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Abstract

Over 50 countries representing three quarters of global CO2 emissions have pledged to achieve a

net-zero carbon economy by 2050, and energy efficiency improvements are a primary contributor in

policy scenarios that attain this goal. However, uncertainties remain about the realized effectiveness

of energy efficiency programs. This paper provides evidence on the realized savings from Canada’s

largest residential energy retrofit program. We use utility data from all single-family homes in a mid-

sized Canadian city and detailed energy audit records from the EnerGuide for Homes database, which

includes modeled predictions of energy savings from retrofit adoptions. The retrofit program reduces

natural gas consumption in the average participating home by about 21%, representing 60% of predicted

natural gas savings. Whole-envelope retrofits are predicted to reduce natural gas consumption by 67%,

but in practice only half of these savings are realized. This underscores the importance of developing

new modeling approaches that incorporate house-level utility data, which reflect the outcome of realized

rather than predicted occupant behavior, to increase retrofit energy savings and return per subsidy

dollar spent.

*Carleton University
†University of Ottawa and Institute of the Environment
‡University of Ottawa
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1 Introduction

Climate policy scenarios that meet net-zero carbon emission targets consistently emphasize the need for

significant reductions in building energy consumption (IEA, 2021; IPCC, 2018). Since over two-thirds

of the current building stock will still be operational in 2050, finding effective ways to dramatically

reduce emissions in existing buildings is an urgent policy goal among many governments. This urgency is

compounded by the reality that greenhouse gas (GHG) emissions in most industrialized countries are not

falling anywhere near a rate that is consistent with net-zero by mid-century (UNEP, 2021). Recognizing

this imperative, policymakers worldwide have enacted numerous programs and policies aimed at the

building sector, including increasingly stringent energy codes, tax rebates and subsidies for home retrofits

such as air sealing, insulation and energy-efficient heating and cooling equipment.

Building engineering models are widely used in these programs to identify the most cost-effective and

impactful retrofits to undertake. However, by construction these models embed a number of assumptions

about retrofit installation quality and occupant behavior, and recent studies using house-level utility data

have identified that modeled predictions of retrofit energy savings fall significantly short of observed

reductions (Fowlie et al., 2018; Christensen et al., 2021; Burlig et al., 2020; Chuang et al., 2022). On

average, recent U.S. studies suggest that realized improvements in building energy performance are

only approximately 60% as large as predicted. This brings up serious concerns from a climate policy

perspective, particularly if these shortfalls are also prevalent in programs outside of the U.S., since they

imply building retrofit program savings need to nearly double to align with planned energy and GHG

reductions.

Despite these concerning outcomes, gaps still remain in our understanding of realized performance

for home energy efficiency retrofit programs. This includes few studies evaluating the realized savings of

residential energy efficiency investments from outside the U.S. (Giandomenico et al., 2022); a lack of

evidence on the long-term persistence of retrofit savings; a dearth of realized savings results based on

large-sample, comprehensive “whole envelope retrofit” data including multiple fuels such as electricity

and natural gas consumption; and few studies from programs available to the general population rather

than income-based or other similar eligibility criteria.

This paper contributes new evidence on each of these gaps. We combine house-level observations

from the EnerGuide for Homes (EGH) program and match them to a 10-year history of monthly electricity

and natural gas data from all single-family households served by a utility in the Canadian province

of Alberta. The utility’s population heats their homes almost exclusively with natural gas so that our

combined data represent whole-house consumption for a large share of these homes. The EGH database

has existed since 1998 and includes detailed house-level data derived from home energy audits, including

predicted energy savings for potential energy efficiency investments. It has ratings for approximately 1

million houses, which represents 7% of the current housing stock in Canada. Federal home energy audits

and retrofit rebate programs in place today and historically have been available to any Canadian house

that submits an application, so that houses across the income spectrum are eligible to participate.

Our data are from the ecoEnergy rebate initiative, a program that was in place in Canada between

2008 and 2011, to assess the electricity and natural gas savings from adopted retrofits and their realization

rate compared to engineering predictions. We follow a difference-in-difference approach, comparing the

energy consumption of newly-retrofitted (treated) homes with their energy consumption prior to the
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retrofit, and to similar (control) homes that are not retrofitted. We show that our results are robust to

alternative choices of control group, including a control group restricted to homes that are eventually

treated, as well as a control group formed by matching on pre-treatment observed variables. We also show

that our results are robust to potential bias that may arise from “staggered” treatment (Goodman-Bacon,

2021), which is possible in our setting as retrofits take place over a multi-year period.

We find that house energy consumption fell by about 15% on average as a result of participating in

the energy efficiency retrofit program. Most of the energy savings occurred in natural gas consumption,

which declined by 21%, whereas electricity use declined by 0%-4%.1 The individual retrofits generating

the largest savings were new furnace adoption and wall insulation, which each reduced natural gas

consumption by about 25%. An event study analysis indicates that savings following a retrofit persist for

at least a decade.

While these post-retrofit energy savings are considerable, particularly for natural gas, we find that

pre-retrofit modeled savings predictions were almost two times higher in most cases. The average

realization rate for total energy savings, representing the share of model-predicted savings that actually

occurred after a retrofit, was 55%. Realization rates for individual retrofits vary widely: the realization

rate for attic insulation, wall insulation and natural gas furnaces is 75%, 35% and 48% respectively,

whereas they are statistically insignificant for basement insulation, central air conditioners and new

windows and doors. The only measure with higher than predicted energy savings is air sealing, with a

natural gas savings realization rate of 164%. However, while air sealing is a popular measure that was

undertaken by a majority of houses, both the predicted and realized air sealing savings are very modest

with less than a 5% reduction in natural gas and total energy use.

Taken together our results are consistent with evidence that has emerged from the U.S. Home energy

retrofits save energy, and these savings persist over the long-term, but they fall significantly short of

expected savings. A further cause for concern from a climate policy perspective is that a significant share

of the energy savings from retrofits in the ecoEnergy program arose from the adoption of furnaces with

energy efficiency ratings above 80%. Given that the maximum potential efficiency of a furnace is 100%,

and that market transformation regulations in place in both Canada and the U.S. have now halted the

sale of furnaces with efficiencies lower than 90% for over a decade, further opportunities for energy

usage declines from furnace adoptions in the coming years are limited.2

This increases the importance of developing new pre-retrofit empirical approaches that improve upon

the current status quo and help guide households to adopt retrofits that result in significantly higher

energy savings (Christensen et al., 2022). Such an approach will require the development of data-sharing

frameworks for utility data, which reflect the outcome of human behavior and occupant decision-making

after a retrofit has been adopted. This is a key methodological improvement that can be made to avoid

having to incorporate “best guess” assumptions about behavioral parameters in the building energy

models currently used to provide retrofit guidance to households.

The rest of the paper is organized as follows. Section 2 reviews the EGH program structure; Section

3 describes the data we make use of in our analysis; Section 4 presents our empirical approach and

robustness checks; and Sections 5 and 6 include our results discussion and conclusion, respectively.

1The electricity savings results are not robust across specifications, with small point estimates that are sometimes statistically
insignificant. This is not surprising given that almost all homes heat with natural gas and adopted retrofits were home envelope or
new furnace investments.

2Furnaces with efficiencies below 80% have also been phased out since the 1990s.
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2 Program description

The ecoEnergy Retrofit Homes (ecoEnergy) program was announced by the Canadian federal government

in 2007 and in place until 2011. It was initially expected to be a $300 million program (Department

of Finance Canada, 2007) but was expanded by $300 million in 2009 as a result of unexpectedly high

demand and to stimulate residential construction in the wake of the 2008 financial crisis (Department of

Finance Canada, 2009).3 It ran until March 2011, when its budget was exhausted.

ecoEnergy was one iteration in a line of similar residential retrofit programs in Canada. The EnerGuide

for Houses (EGH) Retrofit Incentive was available between 2003 and 2006 as part of the 2002 Climate

Change Plan for Canada, with a budget of $73 million (Government of Canada, 2002).4 Most recently in

2021 Canada launched the Greener Homes program, which has a budget of $2.6 billion and is expected

to run until 2028.

Each of these programs has largely followed the same model. To qualify for a grant a homeowner must

complete a pre-retrofit audit by a qualified energy auditor. An audit consists of a detailed home inventory

that includes house dimensions, orientation, number of windows and doors, furnace, air conditioner

and water heater type and model, as well as the results of a blower door test, which measures the air

leakage rate of the home envelope. Information from the audit is then entered into modeling software

developed and maintained by Natural Resources Canada to support the EnerGuide initiative, which

provides an estimate of building energy consumption. Based on the results of the pre-retrofit audit,

houses are provided with a list of suggested grant-eligible retrofit options. Recommended retrofits are

prioritized based on potential energy savings, the life expectancy of the home’s components, interactions

between systems, the homeowner’s potential renovation plans, and costs to perform the retrofits. Finally,

to qualify for retrofit reimbursements houses are required to undertake a post-retrofit audit to confirm

upgrades within 18 months of the pre-retrofit audit.

Various iterations of the program have had different regulations for which upgrades qualify for a

grant. In the ecoEnergy program grants were available for heating and cooling system upgrades (e.g.,

purchasing a more efficient natural gas furnace or air conditioner), building envelope upgrades (e.g., wall

insulation, attic insulation, basement insulation), air sealing, and door/window upgrades (Government

of Canada, 2009).5 While retrofit grants were offered for different upgrades in different iterations of the

program, in each case the total incentive for an individual house was limited to $5,000, and houses could

also decide which upgrades (if any) to undertake.

3 Data

Our analysis is focused on Medicine Hat, a Canadian city in the province of Alberta with approximately

65,000 residents. We combine data from three distinct sources to conduct our analysis. First, house

characteristics, recommended retrofits, retrofits undertaken, and predicted consumption savings col-

lected during the first and second energy audits during the ecoEnergy timeframe are from the federal

3During part of this period, houses were also eligible to apply for the Home Renovation Tax Credit, and some provinces offered
home retrofit incentives that piggy-backed on the federal program (Rivers and Shiell, 2016).

4See https://www.canada.ca/en/news/archive/2003/10/energuide-houses-retrofit-incentive-launched.html.
5In the 2003-06 version of the program, grants were performance-based, depending on the improvement in home energy

efficiency rating (as determined by the building energy performance simulation model) achieved. In the 2021 version of the
program, natural gas furnace upgrades no longer qualify for grants.
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government’s EGH database. Some of these variables, such as predicted consumption savings before and

after a retrofit, are generated from a simulated building energy consumption software used by federal

departments and agencies in Canada (the HOT2000 model).6 We observe data for 1,729 houses that

completed an energy efficiency audit through the EGH program in Medicine Hat between 2008 and 2019.

Second, property assessment data were provided by City staff. Property-level tax assessment variables

include information on house type (e.g., detached, attached, and number of stories), size, and year of

construction as well as an assessment of the building’s value. Third, monthly electricity and natural gas

consumption observations for a 13-year period spanning 2007-2019 were provided by the municipal

utility. Both the property tax and energy consumption data cover all single-family properties in the city:

approximately 20,000 houses.

Out of the 1,729 EGH database observations from the Medicine Hat area we were able to match 1,486

to the property assessment data.7 This data set was then merged with the energy consumption data

based on a unique house ID variable, which resulted in a total of 1,475 homes with matched data on

retrofits and home assessments, energy consumption, and property information.8 We also retain energy

consumption and property assessment information from houses that are non-participants in the retrofit

program. For these non-participant households, we do not observe energy efficiency audit variables.

We successfully match property assessment and energy consumption data for 18,460 non-participating

homes.

Summary statistics for the data are provided in Table 1. The table shows that the data contain

observations from 1,475 houses that participated in the retrofit program, along with 18,460 houses

that did not participate. Participant houses undertook a number of energy efficiency retrofits, the most

popular of which were air sealing, natural gas furnace upgrades, and attic/ceiling insulation upgrades.

Gas, electricity, and total energy consumption are presented in this table as an annual average over the

13 year period we have data, and include both pre- and post-retrofit observations. The table shows that

program participants have smaller lot sizes, slightly smaller building sizes, and lower assessment values.

As expected, program participants live in homes that are on average a decade older than non-participants’

homes. Table 1 also shows that over this period, there is little difference in energy consumption between

participating and non-participating houses.

The EnerGuide for houses program undertakes detailed engineering calculations to estimate energy

consumption both before and following retrofits. Table 1 shows that both pre- and post-retrofit predic-

tions of energy consumption are higher than actual energy consumption, indicating a potential bias in the

engineering models used to predict energy consumption. Comparing pre- and post-retrofit predictions of

energy consumption, we can see that the typical participating house was projected to reduce natural gas

consumption by about 28% and reduce electricity consumption by about 1.3%. Our analysis is focused

on using post-retrofit billing data to determine whether these savings materialized.

6The software is available here: https://www.nrcan.gc.ca/energy-efficiency/homes/professional-opportunities/

tools-industry-professionals/20596.
7Failure to match may be due to: (1) incorrectly recorded addresses, (2) missing tax assessment data, and/or (3) some addresses

in the EGH database are not within Medicine Hat city boundaries, such that we do not observe utility data for these houses.
8Unmatched observations are due to missing energy consumption data.
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Table 1: Summary statistics

Program participants Non-program participants
Mean SD Mean SD

Energy Consumption Data
Actual gas consumption (GJ/year) 113 38 116 41
Actual electricity consumption (GJ/year) 31 12 31 13
Actual energy consumption (GJ/year) 144 45 147 48
Property Assessment Data
Total assessed value ($) 277,613 87,795 289,233 123,794
Lot size (square feet) 6,916 3,160 8,925 20,412
Building size (square feet) 1,270 421 1,302 465
Effective year build 1971 18 1981 23
Program Participation Data
Air sealing 0.82 0.38
Attic insulation 0.64 0.48
Walls insulation 0.04 0.20
Basement insulation 0.13 0.33
Foundation Header insulation 0.09 0.28
Windows and Doors upgrades 0.18 0.39
Central AC 0.13 0.34
Natural Gas furnace 0.68 0.47
Predicted pre-retrofit gas consumption (GJ/year) 161 60
Predicted pre-retrofit electricity consumption (GJ/year) 33.6 1.0
Predicted pre-retrofit energy consumption (GJ/year) 194 60.2
Predicted post-retrofit gas consumption (GJ/year) 116 40
Predicted post-retrofit electricity consumption (GJ/year) 33.1 1.4
Predicted post-retrofit energy consumption (GJ/year) 149 40
Total observations 1,475 18,460
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4 Empirical approach

4.1 Panel fixed effects analysis

To estimate the overall impact of participation in the energy efficiency retrofit program, we regress the

natural logarithm of monthly energy consumption (log(eiym)) on an indicator (retrofitiym) that takes on

a value of 1 if a house has completed an energy efficiency retrofit under the ecoEnergy program, and zero

otherwise. Our main specification includes house fixed effects as well as month-of-sample fixed effects

(e.g., February 2017), and takes the following form:

log(eiym) = βretrofitiym+αi + γym+ εiym, (1)

where i indexes houses, y indexes year, and m indexes month. In all cases, we two-way cluster standard

errors on house as well as month-of-sample.9

In this approach, house fixed effects control for time-invariant characteristics of homes, such as size or

orientation, as well as fixed occupant characteristics, such as family size, political views, or environmental

attitudes. Year-month fixed effects control for time-variant conditions that affect all houses equivalently

in a given month, such as weather (all houses are located in the same city, so experience similar weather)

or energy prices. The approach is similar to Chuang et al. (2022), who evaluate electricity efficiency

rebate programs in California, or to Liang et al. (2018), who evaluate electricity efficiency programs in

Arizona. It is also similar to the quasi-experimental estimates in Fowlie et al. (2018), who evaluate a

low-income home retrofit program in Michigan.10

The coefficient β̂ is an estimate of the effect of retrofit program participation on energy consumption.

The primary assumption required to identify β̂ without bias is unconfoundedness, which implies that

participation in the energy efficiency retrofit program is not systematically related to other drivers of

home energy consumption (conditional on observable covariates). An alternative way of expressing the

unconfoundedness assumption is that the non-participant houses provide a good counterfactual for

energy consumption of the participating houses had they not undergone the energy efficiency retrofit.11

The key potential violation of this assumption occurs because, as in Liang et al. (2018) and Chuang et

al. (2022) and other similar studies, houses self-select into program participation. While we control for

time-invariant characteristics that are correlated with participation (e.g., environmental attitudes) using

house fixed effects, there may be house-specific time-varying covariates that determine retrofit program

participation which we cannot observe.

In the energy efficiency investment setting, including this program, selection may manifest through

houses with an old furnace being more likely to participate, since the value of program participation

is likely higher for these houses (Rivers and Shiell, 2016). Furnace vintage may also interact with time-

varying house or local characteristics that are correlated with program participation (e.g. cold snaps

in old homes or a negative income shock). Another possibility is that houses who intend to sell their

9In all our specifications we drop data for dates between the pre- and post-retrofit audit for each house.
10Chuang et al. (2022) and Fowlie et al. (2018) include house-by-month fixed effects. Using house by month fixed effects does not

affect our estimates, as shown in Appendix Table ??.
11Two other identifying assumptions in ex-post studies such as ours are overlap and no general equilibrium effects (SUTVA).

Overlap assumes outcomes are observed for each treatment status at all values of the joint covariate distribution, and SUTVA
assumes each house’s potential outcomes are not affected by the treatment status of other houses.
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homes in the near future might take advantage of the this energy efficiency rebate program to undertake

upgrades that might increase their home’s market value. These “free-riders” or inframarginal houses

would have been more likely to replace their furnace, upgrade their windows or undertake any energy

efficient renovation. In this case, the estimated β̂ from the regression will be biased towards larger energy

savings than actually occurred (Boomhower and Davis, 2014). As described in more detail in Section

4.2, we leverage our highly detailed house-level data, including furnace model and type, to address this

self-selection by constructing five different matched control groups from different subsamples of houses

who either never participated or have yet to participate in the program.

4.1.1 Event study and staggered adoption

Another feature of our data is the timeframe over which we observe houses following a retrofit: up to 11

years following a retrofit. This enables us to determine the persistence of the energy savings associated

with home energy retrofits, and assess if they decay after adoption, relative to the control group. Decay

could result from physical degradation of the measures, such as air leaks opening following sealing, or

from improvements over time in the control group relative to the treatment group, such as from eventual

replacement of a furnace with a more efficient model in the untreated control group. To determine

the persistence of energy efficiency retrofits, we use an event study approach, in which we interact the

retrofit dummy variable in Equation (1) with a time-to-treatment variable:

log(eiy) =
h=11∑
h=−5
h,−1

βhretrofitiym1[y −Di = h] +αi + γy + εiy . (2)

In the event study specification, we aggregate aggregate the monthly energy consumption data to

calendar year and estimate a separate coefficient associated with leads and lags of a retrofit (the index h),

from up to five years before and 11 years following a retrofit.12. The variable Di in Equation (2) is the

year of retrofit for house i, so that h measures number of years before or after a retrofit occurred in a

given house i. As is standard, we normalize the estimates by dropping the indicator variable for the year

prior to retrofit.

Since retrofit adoptions occur over a number of years in the data, our research design is a “staggered”

difference-in-difference. Goodman-Bacon (2021) shows that such research designs, in the presence

of dynamic treatment effects, can lead to bias in the standard two-way fixed effects estimator (such

as Equation (1)). This bias derives from comparing newly-treated units with previously-treated units.

Sun and Abraham (2021) propose an alternative estimator for this setting, which avoids comparing

units treated at different times. To account for this we augment our event study specification with this

approach to estimate the treatment effect of residential energy retrofits, and compare the savings over

time from this modified estimator to the standard two-way fixed effects estimator.

12These are the maximum window we observe in the data.
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4.1.2 Measure-level savings estimates

In addition to estimating the overall savings from home retrofits as described above, we also use detailed

program data to estimate measure-specific energy savings. The measure-specific estimates are generated

in the same manner as the overall retrofit estimates, except we replace the dummy variable for retrofits

with separate dummy variables for each type of upgrade. Measures are indexed by j and the complete

set of measures is indicated by J:

log(eiym) =
∑
j∈J

βjmeasureijym+αi + γym+ εiym. (3)

While this approach to estimating energy savings from specific energy efficiency measures is standard

(e.g., Chuang et al., 2022; Liang et al., 2018), it is important to note that it treats energy savings

from individual measures as additive, and ignores potential interactions between measures. Given

our relatively small sample, running a specification that allows flexibly for interacting effects between

measures is not possible. However, past literature suggests interaction effects between retrofit measures

are likely have second-order effects on energy consumption (Chidiac et al., 2011).

4.2 Matched sample analysis

To help address self-selection into the retrofit rebate program, we supplement the analysis described

above using a matching approach. We construct several different matched control groups that serve

as counterfactuals to the program participants. We draw the matched control groups from different

subsets of the approximately 20,000 houses that either never participated in the program or those that

eventually did but had not yet done so, using five different approaches. First, we match on pre-treatment

energy consumption.13 For each house, we determine summer, winter, and shoulder season electricity

consumption and natural gas consumption. We construct a matched control group by selecting the

nearest neighbour for each participant house from the full control group of never-participants using

propensity scores constructed from these six variables. Second, we construct a control group using

non-outcome variables that we observe in tax assessment data from the city of Medicine Hat. These

variables include house size, house age, assessed value, neighbourhood, and house type. Using these

variables, we again construct a control group using nearest-neighbour matching based on propensity

scores.

Third, since new furnace adoption was one of the most common retrofits undertaken, we use a

matching approach to address a plausible selection channel, namely that houses with relatively older

furnaces or boilers may be more likely to participate in the program and possess other unobserved

characteristics correlated with consumption.14 To do this, we exploit information on furnace type and

furnace efficiency as measured by annual fuel utilization efficiency (AFUE) available in the EGH database,

both of which are highly correlated with furnace age. Furnace type includes four categories: continuous

13The first house participates in the retrofit program in February 2008, so we use the full year of 2007 as the pre-treatment year
for all houses.

14In the following discussion we refer only to furnaces, however 12 houses adopted energy efficient condensing boilers (compared
to about 1000 furnaces), and our analysis matches on boilers as well.
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pilot, spark ignition, induced draft (non-condensing), and condensing furnaces. Continuous pilot

furnaces are considered a first-generation furnace technology and they are the oldest, lowest efficiency

furnaces observed in our data. Their AFUE is typically less than 70%. Spark ignition furnaces are the

next iteration in furnace technology with AFUEs in the mid- to high 70% range. Both continuous pilot

and spark ignition furnaces were no longer available in the Canadian market after the mid-1990s due to

federal regulations (Government of Canada, 2016). Induced draft furnaces with AFUEs above 78% up

to about 90% became widely available in the 1980s. In 2009 a new set of federal regulations in Canada

came into effect that phased out furnaces with efficiencies below 90%. Condensing furnaces are the

most efficient furnace type, with efficiencies in the 92-95% range in our data. All furnaces (and boilers)

adopted under the ecoEnergy program we study were condensing models.

Furnace type and furnace AFUE are almost perfectly correlated in our data. As a result we construct

a control group using exact matching on furnace type in the sub-sample of houses for which we observe

furnace information (the 1,475 houses that completed a retrofit). The control group in this case is derived

from what we term ‘ever-treated’ homes that eventually participated in the program but had not yet

done so between 2007 and 2011.

In our fourth matched sample we identify a control group using both building characteristics and

pre-treatment energy consumption variables to estimate propensity scores. Finally, we combine building

characteristics, the pre-treatment energy consumption variables and furnace type to estimate propensity

scores in the ever-treated sample of homes. We use nearest neighbour matching based on the propensity

to create both of these samples.

In each case, we estimate Equation (1) using the samples of control and treated houses produced

by the matching approaches described above. To the extent that our matching variables are correlated

with unobserved time-varying predictors of counterfactual energy consumption in the treated period, we

expect the estimates of β̂ from the matched sample to recover a less biased estimate of β than estimates

with the full sample, as described above. However, it is important to point out that even our extensive

building and pre-treatment energy consumption observations may not fully account for unobserved

time-varying determinants of retrofit program participation. In that case our estimates of β̂ would

likely over-predict the energy savings from program participation and therefore also over-estimate the

realization rate of predicted savings.

4.3 Realization rates

To compare model-predicted savings with the savings that actually occurred post-retrofit we use house-

level energy audit data on predicted energy consumption before and after rebates, together with actual

energy consumption, to measure realization rates. The realization rate is the proportion of projected

savings that actually occur following a retrofit. We estimate realization rates with the following equation:

log(eiym) = φretrofitiym
(
log(ê1

i )− log(ê0
i )

)
+αi + γym+ εiym, (4)

where ê1
i and ê0

i are predicted post- and pre-retrofit energy consumption from the HOT2000 engineering

model, as described in Section 3. The coefficient φ that is recovered from estimating Equation (4) is the

proportion of predicted energy savings that are realized.
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We also aim to estimate measure-specific realization rates. Since the EGH database only includes pre-

dicted energy consumption following all retrofits that were undertaken by the home but not predictions

of energy savings from individual measures, we use a regression approach to obtain measure-specific

projections of energy savings. We regress projected energy savings on the adopted energy efficiency

measures as follows: (
log(ê1

i )− log(ê0
i )

)
=

∑
j∈J

τjmeasureij + εij . (5)

This is a cross-sectional regression that compares predicted energy savings associated with measure j

across houses i. τj is an estimate of the predicted savings associated with the adoption of measure j. With

an estimate of predicted savings associated with adoption of measure j in hand, we compute realization

rates by comparing βj , estimated from Equation (3), with τj so that realization ratej = βj/τj .

5 Results

5.1 Graphical analysis

Figure 1 illustrates long run trends in electricity and natural gas consumption for treated and never-

treated houses from before and after participation in the energy-efficiency retrofit program. The bottom

panel shows that the years 2007 and most of 2008 were prior to program initiation.15 The first retrofit

occurred in late 2008, and these continued over the following three and a half years, with all participating

houses completing retrofits by 2012. Prior to the beginning of the retrofit program (in 2007-08), electricity

and gas exhibited similar (annual) trends. houses that would later participate in the retrofit program

had higher natural gas consumption and slightly higher electricity consumption than non-participating

houses. The figure suggests that electricity consumption declined slightly as a result of the retrofits, and

that natural gas consumption in treated houses fell considerably relative to control houses. While the

houses that chose to participate in retrofits were initially consuming about 5% more natural gas than non-

participant houses, after the retrofits they consumed about 3-4% less natural gas than non-participating

houses. The change occurred during the retrofit program roll-out (shown in the lower panel of Figure 1)

and appears to be stable following completion of the roll-out.

15Less than 1% of participants had retrofitted by the end of 2008.

11



Figure 1: Long-run trends in electricity and natural gas consumption in treated and untreated houses.

Note: The data are raw and do not control for annual weather differences.
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5.2 Panel fixed effects analysis

Table 2 shows estimates of β̂ from Equation (1) as described above. Columns (1) to (3) show estimates

of β̂ using the larger sample that considers the never-treated houses in Medicine Hat as the control

group while columns (4) to (6) reflect estimates of β̂ using only houses who participated in the ecoEnergy

program (hereafter the ever-treated sample). This sample keeps treated homes until 2011. Houses that

renovate in 2012 are the implicit control group (they are eventually treated, but never treated within

our window). The results from both samples show that participation in an energy efficiency retrofit

reduced house energy consumption by 16%. Natural gas consumption fell by 21% and 22% in the

never-treated and ever-treated samples, respectively. While the all-energy and natural gas estimates

are robust and highly statistically significant across both samples, the electricity estimates are more

variable. Electricity consumption fell by a statistically significant 4% in the never-treated sample and by

a statistically insignificant 2% in the ever-treated sample.

The estimates provide strong evidence that natural gas consumption fell by a considerable amount

following energy efficiency retrofits. The fact that natural gas consumption fell by a much larger amount

than electricity consumption is not surprising since the ecoEnergy program principally targeted space

heating and thermal envelope efficiency, and space heating is provided predominantly by natural gas in

the setting studied.

Table 2: Main panel regression

Including never treated houses Only treated houses

log(gas) log(elec) log(energy) log(gas) log(elec) log(energy)
(1) (2) (3) (4) (5) (6)

Program participation -0.21∗∗∗ -0.04∗∗∗ -0.16∗∗∗ -0.22∗∗∗ 0.02 -0.16∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

Fixed-effects
Household Yes Yes Yes Yes Yes Yes
Month of sample Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 2,917,877 2,953,814 2,926,831 77,732 78,521 77,488
R2 0.85 0.47 0.79 0.84 0.54 0.81
Within R2 0.00 8.68× 10−5 0.00 0.02 0.00 0.01

Clustered (id & cons date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Measure-level savings estimates from Equation (3) are presented in Figure 2. In the right panel, we

show the number of energy efficiency measures adopted in the data set, and highlight that the most

popular measures were air sealing, upgrading a natural gas furnace with a more efficient model, and

adding ceiling/attic insulation. In the left panel, we show coefficient estimates and standard errors

associated with each measure for each fuel type. Natural gas furnace upgrades are estimated to result in

the largest natural gas savings, at around 18%. Furnaces are typically the largest sources of natural gas

consumption in a house, and available upgrades could increase furnace efficiency by over 30 percentage
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points.16 Wall insulation also significantly reduced natural gas consumption, although the estimates are

much less precise than for natural gas furnaces, likely because fewer houses undertook this measure

(which is much more intrusive than a furnace upgrade). Attic insulation and air sealing reduce natural

gas consumption by 6% and 3%, respectively. Other measures such as window and door upgrades

and basement insulation had no impact on natural gas consumption. This finding is similar to other

studies, and suggests that window and door upgrades are ineffective at reducing energy consumption

(Giandomenico et al., 2022). For electricity, we find no measures that substantially reduce consumption.

We do find a statistically significant reduction in electricity consumption associated with air sealing, but

the measure only results in savings of about 4%. Upgrading to an energy efficient air conditioner does

not change electricity consumption on average.

Our data includes households engaging in a variety of energy efficiency upgrades as shown in Figure

2, with most households selecting one or two upgrades out of the eight measures considered. Because

of recent interest in “deep” energy efficiency retrofits, we use our data to predict energy savings from

a complete envelope retrofit. A complete home envelope retrofit consists of air sealing, window/door

upgrades, as well as the addition of insulation in the attic, basement, walls, and foundation header. We

do not observe households undertaking complete envelope retrofits in our data, and project the effect of

complete envelope retrofits as the sum of coefficients on all of these measures.17

5.3 Event study and staggered adoption

Prior results on the savings from retrofit programs are estimated using a standard two-way fixed effects

(TWFE) estimator, similar to Liang et al. (2018); Chuang et al. (2022); Fowlie et al. (2018), and others.

Recent literature points to bias in the TWFE estimator in contexts where treatment effects are dynamic

and adoption is staggered, which plausibly applies to our context. We thus use the Sun and Abraham

(2021) estimator to estimate treatment effects as a complement to our main analysis. We show results

for both the Sun and Abraham (2021) and the typical TWFE estimator in the never-treated sample after

estimating Equation (2), the event study specification. The results are shown in Figure 3.18

16The ecoEnergy program required a new furnace efficiency of at least 92% to qualify for rebates, while existing furnaces typically
ranged between 60% to 80% efficient

17Specifically, β̂completeenvelope = β̂atticinsulation + β̂window/doorupgrade + β̂basementinsulation + β̂f oundationinsulation +

β̂wallinsulation+ β̂airsealing .
18We also estimate equation (1) for the ever-treated sample of houses that completed a retrofit using the Sun and Abraham (2021)

estimator. Results for total energy use slightly increased by 1 percentage point compared to the TWFE estimator. We further match
houses from the treatment group with the control group using propensity scores on pre-treatment energy consumption, building
characteristics, and an exact match on pre-treatment furnace type. The results in these specifications do not change meaningfully
compared to those reported in Figure 3.
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Figure 2: Estimated energy savings

Notes: The left panel shows point estimates and 95% confidence intervals for estimates of energy savings from energy
efficiency retrofit measures, based on estimation of Equation (3). The right panel shows the number of each type of retrofit
measure observed in our data. Complete envelope retrofits are shaded grey, as they are imputed from envelope measures
undertaken by adding coefficients associated with air sealing, window/door upgrades, and attic, basement, foundation
header, and wall insulation.
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Figure 3: Event study plot

Several findings emerge from the event study plot. First, there are no obvious pre-trends in energy

consumption. This indicates that the control houses are following the treated house energy consumption

patterns prior to the retrofit, and suggests that they may serve as an appropriate control unit for treated

houses. Second, energy consumption falls substantially, by between 15 and 20%, following the retrofit,

confirming analysis above suggesting a large impact of retrofits on energy consumption. Third, the

savings in home energy consumption following a retrofit persist for at least a decade following the

retrofit. We observe some attenuation in the effect of retrofits on energy consumption over time, but the

effect remains large for all years that we are able to follow houses. This suggests that the efficacy of home

energy retrofits does not decay quickly following adoption. Fourth, the estimates from the standard

TWFE model and the Sun and Abraham (2021) estimator are very similar, suggesting that in our context

the TWFE estimator is not significantly biased. Why is this? For one, the treatment effect in our context

do not appear to change significantly over time (as noted above – they are persistent). Since retrofits

deliver basically a one-time change in house energy consumption in our context already-treated houses

are a good control group for newly-treated houses. In addition, our sample includes a large control group

of never-treated houses. The presence of these never-treated houses reduces weight on already-treated

houses in the regression, and thus helps to avoid potential bias.
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5.4 Matching analysis and implications for selection into treatment

Table 3 reports estimates of β̂ from estimating Equation (1) while restricting observations to treated and

matched control units as described in Section 4.2. The table reports results for total energy consumption,

though the patterns are very similar when we disaggregate between natural gas and electricity. For

comparison column (1) replicates the estimates reported in column (3) of Table 2, in which all treated and

control observations are included, and finds that participation in the retrofit program caused a reduction

in energy consumption of 16%. In column (2), the sample is restricted to include treated houses that

are matched on pre-treatment energy consumption to houses in the never-treated sample. The estimate

of β̂ decreases slightly to 15%. The estimate in column (3) is based on matching treated houses with

control houses in the never-treated sample based on building characteristics and the estimated β̂ remains

at 15%. In column (4) we match houses from the treatment group with the ever-treated control group

based on furnace type using an exact match with replacement, and the results are the same as the main

analysis (column (1)). In column (5) we match treatment houses based on both building characteristics

and pre-treatment energy consumption to controls in the never-treated sample. The point estimate falls

slightly to 14%. Finally, in column (6) we match houses from the treatment group with the ever-treated

control group using propensity scores on pre-treatment energy consumption and building characteristics,

with an exact match on pre-treatment furnace. The estimated savings increase slightly to 17%.

Table 3: Panel data analysis with matching

log(energy)
(1) (2) (3) (4) (5) (6)

Program participation -0.16∗∗∗ -0.15∗∗∗ -0.15∗∗∗ -0.16∗∗∗ -0.14∗∗∗ -0.17∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Fixed-effects
Household Yes Yes Yes Yes Yes Yes
Month of sample Yes Yes Yes Yes Yes Yes

Matching variables
Pre-treatment consumption No Yes No No Yes Yes
Building characteristics No No Yes No Yes Yes
Furnace type No No No Yes No Yes

Fit statistics
Observations 2,926,831 449,898 450,240 76,795 445,506 65,913
R2 0.79 0.81 0.81 0.81 0.81 0.82
Within R2 0.00 0.01 0.01 0.01 0.01 0.01

Clustered (id & cons date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Two facts are notable from the matching analysis. First, estimates of β̂ using a number of different

control groups matched-on-observables with the treated group result in very similar energy savings

estimates compared to the analysis using the full set of never-treated observations. While we can’t

completely eliminate “free-riders” concerns due to other potential selection channels, our matching

approach suggests that accounting for several plausible channels of selection into treatment negligibly
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changes the estimated savings results.19

Second, the treatment effect is slightly larger using the matched control group based on building

characteristics, pre-treatment energy consumption and furnace type. This suggests that some of the

houses that participated in the retrofit program may be infra-marginal and would have conducted the

retrofit even without the program. However, our estimates are qualitatively similar and statistically

indistinguishable to the unmatched analysis (17% energy savings in the analysis with a matched sample

compared to 16% using the full control group). While our matching-on-observables approach is not able

to perfectly control for self-selection into participation, this suggests that infra-marginal participation in

the retrofit program may not be as large as in other contexts (Grosche and Vance, 2009; Boomhower and

Davis, 2014). Given that our matching analysis indicates the estimates for total energy and natural gas

savings are highly stable across all control groups, including our original never-treated estimates, we use

specification (1) in our analysis going forward.

5.5 Realization rates

5.5.1 Overall realization rates

We estimate an aggregate realization rate by regressing energy consumption on a treatment dummy

interacted with projected energy savings, as in Equation (4). As shown in Table 4, we find a realization

rate for natural gas of 61%. Our realization rate for electricity is around 56%, and not significantly

different than zero. For all energy, we find a realization rate of 56%. The natural gas and energy

realization rates are highly statistically significant.20

5.5.2 Measure-specific realization rates

Our procedure to estimate measure-specific realization rates occurs in two steps, as described in Section

4.3. First, we estimate projected energy savings by measure, using a cross-sectional regression of projected

total savings regressed on a vector of dummy variables indicating which measures were adopted, as in

Equation (5). Figure 4 plots coefficients recovered from this regression. Large natural gas savings are

projected for furnace upgrades as well as wall insulation. Basement insulation, ceiling/attic insulation,

window and door upgrades, and air sealing are also all projected to deliver natural gas savings by the

engineering model. Projected electricity savings are much smaller than natural gas savings, with the

largest reductions projected for wall insulation as well as natural gas furnace upgrades (due to lower

electrical consumption by the furnace fan).

Finally, we estimate measure-specific realization rates by dividing the realized rates illustrated

in Figure 2 by the measure-specific projected energy savings. The results are presented in Figure 5

with separate panels for natural gas, electricity and all-energy savings. We indicate measure-specific

realization rates in percentage form above each measure in the Figure. For natural gas the highest

realization rates are observed for air sealing (86% realization rate), furnaces (67% realization rate), and

attic insulation (76% realization rate). Window and door upgrades and basement insulation have the

19For example, matching on pre-treatment consumption will mitigate selection bias from households that may have faced a
positive consumption shock and therefore be more likely to choose an energy efficiency retrofit.

20We also conduct our analysis in levels rather than logs. Results are shown in the Appendix, and are similar to the main results
in logs.
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Table 4: Realization rates

log(gas) log(elec) log(energy)
(1) (2) (3)

Gas realization rate 0.61∗∗∗

(0.02)
Electricity realization rate 0.56

(0.47)
Total energy realization rate 0.56∗∗∗

(0.03)

Fixed-effects
Household Yes Yes Yes
Month of sample Yes Yes Yes

Fit statistics
Observations 2,915,228 2,951,064 2,924,122
R2 0.85 0.47 0.8
Within R2 0.00 1.05× 10−5 0.00

Clustered (id & cons date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Figure 4: Measure-specific energy saving projections
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lowest natural gas realization rates (33% and 13%, respectively). Most of the electricity realization rates

are statistically insignificant with the exception of attic insulation. Although the realized electricity use

reduction is less than 5%, this is more than double the model-predicted savings. The total energy use

realization rates follow a similar pattern as those observed for natural gas. We find a realization rate of

above 100% for air sealing measures (suggesting air sealing saves more energy than predicted), 86% for

attic insulation, and 55% for new furnaces.

Figure 5: Measure specific realization rates
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6 Conclusion

In this paper we use energy consumption data from all single family homes in a mid-sized Canadian

city spanning 10 years to examine the energy savings and realization rates from Canada’s largest energy

efficiency retrofit program. We observe all homes in the city that participated in the ecoEnergy retrofit

program that was in place between 2008 and 2011. On average, the program reduced participants’ total

energy consumption by about 15%. These savings persist throughout the timeframe we observe these

homes, that is up to a decade after a home is retrofit. We find that the majority of this reduction is

driven by natural gas, where consumption fell by 21%, compared to a 0%-4% for electricity. The average

realization rate for total energy savings is 56%. In contrast to the natural gas and all-energy estimates,

the electricity savings are not robust and become insignificant across different matching specifications.

Our rich data enable us to estimate measure-by-measure realization rates, including for specific HVAC

equipment types, namely natural gas furnaces and Energy Star air-conditioners. We find that all measures,

except for air sealing, deliver lower than predicted energy savings. In particular, complete envelope

retrofits, a type of “deep energy retrofit” that has recently gained prominence in the policy community as

a strategy to help meet climate targets for existing buildings (Zhivov and Lohse, 2021), exhibit realization

rates of 52% and 46% for natural gas and all-energy, respectively. Houses that completed these retrofits

were predicted to reduce their natural gas consumption by 66%, but usage only declined by about 33%.

At the measure-level we find that rebate programs for natural gas furnaces upgrades and wall insulation

are the most promising renovations when it comes to energy savings and realization rates, on average.

These results are timely and important because analyzing utility consumption data is the only way

to reliably assess the realized impact of residential energy efficiency programs, and thereby gauge

progress towards net zero goals. Meeting mid-century climate targets will require most existing homes

to be net-zero consumer of fossil fuels, whereas much of the current literature evaluating home retrofit

performance focuses on programs available to low-income houses (Fowlie et al., 2018; Christensen et al.,

2021; Hancevic and Sandoval, 2022). Our findings that most program savings arise from natural gas

furnace upgrades are therefore concerning, since combustion technology is likely to play an increasingly

limited role in the coming decades. Implementing new empirical methods and data-sharing partnerships

incorporating utility data to accurately predict and magnify energy savings from home energy efficiency

are essential next steps in the goal of meeting building-sector climate targets.
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Appendix

Additional results, ever-treated sample

Dependent Variables: log(gas) log(elec) log(energy)
Model: (1) (2) (3)

Variables
ATT -0.2071∗∗∗ 0.0068 -0.1759∗∗∗

(0.0233) (0.0432) (0.0223)

Fixed-effects
id Yes Yes Yes
consyear Yes Yes Yes

Fit statistics
Observations 5,135 5,135 5,135
R2 0.89748 0.85984 0.90203
Within R2 0.13934 0.00078 0.11731

Clustered (id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Additional results, matched samples

Dependent Variables: log(gas) log(elec) log(energy)
Model: (1) (2) (3)

Variables
treated postTRUE -0.2326∗∗∗ 0.0088 -0.1649∗∗∗

(0.0132) (0.0180) (0.0137)

Fixed-effects
id Yes Yes Yes
cons date Yes Yes Yes

Fit statistics
Observations 66,058 66,789 65,865
R2 0.84239 0.54977 0.81794
Within R2 0.01584 2.1× 10−5 0.01244

Clustered (id & cons date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Regression with house-month fixed effects

Dependent Variable: log(energy)
Model: (1) (2)

Variables
treated postTRUE -0.1577∗∗∗ -0.1579∗∗∗

(0.0063) (0.0063)

Fixed-effects
id Yes
cons date Yes Yes
id-consmonth Yes

Fit statistics
Observations 2,926,828 2,926,828
R2 0.79168 0.84947
Within R2 0.00269 0.00371

Clustered (id & cons date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Regression results in levels

Dependent Variables: gas elec energy
Model: (1) (2) (3)

Variables
as.numeric(treated post) × delta gas lev 0.6308∗∗∗

(0.0627)
as.numeric(treated post) × delta elec lev 0.2011

(0.4944)
as.numeric(treated post) × delta energy lev 0.5045∗∗∗

(0.0528)

Fixed-effects
id Yes Yes Yes
cons date Yes Yes Yes

Fit statistics
Observations 2,938,572 2,952,422 2,924,674
R2 0.75884 0.53795 0.75339
Within R2 0.00381 2.37× 10−6 0.00348

Clustered (id & cons date) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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