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We evaluate the empirical evidence for costs that penalize changes in in-
vestment using U.S. industry data. In aggregate models, such investment
adjustment costs have been introduced to help account for a variety of busi-
ness cycle and asset market phenomena. So far no attempt has been made
to estimate these costs directly at a disaggregated level. We consider an
industry model with investment adjustment costs and estimate its param-
eters using generalized methods of moments. The findings indicate small
costs associated with changing the flow of investment at the industry level.
The weighted average of the industry elasticities with respect to the shadow
price of capital, which depends inversely on the adjustment cost parameter,
is eight times larger than the largest estimate reported in Levin et al. (2006).
We examine a variety of factors that may account for this discrepancy, but a
substantial part of it remains unexplained. Our results therefore suggest that
more caution is needed when giving policy advice that hinges on a structural
interpretation of large investment adjustment costs.
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FOLLOWING CHRISTIANO ET AL. (2005), costs to changing the
level of investment—investment adjustment costs—have featured prominently in the
recent literature on aggregate dynamic general equilibrium models to help account for
a variety of macroeconomic phenomenon. In this paper, we attempt to estimate these
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costs directly using a disaggregated approach. This has not been done previously, as
existing estimates have been based solely on aggregate data.

More specifically, we conduct an empirical assessment of investment adjustment
costs in 18 U.S. manufacturing industries over the period 1949–2000 by deriving
an investment Euler equation for the representative industry, and estimate it using
the generalized method of moments (GMM). Based on the estimated values of the
parameters in the Euler equation, we compute industry-specific adjustment cost pa-
rameters and derive the implied elasticity of investment with respect to the shadow
value of capital. The main finding is that estimates of investment adjustment costs
are small, implying that industry investment is relatively responsive to movements in
the shadow value of capital.

Turning to the more detailed results, the estimates of the investment adjustment
costs parameter in 16 of the 18 manufacturing industries are positive but small, with
the implied investment elasticities ranging between 1.1 and 37.7, with a weighted
average of 15.2. This suggests that investment is sensitive to the current shadow
value of capital in U.S. manufacturing industries, which contrasts with the results
obtained at the aggregate level. In particular, the average industry elasticity is eight
times larger than the highest estimate based on U.S. aggregate data as reported in
Levin et al. (2006). We discuss several possibilities for why industry estimates of
investment adjustment costs might be smaller compared to those reported in aggregate
studies and explore in more detail identification issues, the role of internal versus
external adjustments costs, data frequency, and the possibility that manufacturing
industries may not be representative of the whole economy. None of these factors
appear to account for the difference. The unexplained difference therefore suggests
that persistence in investment at the aggregate level may reflect an aggregation bias.
We explore this by conducting a pooled estimation, which generates an investment
elasticity of around half of the weighted industry average. The pooled estimate is
also significantly different from the unconstrained industry estimate for all of the
industries. This suggests that an aggregation bias may explain part of the discrepancy
between aggregate and industry estimates. Although this possibility reduces the size
of the puzzle, there is still a substantial difference between industry and aggregate
estimates, with the pooled elasticity estimate about four times as large as the largest
estimate reported in Levin et al. (2006). Our findings therefore suggest that more
caution is needed when giving policy advice, based on aggregate models, that hinges
on a structural interpretation of large investment adjustment costs.

As mentioned above, the focus on investment adjustment costs in this paper stems
from their widespread use in aggregate models. By inducing inertia in investment,
which slows down its response to shocks, the presence of investment adjustment
costs significantly improves the quantitative performance of these models along a
number of dimensions. As was shown by Christiano et al. (2005), the presence of
such costs means that a sticky-price model can generate hump-shaped investment
dynamics consistent with the estimated response of investment to a monetary policy
shock. Moreover, when investment adjustment costs are included, Burnside et al.
(2004) find that a real business cycle model can account for the quantitative effects
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of fiscal shocks on hours worked and real wages; Basu and Kimball (2005) show that
a sticky-price model can generate output expansions after a fiscal shock; Jaimovich
and Rebelo (2009) show that news shocks, as discussed in Beaudry and Portier
(2006), can drive business cycles; and Beaubrun-Diant and Tripier (2005) show
that it is possible to account for both volatility of asset returns and business cycle
facts within a single model. By contrast, models with costs to adjusting the level
of capital—capital adjustment costs—do not perform well along these dimensions.
But in contrast to the large empirical literature on capital adjustment costs, which
often takes a disaggregated approach, no attempt has so far been made to estimate
investment adjustment costs at a disaggregated level.1

There is, however, a growing literature that attempts to provide a theoretical basis
for investment adjustment costs. Basu and Kimball (2005) present a model with
“investment planning costs” in which the effects of monetary and fiscal shocks
on output and investment resemble those in models with investment adjustment
costs. Their findings suggest that investment adjustment costs may proxy delays in
investment planning or inflexibility in changing the planned pattern of investment, as
considered in Christiano and Todd (1996) and Edge (2000) and explicitly modeled
by Gertler and Gilchrist (2000) and Casares (2006), by considering time-to-plan and
time-to-build constraints. More recently, Lucca (2007) also considers a variant of the
time-to-build model that generates dynamics similar to investment adjustment costs
models. While these interpretations are appealing, by pursuing an empirical strategy
of estimating investment adjustment costs at the industry level we are able to provide
direct evidence on the magnitude of such costs.

The paper is organized as follows. Section 1 briefly highlights the role of investment
adjustment costs in aggregate models. Section 2 turns to the industry analysis. It
presents a simple model of industry investment with investment adjustment costs
and discusses the data and estimation methodology. Section 3 presents the empirical
results. Section 4 compares the industry estimates with existing aggregate estimates.
Section 5 conducts robustness analysis. Section 6 concludes.

1. INVESTMENT ADJUSTMENT COSTS IN AGGREGATE MODELS

In this section, we illustrate how the presence of investment adjustment costs affects
investment dynamics in aggregate models, considering the formulation proposed by
Christiano et al. (2005). The representative household makes consumption, labor
supply, and capital accumulation decisions. The stock of capital is accumulated
according to

1. For disaggregated capital adjustment cost estimates, see, for example, recent work by Cooper and
Haltiwanger (2006) and the overviews by Hammermesh and Pfann (1996) and Chirinko (1993). More
recently, Khan and Thomas (2008) study the consequences of nonconvex capital adjustment costs for
aggregate investment dynamics, and Hall (2004) finds evidence for small capital adjustment costs.
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Kt+1 = (1 − δ)Kt + (1 − S(It/It−1))It , (1)

where Kt denotes capital, It is investment, δ is the depreciation rate, and S(.) is the
adjustment cost function, which is an increasing function of It/It−1, satisfying the
properties S(1) = S′(1) = 0 and S′′(1) ≡ κ A > 0. This functional form implies that
it is costly to change the level of investment, the cost is increasing in the change
in investment, and there are no adjustment costs in steady state. The log-linearized
dynamics of investment and capital around the steady state are therefore influenced
only by the curvature of the adjustment cost function, κ A.

The log-linearized first-order condition for investment in this model can be ex-
pressed as

it = 1

1 + β
it−1 + β

1 + β
Et it+1 + 1

κ A(1 + β)
qt , (2)

where small letters denote log-deviations from steady state, Et [·] denotes expec-
tations conditional on information available in period t, qt is the shadow price of
installed capital (the shadow value of one unit of kt+1 at the time of the period t
investment decision), and β is the subjective discount factor. The presence of invest-
ment adjustment costs introduces inertia in investment, as reflected by the lagged
investment term. The investment decision also becomes forward looking, as it is
costly to change the level of investment. The elasticity of investment with respect
to a temporary increase in the current shadow value of installed capital is inversely
related to the adjustment costs parameter and given by ζ A ≡ 1/κ A (this is formally
shown in Section 4).

2. INDUSTRY ANALYSIS

We next turn to the main contribution of this paper. Specifically, we conduct
an industry analysis to investigate if there is empirical support for the investment
adjustment costs structure often assumed in aggregate models.

2.1 The Model

We assume that the representative industry, n, is characterized by the variable cost
function, Ct (where industry subscript has been suppressed for convenience) given
as

Ct = C
(
Wt , Pm

t ; Yt , Kt , It ,�It
)
, (3)

where Wt and Pm
t are the prices of labor and material inputs, both taken as given by

the individual industry and that evolve stochastically over time, Yt is gross output,
Kt is capital, It is investment at time t, and �It = It/It−1 is a measure of the change
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in investment between periods t and t − 1.2 The assumption is that for given levels
of output and capital, the representative industry needs to use resources to undertake
activities that make changing the flow of investment costly. Thus, the cost of output
lost when investment is varied is internal to the production process. As an extension,
we also consider external investment adjustment costs in Section 5.1.

The optimal paths for investment and capital are chosen by minimizing the expected
discounted value of future total costs (variable costs plus cost of new capital), subject
to the capital accumulation identity, Kt+1 = (1 − δ)Kt + It .3 Specifically, at any date
τ , the representative industry seeks to minimize

Eτ

[ ∞∑
t=τ

1

1 + Rτ,t

(
Ct + P I

t It − Qt (Kt+1 − (1 − δ)Kt − It )
)]

, (4)

where (1 + Rτ,t )−1 is the relevant discount factor between periods τ and τ + t (for
simplicity, Rt,t+1 will be denoted by Rt below), P I

t is the price of investment, and
Qt is the shadow value of capital installed in period t. The first-order conditions for
investment and capital are given by

It : P I
t + ∂Ct

∂ It
+ 1

1 + Rt
Et

[
∂Ct+1

∂ It

]
= Qt , (5)

Kt :
1

1 + Rt
Et

[
− ∂Ct+1

∂Kt+1
+ (1 − δ)Qt+1

]
= Qt . (6)

Combining these two equations gives the Euler condition,

Et

[
P K

t + (1 + Rt )
∂Ct

∂ It
+ ∂Ct+1

∂Kt+1
+ ∂Ct+1

∂ It

− (1 − δ)

(
∂Ct+1

∂ It+1
+ 1

1 + Rt+1

∂Ct+2

∂ It+1

)]
= 0,

(7)

where P K
t is the user cost (or rental price) of capital, P K

t ≡ P I
t [Rt + δ − (1 − δ)π I

t ],
where π I

t ≡ (P I
t+1 − P I

t )/P I
t .

2. The cost function is nondecreasing and concave in the two prices and decreasing and convex in Kt .
In addition, in the presence of investment adjustment costs, it is nondecreasing and convex in It and �It .
These curvature conditions for the variable cost function are standard in the investment literature and are
also satisfied when investment adjustment costs are present.

3. We consider the cost function approach since, contrary to a production function approach, it allows
us to derive the optimal paths for capital and investment without having to impose restrictions on the
industry demand and market structure.
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2.2 Econometric Specification

We assume that the variable cost function (3) satisfies

log Ct = log Cv
t + Ca

t , (8)

where Cv
t denotes the variable cost function net of adjustment costs and Ca

t is the
adjustment costs function. We use a first-order approximation for Cv

t that implies
that the elasticity of Cv

t with respect to capital, denoted by α < 0, is constant. We
choose the first-order approximation of the variable cost function instead of a general
second-order approximation because of the lack of suitable instruments to identify
all the parameters in the latter specification. We do, however, allow for potential
misspecification of the variable cost function when estimating the model, as is further
discussed in Section 2.4.

We consider a functional form for Ca
t similar to the one proposed by Christiano

et al. (2005). This specification for investment adjustment costs is homogeneous of
degree one, and given as

Ca
t = S (It/It−1) It−1, (9)

where the function S is assumed to satisfy the properties S(1) = S′(1) = 0 and S′(1) ≡
κ > 0 with κ denoting the adjustment cost parameter. As discussed in Christiano
et al. (2005), the advantage of (9) is that we do not have to specify the precise
functional form for S and that only κ matters for the log-linearized dynamics of the
model that we consider below.

Log-linearized specification. Using (8) and (9), we log-linearize (7) around steady
state to get a second-order investment Euler equation

it = −αβ

κ(1 + β + (1 − δ)β)K
Et st+1 + 1

1 + β + β(1 − δ)
it−1

+ β (1 + (1 + β)(1 − δ))

1 + β + (1 − δ)β
Et it+1 − β2(1 − δ)

1 + β + (1 − δ)β
Et it+2, α < 0

(10)

where st+1 = ct+1 − kt+1 − pK
t is the difference between the marginal product of

capital and its user cost.4 Current investment depends positively on st+1, given past
investment and expectations about future investment. When κ is large, current invest-
ment becomes less sensitive to st+1.

We can write (10) compactly as

it = θ0 Et st+1 + θ1it−1 + θ2 Et it+1 − θ3 Et it+2, (11)

4. A detailed derivation is available online at: http://http-server.carleton.ca/hashkhan/Research/
research.html.
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TABLE 1

INDUSTRY CLASSIFICATION

No. BLS classification SIC classification & sector

1 Food & kindred products 20 Nondurable goods
2 Textile mills products 22
3 Apparel & related products 23
4 Paper & allied products 26
5 Printing & publishing 27
6 Chemical & allied products 28
7 Petroleum & refining 29
8 Rubber & plastic products 30
9 Lumber & wood products 24 Durable goods

10 Furniture & fixture 25
11 Stone, clay, & glass 32
12 Primary metal industries 34
13 Fabricated metal 34
14 Ind machinery, comp equipment 35
15 Electric & electrical equipment 36
16 Transportation equipment 37
17 Instruments 38
18 Miscellaneous manufacturing 39

NOTES: The NIPA industries are food & kindred products and tobacco. Products are classified as industry 1, and industries textile mill products
and leather products are both classified as industry 2.

where θ0, θ1, θ2, and θ3 are the reduced-form coefficients representing the coefficients
of the corresponding variables in (10), which are all positive. Equation (11) is the main
empirical specification of the industry model that we estimate. The key parameter of
interest is θ0 as it embeds the adjustment cost parameter κ .

2.3 Data

We employ the data set that Hall (2004) constructs for the estimation of capital
adjustment costs. It consists of annual data for 18 manufacturing industries for the
period 1949–2000, compiled using data from the Bureau of Labour Statistics (BLS)
and the National Income and Product Accounts (NIPA). Table 1 gives the industry
classifications and their corresponding SIC codes. The variable cost for industry n
(denoted by Cn,t ) is measured as the total wage bill plus the cost of intermediate
inputs (nominal spending on energy and materials). The nominal and real values of
the capital stock (Kn,t ) are taken from the NIPA accounts (current-value and quantity
index of capital). The real depreciation rate (δn,t ) is calculated as nominal spending
on depreciation on fixed assets (from NIPA) divided by the nominal capital stock.
Investment (In,t ) is obtained by using the capital accumulation identity, given data on
the values of capital and the depreciation rate. The price of investment (P I

n,t ) is the
price implicit in the NIPA accounts, given the current-value and the quantity index
of capital. We follow Hall (2004) and calculate the rental price of capital (PK

n,t ) as

PK
n,t = (1 − τt PDAt − ITCt )

1 − τt
(r + δn,t )P I

n,t ,
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which adjusts a standard measure of the user cost of capital ((r + δn,t )P I
n,t ) for

corporate marginal tax rate (τt ), the present value of depreciation allowances (PDAt ),
and investment tax credits (ITCt ). The after-tax financial cost of capital, r, is taken
as 5%.

2.4 Estimation Methodology

We estimate (11) using the GMM. We replace the conditional expectations in
(11) with the realized values of the model variables and introduce an expectation
error, defined as εt+2 = it − θ0st+1 − θ1it−1 − θ2it+1 + θ3it+2. The error term εt+2 is
uncorrelated with any information known at the decision date under the assumption of
rational expectations. Given this identifying assumption, any period t variable could
be used as an instrument to form the moment conditions used to estimate the model
parameters.

Under a more general representation that allows for potential misspecification,
identification requires some additional assumptions about the error terms. It is com-
mon in the investment literature to assume that they follow a first-order moving
average process, in which case any variable known in period t − 1 could be used
as instrument. There is an evidence, however, that this may not be an appropriate
identifying assumption.5 Following Hall (2004), we therefore use a more general
specification that allows for serially correlated error terms. In this case, we cannot
rely purely on timing considerations in the choice of instrument. Instead, we need
to use strongly exogenous variables that are uncorrelated with the Euler condition
residual in any period t. We use the instruments from Hall (2004): a dummy variable
that takes the value of one in the years when there was a shock to the oil price (1956,
1974, 1979, and 1990) and a measure of the shock to federal defence spending. We
include four lags of these variables as instruments (lags t − 2 to t − 6) and we exclude
the first lag of variables from the instrument set.

Denoting the instrument set containing variables dated t − 2 and earlier as Zt and
the parameter vector as θ = [θ0, θ1, θ2, θ3], we can define the unconditional
moment condition as

E [εt+2(θ )Zt ] = 0. (12)

We use the iterative GMM estimator and compute the Newey and West (1987)
heteroskedasticity and autocorrelation consistent (HAC) estimator of the optimal
weight matrix using four lags.6 We conduct the estimation using detrended data

5. Previous investment regressions that use lagged endogenous variables for identification typically
find strong evidence against the overidentifying restrictions, reflecting either model misspecification or
invalid instruments (Chirinko 1993, Whited 1998). Hall (2004) argues that movements in factor shares
are too slow to be only the result of adjustment costs, pointing to potential misspecification problems. In
a similar model, Garber and King (1983) show that serially correlated technology shocks will invalidate
most candidate instrumental variables (including lagged endogenous variables).

6. The overidentifying restrictions test statistic, J, is distributed χ 2 with six degrees of freedom.
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TABLE 2

INSTRUMENT DIAGNOSTICS

Partial R2

Industry (n) Et st+1 Et it+1 Et it+2

1 0.36 0.51 0.53
2 0.24 0.18 0.26
3 0.41 0.48 0.61
4 0.25 0.53 0.26
5 0.37 0.43 0.47
6 0.50 0.37 0.48
7 0.55 0.40 0.42
8 0.26 0.39 0.44
9 0.25 0.43 0.38

10 0.39 0.32 0.41
11 0.23 0.47 0.27
12 0.42 0.46 0.37
13 0.18 0.28 0.38
14 0.25 0.38 0.22
15 0.28 0.44 0.43
16 0.27 0.55 0.52
17 0.32 0.41 0.39
18 0.34 0.58 0.49

NOTES: The table shows explanatory power of the instrument set for a given variable. Instruments: lags 2–6 of oil-shock dummies and the
innovation in federal defense spending.

using the Hodrick–Prescott (HP) filter with a smoothing parameter of 6.25 for annual
data, as recommended by Ravn and Uhlig (2002).

2.5 Instrument Relevance and Identification Robust Inference

To avoid weak identification, the instruments also need to be adequately correlated
with the model variables. Ideally, the instrument set should be strong for all expected
model variables (st+1, it+1, and it+2 in (11)). Since we have multiple endogenous re-
gressors, the conventional first-stage F-statistic used for testing for weak instruments
may not provide adequate information. To assess instrument weakness, we instead
compute Shea’s 1997 partial (adjusted) R2 statistics for each of the variables that
needs to be instrumented. This statistic indicates the explanatory power of the instru-
ment set for each variable once the instruments have been orthogonalized to account
for their contribution in explaining the remaining variables to be instrumented.7 Table
2 presents the partial correlations between the instrument set and the instrumented
variables, ranging from 0.18 to 0.58. This range is consistent with the findings of
Burnside (1996), who estimates production function regressions using two-digit U.S.
industry data, and with Shea (1997), and suggests that instruments are weak for at
least a subset of the industries. As Fuhrer and Rudebusch (2004) note, however, in
the absence of a distribution theory for this statistic, it is unclear what the critical

7. The partial R2 has been considered in several studies with GMM estimation (see, e.g., Fuhrer,
Moore, and Schuh 1995, Burnside 1996, Fuhrer and Rudebusch 2004).
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correlation level is to avoid the problem of instrument relevance. Moreover, instead
of pretesting for instrument relevance, simulation evidence favors a strategy in which
the choice of instruments is taken as given and a particular statistical theory is used
perform inference on the parameters of interest (see Hall 2005, Section 8.2.3 for
details). In light of these points, we take the instrument set as given, while recog-
nizing that potentially weak instruments may lead to not only imprecise estimates of
the structural parameters, but also the standard J-statistics to draw inference may be
unreliable.8

To address the potential issue of weak instruments, we compute two identification
robust tests statistics considered in the recent literature and use them as specification
tests, in addition to the conventional J-statistic. The first is the Anderson and Rubin
(1949) (AR) statistic. The main advantage of this statistic is that its limiting distri-
bution is robust to weak and excluded instruments. One deficiency, however, is that
when the number of instrument exceeds the number of estimated structural parame-
ters, as in our context, the AR statistic has a low power. We therefore also compute
the K̄ statistic proposed by Kleibergen (2002), which remedies this problem.9

3. ESTIMATION RESULTS

Table 3 presents the estimates of the Euler equation (11). The parameter of interest,
θ0, is positive in 16 of the 18 industries. It is statistically significant for five industries
(the three nondurable industries apparel and related products (n = 3), printing and
publishing (n = 5), and rubber and plastic (n = 8), and the two durable goods indus-
tries primary metal industries (n = 12) and instruments (n = 17)). In two industries
(paper and allied products (n = 4) and industrial machinery (n = 14)), the estimated
coefficient is negative, which is inconsistent with theory.10 The p-values associated
with the J-statistic (sixth column of Table 3) indicate that the overidentifying restric-
tions are not rejected for any of the industries. We also implement the identification
robust AR and K̄ tests as additional specification tests. The null hypothesis for these
tests is H0: θn = θ̂n for each industry n, where θ̂n is the vector of point estimates.11 A
rejection of the null hypothesis may indicate model misspecification. If the null is not

8. The reason, as discussed in Stock, Wright, and Yogo (2002) and Dufour (2003), is that if instruments
are weak then the limiting distribution of GMM statistics is in general non-normal and depend on nuisance
parameters. The standard statistics that are based on the normality of sampling distribution may, therefore,
be incorrect.

9. For recent applications of these statistics in empirical work, see, for example, Dufour, Khalaf, and
Kichian (2006), Yazgan and Yilmazkuday (2005), and Mavroeidis (2006).

10. The negative sign on the estimated coefficient may possibly be due to pure sampling errors,
measurement errors, or misspecification. One source of measurement error, as highlighted in the recent
literature, is mismeasurement of user cost. See, for example, Gilchrist and Zakrajsek (2007).

11. Under the null, the AR statistic follows an asymptotic χ 2
z /z distribution where z is the number of

instruments and is equal to 10. Under the null, the K̄ -statistic follows a χ 2(4) where 4 is the number of
elements of the estimated parameter vector θ .
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TABLE 3

INDUSTRY ESTIMATION RESULTS

Parameters Specification tests

p-value
(1) (2) (3) (4) (5) (6) (7) (8)
Industry (n) θ0 θ1 θ2 θ3 J AR K̄

Nondurable industries
1 0.265 0.442 0.954 0.661 0.65 0.95 0.96

(0.373) (0.310) (0.208) (0.172)
2 0.779 −0.039 1.300 −0.454 0.97 0.12 0.00

(1.982) (0.737) (0.946) (0.750)
3 1.595∗ 0.540 0.471 0.139 0.80 0.35 0.32

(0.726) (0.495) (0.214) (0.389)
4 −1.654 0.984 0.252 0.935 0.96 0.00 0.00

(2.163) (0.282) (0.607) (0.807)
5 1.308∗ 0.689 0.175 0.429 0.68 0.90 0.49

(0.591) (0.514) (0.466) (0.514)
6 0.087 0.397 0.959 0.485 0.57 0.12 0.31

(0.179) (0.123) (0.372) (0.192)
7 0.369 0.272 0.382 1.089 0.76 0.41 0.44

(0.632) (0.337) (0.176) (0.308)
8 1.697∗ 0.251 1.070 0.254 0.91 0.37 0.16

(0.766) (0.983) (1.005) (0.822)
9 1.064 −0.673 −0.7416 1.905 0.78 0.00 0.04

(0.796) (0.274) (0.256) (0.255)
Durable industries

10 0.178 0.260 0.267 0.451 0.63 0.13 0.11
(0.597) (0.306) (0.350) (0.279)

11 0.775 0.6266 0.581 0.170 0.66 0.25 0.63
(0.852) (0.478) (0.362) (0.316)

12 1.348∗ −0.410 −0.656 −0.389 0.77 0.00 0.00
(0.906) (0.228) (0.265) (0.251)

13 0.050 0.689 0.664 0.003 0.97 0.84 0.42
(0.722) (0.324) (0.297) (0.413)

14 −2.241 1.234 1.450 1.969 0.99 0.00 0.00
(1.533) (0.851) (0.992) (0.696)

15 0.838 0.039 0.492 0.538 0.51 0.80 0.80
(0.866) (0.285) (0.245) (0.232)

16 0.104 0.637 0.652 0.618 0.67 0.59 0.97
(0.958) (0.376) (0.280) (0.234)

17 1.867∗ 0.866 −0.543 0.368 0.80 0.75 0.53
(1.052) (0.526) (0.367) (0.261)

18 0.085 −0.381 −0.590 −0.207 0.53 0.00 0.00
(0.264) (0.187) (0.093) (0.239)

NOTES: Estimates of Euler equation (11). Instruments: lags 2–6 of oil-shock dummies and the innovation in federal defense spending. Standard
errors in parentheses. ∗ θ0 is significant at 5% level.

rejected, then the estimated parameters are feasible, given the data. In other words,
the estimates lie in the weak instrument robust confidence set.

We report the p-values associated with these tests in Table 3 (the last two columns).
In 12 (n = 1, 3, 5, 6, 7, 8, 10, 11, 13, 15, 16, and 17) of the 16 industries with a
positive estimate of θ0, the p-values associated with both the AR and the K̄ -statistics
do not reject the null. For the two industries with a negative estimate of θ0 (n = 4 and
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14), the AR and K̄ -statistics reject the specification.12 In five industries (n = 2, 9, 12,
17, and 18), estimated parameters other than θ0 have a negative sign. Although the J
test does not reject the specification for these industries, either the AR or the K̄ test,
or both, do (except for industry 17).

Using the estimates of θ̂0 = {θ̂1,0, . . . , θ̂n,0, . . . , θ̂18,0} reported in Table 3, and the
expression for θ0 in (10), we derive the implied estimates of the adjustment costs
parameter for each industry n as follows:

κ̂n = −αnβ

θ̂n,0 (1 + β + (1 − δn)β) Kn
, αn < 0, (13)

where we calibrate the right-hand-side parameters αn, δn, Kn, and β. Specifically,
δn is calibrated as the mean of industry n’s depreciation rate, Kn is set equal to the
mean of industry n’s capital stock, αn is calibrated using the steady-state relation
αn = −PK

n Kn/Cn , and we use the sample mean of the interest rate R to calibrate
β = 0.946, which is common across industries. Table 4 reports the industry-specific
calibrated parameters (columns 2–4) and the implied estimates of the adjustment cost
parameter (column 8). For the industries with positive estimates of θ0, the adjustment
cost parameter is small and ranges from 0.0004 (n = 15) to 0.001 (n = 2, 7, 9, 11,
and 16). The estimates are statistically significant at the 5% level for four industries
(n = 1, 3, 5, and 12).13

To give the adjustment costs parameter an economic interpretation, we compute the
elasticity of industry investment with respect to the current shadow price of capital.
To obtain an expression for this elasticity, we log-linearize (5) for each industry n to
get

in,t = 1

1 + β
in,t−1 + β

1 + β
Et in,t+1 + P I

n

κnCn

(
qn,t − pI

n,t

)
. (14)

We use standard methods to solve (14) as

in,t = in,t−1 + P I
n

κnCn
Et

[ ∞∑
s=0

βs q̃n,t+s

]
, (15)

where q̃n,t+s = qn,t+s − pI
n,t+s is the real shadow price of capital. As in Christiano et

al. (2005), we can express the elasticity of industry n’s investment with respect to a
1% temporary change in the real shadow price of capital as

12. There are several potential reasons for this. In the context of capital adjustment costs, for example,
Oliner, Rudebusch, and Sichel (1995) draw attention to a variety of reasons that include convexity of the
adjustment cost function, the assumption of full reversibility of investment, and the “putty-putty” nature of
the neoclassical technology. Similar reasons may apply to the Euler equation under IAC considered here.

13. The standard errors were computed using the delta method.
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TABLE 4

INDUSTRY ESTIMATES OF THE INVESTMENT ADJUSTMENT COSTS PARAMETER (κ) AND THE INVESTMENT ELASTICITY

(ζ )

(1) (2) (3) (4) (5) (6) (7) (8) (9)
n αn Kn δn P I

n Cn ωn κn ζn

Nondurable industries
1 −0.06 128.84 0.06 0.45 138.53 0.071 0.0006∗ 5.20∗

(0.0002) (0.001)
2 −0.45 199.16 0.07 0.43 23.00 0.078 0.001 18.46∗

(0.002) (0.013)
3 −0.14 65.03 0.08 0.47 29.85 0.053 0.0005∗ 34.61∗

(0.0002) (0.007)
4 −0.13 60.37 0.07 0.47 36.72 0.051 — —
5 −0.09 55.64 0.09 0.49 47.95 0.051 0.0004∗ 24.19∗

(0.0002) (0.004)
6 −0.06 57.39 0.07 0.48 66.14 0.049 0.004 1.60∗

(0.009) (0.014)
7 −0.09 70.85 0.05 0.45 66.33 0.047 0.001 5.72∗

(0.002) (0.011)
8 −0.09 52.10 0.09 0.46 18.76 0.050 0.0004 29.20∗

(0.0003) (0.008)
9 −0.25 74.32 0.09 0.45 22.90 0.062 0.001 18.42∗

(0.001) (0.014)
Durable industries

10 −0.25 61.72 0.07 0.45 18.76 0.050 0.007 3.18∗
(0.025) (0.081)

11 −0.23 82.84 0.07 0.46 25.91 0.061 0.001 14.46∗
(0.001) (0.02)

12 −0.11 90.61 0.05 0.46 52.50 0.056 0.0003∗ 27.73∗
(0.0001) (0.003)

13 −0.06 64.04 0.06 0.47 69.79 0.051 0.006 1.11∗
(0.004) (0.004)

14 −0.04 57.21 0.08 0.52 99.31 0.048 — —
15 −0.04 43.70 0.08 0.51 65.40 0.038 0.0004 18.86∗

(0.0004) (0.008)
16 −0.07 124.34 0.09 0.47 130.69 0.079 0.001 1.90∗

(0.017) (0.033)
17 −0.07 46.48 0.09 0.50 47.22 0.040 0.0003 37.66∗

(0.0002) (0.006)
18 −0.33 67.13 0.07 0.46 14.28 0.055 0.019 1.701∗

(0.059) (0.101)
ζ AVG = 15.24

ζ AVG,ALT = 14.56

NOTES: ζAVG is a weighted average across industries with positive κ and computed as (17). ζAVG,ALT is a weighted average across industries
1, 3, 5, 6, 7, 8, 10, 11, 13, 15, 16, and 17. ∗ Significant at 5% level.

ζn = P I
n

κnCn
, n = 1, . . . , 18. (16)

The elasticity in the case of a permanent change in the price of capital is (1 − β)−1ζn >

ζn .14

14. The elasticity in the case of persistent changes in the shadow price of capital, for example, would
lie between ζn and (1 − β)−1ζn .
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To compute the implied estimate of the elasticity in (16), we calibrate P I
n/Cn

using the average values from the data, as shown in columns 5 and 6 in Table 4.
The last column in Table 4 provides the estimates of the elasticity ζn for industries
with a positive adjustment costs parameter. The estimated elasticities are all greater
than one, range from 1.1 (n = 3) to 37.7 (n = 17), and are significant for 16 of
the 18 industries. These large elasticities suggest that investment in most of U.S.
manufacturing industries is sensitive to the current shadow value of capital.

4. COMPARING INDUSTRY VERSUS AGGREGATE ESTIMATES

How do the industry estimates compare with the aggregate estimates reported
in previous studies? To answer this question, we compute the average elasticity
of investment with respect to the shadow price of capital implied by the industry
estimates and compare this to estimates of the elasticity obtained using aggregate data.
The average elasticity is computed as a weighted average across industries (excluding
industries n = 4 and 14 for which we get negative adjustment cost estimates), where
the weights are based on the average share of an industry’s nominal investment in
total manufacturing investment (reported in column 7 in Table 4):

ωn =

2000∑
t=1948

(
P I

n,t In,t

/
18∑

n=1

P I
n,t In,t

)

53
.

We then calculate the average industry elasticity of investment with respect to the
current shadow price of capital as

ζ AVG ≡
∑

n

ωnζn, (17)

where the summation is over all the industries except n = 4 and 14. The average
industry estimate of the elasticity is 15.24, which we refer to as our benchmark
industry estimate. We also compute an alternative estimate, denoted by ζ AVG,ALT,
calculated as the average elasticity in industries where all estimated coefficients in
(11) are positive and neither the AR or K̄ tests rejects the specification. There are 12
industries that meet this criteria (n = 1, 3, 5, 6, 7, 8, 10, 11, 13, 15, 16, and 17). The
average industry estimate based on these industries is 14.56.

To compare the average industry elasticity with an estimate of the aggregate elas-
ticity, we solve the aggregate specification (2) as

it = it−1 + 1

κA
Et

[ ∞∑
s=0

βsqt+s

]
, (18)



CHARLOTTA GROTH AND HASHMAT KHAN : 1483

TABLE 5

A COMPARISON OF ESTIMATED ELASTICITIES FOR THE U.S. ECONOMY

Elasticity
Estimation methodology ζ

Aggregate (quarterly) data
1 Levin et al. (2006) Bayesian DSGE 1.82
2 Altig et al. (Forthcoming) Impulse response matching 0.45
3 Christiano et al. (2005)a Impulse response matching 0.40
4 Justiniano and Primiceri (2008) Bayesian DSGE 0.30
5 Smets and Wouters (2007) Bayesian DSGE 0.17
6 This paper Euler equation [0.004, 0.005 ]

Industry (annual) data
7 This paper Euler equation (internal IACb) [14.56, 15.24]
8 This paper Euler equation (external IAC) 16.21

aChristiano et al. (2005) benchmark estimate.
bIAC is investment adjustment costs.

where the elasticity of aggregate investment with respect to the current shadow price
of capital is given as

ζ A = 1

κA
. (19)

We compare the average elasticity estimate based on industry data, ζ AVG, with that
based on aggregate data, ζ A. For comparison purposes, we take the aggregate esti-
mates of the elasticity for the U.S. economy reported in five recent contributions to
the DSGE literature. These are Christiano et al. (2005), Altig et al. (Forthcoming),
Levin et al. (2006), Smets and Wouters (2007), and Justiniano and Primiceri (2008).15

Table 5 provides a comparison of the elasticity estimates across the aggregate and
the industry estimates. The aggregate elasticity estimates in the literature range from
0.17 (corresponding to the largest investment adjustment costs estimate) in Smets
and Wouters (2007) to 1.82 (smallest investment adjustment costs estimate) in Levin
et al. (2006), as shown in rows 1–5 in the table. Row 7 reports the average industry
elasticity obtained in this study ranging from 14.56 to 15.24 (from Table 4). The
benchmark average industry estimate of the elasticity is therefore around eight times
as large as the highest estimate reported in Levin et al. (2006).16 In contrast to the
aggregate estimates, the industry estimates therefore point to a much smaller role for
costs associated with changing the flow of investment.

15. The latter three use the Bayesian estimation methodology whereas Christiano et al. (2005) and
Altig et al. (Forthcoming) consider impulse response matching.

16. For three industries, namely, chemical and allied products (n = 6), transportation and equipment
(n = 16), and miscellaneous manufacturing (n = 18), the estimates of the elasticity are, however, similar
to those in Levin et al. (2006).
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5. ROBUSTNESS

In this section, we present a variety of robustness checks and discuss potential
reasons for the large difference between industry and aggregate estimates reported in
Section 4.

5.1 Internal versus External Investment Adjustment Costs

The industry model in Section 2 assumes that investment adjustment costs are
internal to the production process. In other words, they are defined as the cost of output
lost when the level of investment is varied. By contrast, the aggregate model discussed
in Section 1 assumes external investment adjustment costs. These are accounted for in
the capital accumulation identity—the implicit assumption in that model is that part
of investment captures services provided to change the flow of investment rather than
providing new capital goods. If investment adjustment costs are viewed as primarily
external to the industry, then industry estimates of investment adjustment costs may
underestimate the true costs of adjustment, and therefore be smaller compared to
the aggregate estimates. To investigate this possibility, we consider an environment
where investment adjustment costs are external to the industry. The variable cost
function in this case is

Ct = C
(
Wt , Pm

t ; Yt , Kt
)
. (20)

The representative industry minimizes current and expected future costs with respect
to it and kt+1:

Eτ

[ ∞∑
t=τ

1

1 + Rτ,t

[
Ct + P I

t It − Qt

(
Kt+1 − (1 − δ)Kt

−
(

1 − S

(
It

It−1

))
It

)]]
,

(21)

where we have used (1) to get an expression for the capital accumulation identity. In
any period t, the first-order condition for investment is

Qt

[(
1 − S

(
It

It−1

))
− S′

(
It

It−1

) (
It

It−1

)]

+ 1

1 + Rt
Et

[
Qt+1S′

(
It+1

It

) (
It+1

It

)2
]

= P I
t ,

(22)

while the first-order condition for capital remains the same as in (6). Log-linearizing
(22) and introducing industry subscript n gives

in,t = 1

1 + β
in,t−1 + β

1 + β
Et in,t+1 + 1

κEXT
n (1 + β)

(
qn,t − pI

n,t

)
, (23)
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where superscript EXT denotes external. Comparing (23) with (14) indicates that
investment dynamics under internal and external IAC are observationally equivalent.
The only difference is that the coefficient on the shadow cost of capital does not
depend on the ratio P I/C under the assumption of external investment adjustment
costs. Consequently, the specification (11) remains the same except that the coefficient
on variable st+1 is modified. The mapping to derive the implied estimate of the external
investment adjustment cost parameter changes from (13) for internal adjustment costs
to

κ̂EXT
n = 1 − β(1 − δn)

θ̂EXT
0,n (1 + β + (1 − δn)β)

. (24)

In addition, the estimate of the elasticity parameter changes to ζ EXT = 1/κEXT, as
in the aggregate model of Section 1.17 Table 6 presents the estimates of external
investment adjustment costs and the implied estimated elasticity. The point estimates
of external investment adjustment costs are indeed larger relative to those of internal
investment adjustment costs. The important thing to note, however, is that the elastic-
ity estimates are similar to those obtained under the internal investment adjustment
costs specification. The benchmark (ζ EXT,AVG) and alternative criteria (ζ EXT,AVG,ALT)
estimates of the elasticity are 16.21 and 15.66, respectively, compared to 15.24 and
14.56 for the baseline model. Thus, the fact that we model adjustment costs as in-
ternal in the industry analysis, whereas aggregate studies have assumed that they are
external, appear not to explain the large discrepancy between the industry and the
aggregate estimates of the investment elasticity.

5.2 Aggregate Euler Equation Estimation

In Section 4, we compared the aggregate investment estimates (based on Bayesian
estimation and impulse response matching approaches) with the industry estimates
(based on the Euler equation approach and estimated using GMM). Here we ask if
the difference in estimation methodology could explain the large difference in the
estimates of the implied investment elasticity.

To analyze this, we obtain an aggregate analog of the industry Euler equation (11)
by taking the aggregate model described in Section 1, for which we can express the
log-linearized first-order condition for the optimal level of capital as

qt = −(rt − Etπt+1) + γ1 Et qt+1 + γ2 Etr
k
t+1, (25)

where Etrk
t+1 is the expected real return on capital (or, equivalently, the expected real

rental rate on capital), and γ1 = (1 − δ)/(1 − δ + r̄ k), γ2 = r̄ k/(1 − δ + r̄ k), where
r̄ k = 1/β − 1 + δ.

17. One caveat to note in estimating (11) under the assumption of external adjustment costs is that
conventional capital stock measures are constructed under the assumption that all investment spending
generates new capital. Therefore, the available data do not exactly map into the capital accumulation
equation with the investment adjustment costs term as in (21).
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TABLE 6

INDUSTRY ESTIMATES OF THE INVESTMENT ADJUSTMENT COSTS PARAMETER (κEXT) AND THE INVESTMENT ELASTICITY

(ζ ext) UNDER EXTERNAL ADJUSTMENT COSTS

IAC Elasticity
Industry (n) κEXT

n ζEXT
n

Nondurable industries
1 0.16 6.23

(0.021) (8.79)
2 0.07 13.10∗

(0.083) (4.32)
3 0.03∗ 32.88∗

(0.022) (0.455)
4 — —
5 0.038∗ 25.79∗

(0.01) (0.47)
6 0.523 1.90

(1.07) (2.05)
7 0.09 10.08∗

(0.105) (1.71)
8 0.03 32.42∗

(0.023) (0.76)
9 0.047 21.03∗

(0.03) (0.73)
Durable industries

10 0.251 3.95
(0.845 (3.34)

11 0.057 17.27
(0.063) (1.10)

12 0.028∗ 35.42∗
(0.009) (0.35)

13 0.841 1.18
(12.07) (14.35)

14 — —
15 0.058 17.24∗

(0.06) (1.03)
16 0.476 2.10

(4.37) (9.19)
17 0.027∗ 36.98∗

(0.01) (0.56)
18 0.531 1.87

(1.64) (3.08)

ζ EXT,AVG = 16.21
ζ EXT,AVG,ALT = 15.66

NOTES: Standard errors in parentheses. ∗ Significant at 5% level.

We combine the first-order condition for investment (2) with (25) to get

it = ζ A

1 + β + γ1

(
γ2 Etr

k
t+1 − (rt − Etπt+1)

) + 1

1 + β + γ1
it−1

+ β + γ1(1 + β)

1 + β + γ1
Et it+1 − βγ1

1 + β + γ1
Et it+2, (26)
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where ζ A ≡ 1/κA. Equation (26) is the aggregate analog of the Euler equation (10).
We can write (26) compactly as

it = α0 Etwt+1 + α1it−1 + α2 Et it+1 − α3 Et it+2, (27)

where wt+1 = (γ2 Etrk
t+1 − (rt − Etπt+1)) and where the reduced-form coefficients

α1, α2, and α3 are given by the coefficients on the corresponding variables in (26),
which are all positive.

We estimate (27) using quarterly U.S. data from the Bureau of Economic Analy-
sis (BEA) over the period 1954 Q1 to 2000 Q4. The data, further described below
(with mnemonics in square brackets), are obtained from the FRED database at the
Federal Reserve Bank of St Louis. Investment (It ) is real private nonresidential fixed
investment (billions of chained 2000 dollars, seasonally adjusted) [PNFIC1]. The
model is estimated in per capita terms, where population is civilian noninstitutional
population (in thousands) [CNP16OV]. The nominal interest rate (rt ) is the 3-month
Treasury bill rate [TB3MS]. Inflation (πt ) is computed using the GDP chain type price
index (2000 = 100) [GDPCTPI], with πt = 400 ∗ (GDPCTPIt/GDPCTPIt−1 − 1).18

We detrend the data using the HP filter with a smoothing factor of 1600. The an-
nualized real return on capital (rk

t+1) is based on stock market data and computed
as

400 ∗
(

real S& P composite pricet+1 + real dividendst

real S& P composite pricet
− 1

)
,

where the real S&P composite price index is obtained from Robert Shiller’s
http://www.econ.yale.edu/ shiller/data.htm website.19 This is consistent with the mea-
sure used in Christiano and Davis (2006).

We conduct GMM estimation of (27) using the three exogenous instruments con-
sidered in Basu, Fernald, and Kimball (2006) (denoted by BFK): the oil price and
government defense spending, and an updated quarterly Federal Reserve monetary
shocks from an identified VAR (as considered in Burnside 1996). We consider two
sets of these instruments, BFK(1) consists of four lags and BFK(2) consists of five
lags of each of the three variables, respectively. The results are reported in Table 7,
where the upper half of the table shows the estimates of the model parameters, for
the two instruments sets BFK(1) and BFK(2).20

Based on these estimates, we can compute the implied estimates of the investment
elasticity ζ A, which, from (26) and (27), is given by ζ̂ A = α̂0(1 + β + γ1) where
γ1 = (1 − δ)/(1 − δ + r̄ k) with r̄ k defined above. The implied point estimates of the
investment elasticity are 0.005 and 0.004 for the two instrument sets, respectively,
but they are not statistically significant. Nevertheless, as shown in Table 5 (row 6),

18. The monthly data for the last two series are converted to quarterly using a 3-month average.
19. http://www.econ.yale.edu/ shiller/data.htm.
20. The Newey and West (1987) optimal weight matrix is computed using four lags. The J-statistic is

distributed with 9 and 11 degrees of freedom, respectively.
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TABLE 7

AGGREGATE EULER EQUATION ESTIMATION

AR
α0 α1 α2 α3 J p-value K̄

Quarterly data
BFK(1) 0.001 0.569 0.313 −0.118 0.85 0.94 0.25

(0.001) (0.144) (0.278) (0.226)
BFK(2) 0.001 0.613 0.303 0.198 0.93 0.19 0.03

(0.002) (0.102) (0.231) (0.181)
Annual data

BFK(1) 0.002 0.790 1.364 0.194 0.76 0.02 0.90
(0.002) (0.294) (0.314) (0.294)

BFK(2) 0.003 0.786 1.388 0.456 0.82 0.01 0.75
(0.010) (0.093) (0.084) (0.118)

NOTES: Estimates based on specification (27). Standard errors in parentheses.

the Euler equation based aggregate estimates of the investment elasticity are smaller
than that reported in previous studies (corresponding to even larger adjustment cost
estimates). This suggests that large estimates of the elasticity at the industry level are
not driven by the GMM estimation methodology itself.

5.3 Data Frequency

We have used annual data in our empirical assessment of investment adjustment
costs, mainly due to the lack of reliable industry-level data at the quarterly frequency.
One might argue that delays in investment planning or inflexibility in changing the
planned pattern of investment are the likely sources of investment adjustment costs.
If that were the case, and if project planning and completion times were less than 1
year, then one may not expect investment adjustment costs to have much effect on
capital outlays at annual frequency.

There are several pieces of evidence, however, that suggest that the use of annual
data may not be restrictive in estimating investment adjustment costs. First, evidence
for firms in the manufacturing industries indicates an average time-to-build of 23
months (Koeva 2001) while, for private structures, the average planning and com-
pletion time is approximately 20 months (Edge 2000). These estimates are both well
above 1 year. Second, empirical evidence of the response of investment to a mone-
tary policy shock shows a humped-shaped response that typically peaks after around
six quarters and returns to its preshock level after 3 years (Christiano et al. 2005),
suggesting that not all adjustment at the aggregate level takes place within the first
year of the shock. These observations suggest that if investment adjustment costs are
the main mechanism behind this slow adjustment, we should be able to identify them
at the annual as well as the quarterly frequency.
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To assess the impact of data frequency on our estimates, we reestimate the aggregate
specifications (27) using annual data.21 As shown in Table 7 (bottom half), the
aggregate estimates of the investment elasticity obtained at the quarterly frequency are
similar to those at the annual frequency, which suggests that differences in elasticity
estimates are not likely to reflect differences in data frequency. In particular, the
aggregate estimates of the investment elasticity at the annual frequency for the two
instrument sets BFK(1) and BFK(2) are 0.007 and 0.009, respectively, compared to
0.005 and 0.004 for quarterly data.

5.4 Manufacturing versus Whole Economy

We have only considered data from the manufacturing sector whereas estimates
in aggregate studies are based on whole-economy investment data. The main rea-
son for focusing on the manufacturing sector is data availability. Moreover, there
are measurement issues that are particularly severe for the services sector (Griliches
1994). One caveat to our results is therefore that if investment adjustment costs are
more prominent in nonmanufacturing investment relative to manufacturing invest-
ment, then estimates based only on manufacturing data may be biased downward.
One reason for why this could be the case is that investment adjustment costs may
be more likely to arise in structures relative to equipment investment, and the former
has a larger share in share in whole economy compared to manufacturing investment
(15% and 30%, respectively).22

Although we cannot address this issue directly using industry data, we can confirm
if estimates of the elasticity are higher for equipment investment relative to structures
in the aggregate data. If this was indeed the case, then it is likely to matter for
disaggregated data as well. We reestimated (27) using data on real nonresidential
investment in equipment and software [NRIPDC1]. The estimated elasticities from
this specification are around 0.01 for both instrument sets. These estimates are only
slightly higher relative to those reported in Table 5 (row 6) where the investment
measure includes structures. This finding therefore suggests that, at the aggregate
level, the elasticity estimates are not very sensitive to whether the investment measure
includes structures or not.

5.5 Alternative Empirical Specification

In our baseline specification, we estimated four coefficients (θ0 to θ3). These
reduced-form coefficients depend on structural parameters that are not directly of
interest. As evident from (10), the coefficients on the lag and leads of investment
(θ1, θ2, and θ3) depend entirely on the discount factor β (common to all industries)

21. To obtain annual data, investment and population are summed, and the rate of return measure and
the GDP deflator are averaged, over the four quarters.

22. Note, however, that although planning delays are shorter for equipment than for structures invest-
ment, they are still higher than in other types of investment, such as residential investment (Christiano et
al. 2005).
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and the industry-specific depreciation parameter δ. The coefficient θ0 also depends on
the industry-specific parameters α and K. To increase the precision of the estimates of
the adjustment costs parameter, κ , we use calibrated values of α, β, δ, and K (based
on values reported in Table 4) to reduce the number of estimated parameters from four
to one.23 This allows us to estimate κ directly, given that the relevant reduced-form
parameter θ0 in (10) is given by

θ0 =
[ −αβ

κ(1 + β + (1 − δ)β)K

]
, (28)

with the corresponding expression for the elasticity given by (16). Table 8 reports the
findings. Overall, the significance of the estimates of the adjustment cost parameter
improves slightly, while the pattern of the estimates remains similar to that obtained in
the benchmark estimation (Table 4) for most industries (16 of the 18 industries). There
are two main exceptions: adjustment cost estimates for industry n = 16 (transportation
equipment) and n = 18 (miscellaneous manufacturing) are substantially lower than
in the benchmark estimation. The average estimate of the elasticity ζ AVG is now 19.4,
which is slightly higher than the benchmark estimate of 15.24.24

5.6 Aggregation Bias

The evidence of small investment adjustment costs in the industry data relative to
large investment adjustment costs in the aggregate data suggests that aggregation over
heterogenous industries may impart the appearance of investment adjustment costs
on aggregate investment. In the context of capital adjustment costs, Gordon (1992)
points out that aggregation can lead to a substantial overestimation of adjustment
costs when the model is estimated using aggregate data. One way to investigate this
is to pursue an empirical strategy along the lines of Burnside (1996), which in our
model would correspond to imposing cross-equation restrictions on the adjustment
cost parameters across the 18 industries. If the estimated adjustment cost parameter
in this constrained regression were large (corresponding to a small elasticity), at the
same time as the cross-equation restrictions were rejected, this could be interpreted
as an “aggregation bias” that caused aggregation across heterogenous industries to
give rise to differences in estimates obtained at the industry and the aggregate level.25

Due to difficulties with the convergence of the objective function in the system GMM
estimation, we pursue an alternative strategy. We instead estimate equation (11)
using pooled data. This could be interpreted as imposing the restriction that all model
parameters are equal across all industries. We can then compare the pooled estimate
with the industry-specific estimates reported above, and with aggregate estimates,
along the lines discussed above.

23. We thank an anonymous referee for this suggestion.
24. The standard errors of the industry elasticity estimates are similar to those obtained for the external

adjustment costs specification.
25. We thank an anonymous referee for this suggestion.
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TABLE 8

ALTERNATIVE EMPIRICAL SPECIFICATION

IAC Elasticity
Industry (n) κn ζn

Nondurable industries
1. 0.0008 4.25

(0.001) (5.20)
2. 0.012∗ 15.51∗

(0.0005) (6.00)
3. 0.0003 59.42∗

(0.0001) (14.39)
4. — —
5. 0.0004∗ 25.05∗

(0.0001) (8.25)
6. 0.019 0.376

(0.156) (3.04)
7. 0.002 2.82

(0.002) (1.71)
8. 0.0003∗ 33.27∗

(0.0001) (11.31)
9. 0.011 1.78∗

(0.05) (9.56)
Durable industries

10. 0.001 24.11∗
(0.0005) (11.65)

11. 0.005 3.42
(0.010) (6.55)

12. 0.0006∗ 14.35∗
(0.0003) (7.02)

13. 0.0006 10.72
(0.0005) (8.86)

14. — —
15. 0.0002∗ 36.62∗

(0.0001) (17.85)
16. 0.0001∗ 41.08∗

(0.00001) (10.46)
17. 0.0005∗ 22.67∗

(0.0002) (8.27)
18. 0.002 15.52

(0.002) (17.89)
ζ AVG = 19.40

NOTES: Standard errors in parentheses. ∗ Significant at 5% level.

The pooled estimate of the adjustment costs parameter is 0.001 with a standard
error of 0.001, implying a value for the investment elasticity equal to 7.65, with a
standard error of 0.66, therefore significant at the 5% level. The pooled estimate
of the elasticity is roughly half the size of the weighted average of the industry-
specific estimates (reported in Table 4). We construct the 95% confidence interval
around the pooled estimate, and similarly for the industry-specific estimates of the
elasticities (as reported in column 9 in Table 4). We find that the confidence interval
of the pooled estimate and those of the industry estimates do not overlap for any of
the industries. This indicates that the restriction that all parameters are equal across
all industries is strongly rejected by the data and that an aggregation bias causes
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aggregate estimates to significantly deviate from industry-specific estimates. In other
words, aggregation bias is likely to contribute to the discrepancy between aggregate
and industry estimates of the investment elasticity. However, it does not fully account
for the discrepancy, as there remains a substantial difference between the pooled
industry estimate and aggregate estimates. In particular, the pooled elasticity is about
four times as large as the largest aggregate estimate reported in Levin et al. (2006).

6. CONCLUSION

In this paper, we estimate investment adjustment costs in U.S. manufacturing
industries. Our findings indicate small costs associated with changing the flow of in-
dustry investment. They imply that industry investment is very responsive to changes
in the shadow value of capital. The benchmark average industry elasticity of invest-
ment with respect to the current shadow value of capital is eight times larger than
the largest estimate based on aggregate U.S. data (as reported in Levin et al. 2006).
We discuss several possibilities for why industry estimates of investment adjustment
costs might be smaller compared to those reported in aggregate studies and explore
in more detail identification issues, the role of internal versus external adjustments
costs, data frequency, and the possibility that manufacturing industries may not be
representative of the whole economy. None of these factors appear to account for
the difference. We also explore if an aggregation bias could explain the difference
and find that it may account for around half of the discrepancy between industry
and aggregate estimates of the investment elasticity, leaving a substantial difference
unexplained. Our findings therefore suggest that more caution is needed when giving
policy advice, based on aggregate models, that hinges on a structural interpretation
of large investment adjustment costs.
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