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Abstract

On July 1, 2010, congestion pricing during peak traffic times was implemented on the
San Francisco-Oakland Bay Bridge. In response to the toll, automobile traffic on the bridge
declined. Exploiting a quasi-experimental approach, the study finds that although public
transit ridership increased after the new road toll policy went into effect, congestion pricing
did not cause a change in traffic-related air pollution and respiratory illness incidence in the
bridge vicinity, in contrast with the past work on the topic in other settings. This points to
the importance of considering the heterogeneous place-based factors that drive the welfare
effects of environmental policy.
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1 Introduction

Congestion pricing, which raises road toll fees during periods of high demand, was imple-
mented on the San Francisco-Oakland Bay Bridge, also known as the Bay Bridge, on July
1, 2010. Though the primary motivation for the policy was to raise funds to pay for bridge
repair and maintenance, it was also expected to reduce negative externalities associated with
private automobile use. Foreman (2016) shows that the new toll policy decreased traffic vol-
ume and travel times during peak hours, and some of that traffic shifted towards off-peak
shoulder hours and, to a lesser extent, a lower-priced nearby bridge. Our paper extends
the analysis in Foreman (2016) by examining how the change in driving patterns caused by
congestion pricing affected traffic-related air pollution in the vicinity of the bridge and the
respiratory health of patients living close to the bridge. In addition, we explore if commuters
shifted from private automobiles to higher public transit usage, which has a lower per-person
carbon footprint (MIT CLimate Portal, 2023).

It is not clear, a priori, how overall levels of air pollution, respiratory health, and public
transit ridership could be influenced by modified commuting behavior due to the non-uniform
toll. If drivers simply reduce the number of trips they take (“trip reduction”), mainly
during peak hours, this will likely have no effect on public transportation but will lower
air pollution levels and may improve respiratory health in the areas close to the bridge. If
drivers make the same number of trips but shift the time of those trips away from peak periods
(“time shifting”), this usually has no effect on overall air pollution, respiratory health, and
public transportation. There will be no pollution, health, and public transit effects if drivers
continue to travel during peak periods but avoid the route with congestion pricing by using
alternative roads (“route shifting”). Finally, drivers can continue to commute during peak
periods but use public transportation instead of driving (“mode shifting”), which will reduce
vehicle emissions, as well as improve air quality and respiratory health. The overall effect of
these responses to congestion pricing on pollution, health, and public transit has important
implications for the design of both climate and transportation policy. A precise estimate of
the effect of decreased driving on air pollution and respiratory health will also refine welfare
calculations for congestion pricing.

Existing literature estimates the changes in air pollution levels and public health due to
either command-and-control type of driving restrictions, such as low-emission zones (Pestel
and Wozny, 2019; Sun et al., 2014; Davis, 2008; Friedman et al., 2001), or market-based
policies, including congestion pricing (Simeonova et al., 2021; Isaksen and Johansen, 2021;
Gibson and Carnovale, 2015; Currie and Walker, 2011; Auffhammer and Kellogg, 2011). In
addition, some studies specifically focus on the effect of public transportation on air pollution
(Gendron-Carrier et al., 2022; Rivers et al., 2020; Beaudoin et al., 2015; Anderson, 2014; Chen
and Whalley, 2012). Most of the papers find that driving restrictions are associated with
lower air pollution and improved health.

Among the aforementioned research works, a growing number of papers use quasi-
experimental approaches to estimate how changes in driving and commuting behavior affect
air pollution and/or health (Simeonova et al., 2021; Isaksen and Johansen, 2021; Rivers et
al., 2020; Pestel and Wozny, 2019; Gibson and Carnovale, 2015; Anderson, 2014; Chen and
Whalley, 2012; Auffhammer and Kellogg, 2011; Currie and Walker, 2011; Davis, 2008).
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In this study, we exploit the quasi-natural experiment created by the introduction of
congestion pricing on the San Francisco Bay Bridge, located in the 13th largest metropolitan
area in the United States with a population of 4.5 million people (The U.S. Census Bureau,
2022). Using a regression discontinuity approach, we find that while congestion pricing led
to an increase in public transit ridership, it did not change local air pollution levels and
respiratory illness hospital admissions.

The rest of the paper is organized as follows. We describe the policy background in
Section 2 and review the data in Section 3. Section 4 discusses the research design. In
Section 5, we demonstrate the results from the regression discontinuity models. Concluding
remarks are presented in Section 6.

2 Background

In the San Francisco Bay Area in California (see Figure 1), the communities in the East
Bay are connected with the San Francisco Peninsula via three bridges and a metro rail
system.

Figure 1: San Francisco Bay Area

Source: OnTheWorldMap (2023).

The Bay Bridge is the main bridge that is heavily used by drivers to commute and/or
travel between downtown San Francisco and cities in the East Bay. The traffic volume on the
bridge is around 124,000 vehicles per weekday in each direction. There are also two smaller
bridges located south of the Bay Bridge that link the San Francisco Peninsula with the East
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Bay (see Figure 2): the San Mateo Bridge, 18 miles of the Bay Bridge, carries roughly 2.7
times less vehicles than the Bay Bridge, as well as the Dumbarton Bridge, 25 miles of the
Bay Bridge, which is used by 4 times less vehicles (Foreman, 2016).

Figure 2: Bridges in the San Francisco Bay Area

Source: Wikipedia (2023).

The main public transportation option for people traveling between San Francisco and
the East Bay is the light rail system (BART). In addition, there is the AC Transit bus
service, which also has local transbay lines1.

Foreman (2016) provides a detailed description of the road toll policy before and after
July 1, 2010. For the Bay, San Mateo, and Dumbarton Bridges, a road toll only exists
for any vehicle on the westbound trip. There are FasTrak lanes, cash lanes, and carpool
lanes. A FasTrak lane is for Electronic Toll Collection tag holders (FasTrak tags), while a
cash lane allows drivers to pay with either cash or their FasTrak tags. Using FasTrak lanes
decreases the delay from toll collection since drivers do not have to stop to pay the toll, as
compared to those paying in cash. Finally, there are carpool lanes available during peak
hours only. Carpools are three or more people on the Bay Bridge and two or more people on
the San Mateo and Dumbarton Bridges. Motorcycles, two-seat vehicles with two passengers,

1As noted in Foreman (2016), there are other options which include the ferry and two roundabout
driving routes. Only few people take the ferry, and the roundabout routes are either crossing two bridges
(the Richmond and Golden Gate Bridges) or driving south around the Bay. The first roundabout option
would make drivers pay two road tolls, while the second one would require them to drive over 50 miles out
of their way. Therefore, same as in Foreman (2016), we assume these other ways to cross the Bay are not
reasonable substitutes for the Bay Bridge.
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and vehicles with DMV-issued Clean Air decals are also allowed to use carpool lanes (DMV
stands for Department of Motor Vehicles). In the off-peak time, carpool lanes are either
closed, or they revert to bus, FasTrak, or cash lanes. Before July 1, 2010, the road toll was
a $4 per vehicle fee for vehicles with 2 axles (vehicles with more axles face a higher rate),
and the price was identical across all hours of the day for the three bridges. There was no
toll for carpool lanes during peak hours.

On July 1, 2010, the tolls on the Bay Area bridges were raised with the purpose of getting
additional funding for maintenance, transport projects, and seismic retrofitting. There was
a uniform increase in the tolls on the San Mateo and Dumbarton Bridges: the tolls increased
from $4 to $5 per vehicle, with the reduced $2.50 toll for carpools during peak hours (carpools
were now required to have FasTrak tags). As for the Bay Bridge, it implemented a non-
uniform change in the toll rates. During weekdays, the toll became $6 per vehicle in peak
hours (from 5 am to 10 am and from 3 pm to 7 pm) and $4 per vehicle in the off-peak time;
the weekend toll was $5 per vehicle. The toll for carpool lanes was the same as on the other
bridges.

We use the introduction of the congestion pricing policy on the Bay Bridge as a quasi-
experimental setting that provides an opportunity to empirically measure the effect of the
toll on air pollution, respiratory health, and public transportation ridership.

3 Data

This paper uses several separate data sources. First, we use daily and hourly air pollution
and weather data for our sample area. Second, we exploit daily emergency department visits
and hospital admission data for patients residing in the sample area. Finally, we utilize a
comprehensive dataset of transbay BART and AC Transit trips at the hourly level. The
sample area should be located close enough to the Bay Bridge so that we can capture
the direct effect of congestion pricing implemented on the bridge. Our definition of “close
enough” is within 6 miles of the Bay Bridge.

All the observations are for the period between May 1st, 2010, and August 31st, 2010,
i.e. 60 days before and 60 days after July 1, 2010, the day when the new toll policy went
into effect. The sample does not include weekends, as well as federal and state holidays
since the congestion pricing is in effect only on weekdays; in addition, we drop the period
from July 2 until July 9 to account for additional vacation days around Independence Day
that many Americans take (July 2 is Friday before Independence Day, and July 5–9 is the
week following the holiday). We also drop Spare the Air days which are usually a few days
in August and September declared by the Bay Area authorities as days on which the local
residents are urged to drive less since the concentrations of ground-level ozone exceed federal
air quality standards (Bay Area Air Quality Management Disctrict, 2023).

3.1 Air Pollution

Chronic exposure to ambient air pollution, even at low levels, is associated with res-
piratory illness and other negative health effects (Ransom and Pope, 1992; Schlenker and
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Walker, 2016; Cohen et al., 2017; Deryugina et al., 2019; Jans et al., 2018; Anderson, 2020;
Manisalidis et al., 2020; Bala et al., 2021; Simeonova et al., 2021). We investigate one of
the criteria air pollutants, fine particulate matter (PM2.5); it is linked to vehicle traffic and
detrimental to respiratory health.

Ambient air pollution, specifically in the form of PM2.5
2, has been identified as a leading

cause of mortality and morbidity around the world (The Institute For Health Metrics And
Evaluation, 2019). Particulate matter (PM) refers to the concentration of small airborne
liquid and solid particles, such as dust, dirt, soot, smoke, and liquid droplets, that are classi-
fied by size. PM may originate from both natural sources, such as windblown soil or sea salt
spray, and anthropogenic sources, including fossil fuel burning, various industrial processes,
agricultural activity, and road dust (Isphording and Pestel, 2021; Health Canada, 2022a).
The particles less than 10 microns (µm) in diameter can penetrate into the respiratory tract
and are those of main concern for human health; the particles that are less than 2.5 µm in
diameter are known as fine particulate matter, PM2.5 (Health Canada, 2022a). The major
mechanism for removing PM2.5 is via precipitation. PM2.5 can be transported for several
days downwind, affecting populations up to approximately 600 miles away from the point of
emission; on the other hand, primary PM2.5 emitted in urban areas will have a large impact
in the immediate vicinity (Gilmore et al., 2019).

Ambient air pollution data is obtained using from the Air Quality and Meteorological
Information System of the California Air Resources Board (California Air Resources Board,
2023). Non-mobile monitoring stations measure hourly levels of hazardous air pollutants
in the San Francisco Bay Area. The sample area includes three pollution monitoring sites
within 6 miles of the Bay Bridge3: one monitor is in San Francisco (Arkansas Street) and
two monitors are in the East Bay (West Oakland and Berkeley), shown in Figure 3.

2Ground-level ozone is the other indicator that is used to measure exposure to air pollution in the
Global Burden of Disease study (Cohen et al., 2017), and it leads to similar inflammatory reactions as PM2.5

(Isphording and Pestel, 2021). Moreover, along with PM2.5, ozone is a major traffic-related air pollutant.
However, ozone is not emitted directly by vehicles – it is created by chemical reactions of certain pollutants
under sunlight (Isphording and Pestel, 2021; Health Canada, 2022b), and measuring the effect of vehicles
on ozone concentrations can be challenging (Rivers et al., 2020). As a result, in the paper, we conduct a
single-pollutant analysis, evaluating the association between ambient PM2.5 and congestion pricing.

3We calculate the geographical distance between pollution stations in the Bay region and the east Bay
Bridge toll entrance, the west Bay Bridge toll entrance, as well as the middle of Bay Bridge (Treasure Island).
A given pollution station is located in the 6-mile vicinity of the Bay Bridge if it lies within 6 miles of the
west toll entrance, or 6 miles of the east toll entrance side, or 6 miles of the center of the bridge.
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Figure 3: Pollution Monitoring Sites in the Sample Area

Notes: The sample area includes 3 pollution monitoring sites within 6 miles of the Bay Bridge.

In the analysis, we use the daily mean measurements of PM2.5. Within a day, PM2.5 levels
tend to peak during the morning commute and then gradually decline until a slight rise later
in the evening. Daily mean PM2.5 measurements display a seasonal pattern, peaking during
the winter months and falling during the summer months.

Since weather, including wind, temperature, and precipitation, affects pollution, we aug-
ment the air pollution data with daily weather data for the San Francisco Bay Area. We use
gridded weather data produced by PRISM Climate Group (2023). This provides daily pre-
cipitation, minimum temperature, and maximum temperature data for four-kilometer grids4.
For each pollution monitoring station, we keep the nearest weather grid. For wind speed
and direction, we exploit data from the National Oceanic and Atmospheric Administration’s
(NOAA) Center for Operational Oceanographic Products and Services; we obtain wind data
from a single weather station closest to the Bay Bridge, the one in Alameda, which is on the
East Bay side of the bridge (National Oceanic and Atmospheric Administration, 2023a)5.

4We use only monitor-days for which observations are recorded for at least 21 (87.5%) hours per day
(if we only kept the monitoring stations with all 24 non-missing hourly observations per each day of the
sample period, we would have just few stations left). In the gridded weather data, we drop days with both
air temperature and precipitation missing; in the wind data, we only keep days with both wind speed and
wind direction non-missing.

5We also use hourly weather data, which is obtained from a different source. We exploit data on
hourly precipitation, temperature, wind direction, and wind speed from NOAA’s National Weather Service
(National Oceanic and Atmospheric Administration, 2023b). We use two airport weather stations near the
sample area: San Francisco International Airport and Oakland International Airport (the rest of the weather
stations in the sample area have too many missing wind speed and wind direction observations). We assign
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3.2 Respiratory Health

We use non-public data from California’s Department of Health Care Access and Infor-
mation (California Department of Health Care Access and Information, 2023). The dataset
contains emergency department visits, overnight hospital stays, as well as ambulatory surg-
eries (i.e. surgeries that do not require overnight hospital admission). For each patient visit,
the data lists the service date, the primary diagnosis code, the secondary diagnosis codes, as
well as patient and hospital ZIP codes. We use the data on admission for respiratory illness
(either as a primary or secondary diagnosis code) for patient ZIP codes in the sample area,
i.e. we study the daily total numbers of emergency department visits, overnight hospital
stays, and ambulatory surgeries related to respiratory health.

Each ZIP code of a patient residence is joined with its corresponding ZIP Code Tabulation
Area (ZCTA)6. There are 47 ZCTAs within 6 miles of the Bay Bridge (Figure 4). We
calculate the geographical distance between ZCTAs’ centroids and three points on the Bay
Bridge (the east Bay Bridge toll entrance, the west Bay Bridge toll entrance, and the middle
of Bay Bridge) to allocate ZCTAs to the sample region. As for the weather data, we calculate
the geographical distance between the weather grids’ centroids and ZCTAs’ centroids, and
we keep the nearest weather grid for each ZCTA.

each pollution station to its closest airport: one pollution station in San Francisco is connected to San
Francisco International Airport, and the two pollution monitoring sites in the East Bay are joined with the
data from Oakland International Airport.

6ZCTAs are areal representations of ZIP code service areas. For the 2010 United States Census, each
ZCTA aggregates the census blocks whose addresses are associated with a given ZIP code. Since a ZCTA
represents the ZIP code used by most addresses in a census block, addresses can sometimes be assigned
to a ZCTA code that differs from their ZIP code (The U.S. Census Bureau, 2023). In the sample, there
were only few ZIP codes like that. Therefore, in the paper, we may use the terms ‘ZCTA’ and ‘ZIP code’
interchangeably.
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Figure 4: ZCTAs in the Sample Area

Notes: The sample area includes 47 ZCTAs within 6 miles of the Bay Bridge.

3.3 Public Transit

The paper uses non-public data on public transportation usage from BART (Bay Area
Rapid Transit), the metro rail system, and AC Transit (Alameda-Contra Costa Transit
District), the bus system, servicing the San Francisco Bay Area (Bay Area Rapid Transit,
2023; AC Transit, 2023). The BART map is shown in Figure 5, and AC Transit routes
(transbay only) are displayed in Figure 6.
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Figure 5: BART Map

Source: Bay Area Rapid Transit (2023).

Figure 6: AC Transit Map (Transbay Routes)

Source: AC Transit (2023).
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We only examine ridership on transbay routes that follow the Bay Bridge7. The transbay
routes are a viable substitute for people who switch from driving to commuting via public
transportation. In addition, since there is no toll for any vehicle on the eastbound trip, we
study westbound ridership only, i.e. trips from the East Bay to San Francisco. Within a
day, transbay BART ridership is highest during morning commute times. Unlike BART, AC
Transit ridership tends to peak around mid-day. It appears that AC transit carries fewer
traditional commuters. However, BART riders constitute the majority of public transit
passengers. Additionally, during the period of observation in this study, there were no
BART or AC Transit fare changes.

The unit of observation in the BART dataset is the number of riders, each hour, entering
a station and exiting from another station. The AC Transit dataset provides a sample of
ridership levels by hour for each of the commuter bus routes. In the two datasets, we calculate
the total number of riders per hour per day across all transbay station pairs (BART) or bus
routes (AC Transit) and then merge the datasets to obtain the hourly number of public
transit riders per each day in the sample. The public transit does not operate 24 hours a
day; the official transit schedule does not match fully our data since the schedule depends
on a route/station and there are some days when the transit officials temporarily change the
schedule (sports games, days around holidays, etc.). For example, Red and Green BART
Lines operate from 5 am (some start around 4:30 am) until around 10 pm; the closing time
of the other lines (Orange, Blue, Yellow) can vary by station: some stations operate until
10 pm, but some are open until 1 am. At the same time, our data shows that BART has
non-zero passengers in each hour even when the metro is supposed to be closed. Based on
the data, there are only few passengers on average from 1 am until 4 am for Red and Green
Lines and from 2 am until 4 am for the rest of the lines. Therefore, the final dataset does
not include the 1 am – 4 am hours for Red and Green Lines, as well as 2 am – 4 am for
the other lines. AC Transit has zero passengers from 2 am to 5 am and a small number of
passengers from 1 to 2 am; we drop the 1 am – 5 am time period from the AC Transit data.

4 Model

We measure the effect of congestion pricing using a sharp regression discontinuity design.
This approach uses the abrupt implementation of congestion pricing on July 1, 2010, to
estimate the short-run effect of the policy change. We restrict the sample to a relatively
narrow time interval around the date the new policy went into effect. In this short time
window, any factors affecting air quality, respiratory illness, or transit ridership are likely to
be similar, so that observations before the policy serve as a comparison group for observations
after the road toll implementation8 (Davis, 2008).

7For BART, we restrict our analysis to BART traffic between the San Francisco Central Business District,
defined as the area serviced by the Embarcadero, Montgomery Street, Powell Street, and Civic Center BART
stations, and the East Bay through the transbay tube.

8Obtaining causal inference about the effectiveness of congestion pricing using another quasi-experimental
approach, such as difference in differences, may be more challenging because it would require us to construct
a valid counterfactual for air pollution, hospital admission, and public transit ridership in the absence of the
new toll policy.
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More specifically, we regress air pollution (PM2.5) concentrations, respiratory illness hos-
pital admissions, or public transit ridership on a dummy variable for the new road toll policy
in a regression discontinuity framework with time as the running variable.

We estimate the following specification for air pollution and hospital admissions:

Yit = β0 + β1Aftert + β2

3∑
n=1

(t− c)n + β3Aftert ×
3∑

n=1

(t− c)n + β4Wt + θi + ϕd + εit, (1)

where Yit is the dependent variable, i.e. mean daily air pollution or daily respiratory illness
hospital visits per 10,000 population on date t; index i indicates either a pollution station
(air pollution data) or a patient residence ZIP code (health data). The sample area includes
air pollution monitoring stations or patient residence ZIP codes within 6 miles of the Bay
Bridge. Aftert is a dummy variable for the congestion pricing policy: it equals 0 before July
1, 2010, and 1 afterwards. The cut-off date of July 1, 2010, is represented by c. We use a
60-day bandwidth, meaning the sample includes daily observations 60 days before and 60
days after the road toll implementation: (t− c) is negative before the policy went into effect,
and it becomes positive after July 1, 2010. The sample excludes weekends and holidays, so
the 60-day bandwidth should provide just enough observations in the selected neighborhood
around the cut-off point; we test the sensitivity of our results to the choice of bandwidth
in Appendix A. Following relevant studies by Yang et al. (2018) and Zhang et al. (2020),
we include a third-order polynomial in the model,

∑3
n=1(t − c)n; higher-order polynomials

give less weight to samples near the breakpoint (Gelman and Imbens, 2019). This functional
form takes into account how air pollution and hospital admission evolve over time. Since
weather conditions are important in explaining ambient air pollution concentrations and
respiratory health incidence patterns9, the model includes the vector of weather controls,
Wt. The weather covariates are quadratic in precipitation, minimum temperature, maximum
temperature, and wind speed, as well as wind direction. Finally, we add pollution site or
ZIP code fixed effects, θi, as well as day-of-week fixed effects, ϕd, in order to adjust for
geographic and temporal variation in the outcomes, respectively. Standard errors, εit, are
clustered by date. The coefficient of interest, β1, tells us the effect of congestion pricing on
daily air pollution or hospital admissions, i.e. it shows the local average treatment effect of
the policy at the break point.

Leveraging hourly ridership data, we use a different regression discontinuity specification
for public transit. We stay in line with Foreman (2016) who uses a non-parametric regression
discontinuity model to assess the policy effect on traffic volume. Having hourly ridership as
the dependent variable enables us to estimate the treatment effect heterogeneity for peak
and off-peak hours10. The model for public transit is as follows:

Rth = γ0 + γ1Aftert + γ2(t− c) + γ3Aftert × (t− c) + ϕd + ωh + εth, (2)

9In addition, the weather covariates also serve as a proxy for air pollution that aggravates symptoms of
respiratory illness.

10Ambient PM2.5 pollution and respiratory illness are related, and since we only have daily health data,
Specification (1) estimates the policy effect on air pollution at the daily level as well. In Appendix A, we
provide the results for hourly air pollution.
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Rth is the total number of public transit riders in hour h on date t. Since there is no toll for
vehicles crossing eastward onto the East Bay, the dependent variable measures westbound
ridership only, as in Foreman (2016). The model excludes the weather controls and adds ωh,
the hour-of-the-day fixed effect. The rest of the variables are the same as in Specification
(1)11. The coefficient of interest, γ1, measures the discontinuous change in public transit
ridership at the threshold.

The identifying assumption of the regression discontinuity study design is that in the
absence of congestion pricing, the change in our variables of interest (air pollution, hospital
admission, and public transportation) would have been smooth. This assumption is rea-
sonable as long as the running variable is not manipulated and all other factors influencing
the variables of interest change continuously in the vicinity of the toll start date, thereby
making any discontinuous changes in the outcomes at the time of the policy implementation
attributable to the sudden change in the congestion pricing scheme. Below we provide sup-
portive evidence for the validity of the research design, checking that the running variable
is not subject to manipulation and there is not jump in each of the control variables at the
breaking point.

First, as discussed in Hausman and Rapson (2018), the McCrary (2008) ‘manipulation
test’ that checks whether the density function of the running variable is continuous at the cut-
off becomes irrelevant when the distribution of the running variable is uniform, which is the
case with time. Therefore, we can evaluate the presence of the sorting effects only indirectly.
We are not familiar with any evidence on sorting into or out of treatment with respect to
the new congestion pricing policy implementation around the July 1, 2010, threshold. Yet,
if any of the sorting effects are present, our results should be interpreted as a combination
of the causal treatment effect of interest and any unobserved anticipation, avoidance, and
other types of effects (Hausman and Rapson, 2018).

Second, if the research design is valid, we should not observe any discontinuities in the
covariates as the running variable crosses the threshold. To test for such discontinuities, we
replace the dependent variable in Specification (1) with each of the weather controls and run
the model12. Although Specification (1) includes the same set of weather controls for the
air pollution and health data, the weather observations are assigned to either the pollution
stations or the ZCTAs in the sample area, making the estimation results slightly differ for the
two datasets. Tables 1 and 2 report the regression results of the covariates in Specification
(1). The coefficients of the control variables are statistically insignificant, meaning that there
are no discontinuities in the covariates near the cut-off.

11Clustering standard errors by pre- and post-policy dates separately or using two-way clustering in
Specification (1), i.e. clustering by date and pollution monitoring station or ZIP code, do not change the
estimation results presented in Section 5.

12We do not perform the test for the public transit data since we do not have weather covariates in
Specification (2).
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Table 1: Discontinuities in Covariates: Air Pollution Data

(1) (2) (3) (4) (5)
VARIABLES Precip T◦

min T◦
max Winddir Windspeed

After 0.234 0.867 -1.866 -10.64 0.869
(0.744) (0.702) (1.742) (17.63) (0.835)

Constant -2.646 5.670* 38.91*** 161.6* -1.866
(6.055) (2.966) (6.162) (82.75) (4.784)

Observations 235 235 235 235 235
R-squared 0.408 0.730 0.745 0.368 0.432
Days 60 60 60 60 60
Site FE YES YES YES YES YES
Time FE YES YES YES YES YES
Weather Controls YES YES YES YES YES

Notes: Each column of the table reports the results of estimating Specification (1) for the pollution dataset with one of the
weather covariates as the dependent variable. Standard errors are clustered by date, shown in parentheses; *** p<0.01, **
p<0.05, * p<0.1.

Table 2: Discontinuities in Covariates: Health Data

(1) (2) (3) (4) (5)
VARIABLES Precip T◦

min T◦
max Winddir Windspeed

After 0.0572 0.987 -2.256 -10.79 0.751
(0.709) (0.686) (1.730) (16.87) (0.766)

Constant 1.495 5.887** 28.32*** 142.8** 1.558
(4.408) (2.715) (5.764) (60.93) (3.491)

Observations 3,854 3,854 3,854 3,854 3,854
R-squared 0.384 0.768 0.763 0.357 0.402
Days 60 60 60 60 60
ZIP Code FE YES YES YES YES YES
Time FE YES YES YES YES YES
Weather Controls YES YES YES YES YES

Notes: Each column of the table reports the results of estimating Specification (1) for the health dataset with one of the weather
covariates as the dependent variable. Standard errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, *
p<0.1.
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5 Results

In this section, we provide the results of estimating the regression discontinuity models
for air pollution, respiratory health, and public transportation ridership13.

5.1 Air Pollution

Figure 7 shows mean daily PM2.5 concentrations during the sample period. There is no
change in the air pollution levels after the congestion pricing policy.

Figure 7: Daily Air Pollution: Graphical Evidence
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Notes: The figure shows mean daily PM2.5 pollution concentrations; the curve is obtained using third-degree polynomial
smoothing.

In Table 3, we present the results for the air pollution regression, Specification (1).
Consistent with the graphical evidence presented in the figure above, average daily pollution
did not change following the introduction of the new road toll.

13Before proceeding with the estimation, we perform a Fisher-type test for unit roots in our panel datasets
of air pollution, public health, as well as BART transit (see Appendix Table A4). The test rejects the null
hypothesis that all panels contain a unit root, confirming the stationary of the panel data. For the public
transit data, we perform a Dickey–Fuller test which also confirms the stationary of the time series.
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Table 3: Daily Air Pollution: Regression Results

(1) (2) (3)
VARIABLES PM2.5 PM2.5 PM2.5

After -0.411 0.222 1.197
(2.193) (2.409) (2.089)

Constant 12.45*** 12.25*** 14.94
(1.947) (1.946) (14.20)

Observations 220 220 220
R-squared 0.425 0.433 0.565
Days 60 60 60
Site FE YES YES YES
Time FE NO YES YES
Weather Controls NO NO YES

Notes: The table contains the results of estimating Specification (1) with mean daily PM2.5 air pollution as the dependent
variable and a 60-day bandwidth. The three columns present different combinations of fixed effects and control variables: in
Column (1), we only use pollution site fixed effects; Column (2) adds day-of-week fixed effects; Column (3) includes the weather
controls as well. Standard errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

As a possible explanation for the results in Table 3, the drop in traffic volume14 was not
large enough to change the pollution levels by any statistically significant amount, which
could be associated with the relative size of the toll and its salience. As mentioned in
Foreman (2016), the toll is just a small part of the total driving cost across the bridge and
collecting the toll electronically (many drivers pay the toll with their Fast Trak tags) makes
the toll less salient. Therefore, although raising the peak-hour toll by 50%, from $4 to $6,
may be considered a large increase, the lack of salience may have affected responsiveness to
the toll. In particular, while the toll reduces traffic volume, the magnitude of this reduction
may not be substantial enough to cause second-order effects associated with air pollution.

In addition, important determinants of local PM2.5 are wind direction, which influences
where the pollutant blows from and disperses to, and wind speed, which impacts the pollutant
concentrations (Hart et al., 2020)15. Specifically, wind affects air pollution by changing the
way pollution originating from local sources, such as traffic-related pollution, is distributed
over the given area or by transporting pollution produced externally into the area (Deryugina
et al., 2019). In summer months, the Bay Area typically sees winds blowing from the west,
i.e. from the ocean inland, while Deryugina et al. (2019) show that the region is characterized
by the lowest PM2.5 levels when the wind is blowing from the west and the north. Moreover,
the Bay Area is relatively windy, with the strongest winds in summer: during the sample
period, the average wind speed was 11 mph (with wind gusts of around 30 mph), and wind
speeds of 9 mph or more favor clearing the air from pollutants (The Economic Times, 2019).
Therefore, any relatively small changes in air pollution can be quickly dispersed by wind, and

14Foreman (2016) finds that the road toll caused a maximum drop of 7% in the hourly number of vehicles
crossing the bridge in peak shoulder hours.

15PM2.5 is removed by precipitation, but precipitation is minimal in the Bay Area in summer.
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the effect on traffic and pollution should be large enough for the estimates from Specification
(1) to be statistically significantly different from zero.

The results are robust to a number of changes in the dependent variable and the model.
First, we use hourly pollution as the dependent variable in Specification (1). A possible
reason for not observing any statistically significant results in Table 3 could be a relatively
small sample size. The hourly pollution dataset contains almost 20 times more observations
than our sample with daily pollution. The estimation results reported in Tables A1 and
A2 show that there is no effect of the road toll on hourly PM2.5 concentrations either,
meaning that the absence of the policy effect with respect to daily air pollution is likely not
a sample size issue. In addition, in Table A5, we test a sample area located far away from
the Bay Bridge (placebo effect), as well as experiment with different polynomial degrees and
bandwidths in Specification (1) (see Tables A8 and A9, respectively)16.

5.2 Respiratory Health

In Figure 8, we plot patient counts for respiratory diseases per ZIP code per day during
the sample period. We do not observe a change in respiratory health illnesses after the date
when the toll was implemented.

Figure 8: Daily Respiratory Illness Hospital Visits: Graphical Evidence
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Notes: The figure shows mean daily respiratory illness hospital visits per capita per ZIP code; the curve is obtained using
third-degree polynomial smoothing.

The results of estimating Specification (1) are presented in Table 4: the policy has no
effect on respiratory health.

16Moreover, there is no effect on other criteria air pollutants associated with road traffic, such as carbon
monoxide and nitrogen oxides, and the results do not change when using the logarithm of the dependent
variable or maximum daily PM2.5 pollution instead of the mean daily pollution on the left-hand side of
Specification (1). The results are also robust to using July 1, 2009, or July 1, 2011, as the false date of the
policy change (placebo effect). The estimation results are available upon request.

17



Table 4: Daily Respiratory Illness Hospital Visits: Regression Results

(1) (2) (3)
VARIABLES Hosp. Visits Hosp. Visits Hosp. Visits

After 0.148 0.142 -0.0150
(0.171) (0.194) (0.189)

Constant 1.730*** 1.740*** 3.505***
(0.148) (0.172) (0.896)

Observations 3,619 3,619 3,619
R-squared 0.199 0.200 0.202
Days 60 60 60
ZIP Code FE YES YES YES
Time FE NO YES YES
Weather Controls NO NO YES

Notes: The table contains the results of estimating Specification (1) with daily hospital visits per 10,000 population per ZIP
code as the dependent variable and a 60-day bandwidth. The three columns present different combinations of fixed effects and
control variables: in Column (1), we only use ZIP code fixed effects; Column (2) adds day-of-week fixed effects; Column (3)
includes the weather controls as well. Standard errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, *
p<0.1.

Previously, we have shown that there is no evidence of PM2.5 levels changing after the
congestion pricing is introduced. Since exposure to PM2.5 air pollution is directly linked to
human health, we do not see any changes in hospital visits caused by the new policy. In addi-
tion, the health results serve as a double-check for our pollution estimates. As shown above,
we do not observe a drop in PM2.5 concentrations, but we must admit that the pollution
levels can be imperfectly measured: the wind patterns described above and, possibly, the
size of the pollution effect itself may require us to have more pollution stations to capture it.
If there was in fact a pollution effect, for some reason not captured by our model, we would
see a statistically significant change in hospital visits that are measured more precisely than
the ambient PM2.5 level. However, the results of estimating the pollution and health models
are consistent, meaning our pollution estimates are likely not driven by any measurement
error.

In Appendix A we present the following checks demonstrating the robustness of the health
effect: we estimate the effect of congestion pricing on hospital admission for broken bones as
a placebo condition in Table A6; different polynomial degrees and bandwidths are in Tables
A8 and A9, respectively17.

17Chen et al. (2018) study the effect of air quality alerts on health, including hospital admissions or
emergency department visits, using a non-parametric regression discontinuity model. The effect of the road
toll policy on hospital admission estimated with a non-parametric model is not statistically significantly
different from zero, similar to the results shown in Table 4. In addition, we estimate Specification (1)
for a larger sample area to see if the number of observations influences the results. We use a sample area
consisting of ZCTAs located 10 miles around the Bay Bridge; the sample contains around 5,000 observations.
The estimation results are the same as those reported in Table 4. However, we should be cautious about using
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5.3 Public Transit

Figures 9-11 plot westbound public transit ridership for all hours, as well as peak and off-
peak hours separately. The figures demonstrate a sharp increase in public transit ridership
after the new road toll policy went into effect. Interestingly, in Figure 10, an immediate jump
in peak transit ridership is followed by a drop back to the pre-policy ridership levels. This is
consistent with Foreman (2016) who employs regression discontinuity design and finds that
peak traffic volume drops immediately after July 1, 2010, but then it quickly recovers to the
level that is below the pre-policy one but above the July 2010 number of vehicles.

Figure 9: Graphical Evidence: Westbound Public Transit, All Hours
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Notes: The figure shows the scatter plot of mean hourly westbound public transit ridership and date, along with the line
corresponding to the prediction for the ridership from a linear regression of the ridership on date.

larger sample areas since there could be more factors influencing respiratory health hospital admissions than
the congestion pricing alone. Finally, the results do not change when using the logarithm of the dependent
variable or heart disease hospital admission per capita as the dependent variable in Specification (1). The
results are also robust to using July 1, 2009, or July 1, 2011, as the false date of the policy change (placebo
effect). The estimation results are available upon request.
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Figure 10: Graphical Evidence: Westbound Public Transit, Peak Hours
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Notes: The figure shows the scatter plot of mean hourly westbound public transit ridership during peak hours and date, along
with the line corresponding to the prediction for the ridership from a linear regression of the ridership on date.

Figure 11: Graphical Evidence: Westbound Public Transit, Off-Peak Hours
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Notes: The figure shows the scatter plot of mean hourly westbound public transit ridership during off-peak hours and date,
along with the line corresponding to the prediction for the ridership from a linear regression of the ridership on date.

In Table 5, we present the results of estimating Specification (2). We see an increase in
public ridership, with its magnitude larger for peak hours.
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Table 5: Hourly Westbound Public Transit Regression Results

(1) (2) (3) (4)
VARIABLES Riders: All Hours Riders: All Hours Riders: Peak Hours Riders: Off-Peak Hours

After 87.19** 83.11*** 106.3** 67.03**
(41.50) (30.78) (52.82) (32.16)

Constant 2,474*** 2,472*** 4,390*** 1,144***
(24.77) (13.32) (29.80) (16.96)

Observations 1,694 1,694 693 1,001
R-squared 0.000 0.983 0.979 0.966
Days 60 60 60 60
Time FE NO YES YES YES

Notes: The table contains the results of estimating Specification (2) for a 60-day bandwidth, where the dependent variable
is hourly westbound public transit ridership, which is the number of passengers across all BART lines and AC Transit routes
traveling westward onto the San Francisco Peninsula during a certain hour on a certain day. Column (1) does not include time
fixed effects (day of the week and hour of the day); in Column (2), the time fixed effects are added in Specification (2). The
model used to obtain results shown in Columns (3) and (4) is identical to that in Column (2), but the dependent variable is
hourly westbound public transit ridership for peak hours in Column (3) or off-peak-hours in Column (4). Standard errors are
clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Some of the reduction in the number of vehicles crossing the bridge could result from
shifting to public transit. Substitution towards public transit is likely the case for carpoolers.
Foreman (2016) finds that carpool traffic on the bridge decreased by 300-500 vehicles per
hour during peak times. Carpoolers are more likely to be former public transit users rather
than solo drivers and they also may well take transit as a backup for their return trip (Deakin
et al., 2012; Public Transport Users Association, 2016). Therefore, it makes sense for some
carpoolers to switch to public transit once carpooling is no longer an option, which is why we
see an increase in transit ridership after the new policy was introduced. However, the jump
in public ridership is quite small compared to a drop in carpool traffic: the latter leads to a
minimum of 900 people off the road (carpools are three or more people on the Bay Bridge,
so 300 is multiplied by 3), while the former is 100 people maximum (see Column (3) of Table
5). While it is “induced” carpools, i.e. those created to save commuting time, whose driver
and passengers are more likely to switch to public transit, they constitute the minority of
the carpool traffic since most of the carpools are “natural” carpools, such as a parent with
children, that would have occurred anyway (Forbes, 2019).

As shown in Appendix A, the estimated policy effect on transit ridership is robust to the
following: daily public transit (Table A3) or hourly BART transit per station pair (Table
A4) as the dependent variable; using July 1, 2009, as the false date of the policy change
(placebo) in Table A7; different bandwidths in Table A1018.

18Moreover, one could assume that weather patterns may influence public transit ridership. Adding
weather controls (temperature, precipitation, wind speed, wind direction - all four variables or just precip-
itation) to Specification (2) does not change the transit effect. Next, estimating the public transit model
for AC Transit ridership only (as a time series or a panel, with the latter consisting of hourly AC Transit
ridership per route) yields no effect of the congestion pricing policy on the number of bus passengers. The
results do not change when using the logarithm of the dependent variable in Specification (2). The results
are also robust to exploring July 1, 2011, as the false date of the policy change (placebo effect).
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Following recommendations on evaluating a regression discontinuity in time discussed in
Hausman and Rapson (2018), we conduct some additional robustness checks for the three
datasets. Specifically, we test an augmented local linear model, a longer time frame, such
as up to 2 years before and after the toll (with the month-of-year fixed effects included); we
add a lag of the dependent variable to the right-hand side of the model, estimate the model
with Newey-West standard errors, conduct a “donut” regression discontinuity dropping a
week before July 4 as well, or do not drop any days around the new toll implementation. For
the public transit analysis, depending on the robustness check, the coefficients on ridership
(across all hours or for some sets of hours) may become statistically insignificant. However,
this is still consistent with the main results since the jump in public ridership (Table 5) is
relatively small in magnitude. The estimation results are available upon request.

6 Conclusion

We use regression discontinuity design to estimate the causal relationship between the
congestion pricing policy introduced on the Bay Bridge on July 1, 2010, and air pollution,
respiratory health, as well as public transportation ridership. Congestion pricing provides
a quasi-experimental setting where the increase in the cost of transportation is plausibly
exogenous to other factors that determine the three outcomes of interest.

The paper finds that the new road toll policy, which led to a drop in rush hour traffic
volume on the Bay Bridge (Foreman, 2016), was associated with a moderate increase in
public transit ridership (mainly, metro rail ridership), but, contrary to much of the existing
literature on the topic, it did not affect local air pollution levels and respiratory health of
people residing in the Bay Bridge vicinity. One reason for this result could be associated with
the relatively small size of the toll and its lack of salience. While the toll induces reductions
in traffic volume, the magnitude of this decline may not be large enough to cause second-
order or third-order effects associated with air pollution and respiratory health. Another
explanation for our findings could be that the effect of congestion pricing on pollution and
health likely depends on the region under study. The Bay Area has certain distinct climate
characteristics, such as wind patterns or proximity to the Pacific Ocean, which may mute
the effects of the toll on air pollution.

From a public policy perspective, our study underscores that the social welfare effects of
congestion pricing are driven by heterogeneous, context-specific factors. As a result, pricing
mechanisms to attain environmental goals should be tailored to local conditions rather than
applied as a one-size-fits-all approach. A further insight from our work is that road toll
implementation requires robust evaluation and timely adjustment to new information to
ensure positive impacts on air quality, public health, and, more generally, the attainment of
public policy goals.
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A Robustness Checks

Table A1: Hourly Air Pollution

(1) (2) (3)
VARIABLES PM2.5 PM2.5 PM2.5

After -0.420 0.201 0.433
(2.135) (2.333) (2.321)

Constant 12.46*** 12.27*** 54.48**
(1.895) (1.881) (20.95)

Observations 5,233 5,233 5,138
R-squared 0.273 0.300 0.318
Days 60 60 60
Site FE YES YES YES
Time FE NO YES YES
Weather Controls NO NO YES

Notes: The table contains the results of estimating Specification (1) with hourly PM2.5 air pollution as the dependent variable.
The three columns present different combinations of fixed effects and control variables: in Column (1), we only use pollution
site fixed effects; Column (2) adds day-of-week and hour-of-the-day fixed effects; Column (3) includes weather controls as well.
The weather covariates are the same as those used when estimating Specification (1) for the daily pollution data, except that
we do not include minimum and maximum hourly ambient temperature - we use mean hourly temperature instead. Standard
errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table A2: Hourly Air Pollution: Different Sets of Hours

(1) (2) (3) (4) (5)
VARIABLES PM2.5: Peak PM2.5: Off-Peak PM2.5: PeakNon−Sh PM2.5: PeakSh PM2.5: Off-PeakSh

After 1.034 0.0648 0.989 1.171 1.179
(2.237) (2.393) (2.193) (2.490) (2.622)

Constant 40.74 62.25*** 35.56 46.83* 66.53***
(27.24) (19.47) (32.17) (26.19) (19.38)

Observations 1,919 3,219 1,062 857 864
R-squared 0.323 0.322 0.356 0.301 0.349
Days 60 60 60 60 60
Site FE YES YES YES YES YES
Time FE YES YES YES YES YES
Weather Controls YES YES YES YES YES

Notes: The table contains the results of estimating Specification (1) with hourly PM2.5 air pollution as the dependent variable.
Each column corresponds to hourly PM2.5 concentrations measured during specific hours. Column (1) reports the estimation
results for hourly PM2.5 pollution in peak hours (from 5 am to 10 am and from 3 pm to 7 pm); Column (2) uses hourly PM2.5

pollution in off-peak hours (the hours except for the peak ones); Column (3) shows the results for peak non-shoulder hours
(from 6 am to 9 am and from 4 pm to 6 pm); Column (4) includes PM2.5 for peak shoulder hours (from 5 am to 6 am, from 9
am to 10 am, from 3 pm to 4 pm, as well as from 6 pm to 7 pm); Column (5) shows PM2.5 for off-peak shoulder hours (from 4
am to 5 am, from 10 am to 11 am, from 2 pm to 3 pm, as well as from 7 pm to 8 pm). The fixed effects and weather controls
are the same as reported in the notes under Table A1. Standard errors are clustered by date, shown in parentheses; *** p<0.01,
** p<0.05, * p<0.1.
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Table A3: Daily Westbound Public Transit

(1) (2)
VARIABLES Riders Per Day Riders Per Day

After 1,918** 1,829**
(930.8) (704.7)

Constant 54,438*** 54,385***
(555.6) (304.9)

Observations 77 77
R-squared 0.322 0.778
Days 60 60
Time Controls NO YES

Notes: The table contains the results of estimating Specification (2), where the dependent variable is daily westbound public
transit ridership, which is the daily count of passengers across all BART lines and AC Transit routes traveling westward onto
the San Francisco Peninsula. Column (1) does not include time fixed effects (day of the week); in Column (2), the time fixed
effects are added in Specification (2). Standard errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, *
p<0.1.
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Table A4: Hourly Station-to-Station Westbound BART Transit

(1) (2) (3) (4)
VARIABLES Riders: All Hours Riders: All Hours Riders: Peak Hours Riders: Off-Peak Hours

After 0.962** 0.917*** 1.182** 0.726**
(0.464) (0.342) (0.553) (0.364)

Constant 27.06*** 27.03*** 46.95*** 12.77***
(0.281) (0.149) (0.316) (0.186)

Observations 152,768 152,768 63,756 89,012
R-squared 0.104 0.577 0.607 0.633
Days 60 60 60 60
Station Pair FE YES YES YES YES
Time FE NO YES YES YES

The table contains the results of estimating Specification (2), where the dependent variable is westbound BART ridership per
hour per station pair, which is the number of passengers per station pair traveling westward onto the San Francisco Peninsula
during a certain hour on a certain day. Column (1) includes station-pair fixed effects only; in Column (2), we add time fixed
effects (day of the week and hour of the day). The model used to obtain results shown in Columns (3) and (4) is identical
to that in Column (2), but the dependent variable is westbound BART ridership per hour per station pair for peak hours in
Column (3) or off-peak-hours in Column (4). Standard errors are clustered by date (using two-way clustering, i.e. clustering
by date and station pair, does not change the estimation results), shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table A5: Placebo Test: Daily Air Pollution in the South Bay

(1) (2) (3)
VARIABLES PM2.5 PM2.5 PM2.5

After -2.710 -1.983 -0.407
(2.270) (2.490) (1.652)

Constant 10.92*** 10.80*** -4.365
(1.731) (1.794) (16.07)

Observations 76 76 76
R-squared 0.266 0.285 0.613
Days 60 60 60
Time FE NO YES YES
Weather Controls NO NO YES

Notes: The table contains the results of estimating Specification (1) with mean daily PM2.5 air pollution as the dependent
variable. We select a “false” sample area which is 6 miles around Downtown San Jose in the South Bay. In the new sample area,
there is one pollution monitoring site located near the Guadalupe River Park. The three columns present different combinations
of fixed effects and control variables: in Column (1), we do not use any fixed effects (we omit pollution-site fixed effects from
Specification (1) since there is only one pollution monitor in the sample area); Column (2) adds day-of-week fixed effects;
Column (3) includes the weather controls as well. Standard errors are clustered by date, shown in parentheses; *** p<0.01, **
p<0.05, * p<0.1.
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Table A6: Placebo Test: Daily Hospital Admission for Broken Bones

(1) (2) (3)
VARIABLES Hosp. Visits Hosp. Visits Hosp. Visits

After 0.219 0.193 0.337
(0.356) (0.357) (0.301)

Constant 1.802*** 1.825*** -0.0551
(0.301) (0.285) (1.019)

Observations 3,619 3,619 3,619
R-squared 0.164 0.165 0.167
Days 60 60 60
ZIP Code FE YES YES YES
Time FE NO YES YES
Weather Controls NO NO YES

Notes: The table contains the results of estimating Specification (1) with daily hospital visits for broken bones per 10,000
population per ZIP code as the dependent variable. The three columns present different combinations of fixed effects and
control variables: in Column (1), we only use ZIP code fixed effects; Column (2) adds day-of-week fixed effects; Column (3)
includes the weather controls as well. Standard errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, *
p<0.1.
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Table A7: Placebo Test: Hourly Westbound Public Transit with the Cut-Off Date of July
1, 2009

(1) (2) (3) (4)
VARIABLES Riders: All Hours Riders: All Hours Riders: Peak Hours Riders: Off-Peak Hours

After -32.57 -31.83 -39.40 -26.59
(38.44) (30.09) (62.17) (28.59)

Constant 2,450*** 2,444*** 4,312*** 1,151***
(24.24) (15.20) (28.76) (20.42)

Observations 1,672 1,672 684 988
R-squared 0.000 0.985 0.981 0.968
Days 60 60 60 60
Time FE NO YES YES YES

Notes: The table contains the results of estimating Specification (2), where the dependent variable is hourly westbound public
transit ridership, which is the number of passengers across all BART lines and AC Transit routes traveling westward onto the
San Francisco Peninsula during a certain hour on a certain day. We use a “false” cut-off date, which is July 1, 2009. Column
(1) does not include time fixed effects (day of the week and hour of the day); in Column (2), the time fixed effects are added
in Specification (2); the model used to obtain results shown in Columns (3) and (4) is identical to that in Column (2), but the
dependent variable is hourly westbound public transit ridership for peak hours in Column (3) or off-peak-hours in Column (4).
Standard errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table A8: Different Polynomial Degrees (Daily Air Pollution and Daily Hospital Visits)

Dependent variable:
PM2.5 Hosp. Visits
(1) (2)

Panel A: Degree 4

After 4.137 -0.0264
(-3.169) (-0.252)

R-squared 0.587 0.202

Panel B: Degree 5

After 0.891 -0.00514
(-1.899) (-0.245)

R-squared 0.649 0.202

Days 60 60
Time FE YES YES
Weather Controls YES YES

Number of observations 220 3,619

Notes: The table contains the results of estimating Specification (1), where the dependent variable is mean daily PM2.5 air
pollution or daily hospital visits per 10,000 population per ZIP code – see Column (1) or (2), respectively. In Panel A, instead of
a third-order polynomial, we include a fourth-order polynomial in the model, and Panel B presents the results for a fifth-order
polynomial. The model includes pollution site or ZIP code fixed effects, day-of-week fixed effects, as well as the weather controls.
Standard errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table A9: Different Bandwidths (Daily Air Pollution and Daily Hospital Visits)

Dependent variable:
PM2.5 Hosp. Visits
(1) (2)

Panel A: 90 Days

After 0.602 0.107
(-2.707) (-0.191)

R-squared 0.392 0.187
Number of observations 320 5,358

Panel B: 120 Days

After 1.228 0.177
(-2.043) (-0.159)

R-squared 0.397 0.174
Number of observations 436 7,285

Time FE YES YES
Weather Controls YES YES

Notes: The table contains the results of estimating Specification (1), where the dependent variable is mean daily PM2.5 air
pollution or daily hospital visits per 10,000 population per ZIP code – see Column (1) or (2), respectively. In Panel A, instead
of a 60-day bandwidth, we include the 90-day one, and Panel B presents the results for a 120-day bandwidth. The model
includes pollution site or ZIP code fixed effects, day-of-week fixed effects, as well as the weather controls. Standard errors are
clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table A10: Different Bandwidths (Hourly Westbound Public Transit Ridership)

Dependent variable:
Riders: All Hours Riders: Peak Hours Riders: Off-Peak Hours

(1) (2) (3)

Panel A: 90 Days

After 58.78*** -63.65 143.5***
(-22.05) (-44.92) (-26.82)

R-squared 0.983 0.979 0.963
Number of observations 2,508 1,026 1,482

Panel B: 120 Days

After 45.09** -39.31 103.5***
(-22.46) (-43.57) (-22.49)

R-squared 0.982 0.978 0.955
Number of observations 3,432 1,404 2,028

Time FE YES YES YES

Notes: The table contains the results of estimating Specification (2), where the dependent variable is hourly westbound public
transit ridership, which is the number of passengers across all BART lines and AC Transit routes traveling westward onto the
San Francisco Peninsula during a certain hour on a certain day. In Panel A, instead of a 60-day bandwidth, we use the 90-day
one, and Panel B presents the results for a 120-day bandwidth. All the columns include day-of-week and hour-of-the-day fixed
effects. The model used to obtain results shown in Columns (2) and (3) is identical to that in Column (1), but the dependent
variable is hourly westbound public transit ridership for peak hours in Column (2) or off-peak-hours in Column (3). Standard
errors are clustered by date, shown in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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