

CEWP 21-12

Comparing Out-of-Sample Performance of Machine
Learning Methods to Forecast U.S. GDP Growth

Ba Chu

 Shafiullah Qureshi

 Carleton University

 Carleton University

October 30, 2021

CARLETON ECONOMICS WORKING PAPERS

Department of Economics

1125 Colonel By Drive
Ottawa, Ontario, Canada

K1S 5B6

Comparing Out-of-Sample Performance of Machine
Learning Methods to Forecast U.S. GDP Growth

Ba Chu* Shafiullah Qureshi†

October 28, 2021

Abstract

We run a ‘horse race’ among popular forecasting methods, including machine learning (ML) and
deep learning (DL) methods, employed to forecast U.S. GDP growth. Given the unstable nature of
GDP growth data, we implement a recursive forecasting strategy to calculate the out-of-sample per-
formance metrics of forecasts for multiple subperiods. We use three sets of predictors: a large set of
224 predictors [of U.S. GDP growth] taken from a large quarterly macroeconomic database (namely,
FRED-QD), a small set of nine strong predictors selected from the large set, and another small set
including these nine strong predictors together with a high-frequency business condition index. We
then obtain the following three main findings: (1) when forecasting with a large number of predictors
with mixed predictive power, density-based ML methods (such as bagging or boosting) can outperform
sparsity-based methods (such as Lasso) for long-horizon forecast, but this is not necessarily the case
for short-horizon forecast; (2) density-based ML methods tend to perform better with a large set of
predictors than with a small subset of strong predictors; and (3) parsimonious models using a strong
high-frequency predictor can outperform sophisticated ML and DL models using a large number of
low-frequency predictors, highlighting the important role of predictors in economic forecasting. We
also find that ensemble ML methods (which are the special cases of density-based ML methods) can
outperform popular DL methods.

AMS 2020 subject classifications: 62P20, 68T07, 68T09, and 68T99.
Keywords: Lasso, Ridge Regression, Random Forest, Boosting Algorithms, Artificial Neural Net-
works, Dimensional Reduction Methods, MIDAS, and GDP growth.

*Department of Economics, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, Canada. Email:
ba.chu@carleton.ca. Tel: +1 613-520-2600 (ext. 1546).

†Department of Economics, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, Canada. Email:
shafiullah.qureshi@carleton.ca. Tel: +1 613-520-2600 (ext. 3778); and Department of Economics, NUML, Islamabad,
Pakistan. Email: suqureshi@numl.edu.pk.

1

mailto:ba.chu@carleton.ca
mailto:shafiullah.qureshi@carleton.ca
mailto:suqureshi@numl.edu.pk

1 Introduction

Economic time series with low serial correlation and high volatility or structural changes are in general

difficult to forecast accurately. Among the most important and interesting time series that are difficult to

predict is the growth rate of GDP. Yet, GDP is one of the most useful measures to monitor macroeconomic

developments. Since it often becomes available with time delay which hinders the effort to assess the

current and future state of the economy, nowcasting and forecasting GDP growth are thus needed for an

early assessment of the economic situation going forward.

The following graphs suggest that the U.S. GDP growth fluctuates considerably during the recession

periods while the autocorrelations from lags one to ten are invariably below 0.4. In particular, the episode

that started on 01/01/2020 when the GDP growth pulled back then surged sharply has never happened

throughout the whole sample period. Therefore, in settings like this one involving a predictand with

relatively low signal-to-noise ratio plus potential structural instabilities, evaluating and comparing the out-

of-sample (OoS) performance of forecasting methods across different subperiods is a challenging, but

important task.

Figure 1: Plots of U.S. GDP growth rates

1960-01-01
1970-01-01

1980-01-01
1990-01-01

2000-01-01
2010-01-01

2020-01-01

Date

0.15

0.10

0.05

0.00

0.05

0.10

0.15

U.
S.

 G
DP

 g
ro

wt
h

(a) line plot (the shaded bars are the NBER recession dates)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Lags

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n

(b) ACF plot

There is a large body of literature applying time series models and machine learning (ML) or deep

learning (DL) methods to forecast GDP growth and other low-predictability macroeconomic variables.1

1DL methods are often considered as a subcategory of ML methods. In this paper, we refer to ML methods based on neural

2

Popular approaches include: dimensional reduction through common factors which are then used as ad-

ditional predictors in a predictive regression model, or so-called factor-augmented regression (e.g., Stock

and Watson, 2002a,b), bridge equations (e.g., Baffigi, Golinelli, and Parigi, 2004; Götz and Knetsch,

2019), univariate and multivariate mixed-frequency models using high-frequency variables to predict low-

frequency variables (e.g., Foroni, Marcellino, and Schumacher, 2015; Ghysels, Santa-Clara, and Valka-

nov, 2004; McAlinn, 2021; Schorfheide and Song, 2015), machine learning (e.g., Giannone, Lenza, and

Primiceri, 2021; Medeiros, Vasconcelos, Veiga, and Zilberman, 2021), and deep learning (e.g., Barkan,

Benchimol, Caspi, Hammer, and Koenigstein, 2021; Nakamura, 2005; Paranhos, 2021). The literature has

reached the following major conclusions: (1) factor-augmented models, time series models, and mixed-

frequency models may not achieve any improvement in their forecast performance by using a large set

of predictors (e.g., Carriero, Galvão, and Kapetanios, 2019). The reason may well be that either those

models do not employ a shrinkage or variable selection device to prevent overfitting (which often occurs

when there is a mix of many relevant and irrelevant predictors); thus the in-sample prediction accuracy

cannot generalize well to unseen data, or there are only a few powerful predictors in the sample whereas

the remaining predictors have little predictive power;2 (2) when there is a large number of potentially use-

ful predictors such that every predictor has some predictive information about the predictand, ML methods

based on dense models which assume that all predictors are relevant (or density-based ML methods), such

as boosting and bagging & bootstrapping, often produce better forecasts than sparse-modelling techniques

which presume that the set of predictors is sparse, such as Lasso or subset selection (e.g., Giannone et al.,

2021) – as argued by the authors, the superior performance of these density-based ML methods is as-

cribed to pervasive model uncertainty. Giannone et al. (2021) find evidence favouring dense models in

several popular macroeconomic and financial datasets. However, when there is only a few strong predic-

tors and the rest are irrelevant or have low signal-to-noise ratios, sparsification has often been advocated

as a method to improve model interpretability and out-of-sample forecasts. For example, in a Bayesian

time-varying parameter model, there is an empirical evidence that large sparse models can forecast really

well (e.g., Huber, Koop, and Onorante, 2021 or Woody, Carvalho, and Murray, 2021). Indeed, Hastie,

networks as DL methods and those not based on neural networks as ML methods in general.
2Overfitting is referred to as the situation where the in-sample performance of a forecasting method is much better than its
out-of-sample performance.

3

Tibshirani, and Friedman’s (2009) Bet on Sparsity principle suggests that sparse-modelling methods can

outperform density-based methods for high-dimensional problems if the bet is successful. Of course, Bet

on Sparsity is not always guaranteed to succeed. Therefore, the debate over dense models or sparse models

is not likely to end soon; (3) mixed-frequency models can perform well out-of-sample because they exploit

information content of high-frequency variables to improve the accuracy of forecasts of a low-frequency

variable; and (4) deep neural networks can provide better forecasts of highly volatile macroeconomic

variables (such as inflation) than standard time series models, especially in the long term.

In light of the above discussion, we are interested in the following three main questions: (i) how

does the GDP growth forecast performance of dense-modelling ML methods compare with that of sparse-

modelling ML methods and other time series models in a sample with a large number of predictors with

mixed predictive power or in a sample with a small number of strong predictors?, (ii) which methods

provide better forecasts with a large set of predictors than with a small subset of strong predictors?, and

(iii) which methods can produce superior forecast performance overall across several large and small sets

of predictors (to be defined below)? This paper is an attempt to address those questions using a graphi-

cal approach instead of statistical inference approaches as most testing procedures for forecast comparison

assumes that there is an underlying stationary, weakly dependent process generating data that an econome-

trician can recover by sampling from this process over a sufficiently long period of time. The above graph

indeed suggests that the U.S. GDP growth may not behave like a stationary, weakly dependent process

as the autocorrelation function decays very slowly at large lags, which thus makes it quite challenging

to correctly rank forecast models with a statistical procedure. Testing methods, such as Giacomini and

Rossi’s (2010) Fluctuation and One-Time Reversal tests, can potentially be used, but the difficulty is to

obtain correct critical values for these tests when the weak dependence assumption no longer holds.

We use a large quarterly macroeconomic database (namely, FRED-QD at the vintage date 2021-01)

constructed by McCracken and Ng (2020) for the period from 1959Q1 to 2020Q4 with 225 variables

and data on Aruoba, Diebold, and Scotti’s (2009) business condition index (the ADS index) which tracks

real-time business conditions for the U.S. economy.3 We then use these datasets to form three sets of

3The ADS is constructed from six seasonally adjusted economic indicators with both high-frequency and low-frequency data.
These indicators include: weekly initial unemployment claims, monthly payroll employment, monthly industrial production,
monthly real personal income less transfer payments, monthly real manufacturing and trade sales, quarterly real GDP. The
index is updated in real time as new data on the index’s components is released.

4

predictors: the first set consists of 224 FRED-QD predictors, the second set consists of nine FRED-QD

predictors [taken from the first set], which strongly comove with U.S. GDP growth, and the third set is

the second set together with the ADS index.4 For the first set of predictors, we implement seven ML and

DL methods, including a method inducing sparsity (Lasso), a shrinkage-based method (ridge regression),

three tree-based methods (XGBoost, Gradient Boosting Machine (GBM), and Random Forest), and two

DL methods (deep neural networks (NN) and the long short-term memory model (LSTM)).5 For the sec-

ond set of predictors, we implement nine methods, including Lasso (which is equivalent to the ordinary

least squares (OLS) as all predictors get selected in this case), ridge regression (Ridge), XGBoost, GBM,

Random Forest, deep neural networks, LSTM, a new supervised principal component analysis (sPCA)

which combines the conventional PCA with Yousuf and Feng’s (2021) variable screening procedure based

on the partial distance correlation, and a time series model with nonparametric trend and seasonal pat-

terns (Facebook Prophet). For the third set of predictors, we also implement a mixed-frequency model

in addition to the aforementioned nine methods. (A detailed description of all the forecasting methods is

presented in Section 2.)

We then conduct real-time forecasting exercises. The timing of forecasts is as follows: once the

GDP numbers up to time t are released (in reality, the release may happen sometime after t due to time

delay), we produce forecasts for each period t + h up to four quarters ahead (h = 1, 2, 3, 4 quarters). We

only use the information available up to time t to forecast for the period t + h, although we may have

additional (monthly) information about the quarter t + h at some point before time t + h.6 We employ

a rolling-window strategy to compute the OoS performance metrics of forecasts for each horizon, h : the

root mean squared error (RMSE), the mean absolute error (MAE), and the OoS R2 for over 145 rolling

blocks of observations, or sub-samples, taken from the whole sample period. The first sub-sample runs

from 9/1/1959 to 6/1/1984, and the next sub-sample is formed by shifting the last sub-sample forward
4Note that, since the observations on the ADS index are available at a higher frequency than those on U.S. GDP growth, this set
of predictors is constructed by adding to the second set of predictors five (monthly) observations on the ADS index available
at/before each point in time when one starts forecasting the future values of GDP growth. This sample construction, which is
reminiscent of the unrestricted mixed data sampling proposed by Foroni et al. (2015), allows us to implement various ML and
DL methods using a dataset with variables of different sampling frequencies.

5The “deep” in deep NN simply refers to the multiple layers of the neural network whereas a shallow network often has a single
layer.

6If information in the quarter t+ h (such as the ADS indices of the first/second month of this quarter) is employed to improve a
forecast, this forecast then becomes a nowcast instead.

5

by one quarter. We then use the obtained sequence of over 145 values of an OoS performance metric

to evaluate the forecast performance of each method. We also compare the forecast performance across

methods and sets of predictors. (We shall give details about this recursive forecasting strategy in Section

3.) This strategy is basically an acknowledgement that a predictive relationship may undergo structural

changes over time [perhaps due to the nonstationarity of the underlying data generating process]. Thus,

our rolling-window estimation approaches using continuously updated sub-samples is an ad hoc method

to address the structural change issue in ML forecasting models.

The results of our forecasting experiments suggest the following answers to the above three questions.

Regarding Question (i), using the first set of predictors, there is no clear-cut advantage of density-based

ML methods over sparsity-based ML methods for one-period forecast while density-based ML methods

can outperform sparsity-based ML methods for long-horizon (i.e., h > 1) forecast. Using the second set

of predictors, the Lasso OLS method can outperform density-based ML methods for one-period ahead

forecast. In contrast, density-based ML methods (i.e., Random Forest) or the sPCA can produce better

longer-horizon forecasts. When a strong high-frequency predictor is available, a mixed-frequency model

can generate the best long-horizon forecasts. At the same time, sPCA or Lasso can produce better one-

period ahead forecasts than a mixed-frequency method. Regarding Question (ii), the short answer is that

Random Forest, XGBoost, and GBM can potentially perform better with a large set of predictors than

with a small set of strong predictors for short-to-medium horizon forecast; however, there is not much

difference in their performance for long-horizon forecast. Deep NN performs better with a small set of

strong predictors than with a large set of predictors only for long-horizon forecast while it seems to perform

better with a large set of predictors for one-period ahead forecast. Ridge regression always performs

better with a small set of strong predictors than with a large set of predictors. These findings corroborate

Giannone et al.’s (2021) suggestion that ensemble methods, such as boosting and random forest, can

benefit from the availability of many predictors while this is not necessarily the case for other methods,

such as ridge regression or DL. Regarding Question (iii), sPCA (which uses only a small set of strong

predictors together with the ADS index) can provide better OoS performance for short-horizon forecast.

Meanwhile, a mixed-frequency model can be the winner for long-horizon forecast. The reason for this

behaviour is that overfitting is a critical issue in machine learning and the risk of overfitting increases with

6

the forecast horizon (because the pattern of data to be predicted becomes more different from the pattern

of data observed as the forecast horizon increases). Also, when data have a low signal-to-noise ratio, there

is no priori reason to call for any particular type of nonlinearity. Therefore, parsimonious models with a

good high-frequency predictor can outperform more sophisticated nonlinear ML and DL models.

We thus make several contributions. First, we conduct an extensive OoS forecast experiment by com-

paring the forecast performance of many popular methods over time and across various sets of predictors.

Many existing works only perform OoS forecast comparisons based on an entire sample of observations – a

model is estimated using an initial training sample, then it is recursively re-estimated by rolling/expanding

this training sample until the end of the whole sample period in order to compute forecasts for a spe-

cific number of periods ahead; the value of an OoS performance metric can thus be calculated for these

forecasts. However, in practice, the evaluation of the OoS forecast performance (over time) of methods

is often required in order to conduct a fair comparison of these methods, especially when the underly-

ing variables display episodes of abrupt changes or low/high fluctuation. Therefore, a good forecasting

method should ideally perform well across different subperiods. Second, we find that density-based ML

methods can outperform sparsity-based ML methods for long-horizon forecast, but this is not necessarily

the case for short-horizon forecast. A parsimonious forecasting model may outperform more sophisti-

cated models when there is a high-frequency predictor with superior predictive power, highlighting the

vital role of predictors in economic forecast. When there is a large number of predictors (not necessarily

with equal predictive power), ensemble methods (such as Random Forest) can then deliver decent forecast

performance in many cases. Finally, we also find that ensemble methods (such as boosting or bagging)

can outperform many popular DL methods in this context of GDP growth forecasting. This finding is new

relative to the existing literature which demonstrates the superior forecast performance of both ML and

DL methods and suggests no particular ranking of those methods in the context of equity risk premium

forecast or bond excess return forecast (see, e.g., Bianchi, Büchner, and Tamoni, 2021; Gu, Kelly, and Xiu,

2020). From a theoretical perspective, there has not been any proof that DL methods outperform ensemble

ML methods or vice versa in supervised learning problems (Athey and Imbens, 2019).

The rest of this paper is organized as follows. Section 2 provides a brief description of the forecasting

methods employed in this paper. Although this description may appear non-technical and thus primarily

7

targets readers with modest background in ML methods, interested readers can find rigorous treatment of

these algorithms in the original papers or in many good ML textbooks, for example, Hastie et al. (2009) and

Murphy (2012). Our proposed forecast evaluation strategy is explained in Section 3. Section 4 presents

a detailed description of the data and the main results of the paper. Section 5 gives some concluding

remarks.

2 Description of Forecasting Methods

2.1 Mixed Data Sampling (MIDAS)

When one forecasts a low-frequency variable (e.g., the GDP growth in our case) using a high-frequency

covariate (such as the ADS index), observations of the latter need to be aggregated using some weighting

scheme to match the sampling rate of data on the low-frequency variable. MIDAS employs distributed

lag polynomials (often parametrized by a few parameters to avoid parameter proliferation) as weighting

functions. Let Yt represent a low-frequency variable, say quarterly GDP growth, and let Xt be a high-

frequency variable, say a monthly economic index. Past observations of Yt can be retrieved by the low-

frequency (LF) lag operator LLF (i.e., LkLFYt = Yt−k is the observation which is k quarters before the start

time t of a quarter). Similarly, past observations of Xt can be retrieved by the high-frequency (HF) lag

operator LHF (i.e., LkHFXt is the observation of X which is k months before t). To compute the h-period

ahead forecast Ŷt+h associated with Yt+h, we employ the following MIDAS model proposed by Ghysels,

Sinko, and Valkanov (2007):

Yt+h = β0 +

p∑
i=0

βiL
i
LFYt + γ

m∑
k=1

Φ (k;θ)LkHFXt + εt+h, (2.1)

where εt+h, t = 1, . . . , T, are i.i.d. errors; m = 3 because a quarter has three months; and Φ (k;θ) is a

distributed lag polynomial, for example, it can have an exponential Almon specification: Φ (k; θ1, θ2) :=

exp(θ1k+θ2k2)∑m
j=1 exp(θ1j+θ2j

2)
or a beta specification as suggested by Ghysels et al. (2004).

8

2.2 Penalized Regression

The least-squares estimator often produces estimates with low bias, but the variances of these estimates

and of the predicted values can increase with the number of covariates in a linear regression model. These

variances can grow to infinity when the number of covariates is greater than the sample size. Therefore,

the only way to increase the prediction accuracy while decreasing overfitting so that the estimated model

can better predict unseen data is by reducing the variances of the estimates. This reduction can be achieved

by shrinking slope coefficients to zero. Ridge regression proposed by Hoerl and Kennard (1970) shrinks

all the regression coefficients to small numbers close to zero. In a predictive regression model, Yt+h =

β0 +
∑p

i=1 βiXi,t + εt+h, the ridge estimates of the coefficients minimize the following penalized sum of

squared errors:

β̂(ridge) := arg min
β


T∑
t=1

(
Yt+h − β0 −

p∑
i=1

βiXi,t

)2

+ λ

p∑
i=1

β2
i

 ,

where λ ≥ 0 is a complexity parameter that controls the amount of shrinkage. In a typical forecasting

exercise, a data-driven value of λ should be adaptively chosen via cross validation to minimize the OoS

mean squared forecast error.

On the other hand, Lasso introduced by Tibshirani (1996) shrinks the coefficients of irrelevant covari-

ates to exactly zeros. Therefore, the Lasso estimator defined by the following minimization problem yields

a sparse solution:

β̂(lasso) := arg min
β


T∑
t=1

(
Yt+h − β0 −

p∑
i=1

βiXi,t

)2

+ λ

p∑
i=1

|βi|

 .

Because the ridge and Lasso regressions use different types of regularization, the ridge regression is mainly

used to handle the non-invertibility problem of the least squares estimator when there are many covariates

which are possibly multicollinear or when there are more covariates than observations while the Lasso

regression can also be employed as a device for variable selection (apart from being a method to handle

the non-invertibility problem).

9

2.3 Supervised Principal Component Analysis (sPCA)

As discussed above, forecasting with standard multivariate regression using many covariates suffers from

poor in-sample and out-of-sample performance due to ‘the curse of dimensionality’. The PCA can reduce

a large number of predictors to a few principal components (which are just linear combinations of those

predictors), and these components merely summarize most comovement within the predictors (but they

do not incorporate any variability in the mean of each predictor). The PCA also ignores the forecasted

variable, thus it is an unsupervised ML technique. If there are some irrelevant predictors with low signal-

to-noise ratios, the obtained principal components can potentially be contaminated by these predictors.

Therefore, forecasts generated using these principal components as covariates in a low-dimensional pre-

dictive regression model tend to have inferior performance. The sPCA proposed by Bair, Hastie, Paul,

and Tibshirani (2006) overcomes this drawback of the PCA by first screening out irrelevant predictors,

and then constructing the principal components out of the predictors with the strongest correlation with

the forecasted variable. These [supervised] principal components will be used as covariates in a predictive

regression to make forecasts as the final step. An important advantage of the sPCA over the partial least

squares (PLS) method is its use of thresholding to remove all the predictors with low correlations with

the target variable while the PLS retains all predictors, thus can be affected by the noise in the irrelevant

predictors.

In this paper, we improve the performance of the sPCA by replacing its variable screening step with

a powerful procedure based on the partial distance correlation proposed by Yousuf and Feng (2021). We

have observed a significant improvement in the quality of out-of-sample forecasts as the result of applying

this procedure. Suppose that the variable screening procedure finds N strongest predictors. We then pro-

ceed to apply the standard PCA to construct principal components for these predictors. We can formulate

a factor-augmented predictive regression model as follows: Given a balanced panel of N standardized

series, Xt := (X1,t, . . . , XN,t) for t = 1, . . . , T1 � T, as a training sample, the PCA summarizes the

sample covariability of these series in this panel via r factors, f1,t, . . . , fr,t with r vectors of loadings,

λi := (λi,1, . . . , λi,N) for i = 1, . . . , r, where (γi,λi) is the i-th eigenvalue-eigenvector pair of the N ×N

sample variance-covariance matrix of Xt with γ1 ≥ γ2 ≥ · · · ≥ γN ≥ 0.7 Each factor is thus a linear

7In view of McCracken and Ng (2020), to form the panel dataset Xt, t = 1, . . . , T1, we replace any missing value in a series

10

combination ofXt, say fi,t :=
∑N

n=1 λi,nXn,t, i = 1, . . . , r. Therefore, the total variation in thoseN series

can be most accounted for by these r factors. Forecasts can then be computed by the projection onto the

linear space of the obtained common factors:

Yt+h = β0 + β1f1,t + · · ·+ βrfr,t + εt+h, (2.2)

where the number of factors r needs to be determined beforehand via an information criterion or a scree

plot. McCracken and Ng (2020) suggest that r = 7. It is important to note at this point that the eigenvectors

λi appearing in the above expression of the i-th factor fi,t must be computed using only the training sample

to avoid look-ahead biases. Given these values of λi, rolling-window forecasts can be constructed by using

the standard procedure applied to the linear model (2.2) above, because each factor, fi,t, can always be

calculated from the standardized seriesXt, t = T1 + 1, . . . , T in the testing sample.

2.4 Deep Learning

The standard framework for deep learning is based on artificial neural networks (ANNs). An ANN de-

scribes the relationship between input signals and output signals by using a model of interactions between

neurons inspired by the structure of the biological brain. Signals received by neurons at the input level

are weighted according to their relative importance before being aggregated, transformed, and passed to

neurons at the next hidden level. The whole process is then repeated until all output signals generated from

neurons at the hidden level are received by the neuron at the output level. A simple layout of an ANN is

shown in the following diagram, where there are d neurons, Xi,t, i = 1, . . . , d, at the input layer, repre-

senting d covariates at time t. These covariates are then combined using two different sets of weights, say

b(j) +
∑d

i=1 ω
(j)
i Xi,t for j = 1, 2. These weighted combinations are then transformed into output signals

via an activation function f(·), before being passed to two different neurons, say h1,t and h2,t, at the hid-

den layer. The signals from these neurons are then weighted with weights, v1 and v2, and transformed one

more time, using a possibly different activation function, g(·), before being passed onto the final neuron

at the output layer.

by the unconditional sample mean, then standardize each series so that it has zero mean and unit variance. Note that we have
calculated the time-series means and variances by using only the observations t = 1, . . . , T1 to guard against look-ahead biases.

11

X1,t

X2,t

X3,t

...

Xd,t

Input layer

h1,t := f
(
b(1) +

∑d
i=1 ω

(1)
i Xi,t

)

h2,t := f
(
b(2) +

∑d
i=1 ω

(2)
i Xi,t

)

Hidden layer

Yt+h := g
(
c+

∑2
i=1 vihi,t

)

Output layer

v1
v2

Activation functions play a major role in transforming input signals from neurons at each layer of an

ANN to output signals, which will then be propagated to other neurons at the next layer. This transforma-

tion is meant to capture nonlinearities in the relationships between input and output signals. Some popular

activation functions include: the sigmoid function (a so-called logistic function) mapping a real number to

the interval (0, 1], the tanh function mapping a real number to the interval [−1, 1], the rectified linear unit

(ReLU) function truncating a real number, x, below a threshold of zero: max(0, x), and a linear function.

The sigmoid and tanh functions are mainly used for classification problems while others can be used for

regression problems. In this illustration, the learning process involves finding the biases: b(j) for j = 1, 2

and c, and the weights: ω(j)
i , i = 1, . . . , d, and v(j) for j = 1, 2 to minimize a loss function of forecast

errors, εt+h := Yt+h − g
(
c+

∑2
i=1 vihi,t

)
, t = 1, . . . , T. These errors can be represented in terms of

observations, Xi,t, i = 1, . . . , d, by back-propagating the signals h1,t and h2,t from the hidden layer all

the way back to the neurons at the input layer. In practice, an ANN can have many hidden layers; thus

there are a large number of parameters to be learnt and evaluating the errors involves multiple stages of

back-propagation. Stochastic gradient algorithms with adaptive learning rates are often employed to min-

imize this loss function. One of the most successful algorithms as such is the adaptive moment estimation

(Adam) proposed by Kingma and Ba (2017), which will be employed to train our DL models.

As seen in the block diagram above, an ANN is a static neural network in the sense that the output

signals at the hidden layer are only driven by the input signals at the input layer contemporaneously.

Therefore, these output signals do not memorize their values nor the values of the input signals at any

12

previous point in time. Recurrent neural networks (RNNs) were introduced to remedy this null-memory

problem of ANNs. To allow for some memory in the output signals h1,t and h2,t, one can use a simple

intertemporal formulation, such as:

hj,t = f

(
b(j) +

2∑
i=1

αihi,t−1 +
d∑
i=1

ω
(1)
i Xi,t

)
for j = 1, 2, (2.3)

where α1 and α2 are the time-invariant weights of the output signals at the hidden layer at time t −

1. Therefore, a typical RNN has more parameters than a typical ANN. To estimate those parameters,

one again needs to minimize a loss function evaluated on the errors εt+h, t = 1, . . . , T, which can be

represented in terms of Xi,t, i = 1, . . . , d, and (h1,0, h2,0) by recursively backward-substituting the latent

variables h1,t and h2,t to the initial time t = 0. Since Model (2.3) behaves like a nonlinear autoregressive

process with exogenous regressors, the value of hj,T for some large T can explode or vanish, depending on

whether the values of α1 and α2 are large or small respectively. Hence, the gradients of the loss function

with respect to these time-invariant weights can also explode or vanish [see, e.g., Bengio, Frasconi, and

Simard (1993)]. To alleviate the problem of vanishing or exploding gradients, Hochreiter and Schmidhuber

(1997) proposed the long short-term memory model (LSTM) as an improved version of RNNs. The

mathematical formation of this model is quite complicated to explain in simple terms. The basic idea is

that the LSTM includes other mechanisms (namely, the forget gate, the external input gate, and the output

gate) to remember or forget input and output signals from neurons pertaining to a particular input/hidden

layer at several previous points in time so that derivatives of the loss function do not vanish nor explode.8

The performance of a DL model depends on several characteristics of the neural network and the

optimizer used to minimize the loss function. Such characteristics are called the hyperparameters of

this model. These hyperparameters include the number of hidden layers, the number of neurons in each

hidden layer, the activation function, the dropout rate, the learning rate, and so on. Fine-tuning a model is

to determine an optimal combination of the hyperparameter values so that the out-of-sample performance

of the fine-tuned model becomes as close as possible to its in-sample performance.

8Mathematical equations of these gates can be found, for example, in Goodfellow, Bengio, and Courville (2016, chapter 10).

13

2.5 Random Forest

The random forest (RF) algorithm for classification and regression was developed by Ho (1995) and

Breiman (2001). This algorithm combines many decision/regression trees grown independently using

sub-samples drawn from the original sample. This combination often leads to a significant reduction in

the mean squared forecast error compared with the case where an individual tree is being used. Trees are

the building blocks of the RF. To give an example of decision trees, let’s take a dataset that has a binary

outcome variable (Y = ’pass’, ’fail’, ’pass’, ’fail’) related to two covariates: mid-term grade and final

grade (X = 70, 20, 60, 100 and Z = 70, 90, 80, 5 respectively). Assume that we have a rule – an outcome

of ‘pass’ is assigned when both X and Z are above 50, otherwise an outcome of ‘fail’ is assigned. We can

immediately construct a decision tree as in the following diagram:

X

70, 60, 100 20

70, 80

Y = ‘pass’

5

Y = ‘fail’
90

Y = ‘fail’
NA

Y = ‘fail’

X ≥ 50
X < 50

Z ≥ 50
Z < 50

Z ≥ 50 Z < 50

In the above diagram, data on the covariates are sequentially divided into partitions (i.e., the observations

of X are split into two subsets, and given each of these subsets the observations of Z are then split

accordingly). At the end of this process, the leaf nodes are labelled according to the values of Y. In this

example, the splitting rule (defined by the threshold value of 50) used to grow the decision tree is given.

Thus, one can predict any value of the outcome Y for given values ofX andZ by simply applying this rule.

If this rule is not given, one can effectively learn the optimal rule from data available by growing many

different decision trees corresponding to various rules, and then select the rule which produces partitions

as different from each other as possible (and the numbers in each partition are as similar to each other

as possible, and thus have similar outcomes). The rule satisfying this criterion is said to minimize the

impurity measure. The idea of regression trees is pretty similar to that of decision trees if we can imagine

14

that Y can take many different values on the real line instead of binary values while the observations of X

and Z can be split into multiple subsets instead of two subsets as in this illustration. In this case, there will

be much more leaf nodes (each of them corresponding to a bin of values of Y on the real line).

A tree is a weak learner as in many cases it can only predict the outcome variable slightly better than

a random number due to its high variance. By the central limit theorem, averaging many independent

weak learners can reduce the variance, and thus make it less susceptible to overfitting – which is the main

motivation behind the RF. Therefore, the baseline RF algorithm can be implemented in the following four

steps:

1. Draw a bootstrap sample of size less than or equal to the original sample size.

2. Grow a decision tree from each bootstrap sample. At each node,

a. Randomly select a subset of features without replacement.

b. Split the node using the feature that provides the best split using the threshold obtained

by minimizing the Gini impurity or the cross entropy (as described in the above tree

diagram).

3. Repeat the above two steps k times to create k independent trees.

4. Aggregate the predictions produced by those k independent trees.

For time series data [which have a natural ordering], the step 1 of the above RF algorithm is usually

implemented via a “block bootstrap” method according to which a sufficiently long block of time-series

observations is resampled in order to capture serial dependence in the block. The regular block bootstrap

does this with a fixed block length while the stationary bootstrap uses random block lengths, where the

length may be drawn from an auxiliary distribution (see, e.g., Lahiri (2003) for a detailed discussion

of dependent bootstrap methods). Decreasing the size of the bootstrap sample improves the diversity

of trees as the probability that a particular observation is included in all the bootstrap samples is lower.

This diversity may yield a more random forest, which can help to reduce the effect of overfitting. On

the contrary, increasing the size of the bootstrap sample can exacerbate the overfitting problem as trees

are more likely to become similar to each other, and therefore learn to fit the original training data more

15

closely. However, an issue with block bootstrap is that points around each joint of two adjacent blocks may

not well mimic the serial dependence structure in the original sample. Therefore, if the time series is long,

one could implement sub-sampling (i.e., sampling just one block at a time) instead. Another potential

sampling scheme that could be used in the first step of the RF algorithm is Dahl and Sørensen’s (2021)

resampling using generative adversarial networks. This method can effectively generate many time series

that mimic the serial dependence structure of the original series.

2.6 Gradient Boosting

Gradient boosting is one of the most successful ML algorithms. Unlike Random Forest which utilizes the

bootstrapping and bagging principle (i.e., each tree is built on a sub-sample randomly drawn from the en-

tire dataset, and many independent trees will then be aggregated to form a random forest), Gradient Boost-

ing does not use bootstrap. Instead, it boosts weak learners (typically, using the same decision/regression

trees as Random Forest) iteratively by focussing more on observations that are difficult to predict in the

previous iterations, and then combine those weak learners with more weights given to better learners (that

predict the outcome variable with a better accuracy). Given an outcome variable, Y, and a covariate, X,

the gradient boosting predictive regression can be implemented as in the following steps:

1. Fit a regression tree, F1(x), to the target Yt+h using the featureXt, then compute the error ε1,t+h :=

Yt+h − F1(Xt). This error captures any variation in Yt+h not captured by the regression tree F1.

2. Fit another regression tree, F2(x), to the target ε1,t+h using the same feature Xt, then calculate the

error ε2,t+h := ε1,t+h − F2(Xt). This error captures any variation in Yt+h not captured by both the

trees F1 and F2.

3. We continue to apply the above procedure until the iteration n − 1, where we have an error,

εn−1,t+h. Fitting the n-th regression tree, Fn(x), to εn−1,t+h with the covariate Xt yields the n-th

error εn,t+h = εn−1,t+h − Fn(Xt).

4. Given n regression trees fitted in the above steps, we score them in terms of their prediction

accuracy with scoring weights, γi for i = 1, . . . , n. The final boosting predictive regression model

can then be constructed as Yt+h =
∑n

i=1 γiFi(Xt).

16

XGBoost (eXtreme Gradient Boosting) is a new boosting algorithm introduced by Chen and Guestrin

(2016). XGBoost has proven its superior performance in many applications due to its high predictive

accuracy and lighting speed. XGBoost is different from the gradient boosting described above in the

following two important aspects: (a) it can penalize the complexity of regression trees and (b) it randomly

samples a subset of covariates in each boosting step. The purpose of introducing these two regularization

addons is to reduce overfitting so that a trained XGBoost model can better predict unseen data. The cost

of this generalization is that XGBoost has many more hyperparameters to tune than the RF or the standard

gradient boosting. Therefore, validation of XGBoost models often consumes more time and requires more

domain expertise from users to achieve good prediction accuracy.

2.7 Facebook Prophet

Prophet was developed at Facebook by Taylor and Letham (2018) as a flexible and highly customable tool

for business and economic forecasting. Many conventional forecasting procedures (such as ARIMA or

the exponential smoothing) fail to capture nonlinear trend or seasonal patterns in data, which are often the

main catalysts for poor forecasts produced by these procedures. Prophet can handle any of the following

attributes in time series data: (a) strong seasonal patterns occurring daily, weekly, monthly, and/or yearly,

(b) nonlinear trends, and (c) holidays and other one-time events that occur irregularly. Therefore, as Taylor

and Letham (2018) suggest, Prophet can generally yield forecasts which are as good as other nonlinear

time series models with a fractional amount of time and effort. A predictive Prophet model can then be

written as an additive time series regression model:

Yt+h = g(t+ h) + s(t+ h) + v(t+ h) +X>t β + εt+h, (2.4)

where g(t) is a trend function that can be modelled as a piecewise linear function with multiple break-

points, s(t) captures seasonal effects by using standard Fourier series, v(t) is a linear function of dummy

variables of points in time when there are holidays or one-time events occurring, Xt is a vector of pre-

dictors, and εt+h is an i.i.d. error term. This model is estimated by a Bayesian approach, thus confidence

intervals of forecasts can be immediately obtained.

17

3 Recursive Forecasting Strategy

To evaluate the OoS performance of a forecasting model over time, we construct many rolling sub-samples

from a given sample, then compute the OoS performance metrics (to be defined below) for each of these

sub-samples. In the following diagram, sub-sample 2 is constructed by removing the first observa-

tion from sub-sample 1 and extending forward one more observation. Similarly, sub-sample 3 is

created by removing the first observation from sub-sample 2 and extending forward one more obser-

vation.

full sample:

sub-sample 1:

sub-sample 2:

sub-sample 3:

sub-sample 4:

To compute the performance metrics of h-period ahead forecasts for each sub-sample, i = 1, . . . , N,

we employ the rolling-window strategy where multiple rolling windows of observations are constructed

from this sub-sample. For example, in the following diagram, rolling window 2 is formed by

moving rolling window 1 forward one observation, rolling window 3 is formed by moving

rolling window 2 forward one observation, and so on. Observations in each window is then split

into three parts used to train, validate, and test a model. Note that we set the same sizes for training,

validating, and testing samples in all rolling windows (for example, we used 45 observations for training

a model, 15 observations for validating this model, and the last four observations used to compute one- to

four-period ahead forecast errors for the validated model).

18

rolling window 1:
T1,i

train validate test

rolling window 2:
T1,i + 1

train validate test

rolling window 3:
T1,i + 2

train validate test

rolling window 4:
T1,i + 3

train validate test

We take the following steps to produce a h-period ahead forecast in each rolling window:

Step 1: Estimate a model with the training sample, and at the same time, use the validating sample to

fine-tune this model so that the RMSE of OoS forecasts [of validation data] is minimal (i.e., to

choose the optimal hyperparameter values for the model so that the effect of overfitting can be

reduced, and thus the OoS forecast performance can be improved).9

Step 2: Use the fine-tuned model obtained in Step 1 to produce a h-period ahead forecast. The actual

observation corresponding to this forecast in the test sample can then be used to compute the

forecast error.

Let Ŷi,t+h, t = T1,i, . . . , Ti − h, represent the [h-period ahead] forecasts associated with the actual obser-

vations Yi,t+h, t = T1,i, . . . , Ti − h, in sub-sample i, where Ti is the size of this sub-sample. In this case,

we have Ti − h − T1,i + 1 rolling windows. We evaluate these forecasts with three performance metrics:

the root mean squared error (RMSE), the mean absolute error (MAE), and the OoS R2 :

RMSEi =

√√√√ 1

Ti − h− T1,i + 1

Ti−h∑
t=T1,i

e2i,t+h, (3.1)

MAEi =
1

Ti − h− T1,i + 1

Ti−h∑
t=T1,i

|ei,t+h| , (3.2)

9Optimal hyperparameters (for instance, in DL, they include the dropout rate, the learning rate, the number of neurons in each
layer, and the number of hidden layers) are often selected using a popular data-driven method called cross validation (CV). In
CV, the joint domain of hyperparameters is divided into grid points (and each grid point is associated with a combination of
hyperparameter values). The model is estimated using only the training data for each combination of hyperparameter values
(corresponding to each grid point). This estimated model is then used to make predictions on the validating sample. The
forecast errors on this validating sample are used to compute the RMSE. The optimal hyperparameter values are the values with
the minimum RMSE value. Therefore, the main idea behind CV is to check the actual forecast performance of a method using
a dataset that is different from the one used to train the model.

19

R2
i = 1−

∑Ti−h
t=T1,i e

2
i,t+h∑Ti−h

t=T1,i

(
Yi,t+h − Y i,t+h

)2 , (3.3)

where ei,t+h := Yi,t+h − Ŷi,t+h is the forecast error at time t + h in sub-sample i, and Y i,t+h is a baseline

forecast (which is the sample mean of observations from the beginning of the first window till time t in

sub-sample i). The OoS R2 takes value in between −∞ and one. Therefore, a negative value of the OoS

R2 means that the baseline forecast is better (in terms of the RMSE) than a forecast model while a positive

value merely means that the forecast model is better than the baseline forecast. As the value of the OoS

R2 is closer to one, the forecast becomes better than the baseline forecast.

4 Results

4.1 Data Description

We use a large quarterly macroeconomic database (namely, FRED-QD) constructed by McCracken and

Ng (2020) for the period from 1959Q1 to 2020Q4. This dataset consists of 248 macroeconomic and

financial variables categorized into 14 groups: (1) National Income and Product Accounts, (2) Industrial

Production, (3) Employment and Unemployment, (4) Housing, (5) Inventories, Orders, and Sales, (6)

Prices, (7) Earnings and Productivity, (8) Interest Rates, (9) Money and Credit, (10) Household Balance

Sheets, (11) Exchange Rates, (12) Consumer Sentiment and Uncertainty Index, (13) Stock Markets, and

(14) Non-Household Balance Sheets. (A detailed list of variables in each of these groups is given in the

technical appendix of McCracken and Ng (2020).) We also stabilize all the variables (so that they behave

more like stationary time series) by using the same data transformations suggested by McCracken and

Ng (2020). We have also removed 23 variables (as listed in Table 2) because they contain more than 50

missing observations at the beginning of the sample, and thus there are 225 variables remained for the

analysis.

We forecast U.S. GDP growth using one of the following three sets of predictors (mentioned in the

Introduction):

Preds (i) : 224 FRED-QD predictors,

20

Preds (ii) : Nine FRED-QD predictors (as listed in Table 1) selected from the 224 variables in Preds (i)

above by Yousuf and Feng’s (2021) variable screening procedure based on the partial distance

correlation,

Preds (iii) : Preds (ii) plus the ADS index available at the daily frequency. (Figure 2 suggests that all

these variables highly co-move with the GDP growth.)

Since it is not straightforward to apply ML and DL methods to a sample where the difference in sampling

frequencies between the predictand and the predictors is large, we convert daily data on the ADS index to

monthly data by taking the sample mean of daily observations in each month. Then, at each point in time

when the forecast for a future quarterly GDP growth rate is constructed, we use five (monthly) observations

on the ADS index at/before this point in time as predictive information to be fed into ML algorithms. For

example, as illustrated in the following timeline, we are currently at time t = 12/01/2020 of 2020Q4

and we want to forecast GDP growth for 2021Q1 (ending on 03/01/2021). We can thus use the following

(monthly) observations on the ADS index: Xs, s = 07/30/2020, 08/30/2020, 09/30/2020, 10/30/2020,

and 11/30/2020.

X07/30/2020 X08/30/2020 X09/30/2020 X10/30/2020 t = 2020Q4

≡ 12/01/2020

X11/30/2020

03/01/2021

This sampling scheme is reminiscent of the unrestricted mixed data sampling proposed by Foroni et al.

(2015), who showed that unrestricted MIDAS can outperform MIDAS when the difference in sampling

frequencies between the regressand and the regressors is small. In our case, this mixed sampling approach

facilitates application of various (nonlinear) ML and DL methods where it is not clear how to use dis-

tributed lag functions to avoid parameter proliferation due to the presence of a high-frequency predictor.

4.2 Out-of-Sample Performance across Methods

We compare the OoS performance of the forecasting methods described in Section 2. This subsection

addresses the first question posed in the Introduction: how does the GDP growth forecast performance of

dense-modelling ML methods compare with that of sparse-modelling ML methods and other time series

21

models in a sample with a large number of predictors with mixed predictive power or in a sample with a

small number of strong predictors?. We use the three sets of predictors defined in Section 4.1 to construct

forecasts of U.S. GDP growth for four horizons, h = 1, 2, 3, 4 (quarters ahead). Note that we always

include the first lag of U.S. GDP growth as an additional predictor.

The large set of predictors Preds (i): We compare the OoS performance of forecasts provided by the

methods: LSTM, Ridge, Lasso, XGBoost, GBM, Random Forest, and Deep NN. First, we examine the

RMSE values calculated from 142 sub-samples. The line plots in Figure 3 suggest that (1) the RMSE

varies significantly across sub-samples, and it takes larger values for the sub-samples covering the Covid-

19 period (around mid-2020); (2) the values of the RMSE for one-period ahead forecasts seem more stable

than those for longer-horizon forecasts, thus the RMSE values have higher variance as the forecast horizon

increases; and (3) Random Forest, XGBoost, GBM, and Lasso outperform the other methods. Moreover,

to get an idea of the distributional properties of the RMSE values, we also present box plots (which consist

of the median marked by the line within a box, the first and third quartiles which are the edges of the box,

and the minimum and maximum individual RMSE values depicted by the two whiskers below and above

the box respectively) in Figure 4. These box plots reveal that (1′) for one-period ahead forecast, the

variance (measured by the interquartile range between the third and first quartiles) of the RMSE values

is smallest for Lasso and XGBoost, and the median is lowest for Random Forest and Lasso; and (2′) for

long-horizon forecast, the RMSE values of the Lasso forecasts have a greater variance than other methods.

In this case, the RMSEs of both the GBM and Random Forest forecasts have lower variance, although

they can have slightly higher medians than Lasso.

Next, we turn to the MAE values. The line plots in Figure 5 suggest that the MAE values behave quite

similarly to the RMSE values across forecasting methods. There is a clear pattern that Random Forest,

XGBoost, GBM, and Lasso outperform both Deep NN and Ridge. All of these methods also outperform

LSTM. The box plots given in Figure 6 show the superior performance of Lasso, XGBoost, and Random

Forest (which all have pretty similar patterns of MAE values) for one-period ahead forecast. However,

Random Forest can outperform the other methods for long-horizon forecast.

Now, we examine the OoS R2 values. The line plots shown in Figure 7 suggest that the OoS R2 values

of one-period ahead forecasts are generally stable across sub-samples while the OoS R2 values of long-

22

horizon forecasts show much more volatility. Random Forest, Lasso, and XGBoost still perform much

better than the other algorithms. Moreover, the box plots given in Figure 8 indicate that the OoS R2 values

of one-period ahead forecasts by Lasso, XGBoost, GBM, and Random Forest have higher median and

lower variance (or interquartile range). And most of the Random Forest OoS R2 values are still higher

than many OoS R2 values provided by all the other methods. For long-horizon forecast, Random Forest

can also provide better OoS R2 values in terms of median and variance.

The key take-away from this experiment is that Random Forest appears to be the best forecasting

method.

The small set of strong predictors Preds (ii): We compare the OoS forecast performance of the methods:

LSTM, Ridge, Lasso (which is basically the OLS in this case as all the covariates are strong predictors,

thus all get selected), sPCA, XGBoost, GBM, Random Forest, Deep NN, and Facebook Prophet. We

start by inspecting the plots of the RMSE values. Figure 9 shows that the RMSE values of one-period

ahead forecasts appear much more stable across sub-samples than those of long-horizon forecasts (except

during the Covid-19 period), and Random Forest still performs quite well across forecast horizons while

LSTM can yield lower RMSE values in several subperiods with the end dates ranging from 03/01/2009

to 03/01/2019. Moreover, the box plots in Figure 10 suggest that the RMSE values of one-period ahead

forecasts produced by Ridge, Lasso, and Random Forest and those of long-horizon forecasts produced by

sPCA and Random Forest can have lower medians than the other methods. The RMSE values of one-

period ahead forecasts provided by XGBoost and GBM seem to have smaller variances while only the

RMSE values of long-horizon forecasts by GBM have the lowest variance at the cost of higher medians.

Next, we turn to the MAE. Figure 11 shows that the MAE values appear quite unstable for all the

forecast horizons while Deep NN and sPCA perform quite well for long-horizon forecast. The box plots

in Figure 12 suggest that, for one-period forecast, Ridge and Lasso are the best methods immediately

followed by sPCA and Random Forest. For long-horizon forecast, there is no clear cut winner.

Now, we examine the OoS R2 values. The line plots given in Figure 13 suggest that the OoS R2 values

provided by Lasso, Ridge, sPCA, and Random Forest vary much less than the other methods. Therefore,

the former methods can provide much more stable OoS forecast performance across different sub-samples.

All the other methods, such as LSTM and GBM, can provide good forecasts only in specific sub-samples.

23

The box plots in Figure 14 suggest that, for one-period ahead forecast, Ridge, Lasso, sPCA, and Random

Forest are the best performers with the Lasso OoS R2 values achieving the lowest variance and the Ridge

OoS R2 values achieving the highest median. And the sPCA OoS R2 values have lower median than

the Random Forest OoS R2 values. For two- or three-period ahead forecast, Random Forest can provide

better OoSR2 values than any other method as the interquartile range of the Random Forest OoSR2 values

seems smallest while the median is slightly greater than those by all other methods. sPCA and Deep NN

also perform quite well (their OoS R2 values are a few percentage points lower than the Random Forest

OoS R2 values).

The key take-aways from this second experiment is that one can employ Ridge or Lasso for one-

period ahead forecast while sPCA and Random Forest are better for long-horizon forecast. This provides

an evidence that gain from using nonlinear machine learning methods is not confined to a big data context.

The small set of strong predictors plus the ADS index Preds (iii): We compare the OoS forecast perfor-

mance of the following ten methods: LSTM, Ridge, Lasso, sPCA, XGBoost, GBM, Random Forest, Deep

NN, MIDAS, and Facebook Prophet. As before, we start by examining the OoS RMSE values. The line

plots in Figure 15 suggest that the RMSE values of one-period ahead forecasts vary across sub-samples

much less than those of long-horizon forecasts, except in the sub-samples including the Covid-19 period.

Moreover, Random Forest, Deep NN, Ridge, Lasso, and MIDAS outperform all the other methods across

all the forecast horizons. LSTM can only produce lower RMSE values for two- to four-period ahead fore-

casts in several sub-samples with the end dates between 06/01/2010 and 06/01/2020. The box plots in

Figure 16 show that, for one-period ahead forecast, there seem to be not much difference in the median

RMSE values provided by Ridge, Lasso, sPCA, Random Forest, and MIDAS, although the MIDAS RMSE

values have the smallest variance (which is slightly smaller than the variance of the Ridge RMSE values).

These methods are also the best performers. For long-horizon forecast, there is no clear-cut advantage

among sPCA, Random Forest, and MIDAS; the RMSE values provided by both Ridge and Lasso can have

slightly higher median and variance than those provided by sPCA.

Next, we examine the MAE values. Figure 17 shows that the MAE values vary significantly across sub-

samples for all forecast horizons. Random Forest, Deep NN, sPCA, Ridge, and MIDAS still outperform all

the other methods. The box plots in Figure 18 reveal that the MAE values of one-period ahead forecasts by

24

Ridge and MIDAS clearly have lower variances than those by Lasso, sPCA, and Random Forest (which all

outperform LSTM, XGBoost, GBM, Deep NN, and Prophet). For long-horizon forecast, it is not obvious

which method is the winner, although there is some evidence that Random Forest and MIDAS may still

perform well.

We now turn to the OoSR2 values. The line plots shown in Figure 19 suggest that Ridge, Lasso, sPCA,

Random Forest, and MIDAS perform quite stably across sub-samples. Meanwhile, LSTM, XGBoost,

GBM, and Prophet clearly underperform all of these methods. The box plots given in Figure 20 further

reveal that the OoS R2 values of one-period ahead forecasts by sPCA and Lasso have slightly lower

medians but much lower variances than those by Ridge and MIDAS. The Ridge OoS R2 values have a

higher median than the MIDAS OoS R2 values while their variances seem quite similar. For long-horizon

forecast, MIDAS seems to outperform all the other methods as its OoS R2 values have a slightly higher

median and lower variance.

The key take-away from this third experiment is that, when one adds a strong high-frequency predictor

to a set of high-quality low-frequency predictors, sPCA and Lasso can outperform MIDAS only for one-

period ahead forecast while MIDAS can outperforms the other methods for long-horizon forecast.

4.3 Out-of-Sample Forecast Performance across Three Sets of Predictors

This subsection addresses the second and third questions posed in the Introduction: (ii) which methods

produce better forecasts with a large set of predictors than with a small subset of strong predictors?

and (iii) which methods provide superior forecast performance overall across all the three different sets

of predictors? We compare the OoS forecast performance results obtained by using the three sets of

predictors Preds (i), Preds (ii), and Preds (iii) (as defined in Section 4.1) for each of the following ten

forecasting methods: Ridge, Lasso, XGBoost, GBM, Random Forest, Deep NN, LSTM, sPCA, Prophet,

and MIDAS. We first examine the box plots of the RMSE values in Figure 21. For one-period ahead

forecast, we can draw the following general conclusions:

• Ridge performs better with a few predictors because, as described in Section 2.2, Ridge regression

does not select variables (and it just shrinks all the regression coefficients to very small values as

25

a way to avoid the non-invertibility problem). Hence, having too many predictors with some very

weak predictors may potentially increase the likelihood of overfitting.

• Lasso performs well for every set of predictors as it can select predictors that best predict the re-

sponse variable automatically.

• XGBoost and GBM perform better with many predictors as these methods are ensembles of multiple

regression trees where the tree grown in each iteration improves the error of the tree fitted in the

previous iteration. Therefore, having many predictors facilitates growing many regression trees

which may not have great predictive power individually, but a combination of them via boosting the

prediction errors can potentially lead to good forecasts.

• For Random Forest and Deep NN, there is not much difference in their OoS forecast performance

with a large set of predictors or with a small subset of strong predictors. Random Forest combines

many independent regression trees while Deep NN optimally weights signals received by neurons

at the input layer and hidden layers to predict the outcome variable (thus good predictors receive

higher weights). On the other hand, LSTM usually performs better with a few good predictors

because a LSTM model with mechanisms to remember or forget signals at previous points in time

has much more parameters than a typical NN model, which makes LSTM more prone to the curse

of dimensionality.

• The median of the RMSE values of forecasts by sPCA or Prophet can be improved by adding the

ADS index to Preds (ii).

• Interestingly, MIDAS (using the ADS index as the sole predictor) can perform almost as well as

Ridge or Lasso with Preds (iii).

For long-horizon forecast, MIDAS has a lower median RMSE than all the other methods while Random

Forest using the large set Preds (i) has a slightly higher median RMSE, but lower variance, than MIDAS.

Therefore, a simple linear method (like MIDAS) can provide better long-term forecasts than other sophis-

ticated nonlinear ML methods if one has a good high-frequency predictor (such as the ADS index in this

case). In reality, there may be more than one good high-frequency predictor that could accurately predict

26

the GDP growth as well. We do not try to come up with the best possible forecasting MIDAS model here.

However, we believe that additional high-frequency predictors would only strengthen the evidence for the

superior OoS forecast performance of a parsimonious model like MIDAS in this forecast exercise.

Next, we turn to inspect the MAE values plotted in Figure 22. For one-period ahead forecast, Ridge,

Lasso (using Preds (iii)), and MIDAS yield quite similar median MAE values. For long-horizon forecast,

Random Forest (using Preds (i)) can outperform MIDAS in terms of MAE variance at the cost of higher

median.

Finally, we compare the OoS R2 values plotted in Figure 23. For one-period ahead forecast, the

bottom-line results are:

• The OoS R2 values provided by Lasso with Preds (iii) have smaller variance than Ridge with

Preds (ii) at the cost of a little lower median.

• As with the RMSE values, the OoS R2 values of XGBoost, GBM, and Random Forest are higher

with a large set of predictors. sPCA also performs much better with Preds (iii).

• The OoS R2 values provided by MIDAS have the same median as those provided by Lasso and

sPCA, but they have a slightly higher variance than those provided by Lasso.

The key take-away from this one-period ahead forecast exercise is that many methods (such as Ridge,

Lasso, sPCA, XGBoost, GBM, and Random Forest) can yield quite similar OoS R2 to MIDAS. If we

want a good one-period ahead forecast with low variance, then sPCA can be a good choice in case there

is a good high-frequency predictor, otherwise the RF can be used. On the other hand, the box plots of the

OoS R2 values of long-horizon forecasts suggest that sPCA, Random Forest, and MIDAS have roughly

the same median OoS R2 values, but MIDAS seems to be a good choice in this case (especially, when the

forecasted variable is quite volatile) because its OoS R2 values have smaller variance than those of the

other two methods.

27

5 Conclusion

Forecasting macroeconomic variables is an important task in economics as forecasts of these variables

are often used by economic agents to form their expectation and by policy makers to understand the

current and future state of the economy. This paper evaluates and compares the OoS performance of many

popular forecasting methods employed to forecast U.S. GDP growth with a large/small set of predictors.

Our main take-aways drawn from this forecast experiment are: (1) when one uses a large set of predictors

with mixed predictive power, there is no clear-cut advantage of using a density-based ML method over

a sparsity-based ML method for one-period ahead forecast, while there is a clear advantage of using a

density-based ML method (such as Random Forest) for long-term forecast; (2) when one uses a small

subset of strong predictors, the OLS method can outperform density-based ML methods for one-period

ahead forecast, while there is no significant difference in the OoS forecast performance between a factor-

augmented regression (i.e., sPCA) and a density-based ML method (i.e., Random Forest) for long-horizon

forecast; (3) density-based ML methods could perform better with a large set of predictors than with

a small set of strong predictors; (4) when one has a good high-frequency predictor, simple forecasting

methods (e.g., sPCA and MIDAS) can provide better forecasts in the short and long horizons respectively

than many sophisticated ML and DL methods, highlighting the important role of predictors in economic

forecasting; and finally (5) we also demonstrate that ML methods can outperform DL methods.

References

Aruoba, S. B., F. X. Diebold, and C. Scotti (2009). Real-time measurement of business conditions. Journal

of Business & Economic Statistics 27(4), 417–427.

Athey, S. and G. W. Imbens (2019). Machine learning methods economists should know about. Annual

Review of Economics 11, 685–725.

Baffigi, A., R. Golinelli, and G. Parigi (2004). Bridge models to forecast the euro area GDP. International

Journal of Forecasting 20, 447–460.

28

Bair, E., T. Hastie, D. Paul, and R. Tibshirani (2006). Prediction by supervised principal components.

Journal of the American Statistical Association 101(473), 119–137.

Barkan, O., J. Benchimol, I. Caspi, A. Hammer, and N. Koenigstein (2021). Forecasting CPI inflation

components with hierarchical recurrent neural network. mimeo.

Bengio, Y., P. Frasconi, and P. Simard (1993). The problem of learning long-term dependencies in recur-

rent networks. In IEEE International Conference on Neural Networks, San Francisco, pp. 1183–1195.

IEEE Press.

Bianchi, D., M. Büchner, and A. Tamoni (2021). Bond risk premiums with machine learning. Review of

Financial Studies 34(2), 1046–1089.

Breiman, L. (2001). Random forests. Machine Learning 45(1), 5–32.

Carriero, A., A. B. Galvão, and G. Kapetanios (2019). A comprehensive evaluation of macroeconomic

forecasting methods. International Journal of Forecasting 35(4), 1226–1239.

Chen, T. and C. Guestrin (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794.

ACM.

Dahl, C. M. and E. N. Sørensen (2021, February). Time series (re)sampling using generative adversarial

networks. mimeo.

Foroni, C., M. Marcellino, and C. Schumacher (2015). U-MIDAS: MIDAS regressions with unrestricted

lag polynomials. Journal of the Royal Statistical Society. Series A 178(1), 57–82.

Ghysels, E., P. Santa-Clara, and R. Valkanov (2004). The MIDAS touch: mixed data sampling regression

models. mimeo, https://www.cirano.qc.ca/files/publications/2004s-20.pdf.

Ghysels, E., A. Sinko, and R. Valkanov (2007). MIDAS regressions: further results and new directions.

Econometric Review 26(1), 53–90.

29

https://www.cirano.qc.ca/files/publications/2004s-20.pdf

Giacomini, R. and B. Rossi (2010). Forecast comparisons in unstable environments. Journal of Applied

Econometrics 25(4), 595–620.

Giannone, D., M. Lenza, and G. E. Primiceri (2021). Economic predictions with big data: the illusion of

sparsity. Econometrica (forthcoming).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press. http://www.

deeplearningbook.org.

Götz, T. B. and T. A. Knetsch (2019). Google data in bridge equation models for German GDP. Interna-

tional Journal of Forecasting 35(1), 45–66.

Gu, S., B. Kelly, and D. Xiu (2020). Empirical asset pricing via machine learning. Review of Financial

Studies 33(5), 2223–2273.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction (second ed.). Springer.

Ho, T. K. (1995). Random decision forests. Proceedings of the 3rd International Conference on Document

Analysis and Recognition 1(1), 278–282. Montreal, QC, Canada.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural Computation 9(8), 1735–

1780.

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems.

Technometrics 12, 55–67.

Huber, F., G. Koop, and L. Onorante (2021). Inducing sparsity and shrinkage in time-varying parameter

models. Journal of Business & Economic Statistics 39(3), 669–683.

Kingma, D. P. and J. Ba (2017). Adam: A method for stochastic optimization. https://arxiv.org/

abs/1412.6980.

Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer.

30

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

McAlinn, K. (2021). Mixed-frequency bayesian predictive synthesis for economic nowcasting. Journal

of the Royal Statistical Society: Series C (forthcoming).

McCracken, M. W. and S. Ng (2020, March). FRED-QD: a quarterly database for macroeconomic

research. working paper, https://research.stlouisfed.org/wp/more/2020-005.

Medeiros, M. C., G. F. R. Vasconcelos, A. Veiga, and E. Zilberman (2021). Forecasting inflation in a

data-rich environment: The benefits of machine learning methods. Journal of Business & Economic

Statistics 39(1), 98–119.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Nakamura, E. (2005). Inflation forecasting using a neural network. Economics Letters 86(3), 373–378.

Paranhos, L. (2021). Predicting inflation with neural networks. mimeo.

Schorfheide, F. and D. Song (2015). Real-time forecasting with a mixed-frequency VAR. Journal of

Business & Economic Statistics 33(3), 366–380.

Stock, J. H. and M. W. Watson (2002a). Forecasting using principal components from a large number of

predictors. Journal of the American Statistical Association 97(460), 1167–1179.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic forecasting using diffusion indexes. Journal of

Business & Economic Statistics 20(2), 147–162.

Taylor, S. J. and B. Letham (2018). Forecasting at scale. American Statistician 72(1), 37–45.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical

Society: Series B 58(1), 267–288.

Woody, S., C. M. Carvalho, and J. S. Murray (2021). Model interpretation through lower-dimensional

posterior summarization. Journal of Computational and Graphical Statistics 30(1), 144–161.

Yousuf, K. and Y. Feng (2021). Targeting predictors via partial distance correlation with applications to

financial forecasting. Journal of Business & Economic Statistics (forthcoming).

31

https://research.stlouisfed.org/wp/more/2020-005

A.I Tables and Figures

Table 1: Variables pre-selected from FRED-QD by Yousuf and Feng’s (2021) variable screening proce-
dure based on the partial distance correlation. (All these variables were transformed using the function
∆ log(xt))

FRED Mnemonic Description

GPDIC1 Real Gross Private Domestic Investment, 3 decimal (Billions of Chained 2012 Dollars)
OUTNFB Nonfarm Business Sector: Real Output (Index 2012=100)
OUTBS Business Sector: Real Output (Index 2012=100)
INDPRO Industrial Production Index (Index 2012=100)
CMRMTSPLx Real Manufacturing and Trade Industries Sales (Millions of Chained 2012 Dollars)
IPMAT Industrial Production: Materials (Index 2012=100)
FPIx Real private fixed investment (Billions of Chained 2012 Dollars), deflated using PCE
IPFINAL Industrial Production: Final Products (Market Group) (Index 2012=100)
IPDMAT Industrial Production: Durable Materials (Index 2012=100)

Figure 2: Plots of U.S. GDP growth rates versus the nine variables listed in Table 1 (above) and Aruoba
et al.’s (2009) (ADS) business condition index

1960-01-01
1970-01-01

1980-01-01
1990-01-01

2000-01-01
2010-01-01

2020-01-01

Date

0.2

0.1

0.0

0.1

0.2

GDP
GPDIC1
OUTNFB
OUTBS
INDPRO
CMRMTSPLx
IPMAT
FPIx
IPFINAL
IPDMAT
ADS Index

∗The shaded bars are the NBER recession dates.

32

Table 2: Variables removed from FRED-QD due to many missing observations

FRED Mnemonic Description

MORTGAGE30US 30-Year Conventional Mortgage Rate (Percent)
SPCS10RSA S&P/Case-Shiller 10-City Composite Home Price Index (Index January 2000 = 100)
HOAMS Manufacturing Sector: Hours of All Persons (Index 2012=100)
LNS13023557 Unemployment Level - Reentrants to Labor Force (Thousands of Persons)
LNS13023705 Unemployment Level - Job Leavers (Thousands of Persons)
USEPUINDXM Economic Policy Uncertainty Index for United States
LNS13023621 Unemployment Level - Job Losers (Thousands of Persons)
LNS13023569 Unemployment Level - New Entrants (Thousands of Persons)

ACOGNOx
Real Value of Manufacturers’ New Orders for Consumer Goods Industries (Millions of
2012 Dollars), deflated by Core PCE

TWEXAFEGSMTHx
Trade Weighted U.S. Dollar Index: Advanced Foreign Currencies (Index Jan
2006=100)

IMFSLx Real Institutional Money Funds (Billions of 2012 Dollars), deflated by Core PCE
USSTHPI All-Transactions House Price Index for the United States (Index 1980 Q1=100)
INVCQRMTSPL Real Manufacturing and Trade Inventories (Millions of 2012 Dollars)
OUTMS Manufacturing Sector: Real Output (Index 2012=100)
TCU Capacity Utilization: Total Industry (Percent of Capacity)

DRIWCIL
FRB Senior Loans Officer Opions. Net Percentage of Domestic Respondents Reporting
Increased Willingness to Make Consumer Installment Loans

ANDENOx
Real Value of Manufacturers’ New Orders for Capital Goods: Nondefense Capital
Goods Industries (Millions of 2012 Dollars), deflated by Core PCE

ULCMFG Manufacturing Sector: Unit Labor Cost (Index 2012=100)
EXUSEU U.S. / Euro Foreign Exchange Rate (U.S. Dollars to One Euro)
COMPRMS Manufacturing Sector: Real Compensation Per Hour (Index 2012=100)
SPCS20RSA S&P/Case-Shiller 20-City Composite Home Price Index (Index January 2000 = 100)
OPHMFG Manufacturing Sector: Real Output Per Hour of All Persons (Index 2012=100)

MORTG10YRx
30-Year Conventional Mortgage Rate Relative to 10-Year Treasury Constant Maturity
(Percent)

33

Figure 3: Line plots of OoS RMSEs of forecasts based on a large set of predictors (Preds (i))

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.005

0.010

0.015

0.020

0.025

0.030

RM
SE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(a) one-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(b) two-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

RM
SE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(c) three-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

34

Figure 4: Box plots of OoS RMSEs of forecasts based on a large set of predictors (Preds (i))

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RM
SE

(a) one-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(b) two-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(c) three-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

35

Figure 5: Line plots of OoS MAEs of forecasts based on a large set of predictors (Preds (i))

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(a) one-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(b) two-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(c) three-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

36

Figure 6: Box plots of OoS MAEs of forecasts based on a large set of predictors (Preds (i))

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(a) one-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(b) two-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(c) three-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

37

Figure 7: Line plots of OoS R2 of forecasts based on a large set of predictors (Preds (i))

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

3

2

1

0

R
2

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(a) one-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

8

6

4

2

0

R
2

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(b) two-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

R
2

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(c) three-period ahead forecasts

1984-06-01
1989-06-01

1994-06-01
1999-06-01

2004-06-01
2009-06-01

2014-06-01
2019-06-01

date

2.5

2.0

1.5

1.0

0.5

0.0

0.5

R
2

LSTM
Ridge
Lasso
XGBoost
GBM
Random Forest
Deep NN

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

38

Figure 8: Box plots of OoS R2 of forecasts based on a large set of predictors (Preds (i))

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

3

2

1

0

R
2

(a) one-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

8

6

4

2

0

R
2

(b) two-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

R
2

(c) three-period ahead forecasts

LSTM Ridge Lasso XGBoost GBM Random Forest Deep NN
Method

2.5

2.0

1.5

1.0

0.5

0.0

0.5

R
2

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

39

Figure 9: Line plots of OoS RMSEs of forecasts based on a small set of strong predictors (Preds (ii))

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.005

0.010

0.015

0.020

0.025

0.030

0.035

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(a) one-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(b) two-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(c) three-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

40

Figure 10: Box plots of OoS RMSEs of forecasts based on a small set of strong predictors (Preds (ii))

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

RM
SE

(a) one-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(b) two-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(c) three-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

41

Figure 11: Line plots of OoS MAEs of forecasts based on a small set of strong predictors (Preds (ii))

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(a) one-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(b) two-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(c) three-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

42

Figure 12: Box plots of OoS MAEs of forecasts based on a small set of strong predictors (Preds (ii))

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(a) one-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(b) two-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

(c) three-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

43

Figure 13: Line plots of OoS R2 of forecasts based on a small set of strong predictors (Preds (ii))

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

2.0

1.5

1.0

0.5

0.0

0.5

R
2

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(a) one-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

2.0

1.5

1.0

0.5

0.0

0.5

R
2

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(b) two-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

2.0

1.5

1.0

0.5

0.0

0.5

R
2

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(c) three-period ahead forecasts

1984-03-01
1989-03-01

1994-03-01
1999-03-01

2004-03-01
2009-03-01

2014-03-01
2019-03-01

date

1.5

1.0

0.5

0.0

0.5

R
2

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
Prophet

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

44

Figure 14: Box plots of OoS R2 of forecasts based on a small set of strong predictors (Preds (ii))

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

2.0

1.5

1.0

0.5

0.0

0.5

R
2

(a) one-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

2.0

1.5

1.0

0.5

0.0

0.5

R
2

(b) two-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

2.0

1.5

1.0

0.5

0.0

0.5

R
2

(c) three-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN Prophet
Method

1.5

1.0

0.5

0.0

0.5

R
2

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

45

Figure 15: Line plots of OoS RMSEs of forecasts based on a small set of strong predictors plus the ADS
index (Preds (iii))

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.005

0.010

0.015

0.020

0.025

0.030

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(a) one-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(b) two-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(c) three-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

RM
SE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

46

Figure 16: Box plots of OoS RMSEs of forecasts based on a small set of strong predictors plus the ADS
index (Preds (iii))

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RM
SE

(a) one-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(b) two-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(c) three-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

47

Figure 17: Line plots of OoS MAEs of forecasts based on a small set of strong predictors plus the ADS
index (Preds (iii))

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(a) one-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(b) two-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(c) three-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

0.004

0.006

0.008

0.010

0.012

M
AE

LSTM
Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

48

Figure 18: Box plots of OoS MAEs of forecasts based on a small set of strong predictors plus the ADS
index (Preds (iii))

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(a) one-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

(b) two-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
AE

(c) three-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

49

Figure 19: Line plots of OoS R2 of forecasts based on a small set of strong predictors plus the ADS index
(Preds (iii))

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

1.5

1.0

0.5

0.0

0.5

R
2 LSTM

Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(a) one-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

1.5

1.0

0.5

0.0

0.5

R
2 LSTM

Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(b) two-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

2.0

1.5

1.0

0.5

0.0

0.5

R
2 LSTM

Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(c) three-period ahead forecasts

1985-06-01
1990-06-01

1995-06-01
2000-06-01

2005-06-01
2010-06-01

2015-06-01
2020-06-01

date

2.0

1.5

1.0

0.5

0.0

0.5

R
2 LSTM

Ridge
Lasso
sPCA
XGBoost
GBM
Random Forest
Deep NN
MIDAS
Prophet

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

* Dates appearing on the horizonal axis are the end dates of sub-samples.

50

Figure 20: Box plots of OoS R2 of forecasts based on a small set of strong predictors plus the ADS index
(Preds (iii))

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

1.5

1.0

0.5

0.0

0.5

R
2

(a) one-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

1.5

1.0

0.5

0.0

0.5

R
2

(b) two-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

2.0

1.5

1.0

0.5

0.0

0.5

R
2

(c) three-period ahead forecasts

LSTM Ridge Lasso sPCA XGBoost GBM Random Forest Deep NN MIDAS Prophet
Method

2.0

1.5

1.0

0.5

0.0

0.5

R
2

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

51

Figure 21: Box plots of OoS RMSEs of forecasts produced by various methods across three different sets
of predictors (Preds (i), Preds (ii), and Preds (iii))

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RM
SE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(a) one-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(b) two-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(c) three-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.005

0.010

0.015

0.020

RM
SE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

52

Figure 22: Box plots of OoS MAEs of forecasts produced by various methods across three different sets
of predictors (Preds (i), Preds (ii), and Preds (iii))

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(a) one-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
AE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(b) two-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
AE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(c) three-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
AE

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

53

Figure 23: Box plots of OoS R2 of forecasts produced by various methods across three different sets of
predictors (Preds (i), Preds (ii), and Preds (iii))

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

3

2

1

0

R
2

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(a) one-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

8

6

4

2

0

R
2

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(b) two-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

R
2

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(c) three-period ahead forecasts

Ridge Lasso XGBoost GBM Random Forest Deep NN LSTM sPCA Prophet MIDAS
Method

2.5

2.0

1.5

1.0

0.5

0.0

0.5

R
2

224 FRED-QD predictors
9 FRED-QD predictors
9 FRED-QD predictors + ADS Index
ADS Index

(d) four-period ahead forecasts

* The number of forecasts constructed for each horizon (or the number of sub-samples) is 142. The
number of observations in each sub-sample is 100, and the number of observations used for training
and validating a model in each rolling window is 60.

54

	2 authors
	Comparing Out-of-Sample Performance of Machine_pdf
	Introduction
	Description of Forecasting Methods
	Mixed Data Sampling (MIDAS)
	Penalized Regression
	Supervised Principal Component Analysis (sPCA)
	Deep Learning
	Random Forest
	Gradient Boosting
	Facebook Prophet

	Recursive Forecasting Strategy
	Results
	Data Description
	Out-of-Sample Performance across Methods
	Out-of-Sample Forecast Performance across Three Sets of Predictors

	Conclusion
	Tables and Figures

