmicro ∈ [1.0 , 5.0] and ηmicro ∈ [1.5 , 2.0]. To illustrate, consider

that the static markup is set at the usual low levels of µ = µk = 1.12. Under flexible prices, the

model’s elasticity and superelasticity are ξn = µk
(µk−1) and ηn = (−φ)

µk
(µk−1) . If φ < −1, we find that

ξn = 9.3 and ηn > 9.3. And is φ = −2, the smallest curvature in the macroeconomic range, the

implied superelasticity is ηn = 18.6.

In addition, a large macro curvature induces the theoretical distribution of relative prices to be

strongly asymmetric to the left and imposes zero demand for prices that are set slightly above the

average price (see e.g. Klenow and Willis (2016)). This prediction is at odds with empirical micro

evidence found by Kaplan and Menzio (2015). See a detailed discussion in Online Appendix B.3, in

14Some typical values for the US are the following: (i) φ = −12.2 in Harding et al. (2022); (ii) φ = −2.6 in Kurozumi and
Van Zandweghe (2024); (iii) φ = −8 in Levin et al. (2007); and (iv) φ = −3.79 in Smets and Wouters (2007). In addition,
obtaining a better marginal likelihood statistics for model comparison, Harding et al. (2022) re-estimate Smets and Wouters
(2007) model with a different prior distribution and obtain φ = −16.37.
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which we propose an alternative approach to test the plausibility of Kimball’s upper limit on relative

prices.

In light of those results, we propose in the next section a remedy to attenuate the issues induced

by Kimball demand functions.

5.2 Sticker and Effective Prices

Between purchasing a good and consuming it within a specific period, it is not uncommon for

individuals to face extra costs that create a wedge between the sticker price and the effective price.

Those costs can rise either from direct monetary causes or from efforts, which then can be translated

into a monetary price. And more importantly, they might be resilient even if the sticker price is set at

zero. For instance, apple trees can be very tall, requiring an effort to pick apples even when they are

free. And an orange tree about the same height requires the same effort, even though being a different

good. Since there is only so much fruit individuals can carry down the trees, the extra costs should

increase with consumed fruit volumes, as consuming more fruit requires more climbing.

We can indirectly compute the extra price added to the sticker price by quantifying the effort

(energy, abilities, etc.) needed to climb the tree in every period we want to consume a fruit. And we

highlight that acquiring them has a complementary nature with consuming the fruit, as individuals

would not “buy” more effort goods and less fruit unities if effort becomes relatively cheaper than

fruits.

Sometimes, the costs can be directly measured in monetary units, for consuming the good might

require post-purchase accompanying extra cost from handling, shipping and storing the goods within

the period. Again, even if the good’s sticker price is set at zero, those extra costly activities still remain.

And their cost in many cases depend on good volumes and weights, rather than good types. Those

properties characterize complementarity rather than substitutability between consumed goods and

the extra cost sources.

Of course, features such as rarity, fragility and perishability also matters. The extra costs might

also vary across different individuals and across time.15 In this paper, for simplicity, we abstract from

15The extra costs can be also be generated if, for consuming goods, individuals are required to buy extra services or
goods that do not reflect extra utility-bearing consumption, in the spirit of Michaillat and Saez (2015) when they model a
case in which consuming one service unit requires buying a total of (1 + τ) service units. For instance, household storage
rooms and refrigerators can generate this effect, as their associated costs are related to volumes and not to the specific
goods they store. As our alternative case, we could assume that δct (z) represents the storage volume required to keep
ct (z) units of utility-bearing goods, and there is no price wedge. And so, paralleling Michaillat and Saez (2015) results,
consuming ct (z) units would require buying a total of (1 + δ) ct (z) units. Even though this alternative approach also
embeds the complementary nature between utility-bearing and non-utility bearing consumption, it requires changing the
market clearing condition to account for both types of produced goods.
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those possibilities and do not specify any particular source of the realistic nature of extra costs. In all

cases, extra costs prevent individuals from consuming infinite amounts of goods, even though that is

what they would like to if sticker prices were to approach zero in the absence of extra costs.16 And

lastly, the extra costs might be simply wasted (deadweight loss) or might be recovered somehow into

the economy. Notice that the first type of extra costs generates more distortions than the second type,

as there are no firms or individuals able to accrue the losses individuals bear.

For short, we use the term ”price wedges” to characterize this class of extra-cost models. Here,

we consider a simple structure and let the extra costs to be recovered by firms in order to minimize

implied distortions. It allows usto make the case that this class of models meets the requirements of

Theorem 1, and so can be used to assess the economy at all levels of trend inflation. As will be clear

from the steps shown in the next section, applying price wedges for any general demand framework

is straightforward.

5.2.1 Price Wedges Model

Here, we assess the properties of the simplest structure in the class of price wedge models. We

assume that consuming ct (z) units of good z at sticker price pt (z) requires paying a extra price wedge

δPt to firm z for processing, handling and storing, where δ ≥ 0 is the wedge rate. As the surcharge

only depends on volumes, independently of the good type, each unit has the same price wedge δPt.

Therefore, the household’s total expenditure is
∫ 1

0 (pt (z) + δPt) ct (z) dz. Since the market clearing

condition is yt (z) = ct (z), for each firm z, its revenue is now (pt (z) + δPt) yt (z). As shown in Section

5.2.2, even a small value for δ produces important changes in the resulting demand function.

We need small changes to adapt the general results shown in Section 3. In this context, let us

initially define the aggregate price Pt as in (1 + δ) PtCt ≡
∫ 1

0 (pt (z) + δPt) ct (z) dz. This definition is

necessary so that Pt can be interpreted as an average of sticker prices pt (z). On the household side,

after substituting the total expenditure (1 + δ) PtCt for PtCt in the budget constraint, the optimal labor

supply curve becomes wt (z) = (1 + δ) υ′
t (z) /u′

t. Firms results also change a little bit, as we show

further on in Section 5.2.3. We first assess the consequences of having price wedges under Kimball

and Dixit-Stiglitz aggregation. In this context, Section 5.2.2 below derives the resulting demand curves

and studies their properties.

16Since firms are assumed to satisfy any demand level, and all individuals face the same price, there is no incentive for
over purchasing goods intended for reselling.
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5.2.2 Demand function under price wedges

Let us start with the emplest case in which the representative household is subject to price wedges

and has Dixit and Stiglitz (1977) consumption aggregation Ct =
(∫ 1

0 ct (z)
θ−1

θ dz
) θ

θ−1
, where θ =

µk
(µk−1) > 1 is the elasticity of substitution between goods. Therefore, minimizing total expenditure

(1 + δ) PtCt =
∫ 1

0 (pt (z) + δPt) ct (z) dz, subject to Ct =
(∫ 1

0 ct (z)
θ−1

θ dz
) θ

θ−1
, leads to the demand

function ct(z)
Ct

=
(

pt(z)+δPt
(1+δ)Pt

)−θ
, where Pt now satisfies [(1 + δ) Pt]

(1−θ) =
∫ 1

0 (pt (z) + δPt)
(1−θ) dz.17

In the context of Theorem 1, considering the relative price notation ℘t (z) ≡ pt(z)
Pt

, this demand

function can be conveniently written as ct(z)
Ct

=
(
℘t(z)+δ

1+δ

)−θ
. Since there is no extra relative price ℘s

in this demand function, f (℘) =
(
℘+δ
1+δ

)−θ
and ℘ f1 (℘) = − θ℘

(1+δ)

(
℘+δ
1+δ

)−(1+θ)
. Note that, as long

as δ > 0, f (℘) and ℘ f1 (℘) are finite and defined for all ℘ ≥ 0. That is, lim
℘→0

f (℘) =
(

δ
1+δ

)−θ
,

lim
℘→∞

f (℘) = 0 , lim
℘→0

℘ f1 (℘) = 0, and lim
℘→∞

℘ f1 (℘) = 0 . Therefore, as long as δ > 0, f (℘) and

℘ f1 (℘) always satisfy the Theorem 1 conditions, no matter how small δ is. It implies that the NK

model with Dixit and Stiglitz (1977) aggregation and non-zero price wedges (δ > 0) can be used at

all levels of trend inflation. In addition, as we show further on, price wedges allows the demand

function with Dixit and Stiglitz (1977) aggregation to be quasi-kinked and more in line with empirical

micro-evidence, as presented in Section 2.

If the representative household is subject to price wedges and has Kimball-type preferences (see

Section 5.1), total expenditure minimization gives us the demand function ct(z)
Ct

= 1
(1+φ)

(
℘t(z)+δ
℘k,t+δ

)ϖ
+

φ
(1+φ)

if
(
℘t(z)+δ
℘k,t+δ

)
≤ (−φ)

1
ϖ , or ct(z)

Ct
= 0 otherwise, where Pt is now satisfies (Pk,t + δPt)

(1+ϖ) =∫ 1
0 (pt (z) + δPt)

(1+ϖ) dz. Therefrore, as long as δ > 0, it is easy to verify that the Theorem 1 con-

ditions always hold, not matter the curvature level φ. For each relative price ℘t (z), consider the

auxiliary variable pδ,t (z) ≡ ℘t(z)+δ
℘k,t+δ . The firm z’s price elasticity and superelasticity are: (i) ξt (z) =

−
ϖ
(

℘t(z)
℘t(z)+δ

)
1+φ(pδ,t(z))

−ϖ and ηt (z) =
[
− φξt(z)

(pδ,t(z))
ϖ + δ

(℘k,t+δ)
1

pδ,t(z)

]
, if pδ,t (z) ≤ (−φ)

1
ϖ ; or (ii) ξt (z) = 0 and

ηt (z) = 0, if pδ,t (z) > (−φ)
1
ϖ .

Figure 1 depicts the demand function (log-log), price elasticities and price superelasticities for

different levels of price wedge rates δ ∈ [0, 0.50] and curvature parameters φ ∈ {0,−2.0}, keeping the

static markup µ = θ
(θ−1)(1+δ)

fixed at 1.12 (see Section 5.2.3).

17Solving min
{ct(z)}

∫ 1
0 (pt (z) + δPt) ct (z) dz + λt

[
Ct −

(∫ 1
0 ct (z)

θ−1
θ dz

) θ
θ−1
]

, the first order condition is (pt (z) + δPt) =

λt

(
ct(z)

Ct

)− 1
θ . Since (1 + δ) PtCt =

∫ 1
0 (pt (z) + δPt) ct (z) dz, we obtain λt = (1 + δ) Pt and ct(z)

Ct
=
(

pt(z)+δPt
(1+δ)Pt

)−θ
. Plug-

ging it into (Ct)
θ−1

θ =
∫ 1

0 ct (z)
θ−1

θ dz leads to [(1 + δ) Pt]
(1−θ) =

∫ 1
0 (pt (z) + δPt)

(1−θ) dz.

17
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Figure 1: Demand, Elasticities and Superelasticities - Price Wedges

Notes: In top panels, the demand function is plotted using log(y (z) /Y).and log(p (z) /P). For generating

the figures, we fix ℘k = 1 and use µ = θ
(θ−1)(1+δ)

(see Section 5.2.3) to recompute µk for each value

of δ in order to keep the static markup at µ = 1.12.
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With the standard Dixit and Stiglitz (1977) aggregation, i.e. when φ = 0, we obtain ξt (z) =

θ℘t(z)
(℘t(z)+δ)

≥ 0 and ηt (z) = δ
(℘t(z)+δ)

≥ 0. Therefore, when δ ̸= 0, the demand elasticity ξt (z) and su-

perelasticity ηt (z) are price-dependent even if φ = 0. As Figure 1 shows, accounting for price wedges

allows demand functions derived from Dixit and Stiglitz (1977) aggregation to be quasi-kinked.

In the remainder of the paper, we assess the dynamic properties of price wedge models when firms

have sticky prices. For that, we consider the Dixit-Stiglitz aggregation with price wedges as a proof

of concept to study the implied NK model for small and large levels of trend inflation.

5.2.3 Firms

Consider the case with Dixit-Stiglitz aggregation and price wedges. Using the market clearing

condition yt (z) = ct (z), ∀z, the aggregate and average levels of output satisfy Yt = Ct. Therefore,

firm z’s demand function is yt(z)
Yt

= f (℘t (z) ,℘s,t) =
(
℘t(z)+δ

1+δ

)−θ
.

The firm’s revenue is now [pt (z) + δPt] yt (z). As we mentioned before, optimal labor supply

curve under price wedges is wt (z) = (1 + δ) χ
ϵt

ht (z)
ν (Yt)

σ. Adapting the results shown in Section

3.2, optimal pricing under flexible prices now requires
[
(1+δ)

µk
+ δ

(
1
℘n

t
− 1
)]

℘n
t = mcn

t , where mcn
t =

(1+δ)χ
ε

1
ϵt(At)

(1+ω)

(
℘n

t +δ
1+δ

)−θω
(Yn

t )
(σ+ω) is the marginal cost under flexible prices. Since ℘n

t = 1 under

flexible prices, the natural output evolves according to (Yn
t )

(σ+ω) = 1
(1+δ)µ

ε
χ ϵt (At)

(1+ω), where µ ≡
℘n

t
mcn

t
= µk

(1+δ)
is the static markup under flexible prices and price wedges, and µk ≡ θ

(θ−1) is the basic

markup that would prevail in the absence of price wedges.

This last result allows us to design a strategy to calibrate θ as a function of markup µ and price

wedge rate δ: θ = µ(1+δ)
[µ(1+δ)−1] . Note that, for a given a steady state markup µ, the elasticity of substi-

tution θ monotonically decreases with δ. In particular, at the benchmark low markup level µ = 1.12,

the elasticity of substitution can be as low as θ = 5 even for a small price wedge rate of δ = 0.10.

If δ = 0.33, the elasticity of substitution θ falls to about θ = 3, which is consistent with microdata

estimates in Broda and Weinstein (2006). The authors find that consumers have low elasticities of sub-

stitution across similar goods in most categories, with the median elasticity being estimated at about

θ = 3.

With Calvo price setting under price wedges, the firm z’s optimal pricing decision is:

1 =
Et

∞
∑

j=0
αjqt,t+jΠind

t,t+jGt,t+j

(
z∗t,t+j
1+δ

)−(1+θ̄1)
(Xt+j)

(σ+ω)

Et
∞
∑

j=0
αjqt,t+jΠind

t,t+jGt,t+j

(
z∗t,t+j
1+δ

)−θ ; z∗t,t+j ≡
Πind

t,t+j
Πt,t+j

℘∗
t + δ (6)
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where θ1 ≡ θ (1 + ω) is a composite parameter, and again ω = (1+ν)
ε − 1, ℘∗

t = p∗t
Pt

and Xt =
Yt
Yn

t
. In

this framework, price aggregation (1 + δ)1−θ =
1∫

0

(
pt(z)

Pt
+ δ Ps,t

Pt

)1−θ
dz evolves according to:

(1 + δ)−(θ−1) = (1 − α)
∞
∑

j=0
αj
(

z∗t−j,t

)−(θ−1)
; z∗t−j,t ≡

Πind
t−j,t

Πt−j,t
℘∗

t−j + δ (7)

Note that the auxiliary variables z∗t,t+j and z∗t−j,t enter systems (6) and (7) raised to non-positive

integer powers. This fact prevents the equations to have recursive forms. In order to cope with that,

we present a precise approximation in next section, allowing those terms to have recursive forms in

log-linearizations.

5.2.4 Aggregates and Welfare

Let ht ≡
∫ 1

0 ht (z) dz denote the aggregate working hours. Given the production function yt (z) =

Atht (z)
ε and demand function yt(z)

Yt
=
(
℘t(z)+δ

1+δ

)−θ
, we conclude that aggregate hours evolve ac-

cording to ht = (1 + δ)
θ
ε

(
Yt
At

) 1
ε

Λy,t, where Λy,t ≡
∫ 1

0 (℘t (z) + δ)−
θ
ε dz. Therefore, following the

vast literature of price dispersion, we can write the aggregate output as Yt = 1
dy,t

At (ht)
ε, where

dy,t ≡ (1 + δ)θ (Λy,t
)ε is the production-relevant metric of price dispersion. Using Calvo price set-

ting, note that Λy,t = (1 − α)∑∞
j=0 αj

(
z∗t−j,t

)− θ
ε
.

As for welfare considerations, recall that Wt ≡ (ut − υt) is the relevant instantaneous welfare met-

ric, where ut ≡ ϵt
(Yt)

(1−σ)−1
(1−σ)

is the consumption utility and υt ≡
∫ 1

0 υt (z) dz is the aggregate disutility

of working hours, in which υt (z) ≡ χ
(1+ν)

ht (z)
(1+ν). Given the production and demand functions,

we can write the aggregate disutility as υt = dυ,t
χ

(1+ν) (ht)
(1+ν), where dυ,t =

Λt

(Λy,t)
(1+ν) is the welfare-

relevant metric of price dispersion, Λt ≡
∫ 1

0 (℘t (z) + δ)−θ1 dz. Under Calvo price setting, note that

Λt = (1 − α)∑∞
j=0 αj

(
z∗t−j,t

)−θ1
.

In the equilibrium with flexible prices (α = 0), we obtain Λn
y,t = (1 + δ)−

θ
ε , Λn

t = (1 + δ)−θ1 , and

dn
y,t = dn

υ,t = 1. In this equilibrium, the instantaneous welfare evolves according to Wn
t ≡ (un

t − υn
t ) =

ϵt
(Yn

t )
(1−σ)−1

(1−σ)
− χ

(1+ν)

(
Yn

t
At

)(1+ω)
, where un

t = ϵt
(Yn

t )
(1−σ)−1

(1−σ)
, υn

t = χ
(1+ν) (h

n
t )

(1+ν), and hn
t =

(
Yn

t
At

) 1
ε
.

Therefore, following Schmitt-Grohe and Uribe (2007), we can compute the consumption-equivalent

welfare metric as a distorted output level Yeq
t that would prevail in a equilibrium with flexible prices

in order to keep the welfare level as the one obtained with sticky prices (Wt). That is, Yeq
t satisfies:

ϵt

(
Yeq

t
)(1−σ) − 1
(1 − σ)

− χ

(1 + ν)

(
Yeq

t
At

)(1+ω)

= Wt = ϵt
(Yt)

(1−σ) − 1
(1 − σ)

− dυ,t
χ

(1 + ν)

(
dy,t

Yt

At

)(1+ω)
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In this regard, we define Xeq
t ≡ Yeq

t
Yn

t
as the consumption-equivalent output gap.

5.2.5 Steady State Properties

Using the steady state relations shown in Appendix C.2, Figure 2 shows how steady state output

gap X̄ and production-relevant price dispersion d̄y vary with different levels of trend inflation π̄ and

different price wedge rates δ. For this, we consider the benchmark calibration defined in Section 3.3

and use µ = θ
(θ−1)(1+δ)

(see Section 5.2.3) to recompute θ for each value of δ, keeping the static markup

at µ = 1.12.
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Figure 2: Steady State Levels - Price Wedges

As predicted, steady state levels now exist for all levels of trend inflation as long as δ > 0. In

the left panel, note that the gross output gap falls as trend inflation rises. It is interesting to note that

using larger values for δ makes output smoothly decline with respect to the natural output, avoiding

the sharp fall observed under δ = 0 (Dixit-Stiglitz). If δ is very small, the model is able to present

a seamless continuation of what standard NK models (Dixit-Stiglitz) predict for the steady state, but

now without the upper limit on trend inflation, which is 5.16% using the benchmark calibration. In

the right panel, note that the presence of price wedges strongly attenuates the price dispersion caused

by trend inflation. We highlight these results as recent micro evidence on price dispersion suggests

that it only weakly increases as inflation rises (e.g., Nakamura et al. (2018) and Sheremirov (2020)).

6 Simulations

In this section, we assess the price-wedge model dynamics using the log-linearized model pre-

sented in Online Appendix C.3. Using the benchmark calibration, recall that the upper limit for annu-

alized trend inflation is π̄ = 5.16% under standard Dixit and Stiglitz (1977) preferences and zero price
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wedges (δ = 0).18 However, as we show in Section 5.2.2, the demand function function under price

wedges satisfies Theorem 1, and so setting δ > 0 is a sufficient condition for the existence of steady

state equilibrium at any level of trend inflation.

Hatted variables represent log-deviations from steady state levels. In this context, we assume

that the central bank has a mandated inflation target π̄ ≥ 0 and follows a (log-linearized) Mixed

Taylor rule ı̂t = ϕi ı̂t−1 + (1 − ϕi)
[
ϕ f πEtπ̂t+1 + ϕgx (x̂t − x̂t−1)

]
+ ϵ̂i,t, roughly based on Coibion and

Gorodnichenko (2011) baseline specification,19 where ϵ̂i,t is the monetary policy shock, ϕi ∈ (0, 1) is

the policy smoothing parameter, and the response parameters ϕ f π and ϕgy are consistent with stability

and determinacy in equilibria with rational expectations under positive trend inflation. Based on

Coibion and Gorodnichenko (2011) estimates for the post-1982 period, we set ϕi = 0.86, ϕ f π = 2.20

and ϕgx = 1.56. We highlight that reacting to output gap growth (x̂t − x̂t−1) is in line with the findings

of Coibion and Gorodnichenko (2011) and ? as it generates more stabilizing properties when the trend

inflation is not zero. In addition, reacting to growth is in line with Walsh (2003), and Orphanides and

Williams (2007).

The log-linearized price-wedge New-Keynesian Phillips Curve under trend inflation has an infi-

nite number of ancillary recursive equations. However, as we show in Appendix C.3, we can approx-

imate it into a more didactic and compact form. Under a vast range of parametrizations, we verify

that this approximation is very accurate if trend inflation is no larger than 11%. For larger levels, the

full log-linearized model presented in Appendix C.3 must be used.

The approximated price-wedge NKPC under trend inflation is:

(
π̂t − π̂ind

t

)
≈ βEt

(
π̂t+1 − π̂ind

t+1

)
+ κ̄x̂t

+

(
Φ̄N1

Φ̄D1
− 1
)

κ̄ᾱ1Φ̄D1βEtϖ̂1,t+1 +

(
Φ̄N2

Φ̄D2
− 1
)

κ̄ᾱ2Φ̄D2βEtϖ̂2,t+1

+

(
ᾱ1Φ̄D1

ᾱ2Φ̄D2
− 1
)

κ̄ᾱ2Φ̄D2βEt (ϖ̂3,t+1 − ϖ̂2,t+1) +

(
Φ̄D1

Φ̄c
− 1
)

βEt

(
π̂t+1 − π̂ind

t+1

)
(8)

where the composite parameters are all functions of steady state levels, shown in Appendix C.3. As

for hatted variables, they are log-deviations from their steady state levels. That is, π̂t is the inflation

rate, π̂ind
t = γπ̂t−1 is the partial indexed inflation rate, x̂t is the output gap, ĝt =

(
Ŷt − Ŷt−1

)
is the

output growth, and ϵ̂t is the demand shock. In addition, ϖ̂1,t, ϖ̂2,t and ϖ̂3,t are three ancillary variables,

18See Section 4.
19In Coibion and Gorodnichenko (2011), monetary policy responds to output growth instead.
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which evolve according to:

ϖ̂1,t = ᾱ1Φ̄N1βEtϖ̂1,t+1 + x̂t − λ̄1

[(
π̂t − π̂ind

t

)
+ (σ − 1) ĝt − (ϵ̂t − ϵ̂t−1)

]
ϖ̂2,t = ᾱ2Φ̄N2βEtϖ̂2,t+1 + λ̄2

(
π̂t − π̂ind

t

)
ϖ̂3,t = ᾱ2Φ̄D2βEtϖ̂3,t+1 + λ̄3

(
π̂t − π̂ind

t

)
If trend inflation is zero, the composite parameter ratios have the same value Φ̄N1

Φ̄D1
= Φ̄N2

Φ̄D2
= ᾱ1Φ̄D1

ᾱ2Φ̄D2
=

Φ̄D1
Φ̄c

= 1. In this case, the three ancillary variables play no role in influencing inflation dynamics. If

π̄ ≷ 0, we have Φ̄N1
Φ̄D1

≷ 1 and Φ̄N2
Φ̄D2

≷ 1. As for ᾱ1Φ̄D1
ᾱ2Φ̄D2

and Φ̄D1
Φ̄c

, they are different from 1 only if δ > 0 and

π̄ ̸= 0. If either trend inflation is zero (π̄ = 0) or there are no price wedges (δ = 0), the approximation

(8) matches the full log-linearized equation.

6.1 Slope of the Phillips Curve

How does trend inflation π̄ affect the slope of the Phillips Curve in the price wedge model? To

answer this question, we investigate the role of δ on the slope.

The first and simplest answer is obtained by assessing κ̄, the composite coefficient on contempora-

neous output gap in the Phillips Curve. As known in the literature of trend inflation (e.g. Ascari and

Sbordone (2014)), κ̄ decreases with trend inflation π̄. Here, we find that the net effect of δ is to slightly

increase this composite parameter. However, empirical evidence has suggested that trend inflation ac-

tually increase the slope of the Phillips Curve (e.g. Romer et al. (1988), Ball and Mazumder (2011) and

Kurozumi and Van Zandweghe (2024)). And so, the fact that the contemporaneous slope κ̄ decreases

with trend inflation is at odds with empirical evidence. The literature explains this apparent puzzle

by the fact that the frequency of price readjustments should increase with trend inflation, reducing

the slope. Since this channel is absent in Calvo pricing, κ̄ actually decreases with trend inflation.

Nonetheless, as a contribution of this paper, we show that this puzzle is only apparent. In the

empirical literature, the simplest empirical approach used in the literature is carried out by using

observed measures of inflation rate and output gap to estimate the slope κ0 with a specification based

on the zero-trend inflation NK Phillips Curve (NKPC) π̂t = βπ̂e
t + κ0 x̂t + ε0,t, where the parameter β

is calibrated, π̂e
t is an empirical metrics for expected inflation, and ε0,t is an error term.20

20For instance, Ball and Mazumder (2011) and Kurozumi and Van Zandweghe (2024) use β = 1 and consider the 4-quarter

moving-average of realized inflation 1
4

4
∑

j=1
π̂t−j as a proxy for π̂e

t . For inference, they use US Congressional Budget Office’s

output-gap measure for x̂t in a Kalman Filtering approach to estimate time-varying coefficients κ0,t. Hazell et al. (2022), on
the other hand, consider the employment gap for x̂t, set β = 0.99 and use the rational expectations approach π̂e

t = Etπ̂t+1
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Alternatively, one can also estimate the reduced-form Phillips Curve π̂t = κx x̂t + εx,t. As Hazell

et al. (2022) explain, this specification arises is assuming that x̂t follows a reduced-form AR(1) dy-

namics x̂t = ρx x̂t−1 + νx,t in equilibrium. If the term νx,t is white noise, then the rational expectations

solution π̂t = κ0
∞
∑

j=0
βj x̂t+j + ε0,t is equivalent to π̂t =

κ0
(1−βρx)

x̂t + ε0,t. It implies that the reduced-form

slope satisfies κx = κ0
(1−βρx)

≥ κ0. Hazell et al. (2022) argue that this is the rationale to explain why

estimated reduced-form slope coefficients κx can be much larger than κ0.

Therefore, the econometrician exercise is to estimate time-varying slope coefficients κ0,t and κx,t

and plot it against a time-varying measure of trend inflation (e.g. Cogley and Sbordone (2008), Chan

et al. (2018)). As mentioned before, this leads to the empirical evidence that κ0,t and κx,t are posi-

tively correlated with the level of trend inflation. In this context, we pose the question whether the

theoretical dynamics implied by the NK model with price wedges are also consistent with a positive

correlation between empirics-based slope metrics κ0 (or κx) with trend inflation π̄, when replicating

the empirical approach. If so, is the theoretical model also consistent with estimates for κx being larger

than κ0, i.e. in line with Hazell et al. (2022) rationale?

As we show below, the answer is yes to both questions when trend inflation lies in the range

observed in most economies, i.e. between 0% and 10%. Using the model to generate endogenous

variables as observables, the empirics-based slope metrics not only take in account the effect of con-

temporaneous κ̄, but also the effect of monetary policy and the remaining variables and shocks (cur-

rent and lagged) in general equilibrium in the way they influence fluctuations of π̂t, Etπ̂t+1 and x̂t.

Therefore, we assess what the price-wedge model predicts for κ0 and κx, had the empirical data

used by econometricians been generated by the model. Since we also test the predictions with δ = 0,

we also contribute to the literature on trend inflation by reconciling the standard trend inflation NK

model with the evidence that empirical estimates of the slope is positively correlated with the level of

trend inflation.

In what follows, we assess asymptotic estimates for κ0 and κx, obtained using the functional forms

(π̂t − βEtπ̂t+1) = κ0 x̂t + ε0,t and π̂t = κx x̂t + εx,t. The first step is to recognize that current x̂t is en-

dogenous to ε0,t and εx,t. And so instruments are in need for estimating κ0 and κx. For that, we use

lagged endogenous variables produced by the model as instruments and consider the 2SLS estimator.

As it turns out, we always obtain the same estimates for κ0 and κx once we consider instrumentaliza-

to solve the zero-trend inflation NKPC forward , obtaining π̂t = κ0
∞
∑

j=0
βj x̂t+j + ε0,t when assuming that the error term ε0,t

is white noise. For inference, they replace expected future employment gaps with their realized values and an expectation
error, and use lagged employment gaps as instrumental variables in a GMM approach. As for the infinite sum, they truncate

it at T = 20, estimating the functional form π̂t = κ0
20
∑

j=0
βj x̂t+j + ε0,t.
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tion, no matter which endogenous variable we use or which lag we choose for the instrument. That

is, using lags of x̂t−j, π̂t−j, or ı̂t−j as instruments, we always obtain the same estimates. In addition,

this result is also robust to using different shocks to generate fluctuations: monetary policy shock ϵ̂i,t,

utility (demand) shock ϵ̂t and technology (supply) shock Ât.

Using an instrument zt ∈
{

x̂t−j, π̂t−j, ı̂t−j
}

, the asymptotic estimates for κ0 and κx are:

κ0 = plim (κ̂0) =
Cov[zt , (π̂t−βEtπ̂t+1)]

Cov[zt , x̂t]
; κx = plim (κ̂x) =

Cov[zt , π̂t]
Cov[zt , x̂t]

(9)

For computing those metrics, we use the theoretical unconditional covariances implied by the

model. Figure 3 shows how trend inflation π̄ and price wedge δ affects three model-implied slope

metrics: κ̄, κ0 and κx.
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Figure 3: Slope of The Phillips Curve

Notes: Slope metrics of the Phillips Curve. Slope κ̄ is the contemporaneous metric directly obtained from

the composite parameter of x̂t in equation (8). Slope κ0 is the asymptotic value obtained when estimating

the zero-trend inflation Phillips Curve π̂t = βEtπ̂t+1 + κ0 x̂t + ε0,t. Slope κx is the asymptotic value obtained

when estimating the reduced form Phillips Curve π̂t = κ0 x̂t + εx,t. The asymptotic values κ0 and κx are

obtained with observations for π̂t, Etπ̂t+1, and x̂t endogenously generated by the price wedge model. Since

x̂t is endogenous to the error terms, we use a lagged variable zt ∈ {x̂t−j, π̂t−j, ı̂t−j} as an instrument. The

estimates are consistent regardless of the lagged variable used as an instrument or the shock generating the

fluctuations.

Note that, even though κ̄ reduces with trend inflation, the empirics-based slope metrics κ0 and κx

increase with trend inflation when it is not large. However, the slope starts to fall once trend inflation

is sufficiently high. Depending on the value of δ, this turning point happens at about 8% to 12%.

We also highlight that, for the standard NK model with trend inflation (δ = 0), the slope is always
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increasing up to the model’s trend inflation threshold. Since inflation in most economies evolve in

the range from 0% to 10%, the model predicts that empirical assessments of κ0 and κx will generally

increase with trend inflation. In particular, the κ0 metrics obtained with δ = 0.05 closely matches the

empirical values for the US, as computed by Kurozumi and Van Zandweghe (2024). The pattern and

values also match those obtained with with state dependent models (e.g. Blanco et al. (2024), Karadi

et al. (2024)).

6.2 Impulse responses

Here, we exploit the dynamic consequences of the slope findings shown in Section 6.1. Since

slope considerations are more important for assessing the impact of monetary policy, we retrieve

impulse responses to monetary policy shock ϵ̂i,t, considering a range of different levels of annual

trend inflation. In order not to strongly depart from results consolidated in the literature of standard

NK models with trend inflation, we set the price wedge rate at a very low value, i.e. we use δ = 0.05.21

Setting a low value for δ, as we do, implies that the dynamics are very similar to those obtained under

standard NK models when trend inflation are smaller than the upper limit. However, as δ > 0, it

allows us to explore the dynamics at larger long-run inflation rates, past the usual upper limit, which

in this case is π̄ = 5.16%.

As Alvarez, Beraja, Gonzalez-Rozada and Neumeyer (2019) show, the frequency of price changes

is invariant to trend inflation when the latter is low. Therefore, we consider it reasonable to assume

that α remains roughly constant when trend inflation varies from 0% to 10%. And for making the

point that even a low price wedge rate is enough to ensure the existence of steady state equilibria for

all levels of trend inflation, we extend the trend inflation range to not low levels from 10% to 20%. For

the latter range, we recognize that the frequency of price changes must respond endogenously to the

increased level of trend inflation, but we keep α at the same calibrated value for illustrative purposes.

Therefore, for retrieving the impulse responses, we use the full log-linearized model presented in

Appendix C.3.We highlight that using the approximated Phillips curve under price wedges delivers

about the same results when trend inflation varies from 0% to 10%.

Figure 4 shows the responses to unitary monetary policy shock ϵ̂i,t under different levels of trend

inflation. The top two rows show the responses of aggregate output Ŷt, annualized inflation 4π̂t and

annualized nominal interest rate 4ı̂t under low annual trend inflation, from 0 to 10%. And the bottom

two rows assesses responses under high trend inflation, from 10 to 20%. We highlight that responses

21Recall that the markup result µ = θ
(θ−1)(1+δ)

(see Section 5.2.3) allows us to calibrate θ as a function of markup µ and
price wedge rate δ.
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for trend inflation larger than 5.16% are not possible under the standard NK model (δ = 0). Here,

using a non-zero value for δ allows us to explore the economy dynamics past the usual threshold.
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Figure 4: Impulse responses to monetary policy shocks

Notes: Impulse responses to Monetary Policy shock with δ = 0.05, in the Dixit-Stiglitz model with Price

Wedges. In the top row, we consider low levels of trend inflation (0 ≤ π̄ ≤ 10). In the bottom row, we

consider ”not low” levels of trend inflation (10 ≤ π̄ ≤ 20). One-off shocks are unitary, i.e. ϵ̂i,1= 1 at

period 1, for all levels of trend inflation.

The impulse responses are consistent with the results we obtained when assessing the empirics-

based slope metrics. When trend inflation is smaller than 10%, responses to monetary policy shocks

behave similarly to what we observe in standard NK models, in the sense that the amplitude of in-

flation rate responses increase with trend inflation, whereas output has its response amplitudes de-

creased. However, we see that there is a reversal in this pattern at high levels of trend inflation.

From this point on, amplitudes of inflation responses decrease, while that of output increase, as trend

inflation gets higher. It means that it becomes harder for central banks to curb inflation hikes and

bring it down, when the average inflation sits above the 10% level. We highlight that these properties

are in line with recent empirical results found by Canova and Forero (2024). The authors estimate a

Markov-Switching model for the US with two states (high and low inflation) from 1960 to 2023. They

find that, after contractionary monetary policy shocks, inflation rates do not fall as much and become

more persistent in high-inflation states when compared to low-inflation states.

27



7 Conclusion

We provide a resolution to a well-known problem: the steady state of the widely-studied New

Keynesian models based on Calvo-pricing does not exist beyond a low single-digit trend inflation

threshold, rendering them not useful for monetary policy analysis when trend inflation is not very

low. The main contribution of the paper is to establish that the root of the steady state problem

originates from the interaction of Calvo pricing with the popular Dixit-Stiglitz demand structure in

NK models. We present a general demand structure with the feature that demand remains finite when

relative prices increase and show that the steady state always exists with Calvo pricing for any trend

inflation level. Using this framework, we assess the properties of the Kimball-demand aggregator,

which avoids the steady state problem but creates new ones. We then present a model with price

wedges to augment the Dixit-Stiglitz and Kimball-demand aggregators and show that it resolves the

steady state problem. Our findings show that modification of the demand structure can ensure that

NK models are useful in evaluating alternative monetary policies for reducing inflation when trend

inflation is not very low.
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Online Appendix

A Real Rigidity Under General Demand Functions

Here, we assess what the general demand function yt(z)
Yt

= f (℘t (z) ,℘s,t) implies for real rigidity

in price setting. In the natural equilibrium, i.e. flexible prices (α = 0), system (4) simplifies into

f
(
℘n

t ,℘n
s,t
)
+ (℘n

t ) f1
(
℘n

t ,℘n
s,t
)
=

(
1 − 1

ξn

)
f1
(
℘n

t ,℘n
s,t
) [

f
(
℘n

t ,℘n
s,t
)]ω

(Xt)
(σ+ω)

Using the fact that f (1, 1) = 1, the last relation is easily log-linearized about the economy steady-

state with flexible prices, in which ℘n = ℘n
s = 1:

℘̂n
t = −

[
f2(1,1)+ f12(1,1)

1+ f1(1,1) − f12(1,1)
f1(1,1) −ω f2(1,1)

]
[

2 f1(1,1)+ f11(1,1)
1+ f1(1,1) − f11(1,1)

f1(1,1) −ω f1(1,1)
] ℘̂s,t +

(σ+ω)[
2 f1(1,1)+ f11(1,1)

1+ f1(1,1) − f11(1,1)
f1(1,1) −ω f1(1,1)

] x̂t

where ℘̂n
t , ℘̂s,t and x̂t are log-deviations from steady state levels.

Following Ball and Romer (1990) approach, we compute the content ψreal ≡ 1
κreal

of real rigidities

in this model, where κreal ≡ ∂℘̂n
t

∂x̂t
is the pass-through from output gap to prices. If prices are rigid

(α > 0), κreal is part of the output-gap coefficient in the Phillips curve. Evaluating equations (3) in the

steady-state equilibrium with flexible prices, we obtain a simple result to general demand-driven real

rigidities22 as a function of the natural elasticity ξn and superelasticity ηn. These expressions are:23

κreal =
(σ+ω)

1+ ηn
(ξn−1)+ωξn

; ψreal =
1

κreal
(A.1)

Therefore, the demand structure is a relevant source of real rigidities. As for the role of changes

in ξn and ηn, notice that ∂(ψreal)
∂ηn = 1

(σ+ω)
1

(ξn−1) and ∂(ψreal)
∂ξn = − 1

(σ+ω)

(
ηn

(ξn−1)2 − ω
)

. We conclude

that, no matter the form of the demand function, there must be the case that: (i) increases in natural

superelasticity ηn leads to larger (smaller) real rigidity ψreal if natural elasticity ξn is larger (smaller)

than unity; and (ii) increases in natural elasticity ξn leads to larger (smaller) real rigidity ψreal if natural

superelasticity ηn is smaller (larger) than ω (ξn − 1)2.

22For that, we easily compute κreal ≡
∂℘̂n

t
∂X̂t

= (σ+ω)
2 f1(1,1)+ f11(1,1)

1+ f1(1,1) − f11(1,1)
f1(1,1) −ω f1(1,1)

, and apply the definitions in (3).

23In Burya and Mishra (2022), the authors derive a similar but simpler result in a model with linear production function,
log utility to consumption and no disutility to work, which implies ω = 0. The authors show the pass-through κp ≡ κreal

(σ+ω)

from marginal costs to prices. When ω = 0, their inverse real rigidity metrics is then κpt =
(ξn−1)

(ξn−1)+ηn .
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B Kimball Aggregator

In Kimball (1995), consumption over all differentiated goods ct (z) are aggregated into a bundle Ct,

according to 1 =
∫ 1

0 G
(

ct(z)
Ct

)
dz, where function G (κ) satisfies G (1) = 1, G′ (κ) > 0, and G′′ (κ) <

0, for all κ ≥ 0. In this context, Dotsey and King (2005) propose the particular functional form

G
(

ct(z)
Ct

)
= m

1+φ

[
(1 + φ) ct(z)

Ct
− φ

] 1
m
+ 1 − m

1+φ , where m ≡ µk(1+φ)
(1+µk φ)

is a composite parameter, µk ≥ 1

is the elasticity parameter, which matches the implicit markup rate µ under flexible prices, and φ ≤ 0

sets the aggregation curvature. If φ = 0, G (·) simplifies into the standard Dixit and Stiglitz (1977)

aggregation form. Allowing for smooth-kinked demand function, it has also been used by Levin et al.

(2007), Harding et al. (2022) and Kurozumi and Van Zandweghe (2024).

According the notation used in Section 3.1, this model sets δ = 0. The literature typically derives

the utility-based demand function by choosing ct (z) to minimize expenditure PtCt ≡
∫ 1

0 pt (z) ct (z) dz,

subject to only one restriction, the Kimball aggregation 1 =
∫ 1

0 G
(

ct(z)
Ct

)
dz. The implied demand func-

tion and implied price aggregation are:

ct(z)
Ct

= f (℘t (z) ,℘s,t) =


1

(1+φ)

(
℘t(z)
℘k,t

)ϖ
+ φ

(1+φ)
; if
(
℘t(z)
℘k,t

)
≤ (−φ)

1
ϖ

0 ; if
(
℘t(z)
℘k,t

)
> (−φ)

1
ϖ

℘k,t ≡ (1 + φ)− φ℘s,t ; Ps,t ≡
∫ 1

0 pt (z) dz ; 1 =
∫ 1

0

(
℘t(z)
℘k,t

)(1+ϖ)
dz

(B.2)

where ϖ ≡ µk(1+φ)
(1−µk)

= − m
(m−1) , Pk,t is an auxiliary composite price aggregate, Ps,t is the average price.

Paralleling the notation used in Section 3.1.1, we define ℘t (z) ≡ pt(z)
Pt

as the relative price of firm z, and

℘s,t =
Ps,t
Pt

as the average relative price. We also set ℘k,t ≡
Pk,t
Pt

as the auxiliary composite relative price.

In addition, it is straightforward to verify that the price aggregation 1 =
∫ 1

0

(
℘t(z)

(1+φ)−φ℘s,t

)(1+ϖ)
dz is

equivalent to Pt =
∫ 1

0 pt (z) f (℘t (z) ,℘s,t) dz.

Under this type of Kimball aggregation, the firm z’s price pt (z) elasticity and superelasticity are:

(i) ξt (z) = −ϖ
(
℘t(z)
℘k,t

)ϖ
[(

℘t(z)
℘k,t

)ϖ
+ φ

]−1

and ηt (z) = ϖφ

[(
℘t(z)
℘k,t

)ϖ
+ φ

]−1

, if
(
℘t(z)
℘k,t

)
≤ (−φ)

1
ϖ ; or

(ii) ξt (z) = 0 and ηt (z) = 0, if
(
℘t(z)
℘k,t

)
> (−φ)

1
ϖ .

In macroeconomic models, the way to generate empirically observed persistent non-neutrality in

aggregate output is to combine real and nominal rigidities. However, empirical evidence suggest

that price stickiness is not so large.24 Therefore, macroeconomists tend to use theoretical models with

large real rigidities (see e.g. Ball and Romer (1990), Basu (1995), Blanchard and Gali (2007)). In this

regard, Kimball’s implied real rigidity can be easily computed using (A.1), evaluated in the steady

24As in e.g. Bils and Klenow (2004) and Nakamura and Steinsson (2008), estimated median duration between price
changes ranges from about 4.5 months, when sales are included, to 10 months, when they are excluded.
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state equilibrium with flexible prices:25

κKimball
real = (σ+ω)

1−µφ+ µ
(µ−1) ω

; ψKimball
real = 1

κreal

Therefore, for a given preferences/production structure represented by σ and ω, a large degree

of large real rigidity ψKimball
real can be achieved with a convenient balance between a large demand

curvature (φ << 0) and a appropriate markup µ > 1.

B.1 Kimball NK Model

In general equilibrium, based on the generic model shown in Section 3, we have:

1 = βEt

(
ϵt+1

ϵt

(
Yt

Yt+1

)σ It
Πt+1

)
qt = β ϵt

ϵt−1

(
Yt−1

Yt

)σ
1

Πt(
It
Ī

)
= ϵi,t

(
It−1

Ī

)ϕi
[(

Πt
Π̄

)ϕπ
(

Xt
X̄

)ϕx
(

Yt
Yt−1

)ϕgy
(

Yt
Ȳ

)ϕy
](1−ϕi)

(Yn
t )

(σ+ω) = 1
µ

ε
χ ϵt (At)

(1+ω)

Xt =
Yt
Yn

t
; qt,t+j = qt+1qt+1,t+j for j ≥ 1 and qt,t = 1

Gt =
Yt

Yt−1
; Πt,t+j = Πt+1Πt+1,t+j for j ≥ 1 and Πt,t = 1

Πind
t = Πγ

t−1 ; Πind
t,t+j = Πind

t+1Πind
t+1,t+j for j ≥ 1 and Πind

t,t = 1

; Gt,t+j = Gt+1Gt+1,t+j for j ≥ 1 and Gt,t = 1

25Considering that µ here is the gross markup rate, the component (1 − µφ) is the same found in Levin, Lopez-Salido and
Yun (2007) and Harding, Linde and Trabandt (2022), as their models implies ω = 0.
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℘s,t = (1 − α)℘∗
t + α

Πind
t

Πt
℘s,t−1

(1 + φ) = ℘k,t + φ℘s,t

(℘k,t)
− 1

(m−1) = (1 − α) (℘∗
t )

− 1
(m−1) + α

(
Πind

t
Πt

)− 1
(m−1)

(℘k,t−1)
− 1

(m−1)

℘∗
t = φ (m− 1) (℘∗

t )

(
1+ m

(m−1)

)
N1,t
Dt

+ m
µ

N2,t
Dt

Dt = (℘k,t)
m

(m−1) + αEtqt+1Gt+1Πt+1

(
Πt+1
Πind

t+1

) 1
(m−1)

Dt+1

N1,t = 1 + αEtqt+1Gt+1Πind
t+1N1,t+1

N2,t = µEt ∑∞
j=0 qt,t+jα

jGt,t+jΠt,t+j

(
Πt,t+j

Πind
t,t+j

) m
(m−1) (

℘k,t+j
) m

(m−1) mc∗t,t+j

mc∗t,t+j =
1
µ

(
Xt+j

)(σ+ω)

[
1

(1+φ)

(
Πind

t,t+j
Πt,t+j

℘∗
t

℘k,t+j

)− m
(m−1)

+ φ
(1+φ)

]ω

Since power ω in the equation for mc∗t,t+j is not a positive integer, we cannot write N2,t in a finite

recursive way. Therefore, simulations are to be carried out using the same approximation we use for

the price wedge model.

B.2 Steady state

Given an exogenous level of trend inflation Π̄, the steady state levels can be numerically obtained

as follows. First, we compute Ī, q̄, and Ȳn:

Ī = Π̄
β ; q̄ = β

Π̄ ; (Ȳn)
(σ+ω)

= 1
µ

ε
χ ϵ̄
(
A
)(1+ω)

Next, we use a numerical code to solve the following non-linear system for relative prices ℘̄∗, ℘̄s,

and ℘̄k:

℘̄∗ = (1+φ)[(
1−α

1−ᾱk1

)−(m−1)
+φ

(1−α)

(1−ᾱk3)

] ; ℘̄s =
(1−α)
(1−ᾱk3)

℘̄∗ ; ℘̄k = (1 + φ)− φ℘̄s

where

ᾱk1 = α (Π̄)
(1−γ)
(m−1) ; ᾱk2 = αΠ̄

m(1−γ)
(m−1) ; ᾱk3 = αΠ̄−(1−γ)

The following step is to find the gross output gap X̄:

S̄d ≡
∞
∑

j=0
(ᾱk2β)j

[
1

(1+φ)

( ᾱk2
α

)j
(
℘̄∗

℘̄k

)− m
(m−1)

+ φ
(1+φ)

]ω

; D̄ = (℘̄k)
m

(m−1)

(1−ᾱk1β)
; N̄1 = 1

(1−ᾱk3β)

N̄2 = µ
m (℘̄∗)

(
D̄ − φ (m− 1) (℘̄∗)

m
(m−1) N̄1

)
; (X̄)

(σ+ω)
= N̄2

(℘̄k)
m

(m−1)

1
S̄d

; Ȳ = X̄Ȳn

If ᾱk2
α ≤ 1 the infinite sum S̄d converges when (ᾱk2β) < 1. If ᾱk2

α > 1, it converges when (ᾱk2β)
( ᾱk2

α

)ω
<
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1.

The infinite sum S̄d is generally numerically retrieved by using a finite sum in j = {0, 1, ..., J} for a

large J. In this paper, we use J = 10000. For numerical stability when ᾱk2
α > 1, S̄d is better computed

using S̄d =
∞
∑

j=0

(
ᾱk2β

( ᾱk2
α

)ω
)j
[

1
(1+φ)

(
℘̄∗

℘̄k

)− m
(m−1)

+ φ

(1+φ)
(

ᾱk2
α

)j

]ω

.

Alternatively, if ω is a positive integer, it is feasible to derive an exact closed form solution for S̄d.

For that, we only need to expand the term in brackets and obtain a couple of infinite sums that allow

for closed form solutions. For instance, if ω = 2, (ᾱk2)
2

α2 β < 1 and ᾱk2β < 1, we obtain:

S ≡
∞
∑

j=0
(ᾱk2β)j

[
1

(1+φ)

( ᾱk2
α

)j
(
℘̄∗

℘̄k

)− m
(m−1)

+ φ
(1+φ)

]2

=
∞
∑

j=0
(ᾱk2β)j

[
1

(1+φ)2

(
℘̄∗

℘̄k

)− 2m
(m−1)

(( ᾱk2
α

)2
)j

+ 2 1
(1+φ)

(
℘̄∗

℘̄k

)− m
(m−1) ( ᾱk2

α

)j
+ φ2

(1+φ)2

]
= (℘̄∗/℘̄k)

− 2m
(m−1)

(1+φ)2

∞
∑

j=0

(
(ᾱk2)

2

α2 β
)j

+ 2(℘̄∗/℘̄k)
− m
(m−1)

(1+φ)

∞
∑

j=0

(
(ᾱk2)

2

α β
)j

+ φ2

(1+φ)2

∞
∑

j=0
(ᾱk2β)j

= 1
(1+φ)2

(℘̄∗/℘̄k)
− 2m
(m−1)(

1− (ᾱk2)
2

α2 β

) + 2
(1+φ)

(℘̄∗/℘̄k)
− m
(m−1)(

1− (ᾱk2)
2

α β

) + φ2

(1+φ)2
1

(1−ᾱk2β)

B.3 Constrained Demand

Given the extra demand kink at
(

pt(z)
Pk,t

)
= (−φ)

1
ϖ , this particular case of Kimball’s aggregation

implies firms will typically not set any price pt (z) larger than (−φ)
1
ϖ [(1 + φ) Pt − φPs,t], as would

lead to zero demand. If φ = 0, in particular, the threshold (−φ)
1
ϖ is infinity. And so the restriction

ct(z)
Ct

≥ 0 is never biding under Dixit and Stiglitz (1977) aggregation. If φ < 0, however, we argue that

the condition for non-zero demand
(

pt(z)
Pk,t

)
< (−φ)

1
ϖ might not always hold with real data. That is,

an empirical test for this type of aggregation is to verify whether empirical values of relative prices
pt(z)
Pk,t

are smaller than (−φ)
1
ϖ .

Here, as it is not the main scope of this paper, we do not propose a sophisticated formal econo-

metric test. Rather, we propose a simple approach. So, the question is whether we can find a way

to compute Pt and Ps,t using typical moments from price samples, which would provide us with an

estimate for Pk,t ≡ [(1 + φ) Pt − φPs,t]. And here lies a slight caveat. While Ps,t ≡
∫ 1

0 pt (z) dz is the

simple average price, which can be easily estimated using sample price means, Pt has no obvious

empirical counterpart. Therefore, Pt is not easily empirically retrievable without relying on a general

equilibrium model.

In order to tackle this issue, we propose a second-order approximation approach. Consider the

typical price aggregation into Pt, abstracting from the relative price threshold. It can be written as
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(Pk,t)
− 1

(m−1) =
∫ 1

0 (pt (z))
− 1

(m−1) dz. Note that a second-order approximation of (pt (z))
− 1

(m−1) , about the

average price Ps,t ≡
∫ 1

0 pt (z) dz, is:

(pt (z))
− 1

(m−1) ≈ (Ps,t)
− 1

(m−1) − (Ps,t)
− m
(m−1)

(m−1) (pt (z)− Ps,t) +
1
2
m(Ps,t)

− 2m−1
(m−1)

(m−1)2 (pt (z)− Ps,t)
2

It implies that

(Pk,t)
− 1

(m−1) =
∫ 1

0 (pt (z))
− 1

(m−1) dz ≈ (Ps,t)
− 1

(m−1)

[
1 + 1

2
m

(m−1)2

∫ 1
0

[
pt(z)
Ps,t

− Ps,t

]2
dz
]

Therefore, we obtain the following relation between Pk,t and Ps,t:

Pk,t ≈
[
1 + 1

2
m

(m−1)2 s2
s,t

]−(m−1)
Ps,t

s2
s,t ≡

∫ 1
0

[
pt(z)
Ps,t

− 1
]2

dz
(B.3)

where Pk,t ≡ [(1 + φ) Pt − φPs,t]. Since Ps,t ≡
∫ 1

0 pt (z) dz and
∫ 1

0
pt(z)
Ps,t

dz = 1, ss,t is the cross-section

standard deviation of relative prices pt(z)
Ps,t

, which is a measure of relative price dispersion.

Recalling that m ≡ µk(1+φ)
(1+µk φ)

, it is not hard to verify that: (i) pt(z)
Ps,t

< pt(z)
Pk,t

< pt(z)
Pt

, if φ ∈ (−1, 0]; and

(ii) pt(z)
Pk,t

≤ pt(z)
Ps,t

< pt(z)
Pt

, if φ ≤ −1. In both cases, all three relative prices are very close to each other

whenever price dispersion is ss,t small.

Since the cross section average relative price is unity, i.e.
∫ 1

0
pt(z)
Ps,t

dz = 1, we can reasonable

conclude that
∫ 1

0
pt(z)
Pk,t

dz is also close to unity. And there lies a potential empirical issue with this

type Kimball’s demand function. Recall that its relative price constraint for non-zero demand is(
pt(z)
Pk,t

)
≤ (−φ)

1
ϖ , for ϖ ≡ µk(1+φ)

(1−µk)
.

In the literature, the upper limit (−φ)
1
ϖ for relative prices is generally very close to unity when φ is

set, or implied, using common values estimated or calibrated for the US. In order to verify this prop-

erty, consider first that µk matches the implicit markup rate µ under flexible prices. In this case, some

typical calibrations for the US are the following ones: (i) µ = 1.10, φ = −12.2 and (−φ)
1
ϖ = 1.021

in Harding et al. (2022); (ii) µ = 1.17, φ = −8 and (−φ)
1
ϖ = 1.043 in Levin et al. (2007);26 and (iii)

µ = 1.61 (estimated), φ = −3.79 and (−φ)
1
ϖ = 1.198 in Smets and Wouters (2007).27 In addition, ob-

taining a better marginal likelihood statistics for model comparison,28 Harding et al. (2022) re-estimate

26In Levin et al. (2007), the elasticity of substitution between goods ϵ can be mapped into our notation as µ = ϵ
(ϵ−1) . The

authors calibrated ϵ = 7, and so µ = 7
6 .

27In Smets and Wouters (2007), the demand’s curvature parameter ϵp can be mapped into our notation as ϵp = − µφ
(µ−1) .

The authors calibrated ϵp = 10 and estimated the gross markup rate at µ = 1.61.
28The authors obtain a marginal likelihood gain of 5 log points.
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Smets and Wouters (2007) model with a different prior distribution. Their new posterior modes imply

µ = 1.34 (estimated), φ = −16.37 and (−φ)
1
ϖ = 1.047.

As for the empirical dispersion of relative prices, we consider the Kaplan and Menzio (2015) results

described in Section 2. In particular, we make a conservative choice by considering the authors’ Brand

Aggregation, in which products have at least the same features and the same size, and so are in line

with what economists usually think about commodity goods. Under this aggregation, the authors

find that the empirical standard-deviation of relative prices, relatively to the sample average price

Pa,t, is 0.25.29 Notice that, under this type of Kimball aggregation, Ps = Pa. As depicted in Section 2,

the authors’ findings imply that a 80% confidence interval for empirical relative prices in the US are

at least ranging from
(

p(z)
Ps

)
0.10

= 0.68 to
(

p(z)
Ps

)
0.90

= 1.38.

Using approximation (B.3), with standard deviation ss = 0.25, and considering the authors’ dif-

ferent calibration options for µ and φ, we are able to compute the implied 80% confidence intervals

for
(

p(z)
Pk

)
as follows:

(
p(z)
Pk

)
0.10

=
(

Ps
Pk

) (
p(z)
Ps

)
0.10

;
(

p(z)
Pk

)
0.90

=
(

Ps
Pk

) (
p(z)
Ps

)
0.90

Therefore, considering different calibration options for µ and φ, Table 1 verifies whether the im-

plied 80% confidence intervals for
(

p(z)
Pk

)
are at least totally included in the feasibility region

(
p(z)
Pk

)
≤

(−φ)
1
ϖ . Of course, this back-of-the-envelope analysis is by no means meant to be a formal hypothesis

test, but the fact that all 90% quantiles surpass the theoretical Kimball’s upper limit (−φ)
1
ϖ strongly

suggests that an important fraction of relative prices are larger than the implied Kimball’s upper limit

for relative prices (−φ)
1
ϖ . This conclusion is specially so for cases in which (−φ)

1
ϖ is very close to

unity. This result is in line with simulations carried out by Klenow and Willis (2016), who find that

about 15% of goods end up with zero relative demand when the demand function is Kimball-based

with large curvature.

29Here, we are abstracting from frequency considerations the authors dealt with when using empirical data.
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Table 1: Kimball’s Relative Prices - Empirical confidence intervals and Kimball’s upper limit

Authors µ φ
(

Ps
Pk

)
(−φ)

1
ϖ

(
p(z)
Pk

)
0.90

Harding et al. (2022)a 1.10 −12.2 0.95 1.02 1.31
Harding et al. (2022)b 1.34 −16.4 0.93 1.05 1.28
Levin et al. (2007) 1.17 −8.0 0.92 1.04 1.27
Smets and Wouters (2007) 1.61 −3.8 0.88 1.20 1.21

Notes: The empirical relative price 90% quantile is computed using Equation (B.3) and Kaplan and Menzio

(2015) estimates. Kimball’s relative price upper bound is (−φ)
1
ϖ . Harding et al. (2022) first (a) calibrates

µ = 1.10 and φ = −12.2; and then (b) estimates µ = 1.34 and φ = −16.4 using Smets and Wouters

(2007) model with a different prior distribution. Again, ϖ is defined as ϖ ≡ µk(1+φ)
(1−µk)

, and µk= µ.

C Price Wedge Model

The household pays (pt (z) + δPt) for each unit of good z. The aggregate price definition is (1 + δ) PtCt ≡∫ 1
0 (pt (z) + δPt) ct (z) dz. Firm z revenue is (pt (z) + δPt) yt (z).

C.1 General Equilibrium - Dixit-Stiglitz with Price Wedges

The composite parameters are:

ω ≡ (1+ν)
ε − 1 ; θ1 ≡ θ (1 + ω) ; µk ≡ θ

(θ−1) ; µ = µk
(1+δ)

The dynamic equations are:

1 = βEt

(
ϵt+1

ϵt

(
Yt

Yt+1

)σ It
Πt+1

)
qt = β ϵt

ϵt−1

(
Yt−1

Yt

)σ
1

Πt(
It
Ī

)
= ϵi,t

(
It−1

Ī

)ϕi
[(

EtΠt+1
Π̄

)ϕπ f
(

Xt
Xt−1

)ϕgx
](1−ϕi)

(Yn
t )

(σ+ω) = 1
(1+δ)µ

ε
χ ϵt (At)

(1+ω)

Xt =
Yt
Yn

t
; qt,t+j = qt+1qt+1,t+j for j ≥ 1 and qt,t = 1

Gt =
Yt

Yt−1
; Πt,t+j = Πt+1Πt+1,t+j for j ≥ 1 and Πt,t = 1

Πind
t = Πγ

t−1 ; Πind
t,t+j = Πind

t+1Πind
t+1,t+j for j ≥ 1 and Πind

t,t = 1

; Gt,t+j = Gt+1Gt+1,t+j for j ≥ 1 and Gt,t = 1
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1 = (1 − α)
∞
∑

j=0
αj
( z∗t−j,t

1+δ

)−(θ−1)

(℘δ,t)
−θ = (1 − α)∑∞

j=0 αj
(

Πind
t−j,t

Πt−j,t
℘∗

t−j + δ℘s,t

)−θ

1 = µk
N1,t
D1,t

N1,t =
1
µ Et

∞
∑

j=0
αjqt,t+jΠind

t,t+jGt,t+j

( z∗t,t+j
1+δ

)−(1+θ̄1) (Xt+j)
(σ+ω)

(1+δ)

D1,t ≡ Et
∞
∑

j=0
αjqt,t+jΠind

t,t+jGt,t+j

( z∗t,t+j
1+δ

)−θ

z∗t,t+j =
Πind

t,t+j
Πt,t+j

℘∗
t + δ

z∗t−j,t =
Πind

t−j,t
Πt−j,t

℘∗
t−j + δ

As for the remaining aggregates and welfare measures, they are:

Wt = ut − υt ; ut = ϵt
(Yt)

(1−σ)−1
(1−σ)

ht =
(
dy,t

Yt
At

) 1
ε

; υt =
χ

(1+ν)
dυ,t (ht)

(1+ν)

dy,t = (1 + δ)θ (Λy,t
)ε ; dυ,t =

Λt

(Λy,t)
(1+ν)

Λy,t = (1 − α)
∞
∑

j=0
αj
(

z∗t−j,t

)− θ
ε

; Λt = (1 − α)
∞
∑

j=0
αj
(

z∗t−j,t

)−θ1

Wn
t = un

t − υn
t ; un

t = ϵt
(Yn

t )
(1−σ)−1

(1−σ)

hn
t =

(
Yn

t
At

) 1
ε

; υn
t = χ

(1+ν) (h
n
t )

(1+ν)

Wt = ϵt
(Yeq

t )
(1−σ)−1

(1−σ)
− χ

(1+ν)

(
Yeq

t
At

)(1+ω)
; Xeq

t ≡ Yeq
t

Yn
t

C.2 Steady State

For any variable χt, its steady state level is defined as χ̄. The steady state equilibrium can be

numerically obtained as follows. First, we compute Ī, q̄, and Ȳn:

Ī = Π̄
β ; q̄ = β

Π̄ ; (Ȳn)
(σ+ω)

= 1
(1+δ)µ

ε
χ ϵ̄
(
A
)(1+ω)

Next, we use a numerical code to solve the following non-linear system for the resetting relative
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price ℘̄∗, in which the infinite sum is retrieved by using finite sums in j = {0, 1, ..., J} for a large J. In

particular, we consider J = 10000:

1 = (1 + δ)(θ−1) (1 − α)
∞

∑
j=0

αj
(

℘̄∗

Π̄(1−γ)j + δ

)−(θ−1)

After computing the relative prices, we pin down the following composite parameters:

ΣN1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ̄1)

ΣD1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−θ

Σy ≡ ∑∞
j=0 αj

(
z̄∗j
)− θ

ε
ΣΛ ≡ ∑∞

j=0 αj
(

z̄∗j
)−θ1

where z̄∗j =

(
℘̄∗

(Π̄)
(1−γ)j + δ

)
, ᾱ1 ≡ α

Π̄(1−γ) and ᾱ2 ≡ α
Π̄2(1−γ) .

Since the price wedge demand function satisfies the conditions of Theorem 1, we know that the

infinite sums converge. Therefore, we can retrieve them numerically, by considering finite sums up

to a very large horizon J, i.e. j ∈ {0, 1, ..., J}. Again, we use J = 10000. For avoiding numerical

issues arising from dealing with very large numbers when δ > 0, we proceed as follows. First, for

each infinite sum of the form Σφ ≡
∞
∑

j=0
(ß)j

(
z̄∗j
)−φ

, where ß<1, we define its normalized peer Σ̃φ ≡

∞
∑

j=0
(ß)j

(
z̃∗j
)−φ

, where z̃∗j ≡ z̄∗j
δ℘̄s

=

(
1 + 1

(Π̄)
(1−γ)j

℘̄∗

δ

)
. Therefore, whenever δ > 0, we can accurately

approximate Σ̃φ using
J

∑
j=0

(ß)j
(

z̃∗j
)−φ

. After retrieving Σ̃φ, we compute Σφ = (δ)−φ Σ̃φ.

After pinning down the gross output gap X̄ =
[
(1 + δ)−θω µ

µk

ΣD1
ΣN1

] 1
(σ+ω) , we compute the aggregate

output Ȳ = X̄Ȳn. As for the remaining aggregates and welfare measures, they are:

W̄n = ūn − ῡn W̄ = ū − ῡ ; Λ̄ = (1 − α)ΣΛ

h̄n =
(

Ȳn

A

) 1
ε h̄ =

(
d̄y

Ȳ
A

) 1
ε

; Λ̄y = (1 − α)Σy

ūn = ϵ̄ (Ȳn)
(1−σ)−1

(1−σ)
; ū = ϵ̄ (Ȳ)(1−σ)−1

(1−σ)
; d̄y = (1 + δ)θ (Λ̄y

)ε

ῡn = χ
(1+ν)

(
h̄n)(1+ν) ; ῡ = χ

(1+ν)
d̄υ

(
h̄
)(1+ν) ; d̄υ = Λ̄

(Λ̄y)
(1+ν)

As for the consumption-equivalent welfare metrics, we use numerical methods to solve the fol-

lowing non-linear equation:

ϵ̄
(Ȳeq)

(1−σ) − 1
(1 − σ)

− χ

(1 + ν)

(
Ȳeq

A

)(1+ω)

= W̄
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After that, we compute X̄eq = Ȳeq

Ȳn as the consumption-equivalent output gap.

In the particular case of (Π̄)
(1−γ)

= 1, it is possible to obtain a closed form solution:

ᾱ1 = ᾱ2 = α ; ℘̄∗ = X̄ = 1 ; z̄∗j = (1 + δ)

The remaining steady state levels, when (Π̄)
(1−γ)

= 1, are then easily retrieved using the same

relations previously detailed.

C.3 Log-Linearized Model

For computing the model loglinearized equilibrium, we also need the augment the set of compos-

ite parameters:

ω ≡ (1+ν)
ε − 1 ; µk ≡ θ

(θ−1) ; ᾱ1 ≡ α
Π̄(1−γ)

θ̄1 ≡ θ (1 + ω) ; µ = µk
(1+δ)

; ᾱ2 ≡ α
Π̄2(1−γ)

Given an exogenous level of trend inflation Π̄, we start by defining z̄∗j ≡
(

℘̄∗

(Π̄)
(1−γ)j + δ

)
and the

following composite parameters:

ΣN1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−(1+θ̄1)

; ΣN2 ≡
∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(2+θ̄1)

; Σ℘ ≡
∞
∑

j=0
αj
(

z̄∗j
)−(θ−1)

ΣD1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j
)−θ

; ΣD2 ≡
∞
∑

j=0
(ᾱ2β)j

(
z̄∗j
)−(1+θ)

; Σc ≡
∞
∑

j=0
(ᾱ1)

j
(

z̄∗j
)−θ

ΘN1 ≡ (℘̄∗ + δ)−(1+θ̄1) ; ΘN2 ≡ (℘̄∗ + δ)−(2+θ̄1) ; Θ℘ ≡ (℘̄∗ + δ)−(θ−1)

ΘD1 ≡ (℘̄∗ + δ)−θ ; ΘD2 ≡ (℘̄∗ + δ)−(1+θ) ; Θc ≡ (℘̄∗ + δ)−θ

(C.4)

Since the price wedge demand function satisfies the conditions of Theorem 1, we know that the

infinite sums converge. When δ > 0, we proceed as in Appendix C.2 and accurately approximate Σ̃φ

using
J

∑
j=0

(ß)j
(

z̃∗j
)−φ

, where J = 10000. After retrieving Σ̃φ, we compute Σφ = (δ)−φ Σ̃φ.

For k ∈ {0, 1, 2, ...} and defining ℘̄∗
k ≡ ℘̄∗

Π̄(1−γ)k and z̄∗j+k =
℘̄∗

k
Π̄j(1−γ) + δ, consider the following se-
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quence of composite parameters:

Σk,N1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j+k

)−(1+θ̄1)
; Σk,N2 ≡

∞
∑

j=0
(ᾱ2β)j

(
z̄∗j+k

)−(2+θ̄1)
; Σk,℘ ≡

∞
∑

j=0
αj
(

z̄∗j+k

)−(θ−1)

Σk,D1 ≡
∞
∑

j=0
(ᾱ1β)j

(
z̄∗j+k

)−θ
; Σk,D2 ≡

∞
∑

j=0
(ᾱ2β)j

(
z̄∗j+k

)−(1+θ)
; Σk,c ≡

∞
∑

j=0
(ᾱ1)

j
(

z̄∗j+k

)−θ

Θk,N1 ≡
(
℘̄∗

k + δ
)−(1+θ̄1) ; Θk,N2 ≡

(
℘̄∗

k + δ
)−(2+θ̄1) ; Θk,℘ ≡

(
℘̄∗

k + δ
)−(θ−1)

Θk,D1 ≡
(
℘̄∗

k + δ
)−θ ; Θk,D2 ≡

(
℘̄∗

k + δ
)−(1+θ) ; Θk,c ≡

(
℘̄∗

k + δ
)−θ

Consider now each k-infinite sum Σk,φ and k-parameter Θk,φ, for φ ∈ {N1, D1, N2, D2,℘, c}. Note

that Σ0,φ = Σφ and Θ0,φ = Θφ. In this case, the k-infinite sums are easier computed using the following

recursions for k ≥ 1, derived in Appendix C.3.2:

Σk,N1 = 1
ᾱ1β

[
Σ(k−1),N1 − Θ(k−1),N1

]
; Σk,N2 = 1

ᾱ2β

[
Σ(k−1),N2 − Θ(k−1),N2

]
Σk,D1 = 1

ᾱ1β

[
Σ(k−1),D1 − Θ(k−1),D1

]
; Σk,D2 = 1

ᾱ2β

[
Σ(k−1),D2 − Θ(k−1),D2

]
Σk,℘ = 1

α

[
Σ(k−1),℘ − Θ(k−1),℘

]
; Σk,c =

1
ᾱ1

[
Σ(k−1),c − Θ(k−1),c

]
The full log-linearized aggregate supply curve ultimately depends on the following ratios:

Ωk,N1 ≡ Θk,N1
Σk,N1

; Ωk,N2 ≡ Θk,N2
Σk,N2

; Ωk,℘ ≡ Θk,℘
Σk,℘

Ωk,D1 ≡ Θk,D1
Σk,D1

; Ωk,D2 ≡ Θk,D2
Σk,D2

; Ωk,c ≡
Θk,c
Σk,c

Using the recursion equations for the k-infinite sums, we obtain:

Ωk,N1 = ᾱ1β
Θk,N1

Θ(k−1),N1

Ω(k−1),N1

[1−Ω(k−1),N1]
; Ωk,N2 = ᾱ2β

Θk,N2
Θ(k−1),N2

Ω(k−1),N2

[1−Ω(k−1),N2]

Ωk,D1 = ᾱ1β
Θk,D1

Θ(k−1),D1

Ω(k−1),D1

[1−Ω(k−1),D1]
; Ωk,D2 = ᾱ2β

Θk,D2
Θ(k−1),D2

Ω(k−1),D2

[1−Ω(k−1),D2]

Ωk,℘ = α
Θk,℘

Θ(k−1),℘

Ω(k−1),℘

[1−Ω(k−1),℘]
; Ωk,c = ᾱ1

Θk,c
Θ(k−1),c

Ω(k−1),c

[1−Ω(k−1),c]

(C.5)

In general, for any variable χt, its log-linearized version is defined as χ̂t ≡ log
(

χt
χ̄

)
, keeping the

same case as in the original variable, e.g. Ŷt = log
(

Yt
Ȳ

)
. For gross rates, though, we represent its

loglinearized version in lower cases, e.g. π̂t = log
(

Πt
Π̄

)
. Usual loglinearizations from the general

part of the model, i.e. comprising equations independent of pricing structure, leads to the following
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system:

Ŷt = EtŶt+1 − 1
σ Et [(ı̂t − π̂t+1) + (ϵ̂t+1 − ϵ̂t)]

q̂t = σ
(
Ŷt−1 − Ŷt

)
− π̂t + (ϵ̂t − ϵ̂t−1)

ı̂t = ϕi ı̂t−1 + (1 − ϕi)
[
ϕπ f Etπ̂t+1 + ϕgx (x̂t − x̂t−1)

]
+ ϵ̂i,t

(σ + ω) Ŷn
t = ϵ̂t + (1 + ω) Ât

π̂ind
t = γπ̂t−1 ; x̂t = Ŷt − Ŷn

t ; ĝt = Ŷt − Ŷt−1

Note that Etq̂t+1 = −ı̂t. Lastly, as we show in Appendix C.3.2, the price setting equations presented

in systems (6) and (7) imply the following log-linearized system describing the full price-wedge

NKPC (supply curve) under trend inflation:

Ω0,c℘̂∗
t = (1 − Ω0,c)

(
π̂t − π̂ind

t
)
− (1 − Ω0,c) ŝ1,c,t−1[

ΣD1
ΣN1

− θ

(1+θ̄1)
ΣD2
ΣN2

]
℘̂∗

t = 1
(℘̄∗)(1+θ̄1)

ΣD1
ΣN2

[̂s0,N1,t − ŝ0,D1,t] +

[
ΣD1
ΣN1

ŝ0,N2,t − θ

(1+θ̄1)
ΣD2
ΣN2

ŝ0,D2,t

] (C.6)

where, for k ∈ {0, 1, 2, ...}, the k-ancillary variables ŝk,c,t, ŝk,N1,t, ŝk,D1,t, ŝk,N2,t, and ŝk,D2,t evolve accord-

ing to k-dependent recursive equations:

ŝk,c,t = Ωk,c℘̂
∗
t − (1 − Ωk,c)

[(
π̂t − π̂ind

t
)
− ŝ(k+1),c,t−1

]
ŝk,N1,t = Ωk,N1 (σ + ω) x̂t − (1 − Ωk,N1) Et

[(
π̂t+1 − π̂ind

t+1

)
+ (σ − 1) ĝt+1 − (ϵ̂t+1 − ϵ̂t)− ŝ(k+1),N1,t+1

]
ŝk,D1,t = − (1 − Ωk,D1) Et

[(
π̂t+1 − π̂ind

t+1

)
+ (σ − 1) ĝt+1 − (ϵ̂t+1 − ϵ̂t)− ŝ(k+1),D1,t+1

]
ŝk,N2,t = (1 − Ωk,N2)

[
Et
(
π̂t+1 − π̂ind

t+1

)
+ ŝ(k+1),N2,t+1

]
ŝk,D2,t = (1 − Ωk,D2)

[
Et
(
π̂t+1 − π̂ind

t+1

)
+ ŝ(k+1),D2,t+1

]
(C.7)

In our simulations described in Section (6), we truncate the infinite recursive system of ancil-

lary variables at k̄ = 40. With this approximation, we substitute ŝ40,c,t−1 for ŝ41,c,t−1, Etŝ40,N1,t+1 for

Etŝ41,N1,t+1, Etŝ40,D1,t+1 for Etŝ41,D1,t+1, Etŝ40,N2,t+1 for Etŝ41,N2,t+1, and Etŝ40,N2,t+1 for Etŝ41,N2,t+1.

C.3.1 The approximated price-wedge NKPC under trend inflation

All infinite sums converge if δ > 0. Therefore, each one of them, we can compute gross trend

inflation equivalents Π̄N1, Π̄D1, Π̄N2, Π̄D2, Π̄℘, and Π̄c implicitly defined as follows:

ΣN1 = ΘN1
(1−ᾱ1βΦ̄N1)

; ΣN2 = ΘN2
(1−ᾱ2βΦ̄N2)

; Σ℘ =
Θ℘

(1−αΦ̄℘)

ΣD1 = ΘD1
(1−ᾱ1βΦ̄D1)

; ΣD2 = ΘD2
(1−ᾱ2βΦ̄D2)

; Σc =
Θc

(1−ᾱ1Φ̄c)
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where
Φ̄N1 ≡ (Π̄N1)

(1+θ̄1)(1−γ) ; Φ̄N2 ≡ (Π̄N2)
(2+θ̄1)(1−γ) ; Φ̄℘ ≡ (Π̄℘)

(θ−1)(1−γ)

Φ̄D1 ≡ (Π̄D1)
θ(1−γ) ; Φ̄D2 ≡ (Π̄D2)

(1+θ)(1−γ) ; Φ̄c ≡ (Π̄c)
θ(1−γ)

In addition, we can truncate he infinite recursive system short at k̄ = 0. With this approxima-

tion, we substitute ŝ0,c,t−1 for ŝ1,c,t−1, Etŝ0,N1,t+1 for Etŝ1,N1,t+1, Etŝ0,D1,t+1 for Etŝ1,D1,t+1, Etŝ0,N2,t+1 for

Etŝ1,N2,t+1, and Etŝ0,N2,t+1 for Etŝ1,N2,t+1. Droping the index notation for k = 0, the approximated

system is:

Ωc℘̂∗
t ≈ (1 − Ωc)

(
π̂t − π̂ind

t
)
− (1 − Ωc) ŝc,t−1[

ΣD1
ΣN1

− θ

(1+θ̄1)
ΣD2
ΣN2

]
℘̂∗

t = 1
(℘̄∗)(1+θ̄1)

ΣD1
ΣN2

[̂sN1,t − ŝD1,t] +

[
ΣD1
ΣN1

ŝN2,t − θ

(1+θ̄1)
ΣD2
ΣN2

ŝD2,t

]

ŝc,t ≈ Ωc℘̂∗
t − (1 − Ωc)

[(
π̂t − π̂ind

t
)
− ŝc,t−1

]
ŝN1,t ≈ ΩN1 (σ + ω) x̂t − (1 − ΩN1) Et

[(
π̂t+1 − π̂ind

t+1

)
+ (σ − 1) ĝt+1 − (ϵ̂t+1 − ϵ̂t)− ŝN1,t+1

]
ŝD1,t ≈ − (1 − ΩD1) Et

[(
π̂t+1 − π̂ind

t+1

)
+ (σ − 1) ĝt+1 − (ϵ̂t+1 − ϵ̂t)− ŝD1,t+1

]
ŝN2,t ≈ (1 − ΩN2) Et

[(
π̂t+1 − π̂ind

t+1

)
+ ŝN2,t+1

]
ŝD2,t ≈ (1 − ΩD2) Et

[(
π̂t+1 − π̂ind

t+1

)
+ ŝD2,t+1

]
And so, ŝc,t ≈ ŝc,t−1 ≈ 0. Using the trend inflation equivalents, we obtain:

[
1 − θϱ̄

(1+θ̄1)

]
ᾱ1Φ̄c

(1−ᾱ1Φ̄c)

(
π̂t − π̂ind

t
)
≈ (℘̄∗+δ)

(℘̄∗)(1+θ̄1)
(1−ᾱ2βΦ̄N2)
(1−ᾱ1βΦ̄N1)

[̂sN1,t − ŝD1,t] + ŝN2,t − θϱ̄

(1+θ̄1)
ŝD2,t

ŝN1,t ≈ (1 − ᾱ1βΦ̄N1) (σ + ω) x̂t − ᾱ1βΦ̄N1Et
[(

π̂t+1 − π̂ind
t+1

)
+ (σ − 1) ĝt+1 − (ϵ̂t+1 − ϵ̂t)− ŝN1,t+1

]
ŝD1,t ≈ −ᾱ1βΦ̄D1Et

[(
π̂t+1 − π̂ind

t+1

)
+ (σ − 1) ĝt+1 − (ϵ̂t+1 − ϵ̂t)− ŝD1,t+1

]
ŝN2,t ≈ ᾱ2βΦ̄N2Et

[(
π̂t+1 − π̂ind

t+1

)
+ ŝN2,t+1

]
ŝD2,t ≈ ᾱ2βΦ̄D2Et

[(
π̂t+1 − π̂ind

t+1

)
+ ŝD2,t+1

]
where ϱ̄ ≡ (1−ᾱ1βΦ̄D1)

(1−ᾱ1βΦ̄N1)
(1−ᾱ2βΦ̄N2)
(1−ᾱ2βΦ̄D2)

. Using the lead (L−1) operator, the recursive system of ancillary vari-

ables can be written as follows:

ŝN1,t ≈ ᾱ1βΦ̄N1
(1−ᾱ1βΦ̄N1L−1)

Et
[
−
(
π̂t+1 − π̂ind

t+1

)
+ (1 − σ) ĝt+1 + (ϵ̂t+1 − ϵ̂t)

]
+ (1−ᾱ1βΦ̄N1)(σ+ω)

(1−ᾱ1βΦ̄N1L−1)
x̂t

ŝD1,t ≈ ᾱ1βΦ̄D1
(1−ᾱ1βΦ̄D1L−1)

Et
[
−
(
π̂t+1 − π̂ind

t+1

)
+ (1 − σ) ĝt+1 + (ϵ̂t+1 − ϵ̂t)

]
ŝN2,t ≈ ᾱ2βΦ̄N2

(1−ᾱ2βΦ̄N2L−1)
Et
(
π̂t+1 − π̂ind

t+1

)
ŝD2,t ≈ ᾱ2βΦ̄D2

(1−ᾱ2βΦ̄D2L−1)
Et
(
π̂t+1 − π̂ind

t+1

)
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Therefore, the systen is represented as follows:

(
π̂t − π̂ind

t
)
≈ 1

(1−ᾱ1βΦ̄N1L−1)
κ̄x̂t

+ 1
(1−ᾱ1βΦ̄N1L−1)

κ̄ᾱ1βΦ̄N1
(σ+ω)(1−ᾱ1βΦ̄N1)

Et
[
−
(
π̂t+1 − π̂ind

t+1

)
+ (1 − σ) ĝt+1 + (ϵ̂t+1 − ϵ̂t)

]
− 1

(1−ᾱ1βΦ̄D1L−1)
κ̄ᾱ1βΦ̄D1

(σ+ω)(1−ᾱ1βΦ̄N1)
Et
[
−
(
π̂t+1 − π̂ind

t+1

)
+ (1 − σ) ĝt+1 + (ϵ̂t+1 − ϵ̂t)

]
+ (1−ᾱ1Φ̄c)

ᾱ1Φ̄c

(1+θ̄1)
[(1+θω)+θ(1−ϱ̄)]

[
ᾱ2βΦ̄N2

(1−ᾱ2βΦ̄N2L−1)
− θϱ̄

(1+θ̄1)
ᾱ2βΦ̄D2

(1−ᾱ2βΦ̄D2L−1)

]
Et
(
π̂t+1 − π̂ind

t+1

)
where κ̄ ≡

(
1 + δ

℘̄∗

)
(1−ᾱ1Φ̄c)(1−ᾱ2βΦ̄N2)

ᾱ1Φ̄c

(σ+ω)
[(1+θω)+θ(1−ϱ̄)]

.

Multiplying the system by
(
1 − ᾱ1βΦ̄D1L−1), and rearranging the terms, we obtain:

(
π̂t − π̂ind

t
)
≈ βEt

(
π̂t+1 − π̂ind

t+1

)
+ κ̄x̂t +

(
Φ̄D1
Φ̄c

− 1
)

βEt
(
π̂t+1 − π̂ind

t+1

)
+

(
Φ̄N1
Φ̄D1

− 1
)

κ̄
ᾱ1Φ̄D1β

(1−ᾱ1βΦ̄N1L−1)
Et
{

x̂t+1 − λ̄1
[(

π̂t+1 − π̂ind
t+1

)
+ (σ − 1) ĝt+1 − (ϵ̂t+1 − ϵ̂t)

]}
+

(
Φ̄N2
Φ̄D2

− 1
)

κ̄
ᾱ2Φ̄D2β

(1−ᾱ2βΦ̄N2L−1)
λ̄2Et

(
π̂t+1 − π̂ind

t+1

)
+

(
ᾱ1Φ̄D1
ᾱ2Φ̄D2

− 1
)

κ̄
(

ᾱ2Φ̄D2β

(1−ᾱ2βΦ̄D2L−1)
λ̄3 − ᾱ2Φ̄D2β

(1−ᾱ2βΦ̄N2L−1)
λ̄2

)
Et
(
π̂t+1 − π̂ind

t+1

)
where

λ̄1 ≡ 1
(σ+ω)(1−ᾱ1βΦ̄N1)

; λ̄2 ≡ (℘̄∗)
(℘̄∗+δ)

(1+θ̄1)
(σ+ω)(1−ᾱ2βΦ̄N2)

; λ̄3 ≡ (℘̄∗)
(℘̄∗+δ)

θϱ̄

(σ+ω)(1−ᾱ2βΦ̄N2)

Therefore, we can write the approximated price-wedge NKPC under trend inflation as follows:

(
π̂t − π̂ind

t
)
≈ βEt

(
π̂t+1 − π̂ind

t+1

)
+ κ̄x̂t +

(
Φ̄N1
Φ̄D1

− 1
)

κ̄ᾱ1Φ̄D1βEtϖ̂1,t+1 +
(

Φ̄N2
Φ̄D2

− 1
)

κ̄ᾱ2Φ̄D2βEtϖ̂2,t+1

+
(

ᾱ1Φ̄D1
ᾱ2Φ̄D2

− 1
)

κ̄ᾱ2Φ̄D2βEt (ϖ̂3,t+1 − ϖ̂2,t+1) +
(

Φ̄D1
Φ̄c

− 1
)

βEt
(
π̂t+1 − π̂ind

t+1

)
where ϖ̂1,t, ϖ̂2,t and ϖ̂3,t are three ancillary variables, which evolve according to:

ϖ̂1,t = ᾱ1Φ̄N1βEtϖ̂1,t+1 + x̂t − λ̄1

[(
π̂t − π̂ind

t

)
+ (σ − 1) ĝt − (ϵ̂t − ϵ̂t−1)

]
ϖ̂2,t = ᾱ2Φ̄N2βEtϖ̂2,t+1 + λ̄2

(
π̂t − π̂ind

t

)
ϖ̂3,t = ᾱ2Φ̄D2βEtϖ̂3,t+1 + λ̄3

(
π̂t − π̂ind

t

)
Again, the composite parameters are

ϱ̄ ≡ (1−ᾱ1βΦ̄D1)
(1−ᾱ1βΦ̄N1)

(1−ᾱ2βΦ̄N2)
(1−ᾱ2βΦ̄D2)

; κ̄ ≡
(

1 + δ
℘̄∗

)
(1−ᾱ1Φ̄c)(1−ᾱ2βΦ̄N2)

ᾱ1Φ̄c

(σ+ω)
[(1+θω)+θ(1−ϱ̄)]

λ̄1 ≡ 1
(σ+ω)(1−ᾱ1βΦ̄N1)

; λ̄2 ≡ (℘̄∗)
(℘̄∗+δ)

(1+θ̄1)
(σ+ω)(1−ᾱ2βΦ̄N2)

; λ̄3 ≡ (℘̄∗)
(℘̄∗+δ)

θϱ̄

(σ+ω)(1−ᾱ2βΦ̄N2)
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C.3.2 Deriving the Log-Linearized Supply System

Direct loglinearization of the pricing systems (6) and (7) initially gives the following equations:

0 =
∞
∑

j=0
(ᾱ1)

j
(

z̄∗j
)−θ [

℘̂∗
t−j −

(
π̂t−j,t − π̂ind

t−j,t

)]

0 = µkN̄1N̂1,t − D̄1D̂1,t

N̄1N̂1,t = − 1
µ (1 + δ)θ̄1 (X̄)

(σ+ω) (1 + θ̄1
)

ΣN2 (℘̄
∗) ℘̂∗

t

+ 1
µ (1 + δ)θ̄1 (X̄)

(σ+ω) Et
∞
∑

j=0
(ᾱ1β)j

(
z∗j
)−(1+θ̄1) [

q̂t,t+j + π̂ind
t,t+j + ĝt,t+j + (σ + ω) x̂t+j

]
+ 1

µ (1 + δ)θ̄1 (X̄)
(σ+ω) (1 + θ̄1

)
(℘̄∗) Et

∞
∑

j=0
(ᾱ2β)j

(
z∗j
)−(2+θ̄1) (

π̂t,t+j − π̂ind
t,t+j

)

D̄1D̂1,t = − (1 + δ)θ θΣD2 (℘̄
∗) ℘̂∗

t

+ (1 + δ)θ Et
∞
∑

j=0
(ᾱ1β)j

(
z∗j
)−θ [

q̂t,t+j + π̂ind
t,t+j + ĝt,t+j

]
+ (1 + δ)θ θ (℘̄∗) Et

∞
∑

j=0
(ᾱ2β)j

(
z∗j
)−(1+θ) (

π̂t,t+j − π̂ind
t,t+j

)
Since the discounted sums do not allow for finite recursive representations, we use the following

Lemmas to help us obtain simpler expressions, used to deriving the system of equations in (C.6) and

(C.7).

Lemma 1 Consider generic forward and backward equations Ŝ f
t ≡ Et

∞
∑

j=0
(ß)j

(
z̄∗j
)−ϕ (

κ̂a
t,t+j + κ̂b

t+j

)
and

Ŝl
t ≡

∞
∑

j=0
(ß)j

(
z̄∗j
)−ϕ (

κ̂a
t−j,t + κ̂b

t−j

)
, where ß∈ (0, 1) is a discounting parameter, κ̂a

τ1,τ2
is a cumulative

variable from τ1 to τ2, while κ̂b
τ is a spot variable at period τ. Since κ̂a

t,t+j = κ̂a
t+1 + κ̂a

t+1,t+j, κ̂a
t−j,t = κ̂a

t +
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κ̂a
t−j,t−1, and κ̂a

t,t = 0, the infinite sums lead to the following infinite recursive systems, for k = {0, 1, 2, ..., ∞}:

Ŝ f
t = Ŝ f

0,t

Ŝ f
k,t =

(
Σk,ϕ − Θk,ϕ

)
Etκ̂a

t+1 + Θk,ϕκ̂b
t + ßEtŜ

f
(k+1),t+1

Ŝl
t = Ŝl

0,t

Ŝl
k,t =

(
Σk,ϕ − Θk,ϕ

)
κ̂a

t + Θk,ϕκ̂b
t + ßŜl

(k+1),t−1

where

Ŝ f
k,t ≡ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j + κ̂b
t+j

)
Ŝl

k,t ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t + κ̂b
t−j

)
Θk,ϕ ≡

(
z̄∗k
)−ϕ , Σ0,ϕ = Σϕ ≡

∞
∑

j=0
(ß)j

(
z̄∗j
)−ϕ

Σk,ϕ ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ
= 1

ß

[
Σ(k−1),ϕ − Θ(k−1),ϕ

]

Proof. As for Σk,ϕ ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ
, note that:

Σk,ϕ ≡
∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ
=

∞
∑

j=−1
(ß)j

(
z̄∗j+k

)−ϕ
− (ß)−1 (z̄∗k−1

)−ϕ

=
∞
∑

j=0
(ß)j−1

(
z̄∗j−1+k

)−ϕ
− (ß)−1 (z̄∗k−1

)−ϕ
= 1

ß

[
∞
∑

j=0
(ß)j

(
z̄∗j+k−1

)−ϕ
−
(
z̄∗k−1

)−ϕ

]

For the forward infinite sum, we obtain:

Ŝ f
k,t ≡ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j + κ̂b
t+j

)
= Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j

)
+ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t+j

)
= Et

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t,t+j

)
+ Et

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t+j

)
= Et

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t+1 + κ̂a
t+1,t+j

)
+
(
z̄∗k
)−ϕ κ̂b

t + Et
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t+j

)
=

(
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ
)

Etκ̂a
t+1 +

(
z̄∗k
)−ϕ κ̂b

t + Et
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t+1,t+j + κ̂b
t+j

)
=

(
Σk,ϕ −

(
z̄∗k
)−ϕ

)
Etκ̂a

t+1 +
(
z̄∗k
)−ϕ κ̂b

t + ßEt
∞
∑

j=0
(ß)j

(
z̄∗j+k+1

)−ϕ (
κ̂a

t+1,t+1+j + κ̂b
t+1+j

)
=

(
Σk,ϕ − Θk,ϕ

)
Etκ̂a

t+1 + Θk,ϕκ̂b
t + ßEtŜ

f
(k+1),t+1
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And lastly, for the backward sum, we obtain:

Ŝl
k,t ≡

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t + κ̂b
t−j

)
=

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t

)
+

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t−j

)
=

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t

)
+

∞
∑

j=0
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t−j

)
=

∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t + κ̂a
t−j,t−1

)
+
(
z̄∗k
)−ϕ κ̂b

t +
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂b

t−j

)
=

(
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ
)
κ̂a

t +
(
z̄∗k
)−ϕ κ̂b

t +
∞
∑

j=1
(ß)j

(
z̄∗j+k

)−ϕ (
κ̂a

t−j,t−1 + κ̂b
t−j

)
=

(
Σk,ϕ −

(
z̄∗k
)−ϕ

)
κ̂a

t +
(
z̄∗k
)−ϕ κ̂b

t + ß
∞
∑

j=0
(ß)j

(
z̄∗j+k+1

)−ϕ (
κ̂a

t−1−j,t−1 + κ̂b
t−1−j

)
=

(
Σk,ϕ − Θk,ϕ

)
κ̂a

t + Θk,ϕκ̂b
t + ßŜl

(k+1),t−1

The recursive systems are infinite, for Ŝl
k,t

(
Ŝ f

k,t

)
depends on Ŝl

(k+1),t−1

(
EtŜ

f
(k+1),t+1

)
, instead of

Ŝl
k,t−1

(
EtŜ

f
k,t+1

)
, for k = {0, 1, 2, ..., ∞}. However, since coefficients

(
Σk,ϕ − Θk,ϕ

)
and Θk,ϕ converges

asymptotically as k rises, the equations at a conveniently chosen large level k̄ can be approximated

by finite recursions, using Ŝl
k,t−1

(
EtŜ

f
k,t+1

)
, instead of Ŝl

(k+1),t−1

(
EtŜ

f
(k+1),t+1

)
. In this paper, we set

k̄ = 40.
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