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Abstract

We implement a conditional demand analysis (CDA) using a large dataset of
electricity consumers in a Canadian province with a high market share of electric
heating technologies. In doing so we also provide a unifying review of the breadth
of interdisciplinary applications of CDA, beginning from the earliest studies up to
the present, and test for evidence of unobservable variable bias from random ef-
fects panel data estimators. We find that local (i.e. minisplit) heat pumps and
thermostat setbacks show the largest electricity savings. Central heat pumps gen-
erally do not save heating electricity compared to electric baseboards, and exhibit
higher cooling season consumption compared to local heat pumps. We also observe
a consistent decline in electricity consumption for newer homes, with the largest ef-
fects in the post-2010 period. Our results can inform research to identify promising
technologies that support a shift towards large-scale electrification and decarboniza-
tion of energy end-uses, on the basis of robust statistical analysis utilizing realized
household consumption data.
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1 Introduction

Pathways to meeting global decarbonization goals typically include increasing the elec-

trification of end-use services in buildings coupled with lowering the carbon intensity of

electricity generation [1, 2]. In buildings, which account for over a third of global emissions

[3, 4], the most promising avenues to support a shift to large-scale electrification include

reducing heating and cooling emissions through envelope improvements, high-efficiency

technology adoption, and increasing usage of renewable energy [5, 2, 6].

To meet the global community’s goal to reach net zero carbon emissions by 2050-2070

[7], estimates of future end-use energy consumption loads under higher electrification

scenarios are needed. In this context, estimates that disaggregate total energy demand

into appliance or equipment-level end-uses have been derived using a number of differ-

ent methodologies.1 The statistical methods and engineering models developed in this

literature can provide a valuable framework to estimate the impact of technological and

behavioural changes in buildings, and support policy-making aimed at increasing both

electrification and energy conservation in the coming decades.

This paper implements a conditional demand analysis (CDA) using a large dataset of

electricity consumers in a Canadian province with a high market share of electric heating

technologies. While originally developed using multiple linear regression techniques in

economics [8], CDA has now become widely used in a number of energy-related disciplines.

The CDA methodology has also been expanded to include bayesian econometrics and

hybrid approaches that incorporate engineering model simulations [16, 10, 17].

Our paper provides three contributions to this existing literature. First, we present a

unifying review of the breadth of interdisciplinary applications of CDA, beginning from

the earliest studies up to the present. Second, we use econometric techniques that take

advantage of a large household-level panel dataset to test for evidence of unobservable

variable bias from the random effects model. Unobserved characteristics correlated with

both the independent variables of interest and the dependent variable (i.e. consumption

at the household level), may result in the consumption level effects of variables of interest

being estimated with bias. In that case an alternative estimator, the fixed effects or within

estimator, is preferable. However, by construction, the fixed effects estimator implies that

only the consumption gradient, which measures how consumption for a particular variable

changes as outdoor temperature changes, can be estimated. The advantage of the fixed

effects model is that it includes fewer identifying assumptions and therefore the model

coefficients can be estimated with more confidence [18]. In addition, the gradient itself

may be of interest to policymakers as it can offer insight on the peak load demand of

individual variables.

Finally, the particular characteristics of our data setting, a Canadian province with

1Examples include [8, 9, 10, 11, 12, 13] and [14]. [15] provide a comprehensive review of the breadth
of methodological approaches that have been utilized to evaluate this question across several disciplines.
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a high share of both electrification and low-emission power sources, can help provide in-

sights to researchers and policymakers working on predicting and managing future elec-

trical loads. Canada’s electricity grid is among the most decarbonized worldwide: nearly

82 percent of its electricity is derived from non-GHG emitting sources, and in several

provinces a significant share of heating demand is met from electricity-using equipment.2

In New Brunswick, the province studied in this paper, about 60 percent of electricity is

produced using non-emitting sources and almost 52 percent of homes heat their homes

using electricity [19, 20].3

2 Approaches to estimating appliance energy use

The primary goal of this study is to estimate robust statistical models to evaluate the

effects of energy conservation measures (ECMs) in practice, and inform the development

of ECM policies in support of climate policy goals. There are three primary methods used

to estimate the energy use of individual appliances and savings from specific ECMs. The

first is direct sub-metering of individual devices in multiple houses for a representative

period. This will yield very high quality data and energy use estimates. However, this

method is also very expensive and invasive; as a result its applications have been limited

and these typically utilize small sample sizes, which may limit their generalizability (e.g.,

[21]; [22]; [23]; [24]).

A second approach is engineering estimates. In this case, the basic power draw of an

appliance at the important points in its operational cycle are measured (or estimated),

and this is conflated with an assumed usage pattern. The usage pattern may come from

a defined standard household definition, or may be estimated by other means [25, 17].

This method has relatively low data requirements, but whereas the power measurements

may be made unambiguously, the usage patterns may not accurately describe the range

of possible patterns in real households.

The third method, and the one used in this paper, is CDA. This is a statistical tech-

nique that relies on household appliance ownership data combined with energy use data,

collected via survey or directly from utility billing records. More sophisticated models, as

in this paper, may be derived with additional survey data on household socio-economic

variables and behaviours. It is relatively inexpensive and non-invasive for householders,

and was particularly attractive in this research because the necessary data already ex-

isted, having been collected by a utility for a different purpose. In the rest of this section

we describe the CDA method and evolution of the literature in more detail.

2There are large variations in the share of non-emitting sources across provinces, from about 12
percent in Alberta to close to 100 percent in Québec.

3Another 10 percent use dual electric and wood or dual electric and natural gas systems.
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2.1 The evolution of conditional demand analysis

2.1.1 Early work and the basic model

The CDA model was first introduced in the peer-reviewed literature thirty years ago by

Parti and Parti, [8]. Their analysis used linear regression techniques on cross-sectional

data to estimate average electricity consumed for 16 appliance types. This early work

spurred a number of both peer-reviewed studies and utility-sponsored reports [26, 27, 28,

29, 16, 30, 17, 31, 13].

The specification for estimating appliance-specific consumption in most of these stud-

ies is similar to the general formulation

Yit =
k∑

j=1

dijNijβj + βk+1 + εit, (1)

where Yit and εit are random variables measuring monthly electricity consumption in

kWh and an error term for household i in month t, respectively.4 The variable dij is an

indicator for ownership of the j-th appliance by household i, and Nij is the number of

appliance j present in household i. The coefficients βj are interpreted as the estimated

consumption of the j-th appliance. Finally, βk+1 is the average consumption of the set of

all other unspecified appliances.5

Some studies have extended this model to allow βj to vary with socioeconomic, de-

mographic, economic or physical variables such as weather [8, 33, 17]. However, an

alternative approach is to directly control for other observable explanatory variables as

separate coefficients in the regression or interacted with weather variables [34, 18]. In our

empirical specification described below we will estimate different extensions of equation

(1) and incorporate the effect of weather on consumption.

Another version of these foundational models utilizes cross-sectional data and assumes

that the appliance dummy variables are a function of a random error term to account for

variations in the intensity of appliance use, size or capacity among different households.

The random error results in a heteroskedastic regression error variance that must be

estimated using feasible generalized least squares [35]. This is the approach taken by [34]

in a study of 380 households in New South Wales, Australia.

Previous literature reviews have synthesized the available estimates from early CDA

studies. [36] reviewed 30 separate US CDA studies conducted in the 1980s, and [27] re-

viewed 15 separate US CDA studies conducted prior to these, with sample sizes typically

of several thousand households. It is also noteworthy that the well-established US Res-

idential Energy Consumption Survey (RECS) uses CDA to generate individual end-use

4Some studies have used a variation of this specification with indoor temperature as a dependent
variable [32].

5If time-series data on energy consumption for each household is not available, equation (1) can simply
be re-written without the t subscripts.
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estimates [37].

In Canada, [38] used data from a comprehensive national energy use survey from

9,773 households to derive estimates of the energy savings associated with upgrading

appliances, lighting, and enacting thermostat setbacks. [11] applied CDA to an earlier

vintage of the national Canadian dataset used by [38], although electricity and natural

gas data were available for only 2,050 and 1,012 households, respectively. [31] used CDA

on data from 791 households in British Columbia to develop a model of electricity use.

[33] used CDA to study the change in major energy end-uses in Quebec using three large

samples of households (42,000, 24,000, and 46,000) five years apart.

2.1.2 Hybrid modeling and other innovations

Researchers also developed hybrid CDA models that incorporate engineering and direct

metering approaches. The first example of this approach is [16], who used a Bayesian

updating model combining engineering estimates of appliance usage as the prior beliefs

and CDA estimates to transform the priors into a posterior distribution of appliance

usage. Two other Bayesian analyses, [39] and [10], integrated direct appliance metering

data and CDA estimates. [9, 40] also combined metering and CDA analysis using an

econometric framework that was shown by [9] to be equivalent to the Bayesian approach.

The authors found that this combined approach led to statistical efficiency gains whereby

the appliance coefficients could be estimated with more precision even in relatively small

samples.

While the existing CDA literature has expanded to include more advanced statistical

techniques such as Bayesian updating, hybrid approaches, machine learning and neural

network modeling [15], one as yet unstudied but important question is the extent of

coefficient bias due to omitted variables [41]. We turn to this question in the following

section.

2.2 Panel data estimators for more robust statistical inference

The now-ubiquitous availability of repeated cross-sections of consumption data from a

sample of utility customers, also known as panel data, has enabled researchers to model

statistical relationships using an ‘error components’ framework [42]. The error compo-

nents model allows for research designs whereby individual units differ in unobservable,

time-constant ways that affect outcomes of interest. For example, in the short-run when

consumer income levels are constant, unobserved customer income in any given sample

may be correlated with both appliance use and total energy consumption, resulting in

biased coefficient estimates. The same can be said for many other persistent consumer or

household-level characteristics such as political ideology or environmental awareness [43].

The error components model is a simple modification of equation (1):
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Yit =
k∑

j=1

dijNijβj + βk+1 + ci + uit, (2)

where the error εit = ci + uit now includes both an individual-specific, time-constant

component (ci) and an individual and time-varying term (uit). Panel data estimates

in the current CDA literature typically adopt the identifying assumptions of the random

effects model, in which the dij and Nij terms are assumed uncorrelated with the composite

error term εit. This is a strong assumption that is unlikely to be met in most samples

that are derived from realized energy consumption and survey data.6

An alternative panel model that allows researchers to relax this uncorrelatedness as-

sumption is the fixed effects model. This model allows for correlations between the in-

dependent variables of interest and the time-constant error component ci, and therefore

assume that only uit is independent of the included right hand side variables. In other

words, any time-invariant unobserved variables over the sample period are accounted-for

in the fixed effects model. The question of whether the random effects or fixed effects

model is most appropriate to obtain unbiased coefficient estimates can be answered using

the Hausman [41] and Mundlak tests [44]. We will test this hypothesis in Section 5.1.

One potential drawback of the fixed effects model is that the procedure to eliminate

bias from the unobserved ci results in the inability of the statistical model to identify the

average effect of an appliance on the level of energy consumption, Yit, as time-invariant

variables cannot be identified. However, the consumption gradient, or how consumption

changes as temperature changes, can be identified using fixed effects panel estimators.

The gradient effects themselves are important from a policy perspective as they indicate

potential electricity demand during peak demand periods, and potential peak savings

from different conservation measures [45].

3 Data

3.1 Energy and survey data

The raw data for this analysis came from the 2017 administration of an Energy Planning

Survey conducted by NB Power, the primary electric utility in the Canadian province of

New Brunswick. Respondents from 6,941 households completed the survey. The survey

consisted of more than 80 questions on dwelling and occupant characteristics, household

appliances, space conditioning and water heating equipment, fuel usage, and behaviours

related to energy consumption. Since we are interested in electricity-using appliances and

measures that affect total household energy use, the analysis in this paper focuses only

6The unobserved income and consumer characteristics from the previous section offer some exam-
ples, though there are many other unobserved characteristics this could apply to, including number of
occupants or household ‘comfort’ preferences.
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on households reporting their primary heating fuel as being electricity, close to 60 percent

of surveyed households. New Brunswick has cold winters and warm but relatively mild

summers. In this climate the biggest single energy use is for space heating, and space

heating effects will only be apparent in the dependent variable if the space heating is via

electric equipment. The primary electric heating equipment in the sample includes both

electric baseboards and heat pumps.

Total household electricity use data were obtained from utility records for each billing

period spanning approximately one year for most households (12 billing periods). As is

common with utility data, the billing periods were approximately one month long but

were not typically aligned with the start and end of calendar months, nor were they all

the same between households. We divided the energy use in a given billing period by the

number of days in that billing period to account for (small) variations in the number of

days per billing period between households. The full sample period spans April 1, 2017

to March 31, 2018.

The survey was conducted by the utility for its own planning purposes, and the authors

had no role in designing data collection methods. Anonymized data were shared with

geographical information denoting the first three digits of the provincial postal code,

also known as the “forward sortation area”, enough geographical information to facilitate

matching with appropriate weather data. Given that over 99 percent of the customers in

our sample are served either directly or indirectly from a single utility we assume that all

residential customers were exposed to the same prices, and thus price is not a factor in

the model.7

Our final data set after omitting non-electrically heated homes and cleaning the data

includes 3,214 households.8 The data summary statistics are presented in Table 1. The

annual electricity consumption (in kWh) is calculated from utility billing records by

aggregating twelve billing periods (April 2017-March 2018) for each household. The

remaining variables on house age, size, appliance ownership, energy-related renovations

and thermostat setback practices are obtained from the household survey data. Central

heat pumps use an internal duct system to distribute conditioned air around the the

entire house volume, whereas local heat pumps have an outlet in one or more zones.9

The survey asked households whether they turn down their thermostat in the winter

while sleeping; when no one is home; both; or never. The thermostat setback variable

in Table 1 indicates the share of households reporting any one of the setback practices.

Almost three quarters of households report undertaking some form of thermostat setback.

7Close to 90 percent of the customers in our sample are served directly by NB Power, and two other
utilities comprising about nine and one percent of the sample, respectively, purchase their wholesale
electricity from the same large utility, resulting in almost identical pricing across the sample.

8Appendix A provides further details on our data cleaning approach.
9While we have no data on how many zones were served in each house, other studies of similar heat

pumps in North America (e.g., [46] Table 6), a large majority service only one zone directly.
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Table 1: Summary Statistics

Mean S.D. Min. Max.
Annual electricity use (kWh) 18,847 7,003 3,106 41,320
Single detached house 0.77 0.38 0 1
House size (ft2) 1,521 593 600 2,700
House age (years) 32.93 18.66 1 62
Number of occupants 2.23 1.03 1 6
Electric water heater 0.96 0.20 0 1
Number of dehumidifiers 0.59 0.58 0 3
Well pump 0.37 0.48 0 1
Pool pump 0.07 0.26 0 1
Electric baseboards 0.49 0.50 0 1
Local heat pump 0.25 0.43 0 1
Central heat pump 0.09 0.29 0 1
Number of window AC 0.26 0.58 0 4
Thermostat setback 0.74 0.44 0 1
Energy related renovations 1.08 1.54 0 6

Households 3,214

Notes: House age was measured by the following seven year built ranges:
before 1961, 1961–1974, 1975–1989, 1990–1999, 2000–2009, 2010–2015,
and after 2015. The house age variable was calculated by taking the av-
erage of each customer’s year built range, subtracting that from 2017,
and averaging those values. Values above 2015 were recorded as 2016 and
values before 1961 recorded as 1955.

Energy related renovations represents the response to a series of survey questions,

“Please indicate if you have recently completed the following: insulate your basement, add

insulation to your attic, add insulation to your walls, replace exterior doors or windows,

install LED lights, install weather-stripping or caulking.” The reported variable is simply

the total number of measures the homeowner reported completing. It take on values

ranging from 0 to 6 depending on the number of renovations undertaken. On average

households in the sample had undertaken about one energy-related renovation.

3.2 Climate data

For household energy use related to space heating and cooling, we introduced a depen-

dency on local climate data. The standard indices used in CDA and in building energy

studies more generally are heating-degree-days (HDD) and cooling-degree days (CDD),

typically to a base temperature of 18°C, which is considered the typical outdoor temper-

ature at which there is a transition from space heating to space cooling [47].10

HDD, which measure demand for space heating services, are calculated by subtracting

the average Celsius temperature on a given day from 18 on days with temperatures below

10Prior studies have used various base temperatures, and there is recognition that there is a wide
range of appropriate base temperatures between buildings, depending on their specific construction and
operational characteristics. Nevertheless, for large building populations where specific characteristics are
not known, 18°C persists in being the most common choice for base temperature, and HDD and CDD
to this base are the most widely available in published climate data [48].
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18°C. CDD measure demand for space cooling services and are calculated by subtracting

18 from the average Celsius temperature on a given day with temperatures above 18°C.11

Our data source for these variables was daily weather data from Environment Canada

[49]. Further details on our construction of the heating and cooling degree day variables

can be found in Appendix A.

4 Empirical framework

In this study, monthly energy use and climate data were available, enabling panel regres-

sion. With data on a large sample of houses, equation (2) can be solved using either

random effects or fixed effects estimators. Regression relies on variability in the explana-

tory variables. For example, considering data on whether a household has a refrigerator

or not, since almost every modern household has a refrigerator of some kind, there is

almost no variability in this input. The consequence is that it will be mathematically

impossible to separate out refrigerator energy use from other end uses. One way around

this, for some variables, is to have additional data, such as total number of refrigerators

in the household, which introduces variability through the variable Nij in equations (1)

and (2).

Assuming sufficient variability is observed for a given set of variables, the coefficient

estimates will depend on the quality of the raw data, and as with most survey-based

data sources, householders might not be completely accurate in their responses to the

survey questions, or might not interpret the questions in a universal manner. This may

introduce noise into the data and if present will reduce the absolute value of any affected

coefficients towards zero.

4.1 Model development

We followed the process outlined in [11] by first considering logical approaches to mod-

elling individual appliances from engineering principles and the data available. Then we

combined these together into a CDA model. Space heating/cooling appliances, energy

efficient behaviours of interest to policy makers (thermostat setback, renovations) and

household characteristics shown to be influential in prior studies (e.g. house size, number

of occupants) were included. Since the fixed effects model does not separately identify

time-invariant variables, we interacted most of our variables of interest with climate data

(heating and cooling degree days).

We began with a model that included all potential predictors from the survey data,

and then began to sequentially remove predictors from the model where predictors offered

little variability, or where the predictor did not significantly contribute to the explanatory

11Temperatures of 18 degrees would be recorded as having zero HDD and CDD, though our temperature
data includes decimals and no temperatures of exactly 18 degrees were recorded during our sample period.
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power of the model, as measured by R2. This process yields the most parsimonious

and interpretable model, and is common practice in CDA studies. For example, clothes

washers, clothes driers, and electric cookers were dropped as their ownership was almost

universal, and was limited to one per house, whereas central air conditioning was dropped

because very few households reported ownership (only 35 households).

4.2 Empirical specifications

In this section we present our econometric specifications to estimate the electricity con-

sumption effect of specific house characteristics, appliance ownership, space thermal con-

ditioning equipment and behaviours intended to reduce energy use. We also explain the

different model identifying assumptions.

4.2.1 Traditional CDA random-effects specification

The traditional panel data CDA model consists of estimating equation (1) using the ran-

dom effects estimator [50], in which the coefficients of interest are estimated without bias

if both the strict exogeneity and uncorrelated effects assumptions hold. Strict exogeneity

assumes that after conditioning on all the independent variables of interest available to

the researcher (dij and/or Nij), the error term εit is uncorrelated with these variables

as well as any unobserved variables correlated with the variables of interest. Uncorre-

lated effects assumes that after conditioning on the available variables, any unobserved

individual-level and time-constant variables that affect energy consumption (represented

by ci), such as income in the short-run, are uncorrelated with the variables of interest.

With a rich set of explanatory variables to control for, the strict exogeneity assumption

will frequently be assumed to be satisfied. However, the uncorrelatedness assumption

effectively assumes that any included variables are orthogonal to the composite error

term εit = ci + uit, which includes an individual-level, time-constant unobserved variable

ci that is likely to be correlated with electricity consumption, as previously noted in

Section 2.2. If this is the case, the estimated variables in the random effects model will

be biased and a fixed effects estimator, which is identified with less stringent assumptions,

should be used instead.12

Since the fixed effects estimator explicitly controls for all time-invariant factors that

could affect electricity consumption, the coefficients on variables that do not vary over

time cannot be separately identified or estimated. However, an alternative approach that

has been taken in prior studies to overcome this constraint is to estimate how variables of

interest vary in response to weather changes, by interacting these variables with heating-

and cooling degree-days [18, 52]. We proceed below using this approach, first by estimat-

ing weather-interacted variables using a random effects estimator, followed by estimating

12This is the approach taken by [51] in the context of evaluating links between economic growth and
environmental degradation.
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the same model using the fixed effects estimator. With the coefficient estimates for both

sets of estimators in hand, we are then able to conduct two different statistical tests

to evaluate the evidence for the presence of omitted variable bias in the random effects

specification.

We estimate the following random-effects specification:

Yit = α +
k∑

j=1

β1jdijNij ∗ AHDDzt +
k∑

j=1

β2jdijNij ∗ ACDDzt + ηt + εit (3)

The outcome variable Yit in equation (3) is electricity consumption in kWh for house-

hold i in billing period t, and α is the regression constant term. As explained in section

2.1 of the paper, the variable dij is an indicator for the j-th appliance, behavior or char-

acteristic of household i, while Nij is the number of units of dj present in household

i.

Our reported model incorporates a total of seven primary variables of interest. Four

indicator variables take the value of 1 if household i owns the following appliances and

zero otherwise: pool-pump and three options for households’ primary heating systems.

The three heating systems are electric baseboard, local heat pump (also known as ductless

or minisplit heat pumps), and central air source heat pump. Since their ownership are

mutually exclusive, we omit electric baseboard heating systems from the analysis so that

the econometric results are interpreted relative to this omitted category. This is the logical

choice for results interpretation because heat pumps are often proposed as a more efficient

replacement for baseboards. In addition, the model has three independent variables that

reflect the number of the following appliances: dehumidifiers, window air-conditioners,

energy-related renovations.

The variables AHDDzt and ACDDzt are average daily cooling and heating degree

days for a household in billing month t and located in weather region z. These two

variables were obtained by dividing our heating and cooling degree day variables (HDDzt

and CDDzt, respectively) by the number of days in the monthly billing period. We

interact our regressors of interest with AHDDzt and ACDDzt to estimate how electricity

usage changes in response to a 1 unit change in AHDDzt or ACDDzt. β1 and β2 when

dij = 1 and Nij = 1 are interpreted as the change in monthly usage (demand) of electricity

for households who possess a certain appliance relative to those who do not, in response

to a one unit increase in AHDDzt and ACDDzt, respectively. If dij = 1 and Nij > 1,

β1 and β2 are interpreted as the additional electricity demand from one extra unit of the

appliance in response to a one-unit change in AHDDzt and ACDDzt, respectively.

We control for billing period as denoted by ηt, and εit = ci +uit is the error term that

incorporates the household-specific random effects ci, which are not explicitly estimated

in the random effects model.
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4.2.2 Fixed-effects model

We also estimate a fixed-effects model where the uncorrelatedness assumption of the

random-effects specification is relaxed. In other words, the fixed-effects estimator ac-

counts for the impact of any time-invariant characteristics that may be correlated with

the independent variables.

Statistically, the key distinction between fixed-effects and random-effects specifications

is whether we model the correlation between the individual effects, ci, and the covariates

(dij and/or Nij), or whether we assume that they are independent. In fixed-effects mod-

els we explicitly estimate ci, a household-specific coefficient that captures the effect of

unobserved, time-invariant household characteristics.

Hence, to estimate the effect of energy conservation measures such as appliance owner-

ship, space thermal conditioning equipment and behaviours, which are all time invariant

variables, we estimate the fixed-effects specification by interacting these variables with

heating and cooling degree days:

Yit = α +
k∑

j=1

β1jdijNij ∗ AHDDzt +
k∑

j=1

β2jdijNij ∗ ACDDzt + ηt + ci + uit, (4)

The regressors of interest and interpretation of β1 and β2 are similar to the random effect

specification defined above in equation (3).

To evaluate whether the fixed-effects or random-effects model is most appropriate in

our setting, we use the Mundlack test [44] as well as the Hausman endogeneity test [41].

These results are reported in the following section.

5 Results

For our empirical analysis we have a balanced panel data set of 12 billing periods among

3,214 households, for a total of 38,568 observations. In this section we report the results of

estimating models using both fixed effects and random effects estimators, then implement

the Mundlak and Hausman tests to evaluate whether the random effects specification is

likely to be estimated without bias. With these results about model choice in hand,

we then move on to discuss specific coefficient estimates in more detail as well as their

implications for energy policy in the context of grid decarbonization.

Table 2 presents results from estimating the change in electricity usage that results

from home characteristics and energy conservation measures such as appliance owner-

ship, space thermal conditioning equipment and household behaviours in response to

cooler/warmer temperature. The two different panel estimators introduced in Section 4.2

are implemented here: column (1) of Table 2 presents results from the estimation of

12



Table 2: Random effects and fixed effects model results

(1) (2) (3) (4)
Independent Variables Coefficients Annual Usage Coefficients Annual Usage

Number of dehumidifiers # AHDD 6.584*** 976.04 6.123*** 907.70
(1.214) (0.708)

Poolpump # ACDD 378.994*** 1400.38 280.019*** 1034.67
(42.597) (32.954)

Local heat pump # AHDD -16.596*** -2460.26 -17.599*** -2608.95
(1.516) (0.898)

Local heat pump # ACDD 14.440 53.36 -2.839 -10.49
(15.164) (14.129)

Central heatpump # AHDD 0.072 10.67 0.753 111.63
(2.628) (1.648)

Central heatpump # ACDD 173.687*** 641.77 185.113*** 683.99
(22.301) (22.397)

Number of window AC #ACDD 55.386*** 204.65 49.773*** 183.91
(11.168) (11.137)

Energy related renovations #AHDD 0.161 23.87 0.012 1.78
(0.435) (0.259)

Energy related renovations #ACDD -4.859 -17.95 -7.791* -28.79
(4.366) (4.172)

Thermostat setback #AHDD -4.587*** -680.00 -3.508*** -520.04
(1.552) (0.903)

Year Built (1961-1974) #AHDD -6.644** -984.93 -8.860*** -1313.44
(2.696) (1.528)

Year Built (1975-1989) #AHDD -13.452*** -1994.18 -14.948*** -2215.95
(2.436) (1.387)

Year Built (1990-1999) #AHDD -11.000*** -1630.68 -11.827*** -1753.28
(2.614) (1.490)

Year Built (2000-2009) #AHDD -14.047*** -2082.38 -14.991*** -2222.33
(2.564) (1.492)

Year Built (2010-2015) #AHDD -21.950*** -3253.96 -22.759*** -3373.89
(2.976) (1.808)

Year Built (2015-2018) #AHDD -31.677*** -4695.93 -31.778*** -4710.90
(4.340) (2.891)

Billing period FE YES YES
Household FE YES
House size control YES
Occupancy control YES YES
Observations 38,568 38,568
R-squared 0.62 0.83
Number of Households 3,214 3,214
Mundlak test: Prob.

0.00
Hausman test: Prob.

0.00

Fixed Effects

Chi-Sq. Statistic
464.690

Chi-Sq. Statistic
244.400

Random Effects

Notes: The dependent variable in columns (1) and (3) is monthly electricity usage in kWh. Columns (2) and (4) show
the implied annual consumption. The four primary heating system options from the survey are electric baseboard,
local heat pump and central heat pumps and the omitted category is electric baseboard. The omitted category for
Year Built is houses built before 1961. Dummy variables for the number of occupants are interacted with heating and
cooling degree days in both models but are not reported for space purposes. Full regression results are available by
request from the authors. Standard errors are clustered by household and billing period are in parentheses, ***p<0.01,
** p<0.05, * p<0.1.
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equation (3), a random-effects model, and column (3) displays estimates from the esti-

mation of equation (4), a fixed effects model. Both models also control for billing period

as well as occupancy interactions with cooling and heating degree days, where the latter

are coded as dummy variables interactions for each occupancy value. In the random ef-

fects model we also incorporate a house size control, which is implicitly accounted for in

the fixed effects model and has a significant effect on consumption when included in the

random effects model. Standard errors are two-way clustered by household and billing

period.

The annual electricity consumption implied by these estimated coefficients is presented

in Columns (2) and (4). Since the coefficients are in units of average daily heating and

cooling degree days per billing month, we obtain annual consumption by multiplying the

coefficient estimates from columns (1) and (3) by 147.6 and 3.7 respectively, which are

annual AHDDzt and ACDDzt (i.e.
∑12

t=1AHDDt,
∑12

t=1ACDDt) averaged across all

climate regions.13

We interact all variables of interest with both AHDDzt and ACDDzt in our main

analysis, as presented in equations (3) and (4). However, as New Brunswick is a relatively

cold province, we only report variables that are both policy relevant and make sense from

the physical point of view. For example, we do not report the coefficient on pool pumps

interacted with heating degree days as pool pumps are not used in the heating season,

and the coefficient is insignificant. Moreover, most variables interacted with ACDDzt are

insignificant and these are not reported in the main results in Table 2. Table 2 therefore

shows a subset of the coefficients from our complete specification. Other included variables

that are not reported in the Table are electric water heater, well pump and number of low

flow shower heads interacted with heating and cooling degree days, as their coefficients

were statistically insignificant.14

5.1 Model choice: random or fixed effects?

To evaluate whether the random effects model results in biased coefficient estimates we

implement the Hausman [41] and Mundlak [44] tests. Each of these tests seek to determine

whether the time-invariant unobservable error component ci is uncorrelated with uit and

the right-hand side regressors in equation (4). If the null hypothesis of uncorrelatedness

is rejected, this suggests the random effects model will lead to biased coefficients and the

fixed effects model is preferred. Otherwise, the random effects assumptions are satisfied.

13More specifically, average annualized daily AHDD and ACDD are obtained by summing AHDDzt

and ACDDzt across billing months for each customer (where AHDDt and ACDDt for a given t are
the same for each customer in climate zone z), to obtain total AHDD and total ACDD per customer,
then calculating the average total AHDD and average total ACDD across customers. For comparison
purposes, the annual mean daily AHDD for 2016 and 2019 (the two years before and after our sample
period) are 152 and 166, respectively. The annual mean daily ACDD for 2016 and 2019 are 4.3 and 3.2,
respectively. Hence, the weather variables used in the analysis are typical in our province of interest.

14The full results Table is available from the authors upon request.
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The advantage of the Mundlak test relative to the Hausman test is that it permits the

use of robust standard errors when the regression errors are heteroskedastic.

The results from these two tests will guide our preference between the random effects

or fixed effects model coefficients. The bottom two rows of Table 2 report the chi-squared

(χ2) statistics for each of the Mundlak and Hausman tests. As shown, the p-value of

each test is less than 0.00, which therefore strongly rejects the null hypothesis of no

bias affecting our independent variables of interest. This implies that the fixed-effects

specification from column (3) is preferred since it controls for time-constant unobservable

variable bias.

Despite the findings of biased inference from the random effects model, in general the

results from Table 2 indicate relatively small variations in coefficient values between the

random and fixed effects models. For most coefficients, there is less than a 15 percent

difference between the estimates for individual variables. Two exceptions are the energy

consumption effects of a pool pump and energy-related renovations.

A plausible potential reason for the larger differences between the random and fixed

effects models for these variables is the impact of income level, which is unobserved

in this sample. For example, higher income households may undertake energy-related

renovations at different rates, utilize pool pumps with different intensities and own larger

pools that require larger pumps, relative to lower income households. To the extent that

income level is constant over the one-year period in our sample, the fixed effects model

will net out the effect of income, as well as the mean effect of all other time-constant

variables, such as thermal comfort preferences).

5.2 Coefficient estimates

Results from column (3) in Table 2 show that owning an additional unit of a dehumidifier

raises electricity consumption by 6.1 kWh per month in response to 1 unit increase in

average daily HDD (AHDD). Column (4) indicates this translates to an annual increase

of 908 kWh/yr in the colder months. These values are within the range of estimates

shown in Table 3, where we compare the findings of the same effects reported in other

studies. We focus these comparisons on studies conducted in cool or cold climates in

North America and Europe, as these are most relevant to the sample in our analysis.15

Houses with pool pumps use substantially more electricity, as expected; the estimated

coefficient indicates 1,035 kWh of additional annual electricity use than a house without

a pool.

About 32 percent of survey respondents use local heat pumps as a primary source

of heating, which is more energy efficient in both colder and hotter months. The other

15Nevertheless, local climate variations, potential differences in appliance use practices among sam-
ple households, and other methodological differences in data collection and analysis, can also lead to
variations in effect estimates.
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heating sources included in Table 2 are electric baseboards (used by 54 percent of house-

holds), and central heat pumps (used by 13 percent of households).16 Table 2 shows that

houses heating primarily with local heat pumps consume about 2,600 kWh less electricity

annually than houses with electric baseboards, and all of this excess electric baseboard

consumption occurs during the heating season. Local heat pumps do not consume statis-

tically different quantities of electricity compared to baseboards during the cooling season.

On the other hand, statistically central heat pumps use the same amount of electricity as

electric baseboards during the heating season, but 684 kWh more electricity during the

cooling season. Taken together, these heat pump estimates suggest local heat pumps are

not often used for cooling in summer (although they are capable), whereas central heat

pumps are.

An additional window air conditioner has a statistically significant effect on monthly

electricity consumption in the cooling season, resulting in an increase of about 184 kWh

per year. Investing in an extra energy related renovation has a borderline significant effect

on reducing cooling demand but does not have a statistically significant effect on heating

demand. The associated savings from these behaviours are modest and total about 29

kWh per year.

The effect of house age in Table 2 is measured in the construction year ranges as

reported in the survey: Before 1961, 1961-1974, 1975-1989, 1990-1999, 2010-2015 and

2015-2018. In Table 2 homes built before 1961 are the omitted category so the home age

coefficients are interpreted relative to the oldest homes. With the exception of 1990-1999,

homes of progressively newer vintages tend to consume less electricity, and this effect is

largest for the two most recent age categories. On average, the two newest vintages save

about 340 kWh per year relative to their preceding age category.17

We formally assessed if the differences in the coefficients from vintage to vintage are

statistically significant by testing individual hypotheses evaluating whether each coeffi-

cient is statistically different from the preceding vintage (using Wald tests). All of our

tests strongly reject their null hypotheses. The highest p-value is 1.8% for the test be-

tween coefficients on the vintage years of 1990-1999 and 2000-2009. Most of the other

p-values are lower than 0.02%.

These results suggest that since the 1990s there has been a clear and statistically

significant trend towards reductions in energy consumption that can be attributed to

progressively newer homes. This could be a result of greater emphasis being placed on

house energy performance over time among home builders, and possibly reinforced by the

adoption of building energy codes from 2012 onwards.

16As previously noted, electric baseboard heating is the omitted heating system category in Table 2, so
that the coefficients on local and central heat pumps are interpreted as their consumption effect relative
to electric baseboards.

17This value results from the calculation [(4710.9-3373.89)/3 + (3373.89-2222.33)/5]/2, using the an-
nual savings values from the two newest year built categories from the fixed effects model in Table
2.
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5.3 Energy conservation measures discussion

5.3.1 Heat pumps

An important question for this study and for policy guidance is: do heat pumps in prac-

tice use substantially less electricity than electric baseboards? The annual consumption

levels of heat pumps and electric baseboard heaters have been estimated in prior studies,

as shown in Table 3. The simple average of annual electric baseboard estimates across

these studies is 10,585 kWh. Two studies from Quebec measured heat pump annual con-

sumption levels, although these did not distinguish between centrally-ducted and local

heat pump systems, and found average annual consumption values of 11,805 kWh. Our

study disaggregates between local and central heat pumps and finds that central heat

pumps (but not local heat pumps) consume more electricity than electric baseboards,

and this higher consumption is driven by cooling season usage.

Table 3: Estimated end use effects of appliances from prior studies and published guidance (kWh/yr)

Newsham and 
Donnelly (2013)

Manitoba Hydro 
(2011)

Bernard and 
Lacroix (2005)

Tiedemann 
(2007)

Lafrance and 
Perron (1994)

Sebold and 
Parris (1989)

Burlington 
Hydro (2020) EREN (2020)

Canada Manitoba Quebec British 
Columbia Quebec N. Midwest, 

USA S. Ontario USA

Dehumidifier 504-3,024 700
Pool Pump 4,898 2,114 3,912 1,800 1,944
Electric Baseboard Heating 8,600 10,518-16,556* 12,926 5,037* 9,873
Window AC units 396 675 207 500
Heat Pumps Heating 13,643 9,966

Notes: * above denotes it is not clear whether this is baseboard heating only or includes other delivery mechanisms.

For houses that heat primarily with central heat pumps, our estimated fixed effects

model coefficient finds that these systems consume the same amount of electricity com-

pared to electric baseboards during the heating season, and more than electric baseboards

during the cooling season.18 More precisely, the annual consumption results from Table 2

column (4) indicate central heat pumps consume about 684 kWh more annually than elec-

tric baseboards. On the other hand, local heat pumps consume 2,609 fewer kWh annually

compared to electric baseboards, and 3,293 fewer kWh than central heat pumps.

Heat pumps are relatively expensive components of a space conditioning system, and

many utilities have incentives to encourage their adoption in both new construction and

in retrofits. This is because they are, in principle, much more efficient than other heating

18As noted in section 3.2, the heating season here is measured as periods when the outdoor temperature
falls below 18 degrees celsius, and the cooling season when the temperature is above 18 degrees celsius.
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systems. In our study, the traditional incumbent heating system was electric baseboards,

which have a coefficient of performance (COP) of 1, that is, for every one unit (in kWh) of

electricity of input, one unit of heat is output. Air-to-air heat pumps, the most common

alternative to electric baseboards in a residential context, are typically considered, in a

simplified analysis, to have a COP of approximately 3: for every one unit of electricity

input, three units of heat energy are extracted from the outdoor air and brought indoors.

In the context of heat pumps replacing baseboards, simple engineering estimates often

assume that the heat pumps will assume all of the heat load previously met by baseboards,

and therefore suggest that heat pumps will lower heating energy use by 2/3, or 67 percent.

For a typical electrically-heated house in a cool climate, this might equate to a saving of

30-35 percent of total annual electricity use. Our results show that houses with local (or

ductless) heat pumps as their primary heating system do use substantially less electricity

than those with electric baseboards as the primary system, all else being equal. However,

the conservation effect is much smaller than the simple engineering estimate: 14 percent

of total energy relative to electric baseboards.19

Other studies of the field performance of heat pumps in heating-dominated climates

have found similar results. In Ontario, [53] evaluated a heat pump incentive pilot involv-

ing 100 homes that had formerly used electric baseboards as their sole heating system.

Estimated energy use, based on 12 months of measured consumption, declined by only

11.2 percent compared to total pre-pilot energy use. Similarly, and also in Ontario, [54]

evaluated a heat pump incentive pilot involving 100 homes that had formerly used electric

baseboards or electric furnaces as their sole heating system. Estimated energy savings,

based on 12 months of measured consumption, were only 7.9 percent compared to total

pre-pilot energy use. [55] conducted a multiple regression-based analysis using billing

data of the effectiveness of heat pump retrofits in Nova Scotia. Focusing on the subset

where minisplit heat pumps were installed in 118 exclusively electrically-heated houses,

annual savings of 3,504 kWh were reported. They concluded that this saving was well be-

low estimates from standard methods pre-installation. [46] report on a large study in the

northwest USA where ductless minisplit heat pumps replaced electric heating. For houses

with no self-reported supplemental fuel use, a billing data analysis indicated average an-

nual energy savings were 2,718 kWh (N=2,295), or about 15 percent of pre-installation

total energy use, very similar to the results in our study. However, a CDA on these data

suggested about a third of savings were given back for increased space temperature and

occupancy. Finally, [56], using a CDA method to analyze data from ≥ 1000 households

in Norway, found that the energy saving potential of heat pumps was offset by other

changes in energy consumption behaviour.

There are several reasons in the previously cited literature for lower performance than

simple engineering estimates:

19Based on the calculation 2,609/18,847, where the denominator is annual average in-sample electricity
use.
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- COP declines as outdoor temperature goes down, especially for older heat pumps

that might not have been specifically designed for cold climates [57]. Therefore, the

actual average operating COP may be substantially lower than the value of 3 often

assumed.

- Some electric baseboards are retained as supplementary heat sources and are used

even after the heat pump is installed. In some cases, this permits a greater fraction

of the house volume to be heated, thus increasing comfort and space utilization.20

- People exchange savings for increased comfort. This is a classic rebound effect:

when the heating bill is lower some people increase their thermostat setpoint.

Another potential energy penalty is that people who did not have air conditioning

prior to obtaining a heat pump will then use the heat pump in cooling mode in the

summer, thus adding to total electricity use. Again, this brings a tangible comfort benefit

to the occupants, and is thus seen as a good thing by heat pump owners, even with an

energy penalty. Our analysis shows that a central heat pump is associated with an air-

conditioning load of 684 kWh/yr, higher than the estimated use of a standard window

air conditioner in our sample, of about 184 kWh/yr.

Our results that central, ducted heat pumps use significantly more energy than local

heat pumps may arise because they are used to service the entire house volume all of the

time, whereas local heat pumps might be used in specific zones at least some of the time.

Overall, local heat pumps generally realize substantial energy savings and improve com-

fort. However, measured savings are substantially lower than typically forecast, which

may impact the cost-benefit equation for homeowners. It also has implications for pro-

gram design on the part of policy-makers. From a policy perspective, our finding that

central heat pumps do not save electricity compared to electric baseboards may call into

question whether program dollars are best spent incentivizing their adoption.

5.3.2 Thermostat setback

Houses in which the householder indicated employing thermostat setbacks used statistically-

significantly less electricity during the heating season, as expected; the estimated annual

saving is 520 kWh/yr. [38] also used CDA to estimate this effect at 390 kWh/yr per

degree of setback, for electric heating systems, and this is broadly consistent with the

effect reported in the current analysis. In an experimental study in full-scale test houses

with natural gas heating, [58] found winter heating savings of about 2.2-2.5 percent per

degree of setback, when setbacks were implemented for approximately seven hours per

day. Assuming a 2 °C setback that persists for similar periods, a 2.35 percent energy sav-

ing per degree of setback, the middle of the savings range in their study, results in savings

20In our estimated model this scenario would inflate the estimated consumption for heat pumps as
households were asked about their primary heating system.
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of approximately 780 kWh/yr.21 This is somewhat higher than our estimate, however the

study setting was Ottawa, Canada, a region with colder winters than our jurisdiction

under study, which may account for the higher savings. A basic engineering calculation

results in savings within a very similar range as our estimate. Heat loss (and thus the

energy to maintain the desired indoor temperature) is proportional to the temperature

difference between inside and outside; in a cold climate this temperature difference may

be estimated at approximately 20 °C. A setback of 2 °C that persists for half of the time,

suggests a saving of 5 percent (2/20 * 0.5), which, on a total heating use of 11,200 kWh/yr

(the average of the electric baseboard and heat pump annual consumption estimates in

Table 3) yields a saving of 560 kWh/yr.

Overall, a synthesis of research results, including this current study, indicate that

thermostat setbacks do yield annual heating energy savings of approximately 500-800

kWh/yr, and may often be realized by utilizing equipment the homeowners already has.

As such, continued policy support for this energy saving strategy is justified.

5.3.3 Renovations

Houses reporting having recently completed energy-efficiency retrofits used less electricity

during the cooling season; the estimated coefficient was a saving of about 29 kWh/yr per

renovation. However, the coefficient is borderline significant at the 10 percent significance

level. This may be due in part to the high heterogeneity in the savings associated with

the different categories of energy renovations. For example, insulation retrofits typically

save significantly more energy than sealing air leaks [59, 60]. Due to the way this variable

was assessed and developed in the analysis, it is difficult to compare to data collected

elsewhere. Energy related renovations completed represents the response to a series of

survey questions, “Please indicate if you have recently completed the following: insulate

your basement, add insulation to your attic, add insulation to your walls, replace exterior

doors or windows, install LED lights, install weather-stripping, caulking, etc.” Each

of these measures is unlikely to have an equal effect. Further “recently” in the survey

was not defined and may have been interpreted differently by different respondents. We

also do not know the state of the house prior to the renovation, nor the extent of the

renovation; e.g., if a respondent reported adding insulation to their attic we do not know

how much insulation was there before the renovation nor how much insulation was added.

Given the importance of renovations in future code development, better data on previous

renovations and their effects should be a priority.

These measures have different costs and implementation challenges, and, given that

we cannot parse out the effects of each measure, a cost-benefit analysis for policy pur-

poses is not possible. Nevertheless, the fact that we estimated a modest savings effect is

encouraging and supportive of further research on these measures.

21These savings were converted to kWh from MJ of natural gas.
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6 Conclusion

We conducted a conditional demand analysis on electricity use data from approximately

3,200 electrically-heated dwellings in a cold climate in North America that exhibits high

electrification of end-usage. The results provide estimates of the effectiveness of various

energy efficiency measures on electricity usage post-installation, at a time when the in-

ternational community looks towards increasing the electrification and decarbonization

of energy end-uses in order to reach climate policy targets.

Evaluating efficiency investments on the basis of realized energy use is important be-

cause such analyses estimate their effects including secondary interactions among appli-

ances and energy-using equipment, as well as behavioural responses such as the rebound

effect. In the end, it is not theoretical savings that matter, but rather the net savings

on actual energy consumption using robust statistical models with low coefficient bias.

This information can guide policy-makers in deciding which energy efficiency measures

are deserving of the most support, and what appropriate incentive levels might be with

respect to the cost of a specific measure and its expected, i.e. realized, energy reduction

effect.

A further contribution of our work is to evaluate the evidence for coefficient bias in the

random effects models that are frequently used in conditional demand analyses. While

on the basis of statistical tests we find that the random effect estimator is rejected in

favour of the fixed effects estimator, most of the individual coefficient estimates exhibit

only small variations between models, with a few exceptions. Overall, the estimates of

energy use by specific appliances and conservation measures were quite robust across

different statistical estimators, and reasonable when compared to relevant prior studies

using various estimation methods.

Finally, this analysis reinforces the value of CDA as a technique to derive policy-

guiding estimates. As relevant energy use data become potentially more available (e.g.

smart meter data, smart thermostat data), and survey data become easier to collect via

on-line methods, CDA may become a more attractive research tool for climate policy

guidance going forward.
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Appendix

A. Data cleaning and variable coding

A1. Consumption data

Our general approach to data cleaning was to remove, or cap, extreme values for the
major variables in the model. In common with prior work in this area, we considered
univariate outliers only. For electrical energy use, we dropped cases where total annual
energy use was more than 3 standard deviations from the mean, or if usage in any billing
period was >10000 kWh, as high outliers. Given that we had a sample of houses in a
cold climate using electric heat, we also dropped cases where total annual energy use was
<3000 kWh, or if usage in any billing period was <100 kWh, as low outliers. We also
excluded a small number of cases that had reported ownership of an electric vehicle or
local renewable generation because their monthly grid-sourced electricity consumption
would be considerably higher or lower (respectively) than their counterparts.

A2. Survey data

Some variables that were reported in categories were recoded as numeric, where appro-
priate. For example, on the survey the variable house area (finished area without garage)
was originally reported as < 601 square feet (s.f.), 601–1200 s.f., 1201–1800 s.f., 1801–2400
s.f., > 2401 s.f., and these were recoded to 600, 900, 1500, 2100, and 2700, respectively;
responses of “Don’t know” were coded as missing and therefore excluded from the anal-
ysis. The survey also collected data on year of home construction in the following year
built categories: before 1961, 1961–1974, 1975–1989, 1990–1999, 2000–2009, 2010–2015,
and after 2015. Each year built range was recoded to an indicator (or dummy) variable
to reflect the seven age range categories.

The survey also asked households about their thermostat usage in winter time. Specif-
ically, households responded whether they turn down their thermostat while sleeping,
when no one is home, both or never. We coded the thermostat setback variable as a
dummy variable that takes the value of one if the household turns down their thermostat
anytime of the day and zero otherwise.

A3. Weather data

Using postal code data and weather zones in New Brunswick, we identified six major
cities/towns that are representative of the different weather zones of the province, al-
located each household location to one of these six geographical regions, and obtained
daily weather data from Environment Canada for each of the six cities from 2016–2018
to calculate HDD and CDD. Daily HDD and CDD were calculated and then totalled for
each billing period and each household in a specific region. Finally, to simplify coeffi-
cient interpretation, we divided cumulative HDD and CDD by the number of days in
that billing period to arrive at average daily HDD and CDD by billing month (hereafter
AHDD and ACDD respectively). Table A1 presents an example of weather data for one
of the six regions for the 2017 calendar year. It illustrates that heating days are by far
more prevalent than cooling days, which is typical for this coastal province with cold
winters and mild summers.
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Table A1: Example CDD and HDD data for one example region for the 2017 calendar year

Month (2017) 1 2 3 4 5 6 7 8 9 10 11 12 Total
CDD18 0 0 0 0 4 30 53 37 31 2 0 0 157
HDD18 748 691 690 373 215 69 15 33 59 205 503 800 4401
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