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Abstract

This paper proposes a novel method to construct confidence sets for predictive
measures, that do not require identification and can be finite-sample exact. First, a
joint robust confidence region for parameters that are hard to identify is constructed
through the inversion of an out-of-sample specification adequacy test. This set is then
projected to construct simultaneous confidence sets for any collection of measures over
multiple paths. These sets provide a unified solution to confidence estimation and out-
of-sample validation, without compounding type I error. We focus on tail risk metrics
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empirical evaluation of an exchange-traded fund that tracks the technology sector.
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1 Introduction

The problem of constructing confidence sets for predictive quantities arises in a variety

of econometric contexts. Important special cases include forecasts, yet as emphasized by

Dufour et al. (1994), predictive quantities can be defined more generally, with an out-of-

sample perspective. This paper concerns confidence set (CS) estimation of such quantities,

with focus on tail risk.

Broadly defined, tail risk measures are metrics that quantify predicted exposure to

extreme events beyond given thresholds. Conventional choices for such purposes, guided

by the Basel agreements since 2013, include: value-at-Risk (VaR), defined as the highest

possible loss at a given probability threshold; expected shortfall (ES), defined as the av-

erage loss given that loss exceeds VaR; and, more recently, expectile-VaR (EVaR), where

expectiles are defined as least-squares analogues of quantiles.1 Financial regulations often

require large institutions to back-test such measures, which refers to formal comparisons of

predicted against realized values to evaluate the performance of a risk forecasting model or

procedure.2 Importantly, regulations permit reliance on several measures.

The predictive quantities under consideration are commonly derived given some time

series specification, although non-parametric approaches are sometimes considered. Our

emphasis is on three issues: (i) identifiability of underlying model parameters; (ii) the mul-

tiplicity of available measures that can convey different and possibly conflicting assessments

of risk; and (iii) the scarcity of confidence inference relative to back-testing. For example,

in parametric GARCH models, popular measures (reviewed in Section 2) can be expressed

1See Tsay (2010) or Christoffersen (2016) for the definition of VaR and ES, and on expectiles, see
Newey and Powell (1987) and Bellini and Di Bernardino (2017). A survey with formal definitions of a
large spectrum of available measures is available in He et al. (2022). The Basel accords and technical
requirements are publicly available from the web-site of the Bank of International Settlements.

2The literature on back-testing VaR is well established [see e.g. Kupiec (1995), Christoffersen (1998),
Christoffersen and Pelletier (2004), Berkowitz et al. (2011), Leccadito et al. (2014)]; work on back-testing
ES is more recent [see e.g. Du and Escanciano (2017), Argyropoulos and Panopoulou (2019), Banulescu-
Radu et al. (2021), Hoga and Demetrescu (2023)]; very few procedures are available to back-test expectiles;
see e.g. Bellini et al. (2019). Further work on back-testing is reviewed below.
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as a function of model parameters and the cut-off point from the hypothesized error dis-

tribution. A semi-parametric alternative like the Filtered Historical Simulation replaces

that cut-off point by an empirical conditional quantile. While concerns associated with (i)

have escaped attention, work that addresses (ii) appears in mainly two instances. First,

considering several thresholds has led to important efficiency gains for back-tests of a single

metric; see e.g. Perignon and Smith (2008), Leccadito et al. (2014), Kratz et al. (2018),

Wang and Zhao (2016), Khalaf et al. (2021), Du et al. (2023). Second, the recognition that

ES and VaR are jointly elicitable3 whereas ES - individually - is not [Fissler et al. (2016),

Fissler and Ziegel (2016), Nolde and Ziegel (2017)] has spurred work on joint models and

back-tests for several metrics; see e.g. Patton et al. (2019), Bayer and Dimitriadis (2020),

Taylor (2020), Taylor (2022), Dimitriadis and Halbleib (2022), Fissler and Hoga (2023),

and Dimitriadis et al. (2023). The methods we propose are related to Patton et al. (2019),

in that we directly fit the measures in themselves. However, we depart from minimum

distance to avoid imposing identification.

There is a shortage of works on confidence set inference, relative to back-testing. The

few available exceptions are for the most part restricted to a single measure, and motivated

asymptotically, imposing identification; see e.g. the survey by Nieto and Ruiz (2016) and

Christoffersen and Goncalves (2005), Chan et al. (2007), Lan et al. (2010), Wang and Zhao

(2016), Hoga (2019a), Hoga (2019b), He et al. (2022), Davison et al. (2023). Out-of-sample

assessments are often conducted on (relatively) short periods; for some financial assets (e.g.

new instruments), a long series is not even available. Yet the asymptotic distributions

of relevant statistics require much larger samples. Finite sample distortions are actually

documented with back-tests; see e.g. Barendse et al. (2021), Hurlin et al. (2017), and

Dimitriadis et al. (2023). Apart from very few distribution-free tests [Christoffersen and

Pelletier (2004), Berkowitz et al. (2011), Leccadito et al. (2014), Kratz et al. (2018), Khalaf

3A vector of functionals is elicitable if there exists a loss function for which the vector provides the
unique minimizer of its expectation.

3



et al. (2021)], most back-tests require consistent estimation - and thus identification - of

underlying model parameters. However, predictive quantities, including risk measures, can

inherit the identification properties of the underlying models, which is not granted in many

cases including GARCH models.

This paper proposes novel simultaneous CS procedures to address the above concerns.

In the forecasting context, the simultaneous approach may be traced to Jordà and Mar-

cellino (2010). Wang and Zhao (2016) propose simultaneous bootstrap-based CSs for VaR

at multiple thresholds; Xu (2016) proposes joint non-parametric procedures for VaR and

ES. Our methodology is distinct along three important dimensions. First, our targets are

several different paths of forecasts over several time periods, for a single threshold or for

multiple ones; any collection of metrics can be considered. Second, we derive CSs that

embed an out-of sample goodness-of-fit check, which eschews the major critique associated

with parametrization. Third, proposed CSs are valid without imposing identification. Our

approach thus suggests an avenue towards an identification-robust perspective on elicitabil-

ity. To do this, we proceed by projecting a joint confidence region for the parameters of

the underlying econometric model that can be: (i) unbounded when identification is weak,

and (ii) empty, when the specification in question lacks fits. The rationale, in line with the

identification-robust literature4, can be summarized as follows. When a model is hard to

identify, a joint confidence region can still be obtained, often via test inversion, for some

parameters. For any collection of given functions of these parameters, the projection of this

region, which is its image by each function in question, will yield reliable simultaneous CSs.

The predictive quantities under consideration can be defined this way, for any collection of

measures that depend on the same history and deep parameters.

As the main contribution of this paper, we introduce joint predictive confidence regions

4This literature, which is now considerable, is mostly in-sample based and can be traced back to Dufour
(1997) and Stock and Wright (2000); for recent references in financial econometrics, see Beaulieu et al.
(2013), Beaulieu et al. (2014), Beaulieu et al. (2023) and references therein.
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for this purpose, which we propose to derive by inverting back-tests, or more generally, any

model assessment test that has a predictive out-of-sample basis. This will make fruitful

use of the vast literature on back-tests and will yield assessments of estimation uncertainty

that fulfill regulatory requirements. Modifications to the latter by the Basel Committee

on Banking since 2019 emphasize “forward-looking assessment” of vulnerabilities [Basel

Committee on Banking Supervision (2019)]. Our approach builds on this fact.

Inverting a test entails collecting the parameter values that are not rejected at a given

level. It is thus important to be clear about what we mean by inverting a back-test,

since back-tests typically rely on estimated model parameters. Instead, we propose to

compute the back-test for each model parameter value that is under test, which will assess

the out-of-sample fit given this specific parameter. This will check the adequacy of the

risk specification jointly with each hypothesized parameter value. Inversion will thus first

inform on the model parameters, and from thereon, the projections will inform on any

desired collection of risk measures. Hence, even if a VaR back-test is inverted, simultaneous

sets for any desired collection of measures can be obtained. The choice of back-test to be

inverted is thus not limited to the specific risk measures of interest.

Given the vast literature on back-tests, it is not possible to single out uniformly the

most suitable tests to invert. There is no consensus in this literature on which test is

preferable for their standard application. Available simulation studies are conducted for

the latter purpose, rather than for inference on model parameters. It is thus important to

document the size and power properties of our proposed application of back-testing, which

we do, as described below. While any back-test with reasonable finite sample properties

can be inverted, our approach provides a novel avenue for synthesizing the information in

available exact tests, leading to exact confidence inference for measures beyond VaR and

ES, based on tractable criteria. This covers many measures on which inferential theory is
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scarce, complicated or seems to necessitate large assessment samples, including expectiles.5

Our second contribution is a detailed analysis of the GARCH case. Despite the popular-

ity and simplicity of this model, available CSs are justified imposing regularity assumptions

that typically rule out boundary values, for example at the unit boundary, although inte-

grated GARCH models are broadly used in risk analysis [Longerstaey and Spencer (1996),

Tsay (2010)]. Furthermore, the root cancellation problem intervenes pervasively in the

GARCH case [Andrews (2001)]. For inversion purposes, we consider the multi-level Pear-

son test for VaR of Leccadito et al. (2014) which is an implicit test for ES, and the back-tests

for ES of Du and Escanciano (2017). Both tests are based on some form of cumulative

violations [Khalaf et al. (2021)], yet the former is an exact test. Following Patton et al.

(2019), our GARCH estimates thus aim for the best-fitting tail risk (rather than volatility)

forecasts, yet we view the best-fitting set as the least-rejected one.

A Monte Carlo simulation study is conducted to document the usefulness of our pro-

posed test inversion procedure. Importantly, we study (i) the implications of weak identi-

fication, (ii) the information content of parametric versus non-parametric violation aggre-

gators, and (iii) the usefulness of variance targeting [Engle and Mezrich (1996), Noureldin

et al. (2014)] to manage identification problems when persistence in the conditional variance

is high.

Our third contribution is an empirical application on the Technology Select Sector

SPDR Fund ETF (Bloomberg ticker: XLK). We consider a daily prediction sample from

June 22 to October 23, 2020 to track the effects of the COVID shock. The considered sector

is particularly interesting given the unexpected demands on technology that resulted from

social distancing restrictions. We produce simultaneous confidence bands for the VaR, ES

and EVaR forecasts, within a parametric GARCH model and its filtered historical sim-

ulation [FHS] semi-parametric counterpart [(Barone-Adesi et al., 1999)]. Results reveal

5In addition the above cited references on expectiles, see Nolde and Ziegel (2017) for a discussion of
related complications.
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root cancellation and boundary problems with GARCH parameters. Nevertheless, confi-

dence bands remain relatively informative on the risk measures themselves, which is partly

driven by variance-targeting. Overall, findings quantify the vulnerability of the consid-

ered fund relative to “flash events” [see Lettau and Madhavan (2018)] including vaccine

breakthroughs and major market-shaking events in the artificial intelligence sector.

The paper is organized as follows. Section 2 provides our proposed statistical framework

and general inference strategy. Section 3 discusses the GARCH case with a Monte Carlo

and empirical analysis. Section 4 concludes.

2 Framework and inference strategy

In this section, we present the general set-up and inference targets. We consider the problem

of estimating CSs for tail measures that are associated with a time series {Rt}t=1,...,T . For

risk analysis, {Rt} is a sample of portfolio returns, and tail measures are corresponding

end-of-sample based parameters. We thus define the prediction sample with reference to

the index set {n + 1, . . . , T} where n is predetermined. Let Ft represent the information

set up to time t, which may be restricted to the history of returns {Rτ : τ ≤ t} or may

include additional predictors. We make the following assumptions.

Assumption 1 - Inference targets. The underlying data generating process (DGP) is

sufficiently specified, up to a parameter θ ∈ Ω, so that the collection of the J paths of

interest, which we denote by Λj
t,q, can be formulated as given functions of θ and Ft−1:

Λj
t,q := gjq,t(θ,Ft−1), t = n+ 1, . . . , T, j = 1, . . . , J, (1)

where gjq,t(·) is a known (scalar) function.

Assumption 2 - Specification adequacy. The adequacy of (1) is formulated as

ft(Rt, θ,Ft−1) = ut, t = n+ 1, . . . , T, (2)
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where ft(·) is a known function and ut is a random vector with zero expectation conditionally

or unconditionally, that is, E(ut|Ft−1) = 0 or E(ut) = 0.

The above framework does not require the identification of θ, nor it is fully parametric.

Assumption 1 defines Λj
q,t as a predictive quantity through its reference to the prediction

sample. Assumption 2 defines end-of-sample stability through the function ft(·), that

generates predictive residuals in line with a wide spectrum of econometric models and

methods [see e.g. Dufour et al. (1994)]. We thus denote ft(·) as the residual maker function.

Standard forms of ft(·) (with formal definitions in Section 2) capture the frequency or

time series behavior of violations, where the latter is defined as a binary variable, which

takes value 1 if an observed data point falls beyond the considered tail threshold. The

disturbances ut are not assumed to be i.i.d. although such an assumption is appropriate

in some contexts. These include a popular distribution-free definition of adequacy, defined

below in 2, that has led to the above cited broad spectrum of exact risk measure back-tests.

Adequacy is usually defined as a conditional or unconditional zero-expectation assumption

on the residual maker function.

Broadly, tail risk measures which we formalize through Assumption 1 are functionals

that describe the predicted tail of the conditional (or unconditional) distribution of Rt,

beyond a given threshold q ∈ [0, 1]. We will refer to q as the tail threshold (rather than tail

level) and reserve the terms level and coverage with reference to statistical tests and CSs.

Popular tail measures which we consider include the following.

1. The one step ahead VaR, denoted V aRt,q, defined as the negative return at time t such

that the conditional probability to observe a more extreme return is q:

P [(Rt < −V aRt,q) |Ft−1; θ] = q, t = n+ 1, . . . , T ; (3)

2. The one step ahead ES, denoted ESt,q, defined as the conditional tail expectation at
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time t that assigns equal weight to all quantiles below q:

ESt,q = −E [Rt| (Rt < −V aRt,q) ,Ft−1; θ] =
1

q

∫ q

0

V aRt,u du, t = n+ 1, . . . , T ; (4)

3. The expectile-VaR, denoted EV aRt,q, which is similar to a conditional quantile but is

determined by tail expectations rather than tail probabilities:

EV aRt,q = −argmin
x∈R

E [ηq(Rt − x)− ηq(Rt)|Ft−1; θ] , t = n+ 1, . . . , T, (5)

where for any real scalar y, ηq(y) = |q−1(y ≤ 0)|y2 and 1(A) denotes the indicator function

of any event A [Bellini et al. (2014), Daouia et al. (2020)].

Parametric distributions are broadly adopted that allow one to express these measures

as in (1). Our approach is also compatible with semi-parametric modeling, including the

FHS approach, the extreme-value theory based semi-parametric model of D’Innocenzo et al.

(2023) or the dynamic specifications of Patton et al. (2019). The properties of (3), (4) and

(5) are discussed at length in the literature that we have reviewed above. In particular,

EV aRt,q is elicitable if q ∈ (0, 1/2], and ESt,q and V aRt,q are jointly elicitable although

ESt,q, viewed on its own, is not. Such concerns have attracted concrete interest in joint

testing, which motivates our simultaneous inference approach. In this context, the proce-

dure that we propose for inference on the collection of Λj
t,q, j = 1, ..., J , t = n + 1, . . . , T ,

is summarized in Algorithm 1.

The least rejected values apply the Hodges-Lehman (Hodges and Lehmann, 1963) esti-

mation method. The estimator of θ may not be unique as multiple values of θ can corre-

spond to the largest p-value. The above algorithm abstracts from the choice of which test

to invert, which is user defined, as is typically the case with statistical objective functions.

Furthermore, our methodology easily accommodates a combined criterion [see e.g. Khalaf

et al. (2021)] based on several back-tests. We next formalize the above steps, beginning

with a statement of the null hypotheses underlying the tests we invert, conforming with

(2).
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Algorithm 1

1: Test inversion. A back-test of (2) is inverted over θ ∈ Ω, using some conventional form

for ft(·). This step, implemented through a numerical search within Ω, will recover the

set of θ values, denoted thereafter as CS(θ; α̃), that are not rejected at level α̃.

2: Projections. Obtain the image of CS(θ; α̃) by each of the gjq,t(·), as defined in (1), which

will yield the desired collection of confidence set estimates, denoted as CSj
t,q(Λ

j
t,q; α̃).

The infimum and supremum of each of CSj
t,q(Λ

j
t,q; α̃), denoted as Lj

t,q(Λ
j
t,q; α̃) and

Uj
t,q(Λ

j
t,q; α̃), further yield a collection of simultaneous confidence bands.

3: Least rejected values. Within CS(θ; α̃), the value(s) of θ that are associated with the

largest back-test p-value yield an estimator of θ. The associated values of the measures

through each of the gjq,t(·) yield estimators for the Λj
t,qs.

2.1 Hypotheses and residual making functions

Usual back-tests assess the following conditional or unconditional null hypotheses

H∗
c : E [ft(Rt, θ,Ft−1)|Ft−1] = 0, for some θ ∈ Ω, t = n+ 1, . . . , T, (6)

H∗
u : E [ft(Rt, θ,Ft−1)] = 0, for some θ ∈ Ω, t = n+ 1, . . . , T. (7)

In contrast, our proposed inversion step is associated with

Hc (θ0) : E [ft(Rt, θ0,Ft−1)|Ft−1] = 0, for θ0 known, t = n+ 1, . . . , T, (8)

Hu (θ0) : E [ft(Rt, θ0,Ft−1)] = 0, for θ0 known, t = n+ 1, . . . , T . (9)

This distinction is important. However, as in Beaulieu et al. (2014) and in line with

the literature on weak identification, H∗
c or H∗

u can be rejected at the α̃ level without

imposing identification if the outcome of our inversion exercise yields CS(θ; α̃) = ∅. In

our simulations below, we show that our approach is highly informative on θ within the

considered DGP, in addition to the traditional application of back-tests.

We also consider the subset inference problem when θ = (δ′, ν ′)′, where δ is the sub-

vector that contains hard to identify parameters, and ν can be partialled-out through an

estimator given δ, denoted by ν̂ (δ), obtained from some pre-prediction or training sample,
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i.e. using data up to time t − 1 or n. For example, in a Student-t GARCH model, the

degrees-of-freedom parameter can be identified when the GARCH parameters are fixed.

The above procedure is then modified as follows. The inversion step is conducted over δ,

whereby ν is re-estimated imposing, in turn, each value of δ under the null. The associated

null hypotheses correspond to the following, where the superscript s refers to subset testing:

there exists ν0 ≡ ν(δ0) such that with ν̂ (δ0)
P→ ν0 we have:

Hs
c (δ0) : E [ft(Rt, (δ

′
0, ν0

′)′,Ft−1)|Ft−1] = 0, for δ0 known, t = n+ 1, . . . , T, (10)

Hs
u (δ0) : E [ft(Rt, (δ

′
0, ν0

′)′,Ft−1)] = 0, for δ0 known, t = n+ 1, . . . , T. (11)

Thus defined, ν0 will likely depend on δ0. An empty CS outcome in this case can also be

interpreted as evidence against H∗
c or H∗

u.

We now turn to the discussion of the considered forms for ft(·) in (2) that are con-

formable with tail risk measures. Our objective is to provide a useful unification to this

broad and diverse literature. Typically, popular back-tests rely on the following:

1. centered scalar violation (SV) indicators at the 100× q% threshold, defined as:

fSV
t,q (Rt, θ,Ft−1) := 1(Rt ≤ −V aRt,q)− q := It,q(Rt, θ,Ft−1)− q; (12)

2. centered integrated violation (IV) aggregators at the 100× q% threshold, defined as:

f IV
t,q (Rt, θ,Ft−1) :=

1

q

∫ q

0

It,s(Rt, θ,Ft−1)ds−
q

2
=

1

q
(q − wt)1(wt ≤ q)− q

2
; (13)

where wt = Ft(Rt|Ft−1) and Ft(·|Ft−1) is the conditional cumulative distribution function

of Rt; see Du and Escanciano (2017) for further reference;

3. centered vector violation (VV) indicators, defined as the vector-valued functions

fVV
t,q (Rt, θ,Ft−1, K) :=

(
fSV
t,q1

(Rt, θ,Ft−1), ..., f
SV
t,qK

(Rt, θ,Ft−1)
)′
;

where fSV
t,qi

(Rt, θ,Ft−1) are the scalar indicator functions defined in (12) and q = (q1, · · · , qK)′.

The K given thresholds q1 > · · · > qK are ordered conforming with V aRt,q1 < · · · <
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V aRt,qK ; the special case

q̄(K, q) := (q̄1(K, q), · · · , q̄K(K, q))′, q̄i(K, q) =
(K − i+ 1) q

K
, for q given, (14)

leads to equally spaced thresholds, that is |q̄i(K, q)− q̄i+1(K, q)| = q
K
;

4. centered realized violation (RV) aggregators :

fRV
t,q (Rt, θ,Ft−1, K) :=

1

K

K∑
i=1

(It,qi(Rt, θ,Ft−1)− qi) , (15)

f̂ IV
t,q (Rt, θ,Ft−1, K) :=

1

K

K∑
i=1

It,q̄i(K,q)(Rt, θ,Ft−1)−
(K + 1)q

2K
; (16)

5. residuals based on alternative scorings of violations and so-called test functions [Nolde

and Ziegel (2017)], including scores that target expected shortfall, expectiles, or joint mea-

sures; these cover the generalized residuals of Patton et al. (2019).

All back-tests considered will be based on some test statistic, which we denote by S(θ0)

or S(δ0), that depends on the data only through the series ft(Rt, θ0,Ft−1) or

ft(Rt, (δ
′
0, ν̂ (δ0)

′)′,Ft−1), t = n + 1, . . . , T . While the above choices for ft(·) are the most

prominent in the literature on back-testing risk measures, in the sense that some distri-

butional theory is available to assess H∗
c or H∗

u or their independence counterparts, our

presentation in what follows will intentionally remain general. Other predictive tests can

also be inverted more broadly; our focus on tail risk back-tests is motivated by our inference

targets.

2.2 Simultaneous confidence sets

It is useful at this stage to contrast our perspective with standard semi-parametric ap-

proaches. The latter usually begin by optimizing a statistical objective function to estimate

θ, using the training sample, that is data up to time n, or some rolling window of data up to

time t− 1. The risk measures are then computed by plugging the estimated value of θ into

the dynamic structures that define them, that is using (1). Point-wise standard errors may

12



be provided for each measure, although related works are rather scarce. Interest rather cen-

ters on validating back-tests for the measures under consideration. Estimation consistency

and back-test validity often stem from regularity conditions that impose identification. Our

objective is to relax this requirement, which may fail in heavy-tailed contexts. Instead, we

overcome estimation problems through back-test inversion. When underlying parameters

do not require identification, typical back-tests are more likely to control size which leads to

CSs for θ with reliable coverage. The fact that we invert adequacy back-tests also eschews

further goodness-of-fit assessments. This is because an empty CS formally corresponds

to a model rejection by the considered goodness-of-fit back-test. Thereafter, projections

yield simultaneous CSs for the desired path and any collection of measures without further

assumptions, which also addresses elicitability concerns. The following Theorem formally

presents our proposed simultaneous procedures, where again, our exposition remains inten-

tionally general.

Theorem 2.1. Under Assumptions 1 and 2, for t = n + 1, . . . , T, which indexes a pre-

determined prediction sample, j = 1, ..., J , which indexes a collection of predictive parame-

ters for any collection of thresholds 0 ≤ q ≤ 1, consider the collection of confidence regions

CSj
t,q(Λ

j
t,q; α̃) = {Λ̊j

t,q ∈ R : Λ̊j
t,q = gjq,t(θ0,Ft−1) for some θ0 ∈ CS(θ; α̃)}, (17)

CS(θ; α̃) = {θ0 ∈ Ω : p̂(S(θ0)) > α̃}, (18)

and the collection of confidence intervals

CIjt,q(Λ
j
t,q; α̃) =

]
Lj
t,q(Λ

j
t,q; α̃),U

j
t,q(Λ

j
t,q; α̃)

[
,

where Lj
t,q(Λ

j
t,q; α̃) = inf[gjq,t(θ0,Ft−1) : θ0 ∈ CS(θ; α̃)], Uj

t,q(Λ
j
t,q; α̃) = sup[gjq,t(θ0,Ft−1) :

θ0 ∈ CS(θ; α̃)], 0 ≤ α̃ ≤ 1, p̂ (S(θ0)) refers to the p-value of an out-of-sample test of Hc (θ0)

or Hu (θ0) as defined in (8) or (9), and S(θ0) denotes the underlying test statistic that

depends on the data only through ft(Rt, θ0,Ft−1), t = n+1, . . . , T . If the considered test is
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size-correct in the sense that

P [p̂ (S(θ0)) ≤ α̃] = α̃ (19)

under Hc (θ0) or Hu (θ0), then CSj
t,q(Λ

j
t,q; α̃) and CIjt,q(Λ

j
t,q; α̃) achieve coverage control, that

is:

P[Λj
t,q ∈ CSj

t,q(Λ
j
t,q; α̃)] ≥ 1− α̃, (20)

P[Lj
t,q(Λ

j
t,q; α̃) ≤ Λj

t,q ≤ Uj
t,q(Λ

j
t,q; α̃)] ≥ 1− α̃. (21)

(20) and (21) still follow when under the null hypothesis P [p̂ (S(θ0)) ≤ α̃] ≤ α̃.

See the proof in the Supplementary Material. When the inverted test controls size

only asymptotically (under some regularity conditions), then (20) and (21) will also hold

asymptotically. If ν is estimated, the above leads to the collection of confidence regions

CSj
t,q(Λ

j
t,q; α̃) = {Λ̊j

t,q ∈ R : Λ̊j
t,q = gjq,t(δ0,Ft−1) for some δ0 ∈ CS(δ; α̃)}, (22)

CS(δ; α̃) = {δ0 ∈ Ω : p̂(S(δ0)) > α̃}, (23)

and the collection of confidence intervals

CIjt,q(Λ
j
t,q; α̃) =

]
Lj
t,q(Λ

j
t,q; α̃),U

j
t,q(Λ

j
t,q; α̃)

[
,

where Lj
t,q(Λ

j
t,q; α̃) = inf[gjq,t(δ0,Ft−1) : δ0 ∈ CS(δ; α̃)], Uj

t,q(Λ
j
t,q; α̃) = sup[gjq,t(δ0,Ft−1) :

δ0 ∈ CS(θ; α̃)], p̂ (S(δ0)) refers to the p-value of an out-of-sample test of Hs
c (δ0) or Hs

u (δ0)

as defined in (10) or (11), and S(δ0) denotes the underlying test statistic that depends on

the data only through ft(Rt, (δ
′
0, ν̂ (δ0)

′)′,Ft−1), t = n+1, . . . , T . The estimation step does

not necessarily entail that the inverted test will not be exact. Thus, we next characterize

the cases leading to exact procedures, which require some restrictions on ft(·) or the DGP.

The implications of (3) and (4) are that: (i) It,q(.) as defined in (12) is Bernoulli

with mean q; (ii) f IV
t,q (.) as defined in (13) is a martingale difference sequence, and (iii){

It,qi(.)− It,qi+1
(.)

}
i=0,...,K

is Bernoulli with mean {qi − qi+1}i=0,...,K . Under the indepen-
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dence assumption, the joint null distribution of the vector

It,q(Rt, θ,Ft−1, K) = (It,q1(Rt, θ,Ft−1), ..., It,qK (Rt, θ,Ft−1))
′ (24)

is thus exactly nuisance parameter free and can be simulated, e.g. using draws from

the binomial or multinomial distribution, without taking a stand on the DGP. This has

motivated useful applications of the Monte Carlo test (MCT) technique [Dufour (2006)]

to derive exact tests based on such residuals, see Theorem 2.2. Since our implementation

differs from standard back-tests, we provide Algorithm 2 for completion.

Algorithm 2

To back-test a given θ0, using a back-test statistic denoted by S(θ) which depends on the

data only through ft(Rt, θ,Ft−1), t = n+ 1, . . . , T ,

1: Using the sample of t = n+1, . . . , T observations, compute the residuals ft(Rt, θ0,Ft−1),

and the considered test statistic, denoted S(θ0);

2: For b = 1, . . . , B, generate independent simulated realizations of the residuals

ft(Rt, θ0,Ft−1), under Assumptions 1 and 2, and the null hypothesis, leading to B

independent realizations of the test statistic denoted Sb(θ0);

3: Compute the empirical p-value p̂ (S(θ0)) = pB (S(θ0))with tie-breakers, as

pB(x) =
B ×GB(x) + 1

B + 1
(25)

GB(x) = 1− 1

B

B∑
b=1

1(Sb(θ0) ≥ x) +
1

B

B∑
b=1

1(Sb(θ0) ≥ x)× 1(W0 ≤ Wb)

and Wb, b = 0, 1, . . . , B, are independent standard uniform random variates.

Theorem 2.2. In the context of Assumptions 1 and 2, consider a test statistic S(θ0) to

assess specification adequacy for a given θ0 when the following supplementary condition

holds: under the adequacy assumption, the sequence of ft(Rt, θ,Ft−1), t = n+1, . . . , T , can

be simulated given θ. If S(θ0) depends on the data only through the residuals ft(Rt, θ0,Ft−1),

then the test with critical region p̂ (S(θ0)) ≤ α̃, 0 < α̃ < 1, where p̂(θ0) is obtained as in

(25) and α̃ (B + 1) is an integer, is exact in the following sense:

P[p̂ (S(θ0)) ≤ α̃] = α̃. (26)
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See the proof in the Supplementary Material. The key point we aim to emphasize via

this Theorem, is the following: the only requirement is the ability to make draws from the

null distribution of ft(Rt, θ0,Ft−1) - rather than from the null distribution of the data -

since model adequacy is defined through ft(Rt, θ0,Ft−1), as in Assumption 2. The issue of

course is how to implement step 2. Several cases are worth emphasizing.

Case A. If (24) is considered for ft(·), then the latter can easily be simulated under

the independence null with any parametric or semi-parametric DGP. Consequently, exact

p-values in the sense of (26) can be obtained for any statistic, not just those suggested or

reviewed by Christoffersen and Pelletier (2004), Berkowitz et al. (2011), Leccadito et al.

(2014), Kratz et al. (2018), Khalaf et al. (2021), that depends on the data only through

a known function of It,q(Rt, θ,Ft−1, K). This includes, in particular, the scoring-based

criteria of Nolde and Ziegel (2017), which broadly widens their applicability beyond the

considered Wald form. In this case, the simulated residuals will not depend on θ0 and thus

can be drawn only once through the inversion search.

Case B. If the DGP is completely specified given θ so that Rt can be simulated knowing

θ, any ft(·) sequence can be simulated regardless of its form, for every θ0 value under the

null. If the DGP can be simulated yet it just models tail outcomes given θ, then any ft(·)

sequence can be simulated if it is only based on tail data. Exact p-values in the sense of

(26) will also follow in this case, yet in contrast to case A, the residuals need to be drawn

for every θ0 value under test through the inversion search.

Case C. In the context of case B and the subset null hypotheses Hs
c (δ0) or Hs

u (δ0)

as defined in (10) or (11), Algorithm 2 can be implemented using the plug-in estimator

θ̂0 = (δ′0, ν̂ (δ0)
′)′. The resulting MCT p-value p̂ (·) will be valid asymptotically in the sense

that P[p̂ (S(θ0)) ≤ α̃] converges to α̃, if null distribution of the test statistic is nuisance

parameter free.6 The aforementioned literature provides a wide spectrum of asymptotically

6The plug-in estimator can be validated under less stringent high-level assumptions on the null distri-
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pivotal tests that are based on some specific form for ft(·), and these typically require

conditions on n and T . Underlying regularity conditions may hold only weakly if the

estimated parameters need to be identified. We propose to implement these tests when

the sub-parameter that is hard to identify is fixed for inversion purposes, which places the

estimation and limiting distributional theory under more favorable conditions.

Otherwise, any of the available tests can be inverted without reliance on the MCT

approach. Again, their limiting null distributions or alternative re-sampling schemes will

perform better when the parameter that is hard to identify is not estimated. To illustrate

the applicability of our proposed procedure, we next consider the GARCH baseline case.

3 Application to a baseline GARCH risk model

Consider the following GARCH process for Rt = σtZt where Zt is either standard normal,

or follows a standardized symmetric (ξ = 1) or asymmetric Student-t distribution with ν

degrees-of-freedom and asymmetry parameter ξ:

σ2
t |Ft−1 = σ̄2(1− α− β) + αR2

t−1 + βσ2
t−1. (27)

Var and ES admit closed forms which we supply in the Supplementary Material for com-

pletion. Expectiles do not admit closed-form expressions so gjq,t(θ,Ft−1) is computed nu-

merically. We set δ = (α, β)′ as the sub-vector of parameters that are hard to identify,

where α ≥ 0, β ≥ 0, and α + β < 1. GARCH parameters are hard to identify because of

root-cancellation type problems [Andrews (2001)], which motivates our application.

We focus on two representative back-tests: the multi-level Pearson test for V aR [Lec-

cadito et al. (2014)], denoted by X (m,q), and the tests for ES by Du and Escanciano

(2017), denoted by U(q) in the unconditional case, and C(m, q) in the conditional one,

where m is the number of lags. The first one is a distribution-free exact test based on

bution of the considered statistics as shown in Dufour (2006).
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realized violations, whereas the last two rely on fully parametric integrated violations, and

is justified asymptotically. We aim: (i) to explore linkages between integrated and realized

violation, and (ii) to study within a unified environment a parametric versus model-agnostic

approach. We provide the formula for the three tests statistics in the Supplementary Mate-

rial. Both tests are implemented for a given vector (α, β)′, estimated σ̄2 and when relevant,

estimated υ and ξ, for each value of the tested (α, β)′ vector.

3.1 Simulation study

We conduct a simulation study to assess size and power of the considered back-tests for

hypotheses that fix α and β. This documents the coverage properties of associated in-

version procedures, in line with the literature on weak identification. The experiment is

conducted over 2000 Monte Carlo simulations, where the training sample size is n = 2500

and the prediction sample size T − n ∈ {90, 250, 500, 1000, 2000} respectively. Samples

are drawn from (27), assuming in turn standard normal, symmetric and asymmetric inno-

vations to reflect typical features of return distributions such as fat tails and asymmetry.

More specifically, we explore the impact of these common stylized facts by considering three

different DGPs: Normal-GARCH(1,1), Student t-GARCH(1,1) with degrees of freedom set

to 6.77, and skewed Student t-GARCH(1,1) where the shape parameter is set to 6.93 and

the asymmetry parameter is set to 0.86. These values were estimated from daily S&P500

log returns using the considered GARCH model, over the 2008-2012 period, which will

provide an empirically relevant design. The long-run variance σ̄2 is calibrated to 1, which

also coincides with the starting value of the conditional variance process (27).

Under the null hypothesis, distributional parameters are estimated with maximum like-

lihood in sample using a rolling window design. For power purposes, α and β are modified

relative to the null hypothesis, leaving the remaining parameters unchanged, including the

long-run variance and starting value of the conditional variance process (which are cali-
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brated). V aR thresholds considered for the X (m,q) test are q1 = 1.25%, q2 = 2.5%, q3 =

3.75%, q4 = 5% and MCT p-values are computed using 999 replications. For the U(q) and

C(m, q) test, q = 5%. All tests are implemented at the nominal 5% level, and m = 5 lags

are used. Selected results are shown; see the Supplementary Material for additional results.

Size results are reported in Tables 1 and 2. Empirical rejections with the C(m, q) test

are around 10% to 12% when T − n is 250 or below; concretely, a prediction sample size

above 1000 corrects over-rejection probabilities. This rejection pattern is not affected by

the distribution of innovations, despite the underlying nuisance parameter complications.

Although asymptotically justified, the U(q) test performs well in our design even when

T − n = 90. Under the assumptions of Du and Escanciano (2017), the associated limiting

theory holds when the estimation sample is much larger than the prediction one; this may

justify our findings. That said, recall that in contrast to their original formulation of Du

and Escanciano (2017), the tests that we analyze fix α and β to their hypothesized values,

which seems to contribute crucially to our size results. The X (m,q) test is exact which is

reflected in our simulations.

Power results are reported in Table 3. Because of our emphasis on test inversion, we

fix the DGP to two empirically relevant cases: case (i) αDGP = 0.05 and βDGP = 0.90, and

case (ii) αDGP = 0.15 and βDGP = 0.75. In both cases, persistence is high and is driven by

a predominantly high β, which is a pattern that is often observed in financial applications.

We study power associated with several (α0, β0) pairs. Key results can be summarized as

follows.

(1) All three tests have power for inference on Hc or Hu. By contrast, existing studies

have assessed their properties in the case of H∗
c or H∗

u. On balance, power improves as

T −n increases. However, when α0 = 0.05, rejections remain low even when T −n = 2000.

In this case, the C(m, q) test performs best, yet such an apparent dominance should be

interpreted with caution since this test is over-sized. In fact, the X (m,q) and U(q) tests
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dominate when α0 ̸= 0.05, in which case rejection patterns evolve more regularly with

T − n.

(2) Power clearly reacts to discrepancies between α0 and αDGP . However, the α0 = 0.05

is a case of interest because, as it is well known, β is hard to identify as α ≃ 0. Our

results reveal related difficulties, namely that correctly sized test have low (or almost no)

power. For instance, let us focus first on case (i) and consider the evolution of rejections

over the three choices for β0 that are associated with α0 = 0.05 = αDGP . In this case,

the X (m,q) and U(q) tests barely react as β0 departs from βDGP , and the only test with

some power is based on C(m, q), which is oversized. Second, let us focus on the X (m,q) or

the U(q) test for α0 = 0.05 and compare rejections between case (i) [where αDGP = 0.05]

and case (ii) [where αDGP = 0.15], as |βDGP − β0| evolves. While the former case involves

larger discrepancies [compare 0.85, 0.45 and 0.15 to 0.70, 0.30 and 0.15], the tests perform

visibly better in the latter case, which is characterized by αDGP = 0.15. This value may

not seem too far apart from the hypothesized α0 = 0.05, yet the discrepancy suffices to

produce a sizable power differential. Taken collectively, these results imply that the tests

are more responsive to departures of α0 from αDGP than to departures of β0 from βDGP .

This illustrates the expected implications of weak identification, which motivate our work.

(3) While a power ranking is not our direct objective, we find that no single test uni-

formly dominates with respect to power. This suggests that the realized violation aggre-

gators are as informative as their integrated counterpart, at least in our design. Recall

that: (a) the former converges to latter as the number of thresholds grows; (b) the inte-

gral underlying the latter refers to the conditional distribution of the data which should

be specified, whereas realized aggregators are distribution-free; and (d) tests based on the

former are exact under the independence assumption, in contrast to the latter which rely

on the properties of martingale difference sequences. No test, in regards to assumptions,

can be formally considered more or less restrictive than the other. We find that both ap-
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proaches can work well from a test inversion perspective, when the null hypothesis fixes the

parameters that are hard to identify. These results add interesting insights to the literature.

(4) The considered tests as implemented (that is to assessHc orHu) have excellent power

to reject the (α0, β0) pairs where the relative contributions of α and β is “flipped” with

reference to the (αDGP ,βDGP ) pair. Specifically, power is maximized for the null hypothesis

α = .90 and β = .05 when confronted with (i) or (ii). To appreciate the importance of this

finding from a joint test perspective, re-express (27) in the following form:

σ2
t |Ft−1 = σ̄2 + α(R2

t−1 − σ̄2) + β(σ2
t−1 − σ̄2). (28)

As emphasized by Christoffersen (2016) (page 71), α captures the correction to the long-

run variance driven by deviations of past squared returns; instead, β picks up the effects

driven by deviations of past variance. Our design calibrates σ̄2 to allow us to disentangle

the relative contribution of these deviations. Power in this direction, which we illustrate in

Table 3, is a highly desirable feature in GARCH modeling.

(5) The considered tests are highly informative about the distribution of innovations

(here Zt) when T−n is large. The experiment in Table 4 is designed to explore the behavior

of the considered tests when the distribution of Zt assumed under the null hypothesis

differs from its DGP counterpart, while the parameter values that are tested match the

DGP. Specifically, samples are generated assuming Zt follows a Student-t distribution with

3 degrees of freedom, while under the null hypothesis Zt is standard Gaussian. We find

that all tests are not responsive unless T −n exceeds 1000, yet rejections with the X (m,q)

test exceeds 90% when T − n = 2000. We may thus expect empty CSs when the size of

the prediction sample is large or when the distribution of returns is misspecified. Since in

this design α0 = αDGP and β0 = βDGP , non-rejections with smaller prediction samples may

be viewed as a robustness finding from a semi-parametric perspective. It is worth pointing

out here the irregular behavior of the C(m, q) tests, whose power seems to decrease with
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T − n. Clearly, this results from its over-size as pointed out above.

We conclude by reemphasizing that the tests analyzed rely on the hypothesized distri-

bution of Zt to compute the risk measures. In addition, the C(m, q) and U(q) tests further

rely on this distribution to aggregate violations. The above remark on robustness is thus

not meant as a formal semi-parametric directive. Distribution-free confidence bands are

considered in our empirical section next.

3.2 Empirical Analysis

We study the Technology Select Sector SPDR Fund ETF (Bloomberg ticker: XLK), listed

on the New York Stock Exchange Arca. Our sample ranges from August 2002 to October

2020, and our prediction sample focuses on the last 90 observations [June 22 to October 23,

2020], which leaves us with n = 4378 observations. We choose to study the market risk of

this particular sector as it was one of the most impacted by the unprecedented and unan-

ticipated effects of the COVID lockdowns. We apply the methods introduced in Section 2,

using the X (m,q), U(q) and C(m, q) statistics within the GARCH setting. Furthermore,

we consider the FHS setting, which is a semi-parametric pseudo-likelihood GARCH based

tail risk specification. In this case, the distribution function of Zt is estimated using the

empirical distribution function (with data up to time t) for each tested (α0, β0) pair. The

only feasible test in this case is X (m,q).

The static parameter σ̄2 can be estimated by via maximum likelihood imposing α = α0

and β = β0, along with the parameters of the distribution of Zt (when present). The added

complication is that σ̄2 is hard to identify as α+β ≃ 1, as is evident from (28). However, as

discussed by Engle and Mezrich (1996) [see also Noureldin et al. (2014)] GARCHmodels can

instead be viewed flexibly subject to the so-called variance targeting restriction, whereby

the static parameters are defined through a moment condition that does not involve the

remaining dynamic ones. This view differs from its likelihood counterpart, yet remains

22



compatible with useful and popular interpretations of the model. Conformably, σ̄2 can be

estimated consistently using the empirical variance of the data (up to time t). We follow

this approach since it eschews the boundary problem. We view the combination of variance

targeting with our test inversion approach as a useful subset inference strategy to address

identification problems that may stem from multiple sources.

For test inversion, we use a grid search over the range 0.01 < α < 0.99 and 0.01 <

β < 0.99, with a step of 0.01, imposing α + β < 1, for a total of 4851 combinations of

parameters. We consider the X (5, (1%, 2.5%, 5%)′) test with 99 MC replications for the

MCT p-values, and the U(5%) and C(5, 5%) tests. Selected figures are reported below for

α̃ = 10%. The gray lines are the bounds of the projected confidence band for the considered

risk measure. The projection is obtained by taking the minimum and maximum of the risk

measure, which is itself a function of α and β and conformable estimated parameters, over

all non-rejected (α, β) pairs. The least rejected pair is retained as the (possibly non-unique)

point estimate that corresponds to the maximum p-value associated with the considered

test. The risk measure corresponding to that point estimate is reported in blue, and its

counterpart based on maximum likelihood is reported in red. All the above is computed

for each prediction day, based on a rolling window estimation.

We produce simultaneous confidence bands for the VaR, ES and Expectile-VaR fore-

casts. All these bands are jointly interpretable over their full path and across measures.

Because our data consists of log returns, the risk measures can be interpreted as percent-

ages. For instance, V aRn+1,5% = 0.02 reads as follow: there is a 5% chance that the asset

will lose at most 2% of its value on day n, by the next trading day.

Overall, despite a clear evidence of root cancellation and boundary problems when it

comes to the GARCH parameters, results are informative on the parametric risk measures

themselves, through tight enough bands. Consider for example Figure 1 which reports CSs

for the parametric VaR, using the X (m,q) test. Since close to zero values of α cannot be
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ruled out, it is not surprising that information on β is limited. Interestingly, the projected

bands on VaR are rather stable across the various distributions. Figure 2 shows the CS for

parametric ES obtained from the test inversion of the U(q) test. While the C(m, q) test holds

practically no information (see Supplementary Material), results associated with the U(q)

test refute large α yet maintain close to zero values, with again the same implication about

estimating β. Again, we find that the bands do not differ much across the distributions.

The semi-parametric procedure, reported in Figure 3 reveal no information on the GARCH

parameters. Given the size of our prediction sample, and the fact that the COVID shock

is an end of sample disruption, this is not surprising. We report the conformable bands

for VaR, for comparison purposes. While these bands are wider than their parametric

counterparts in the absence on any information about α and β, recall that information on

the tail still flows from the long-run variance estimates because of variance targeting, and

from the empirical quantile. Lastly, Figure 4 reports the confidence bands for the EVaR,

projected from the CS for (α, β) derived from the considered tests. Here the bands are

broader for peak days when skewness is factored in, yet remain otherwise rather stable

across distributions.

The well documented September effect is clearly visible through all bands. September

2020 is marked by important ground breaking announcements in particular about the

COVID vaccine and a major acquisition in the artificial intelligence sector, which can

explain the risk peaks that we observe. ETFs raise well documented financial fragility

concerns; see the survey by Lettau and Madhavan (2018), and perspectives on liquidity and

activeness risks from Bae and Kim (2020) and Easley et al. (2021). Our results quantify

ETF tail risk effects in a historically unique episode for the technology sector.
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4 Conclusion

A general method to construct simultaneous CSs for predictive quantities is proposed that

can signal identification or misspecification when outcomes are unbounded or empty. Im-

portantly, our results are not restricted to VaR and ES; in particular, we also study EVaR,

on which results are scarce. An illustrative simulation and empirical analysis is considered

within GARCH-based parametric and semi-parametric settings. Results underscore the

usefulness of exact approaches, and the information content of cumulative multi-threshold

violations along with variance targeting. We emphasize the importance of simultaneity to

jointly interpret CSs across the prediction paths and all considered measures. Our empirical

analysis for a technology ETF reveals root cancellation issues, yet remains relatively infor-

mative on the measures themselves. We find that variance targeting, or more generally, the

practice of partialling-out static or steady state parameters can aid identification. Overall,

we view our results as a stepping stone towards a unified perspective on elicitability and

identification.
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Table 1: Out-of-sample size at 5% nominal level, standard normal innovations.

α = 0.05 α = 0.1 α = 0.15 α = 0.25 α = 0.4 α = 0.65 α = 0.90
T − n β = 0.90 β = 0.8 β = 0.75 β = 0.6 β = 0.4 β = 0.15 β = 0.05

Panel A: X (5, (1.25%, 2.5%, 3.75%, 5%)′)

90 0.0450 0.0510 0.0450 0.0425 0.0510 0.0455 0.0480
250 0.0510 0.0510 0.0525 0.0485 0.0450 0.0455 0.0500
500 0.0490 0.0535 0.0410 0.0475 0.0540 0.0430 0.0420
1000 0.0560 0.0505 0.0465 0.0490 0.0465 0.0440 0.0530
2000 0.0525 0.0535 0.0480 0.0625 0.0500 0.0520 0.0560

Panel B: U(5%)

90 0.0390 0.0395 0.0420 0.0355 0.0420 0.0355 0.0385
250 0.0480 0.0510 0.0435 0.0485 0.0515 0.0470 0.0410
500 0.0530 0.0490 0.0440 0.0520 0.0520 0.0465 0.0450
1000 0.0540 0.0410 0.0480 0.0395 0.0405 0.0560 0.0525
2000 0.0535 0.0480 0.0500 0.0490 0.0500 0.0545 0.0500

Panel C: C(5, 5%)

90 0.1175 0.1250 0.1205 0.1190 0.1195 0.1205 0.1205
250 0.0925 0.0785 0.0880 0.0750 0.0980 0.0925 0.0835
500 0.0745 0.0620 0.0710 0.0710 0.0655 0.0720 0.0830
1000 0.0720 0.0690 0.0700 0.0755 0.0605 0.0605 0.0625
2000 0.0620 0.0600 0.0540 0.0620 0.0595 0.0555 0.0520

For each panel, 2000 time series of in sample length n = 2500 and out of sample length T−
n ∈ {250, 500, 1000, 2000} have been generated according to a GARCH(1,1) model with
Standard Normal innovations. The null hypothesis assumes the same model specification
and (α, β) parameters of the DGP.

31



Table 2: Out-of-sample size at 5% nominal level, standardized skewed Student-t inno-
vations.

α = 0.05 α = 0.1 α = 0.15 α = 0.25 α = 0.4 α = 0.65 α = 0.90
T − n β = 0.90 β = 0.8 β = 0.75 β = 0.6 β = 0.4 β = 0.15 β = 0.05

Panel A: X (5, (1.25%, 2.5%, 3.75%, 5%)′)

90 0.0490 0.0405 0.0480 0.0380 0.0475 0.0470 0.0445
250 0.0470 0.0485 0.0460 0.0500 0.0440 0.0420 0.0505
500 0.0565 0.0470 0.0485 0.0430 0.0540 0.0490 0.0445
1000 0.0460 0.0430 0.0505 0.0545 0.0400 0.0540 0.0515
2000 0.0560 0.0490 0.0555 0.0505 0.0465 0.0415 0.0485

Panel B: U(5%)

90 0.0410 0.0380 0.0335 0.0350 0.0445 0.0345 0.0380
250 0.0470 0.0515 0.0470 0.0460 0.0570 0.0540 0.0500
500 0.0560 0.0460 0.0525 0.0435 0.0530 0.0535 0.0525
1000 0.0465 0.0470 0.0485 0.0560 0.0455 0.0510 0.0500
2000 0.0520 0.0515 0.0420 0.0475 0.0535 0.0525 0.0495

Panel C: C(5, 5%)

90 0.1185 0.1165 0.1220 0.1170 0.1075 0.1260 0.1265
250 0.0835 0.0815 0.0895 0.0795 0.0925 0.0860 0.0805
500 0.0805 0.0810 0.0855 0.0740 0.0815 0.0685 0.0690
1000 0.0725 0.0660 0.0575 0.0730 0.0595 0.0590 0.0660
2000 0.0480 0.0610 0.0540 0.0635 0.0670 0.0550 0.0660

For each panel, 2000 time series of in sample length n = 2500 and out of sample length
T − n ∈ {250, 500, 1000, 2000} have been generated according to a GARCH(1,1) model
with standardized skewed Student-t innovations. The null hypothesis assumes the same
model specification and (α, β) parameters of the DGP.
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Table 3: Out-of-sample power 5% nominal level, standardized skewed Student-t innovations.

αDGP = 0.05, βDGP = 0.9 αDGP = 0.15, βDGP = 0.75

α = 0.05 α = 0.45 α = 0.9 α = 0.05 α = 0.05 α = 0.05 α = 0.45 α = 0.9 α = 0.05 α = 0.05
T − n β = 0.05 β = 0.05 β = 0.05 β = 0.45 β = 0.75 β = 0.05 β = 0.05 β = 0.05 β = 0.45 β = 0.90

Panel A: X (5, (1.25%, 2.5%, 3.75%, 5%)′)

90 0.0965 0.1565 0.8965 0.0870 0.0635 0.1410 0.1275 0.8560 0.1255 0.0765
250 0.1270 0.2420 0.9990 0.1125 0.0815 0.2120 0.1930 0.9990 0.1715 0.0850
500 0.1570 0.3640 1.0000 0.1315 0.0845 0.2560 0.2420 1.0000 0.2105 0.0805
1000 0.1620 0.5600 1.0000 0.1335 0.0820 0.3780 0.3650 1.0000 0.2690 0.1075
2000 0.1960 0.8260 1.0000 0.1620 0.0865 0.5110 0.5510 1.0000 0.4150 0.1280

Panel B: U(5%)

90 0.0830 0.1905 0.9690 0.0770 0.0595 0.0915 0.1320 0.9485 0.0780 0.0450
250 0.1170 0.2950 1.0000 0.1250 0.0940 0.1660 0.1940 1.0000 0.1470 0.0425
500 0.1590 0.4360 1.0000 0.1400 0.1035 0.1840 0.2410 1.0000 0.1700 0.0540
1000 0.1550 0.6570 1.0000 0.1410 0.1150 0.1940 0.3460 1.0000 0.1845 0.0610
2000 0.1580 0.8850 1.0000 0.1595 0.1180 0.1900 0.5120 1.0000 0.2065 0.0830

Panel C: C(5, 5%)

90 0.1810 0.0860 0.0670 0.1705 0.1505 0.2915 0.1445 0.0755 0.2680 0.2085
250 0.1760 0.0900 0.2180 0.1470 0.1235 0.3700 0.176 0.1720 0.3355 0.2160
500 0.2270 0.1160 0.5090 0.1770 0.1215 0.5030 0.2240 0.4330 0.4480 0.2580
1000 0.2980 0.1660 0.9030 0.2110 0.1140 0.7150 0.3350 0.8230 0.6300 0.3500
2000 0.3940 0.2900 0.9990 0.2750 0.1255 0.9070 0.5410 0.9970 0.8310 0.4670

For each panel, 2000 time series of in sample length n = 2500 and out of sample length T−n ∈ {90, 250, 500, 1000, 2000} have been
generated according to a GARCH(1,1) model with standardized skewed Student-t innovations with parameters (αDGP , βDGP ).
Under the null hypothesis, the same model specification of the DGP is assumed, but using the specified (α, β) parameters.
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Table 4: Out-of-sample power outside the model 5% nominal level; GARCH-Student-t
DGP, GARCH-Normal under the null.

α = 0.05 α = 0.1 α = 0.15 α = 0.25 α = 0.4 α = 0.65 α = 0.90
T − n β = 0.90 β = 0.8 β = 0.75 β = 0.6 β = 0.4 β = 0.15 β = 0.05

Panel A: X (5, (1.25%, 2.5%, 3.75%, 5%)′)

90 0.0075 0.0070 0.0080 0.0060 0.0145 0.0065 0.0100
250 0.0080 0.0075 0.0120 0.0120 0.0065 0.0085 0.0120
500 0.0240 0.0165 0.0170 0.0210 0.0245 0.0245 0.0230
1000 0.2230 0.2375 0.2190 0.2265 0.2170 0.2175 0.2110
2000 0.9385 0.9345 0.9375 0.9465 0.9375 0.9310 0.9335

Panel B: U(5%)

90 0.0210 0.0200 0.023 0.0230 0.0325 0.0260 0.0245
250 0.0730 0.0745 0.077 0.0830 0.0780 0.0795 0.0790
500 0.1190 0.1235 0.123 0.1175 0.1250 0.1195 0.1175
1000 0.1875 0.1950 0.187 0.1945 0.1850 0.1855 0.1885
2000 0.3165 0.3015 0.336 0.3125 0.3285 0.3090 0.3055

Panel C: C(5, 5%)

90 0.1780 0.1625 0.1690 0.1815 0.1685 0.1720 0.1830
250 0.1030 0.1245 0.1115 0.1135 0.1035 0.1085 0.0995
500 0.0940 0.1010 0.0805 0.0845 0.0930 0.1025 0.0985
1000 0.0815 0.0805 0.0795 0.0850 0.0885 0.0740 0.0865
2000 0.0700 0.0690 0.0660 0.0720 0.0805 0.0680 0.0775

For each panel, 2000 time series of in sample length n = 2500 and out of sample length T−
n ∈ {250, 500, 1000, 2000} have been generated according to a GARCH(1,1) model with
standardized Student-t innovations. The null hypothesis assumes a GARCH-Normal
specification with same (α, β) parameters of the DGP.
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Figure 1: X test inversion on the Technology Select Sector SPDR Fund (XLK)

(a) Joint 90% confidence set for (α, β),
Normal-GARCH returns

(b) Projected 90% risk band for
V aRt,5%, Normal-GARCH returns

(c) Joint 90% confidence set for (α, β),
skewed Student t-GARCH returns

(d) Projected 90% risk band for
V aRt,5%, skewed Student t-GARCH re-
turns

Figure 2: U test inversion on the Technology Select Sector SPDR Fund (XLK)

(a) Joint 90% confidence set for (α, β),
Student t-GARCH returns

(b) Projected 90% risk band for
ESt,5%, Student t-GARCH returns
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Figure 3: X test inversion using Filtered Historical Simulation VaR, on the Technology
Select Sector SPDR Fund (XLK)

(a) Joint 90% confidence set for (α, β),
GARCH returns

(b) Projected 90% risk band for
V aRt,5%, GARCH returns

Figure 4: EVaR confidence intervals based on X test inversion for the Technology Select
Sector SPDR Fund (XLK)

(a) Projected 90% risk band for EV aRt,5%,
skewed Student t-GARCH returns

(b) Projected 90% risk band for EV aRt,5%,
Student t-GARCH returns
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Supplementary Material

A Proofs

Proof of Theorem 2.1 As defined, each of the regions CSj
t,q(Λ

j
t,q; α̃) is the image of the

set CS(θ; α̃) by the function gjq,t(·), that is θ ∈ CS(θ; α̃) =⇒ gjq,t(θ,Ft−1) ∈ CSj
t,q(Λ

j
t,q; α̃)

so

P[gjq,t(θ,Ft−1) ∈ CSj
t,q(Λ

j
t,q; α̃)] ≥ P[θ ∈ CS(θ; α̃)] ≥ 1− α̃, for all θ ∈ Ω, (29)

which proves (24).

Furthermore, θ ∈ CS(θ; α̃) =⇒ Lj
t,q(Λ

j
t,q; α̃) ≤ gjq,t(θ,Ft−1) ≤ Uj

t,q(Λ
j
t,q; α̃) so

P[Lj
t,q(Λ

j
t,q; α̃) ≤ gjq,t(θ,Ft−1) ≤ Uj

t,q(Λ
j
t,q; α̃)] ≥ P[gjq,t(θ,Ft−1) ∈ CSj

t,q(Λ
j
t,q; α̃)] ≥ 1− α̃

(30)

which proves (25). ■

Proof of Theorem 2.2 Under Assumption 1 and Assumption 2, Sb, b = 1, . . . , B,

are exchangeable because the distribution underlying (29) is nuisance parameter free, so

all parameters required to draw Sb, b = 1, . . . , B, are known. Under the null hypothesis,

Proposition 2.4 in Dufour (2006) completes the proof. ■

B VaR and ES formulae

Let Φ−1(x) refer to the quantile at threshold x of the standard normal distribution and

ϕ(x) denotes its density function. Then for the Gaussian case

V aRt,q = −σtΦ
−1(q), ESt,q = −V aRt,q

Φ−1(q)

ϕ(Φ−1(q))

q
. (31)
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For the asymmetric Student-t distribution, we follow Fernández and Steel (1998) and con-

sider the following density function

h̃ν,ξ(x) =
2

ξ + ξ−1

[
hν(xξ)1(x ≤ 0) + hν(xξ

−1)1(x > 0)
]

(32)

where hν(x) is the density of the conventional Student-t distribution. Let t−1
ν (x) refer to

the quantile at threshold x of the latter distribution and

ϵν(x) =
ν

1− ν

(
1 +

x2

ν

)
hν(x),

denote is its lower tail expectation. Then setting µ = 2 ν
ν−1

hν(0), we have

V aRt,q = −
σt+1

[
H−1

ν,ξ (q)− µ (ξ − ξ−1)
]√

ν
ν−2

(ξ2 + ξ−2 − 1)− µ2 (ξ2 + ξ−2 − 2)
, ESt,q =

ϵ̃ν,ξ(q)− µ (ξ − ξ−1)

H−1
ν,ξ (q)− µ (ξ − ξ−1)

V aRt,q

where

H−1
ν,ξ (x) =


ξ−1t−1

ν (x(ξ2 + 1)/2) if x ≤ 1
ξ2+1

ξt−1
ν (ξ−2(x(ξ2 + 1) + ξ2 − 1)/2) if x > 1

ξ2+1

,

ϵ̃ν,ξ(x) =
2

x(ξ + ξ−1)


1
ξ2
ϵν(H

−1
ν,ξ (x)ξ) if x ≤ 1

ξ2+1

1
ξ2
ϵν(0) + ξ2

(
ϵν(H

−1
ν,ξ (x)/ξ)− ϵν(0)

)
if x > 1

ξ2+1

.

C Back-tests

The Pearson test statistic from Leccadito et al. (2014), based on K thresholds q =

(q1, · · · , qK)′ and m lags, takes the following form, given θ. For t = n + 1, . . . , T , let

Nt =
∑K

i=1 It,qi(Rt, θ,Ft−1) where It,qi(Rt, θ,Ft−1) is as defined in (12), and let T (j)
x,y denote

a K ×K matrix in which the number of time for which Nt = x and Nt−j = y is reported

then the test statistic is

X (m,q) =
m∑
j=1

X (j), X (j) =
∑
x,y

(T (j)
x,y − (T − n− j) (qx − qx+1) (qy − qy+1))

2

(T − n− j) (qx − qx+1) (qy − qy+1)
. (33)
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For a given θ, the unconditional back-test statistic of Du and Escanciano (2017) is:

U(q) =

√
T − n

(
1

T−n

∑T
t=n+1 f

IV
t,q (Rt, θ,Ft−1)

)
√

q(1
3
− q

4
)

(34)

which is asymptotically standard normal under the null hypothesis. The conditional back-

test statistic with m lags is the Box and Pierce type criterion:

C(m, q) = (T − n)
m∑
j=1

ρ̂2j , (35)

ρ̂j =
(T − n)

∑T−n
t=1+j

(
f IV
t+n,q(Rt+n, θ,Ft+n−1)

) (
f IV
t+n−j,q(Rt+n−j, θ,Ft+n−j−1)

)
(T − n− j)

∑T−n
t=1

(
f IV
t+n,q(Rt+n, θ,Ft+n−1)

)2 ,

which is asymptotically χ2(m) under the null hypothesis.

D Monte Carlo size and power of back-tests

Table 5: Out-of-sample size at 5% nominal level, standardized Student-t innovations.

α = 0.05 α = 0.1 α = 0.15 α = 0.25 α = 0.4 α = 0.65 α = 0.90
T − n β = 0.90 β = 0.8 β = 0.75 β = 0.6 β = 0.4 β = 0.15 β = 0.05

Panel A: X (5, q)

90 0.0445 0.0515 0.0530 0.0465 0.0400 0.0480 0.0490
250 0.0505 0.0405 0.0500 0.0510 0.0470 0.0485 0.0550
500 0.0520 0.0480 0.0460 0.0445 0.0535 0.0445 0.0470
1000 0.0490 0.0435 0.0505 0.0515 0.0510 0.0435 0.0460
2000 0.0435 0.0485 0.0495 0.0480 0.0425 0.0480 0.0435

Panel B: U(5%)

90 0.0350 0.0355 0.0320 0.0395 0.0340 0.0400 0.0400
250 0.0445 0.0540 0.0505 0.0465 0.0480 0.0425 0.0510
500 0.0400 0.0580 0.0385 0.0510 0.0565 0.0475 0.0490
1000 0.0570 0.0540 0.0550 0.0475 0.0545 0.0445 0.0485
2000 0.0455 0.0475 0.0480 0.0450 0.0465 0.0460 0.0500

Panel C: C(5, 5%)

90 0.1325 0.1220 0.1305 0.1265 0.1275 0.1295 0.1150
250 0.0900 0.0840 0.0910 0.0745 0.0875 0.0775 0.0805
500 0.0725 0.0770 0.0740 0.0780 0.0800 0.0665 0.0770
1000 0.0645 0.0615 0.0710 0.0615 0.0655 0.0605 0.0625
2000 0.0580 0.0555 0.0560 0.0570 0.0580 0.0585 0.0555

For each panel, 2000 time series of in sample length n = 2500 and out of sam-
ple length T − n ∈ {90, 250, 500, 1000, 2000} have been generated according to a
GARCH(1,1) model with standardized Student-t innovations. The null hypothesis
assumes the same model specification and (α, β) parameters of the DGP.
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Table 6: Out-of-sample power 5% nominal level, standard normal innovations.

αDGP = 0.05, βDGP = 0.9 αDGP = 0.15, βDGP = 0.75

α = 0.05 α = 0.45 α = 0.9 α = 0.05 α = 0.05 α = 0.05 α = 0.45 α = 0.9 α = 0.05 α = 0.05
T − n β = 0.05 β = 0.05 β = 0.05 β = 0.45 β = 0.75 β = 0.05 β = 0.05 β = 0.05 β = 0.45 β = 0.90

Panel A: X (5, q)

90 0.0915 0.1445 0.9070 0.0835 0.0705 0.1325 0.1300 0.8640 0.1285 0.0755
250 0.1120 0.2500 1.0000 0.0910 0.0730 0.1890 0.2060 0.9990 0.1700 0.0805
500 0.1400 0.4030 1.0000 0.1060 0.0860 0.2435 0.2870 1.0000 0.1810 0.0940
1000 0.1540 0.6710 1.0000 0.1330 0.0775 0.3485 0.4425 1.0000 0.2795 0.0980
2000 0.1680 0.9050 1.0000 0.1400 0.0780 0.5345 0.6700 1.0000 0.4145 0.1235

Panel B: U(5%)

90 0.0785 0.2225 0.9775 0.0825 0.0630 0.0960 0.1540 0.9605 0.1000 0.033
250 0.1370 0.3650 1.0000 0.1180 0.0945 0.1680 0.2320 1.0000 0.1560 0.0545
500 0.1510 0.5235 1.0000 0.1265 0.1075 0.2010 0.2970 1.0000 0.1710 0.0645
1000 0.1540 0.7820 1.0000 0.1350 0.0965 0.2065 0.4500 1.0000 0.1980 0.0635
2000 0.1700 0.9570 1.0000 0.1385 0.1155 0.2065 0.6765 1.0000 0.1865 0.0795

Panel C: C(5, 5%)

90 0.1920 0.0945 0.0745 0.1680 0.1490 0.2940 0.1425 0.0670 0.2720 0.1945
250 0.2050 0.0900 0.2125 0.1640 0.1135 0.3990 0.1615 0.1890 0.3545 0.2020
500 0.2295 0.1050 0.5385 0.1650 0.1180 0.5390 0.1890 0.4840 0.4670 0.2670
1000 0.2665 0.1545 0.9180 0.1980 0.1225 0.7195 0.3330 0.8775 0.6680 0.3725
2000 0.3725 0.3080 1.0000 0.2590 0.1305 0.9075 0.5360 0.9985 0.8335 0.4880

For each panel, 2000 time series of in sample length n = 2500 and out of sample length T −n ∈ {90, 250, 500, 1000, 2000}
have been generated according to a GARCH(1,1) model with Standard Normal innovations with parameters
(αDGP , βDGP ). Under the null hypothesis, the same model specification of the DGP is assumed, but using the specified
(α, β) parameters.
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Table 7: Out-of-sample power 5% nominal level, standardized Student-t innovations.

αDGP = 0.05, βDGP = 0.9 αDGP = 0.15, βDGP = 0.75

α = 0.05 α = 0.45 α = 0.9 α = 0.05 α = 0.05 α = 0.05 α = 0.45 α = 0.9 α = 0.05 α = 0.05
T − n β = 0.05 β = 0.05 β = 0.05 β = 0.45 β = 0.75 β = 0.05 β = 0.05 β = 0.05 β = 0.45 β = 0.90

Panel A: X (5, q)

90 0.1120 0.1530 0.9155 0.1005 0.0720 0.1410 0.1360 0.8750 0.1245 0.0855
250 0.1435 0.2160 1.0000 0.1155 0.0755 0.1905 0.1875 0.9980 0.1845 0.0855
500 0.1370 0.3635 1.0000 0.1305 0.0855 0.2695 0.2500 1.000 0.2045 0.0980
1000 0.1645 0.5595 1.0000 0.1400 0.0800 0.3440 0.3675 1.0000 0.2910 0.0955
2000 0.1870 0.8155 1.0000 0.1310 0.0875 0.5025 0.5415 1.0000 0.4040 0.1080

Panel B: U(5%)

90 0.0980 0.1820 0.9790 0.0840 0.0630 0.0900 0.1275 0.9630 0.0820 0.0485
250 0.1335 0.2885 1.0000 0.1225 0.0930 0.1540 0.1805 1.0000 0.1560 0.0485
500 0.1480 0.4370 1.0000 0.1215 0.1015 0.1650 0.2295 1.0000 0.1540 0.0570
1000 0.1380 0.6400 1.0000 0.1500 0.1005 0.1810 0.3255 1.0000 0.1725 0.0690
2000 0.1585 0.8835 1.0000 0.1400 0.1055 0.1845 0.5115 1.0000 0.1820 0.0830

Panel C: C(5, 5%)

90 0.1870 0.0875 0.0755 0.1750 0.1580 0.2850 0.1410 0.0540 0.2640 0.1990
250 0.1950 0.0940 0.2280 0.1420 0.1150 0.3685 0.1735 0.1935 0.3545 0.2070
500 0.2185 0.1175 0.5515 0.1715 0.1105 0.5190 0.2210 0.4555 0.4560 0.2650
1000 0.2845 0.1575 0.9200 0.2150 0.1095 0.7160 0.3210 0.8525 0.6045 0.3165
2000 0.3595 0.2830 0.9995 0.2465 0.1265 0.8945 0.5035 0.9965 0.8300 0.4390

For each panel, 2000 time series of in-sample length n = 2500 and out of sample length T −n ∈ {90, 250, 500, 1000, 2000}
have been generated according to a GARCH(1,1) model with standardized Student-t innovations with parameters
(αDGP , βDGP ). Under the null hypothesis, the same model specification of the DGP is assumed, but using the specified
(α, β) parameters.
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E Figures

Figure 5: X test inversion on the Technology Select Sector SPDR Fund (XLK)

(a) Joint 90% confidence set for (α, β),
Student t-GARCH returns

(b) Projected 90% risk band for
V aRt,5%, Student t-GARCH returns
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Figure 6: U test inversion on the Technology Select Sector SPDR Fund (XLK)

(a) Joint 90% confidence set for (α, β),
Normal-GARCH returns

(b) Projected 90% risk band for
ESt,5%, Normal-GARCH returns

(c) Joint 90% confidence set for (α, β),
skewed Student t-GARCH returns

(d) Projected 90% risk band for
ESt,5%, skewed Student t-GARCH re-
turns
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Figure 7: C test inversion on the Technology Select Sector SPDR Fund (XLK)

(a) Joint 90% confidence set for (α, β),
Normal-GARCH returns

(b) Projected 90% risk band for
ESt,5%, Normal-GARCH returns

(c) Joint 90% confidence set for (α, β),
Student t-GARCH returns

(d) Projected 90% risk band for
ESt,5%, Student t-GARCH returns

(e) Joint 90% confidence set for (α, β),
skewed Student t-GARCH returns

(f) Projected 90% risk band for
ESt,5%, skewed Student t-GARCH re-
turns
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Figure 8: EVaR confidence intervals based on U test inversion for the Technology Select
Sector SPDR Fund (XLK)

(a) Projected 90% risk band for
EV aRt,5%, Normal-GARCH returns

(b) Projected 90% risk band for
EV aRt,5%, Student t-GARCH returns

(c) Projected 90% risk band for
EV aRt,5%, skewed Student t-GARCH
returns
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Figure 9: EVaR confidence intervals based on C test inversion for the Technology Select
Sector SPDR Fund (XLK)

(a) Projected 90% risk band for
EV aRt,5%, Normal-GARCH returns

(b) Projected 90% risk band for
EV aRt,5%, Student t-GARCH returns

(c) Projected 90% risk band for
EV aRt,5%, skewed Student t-GARCH
returns
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