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Abstract

We argue that key findings of the recent empirical literature on the effects of news about fu-
ture technology — including their tendency to generate negative comovement of macroeconomic
aggregates, and their puzzling disinflationary nature — are due to measurement errors in total
factor productivity (TFP). Reduced-form innovations to TFP, which are typically identified as
unanticipated technology shocks, are found to generate anomalous responses that are inconsis-
tent with the interpretation of these disturbances as supply shocks, thus hinting at the presence
of an unpurged non-technological component in measured TFP. Such an impurity undermines
existing identification schemes, which are based on the premise that measured TFP is entirely
driven by surprise and news shocks to technology. In this paper, we estimate the macroeco-
nomic effects of news shocks in the U.S. using an agnostic identification approach that is robust
to measurement errors in TFP. We find no evidence of negative comovement conditional on a
news shock, and the disinflation puzzle essentially vanishes under our identification strategy.
Our results also indicate that news shocks have become an important driver of business-cycle
fluctuations in recent years.
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1 Introduction

A long-standing and fundamental question in macroeconomics is: what causes business-cycle fluc-
tuations? Following the seminal work of Beaudry & Portier (2006), interest has been rekindled in
Pigou (1927)’s theory of business cycles, according to which changes and revisions in expectations
about future fundamentals can give rise to boom-bust cycles. A number of empirical studies —
based on vector autoregressions (VARs) — have therefore attempted to gauge the importance of
news shocks about future productivity in generating the type of positive comovement of macroe-
conomic aggregates observed in the data and in explaining their variability.1

Beaudry & Portier (2006) were the first to document using U.S. data that news shocks lead
to positive comovement of consumption, hours worked, and investment, and account for the bulk
of their variability at business-cycle frequencies. Beaudry & Lucke (2010) and Beaudry & Portier
(2014) reach essentially the same conclusions. These findings have been challenged, however, by
some scholars who questioned the underlying identification strategies.2 Using an alternative, more
flexible, identification approach, Barsky & Sims (2011) find that good news about future technology
tend to raise consumption but to decrease output, hours worked, and investment in the short run.3

They also find that inflation declines sharply and persistently in response to a positive realization of
the news shock; a result deemed puzzling in light of the standard New Keynesian model.4 Finally,
though Barsky & Sims (2011) find that news shocks account for a significant fraction of output
variability at business-cycle frequencies, they invoke the negative comovement to conclude that
these shocks are unlikely to be a major driver of business cycles. These findings are confirmed
by subsequent studies that propose alternative but related methodologies to Barsky & Sims’ (e.g.,
Forni et al. (2014), Barsky et al. (2015), and Kurmann & Sims (2017)).

Existing empirical approaches to identify news shocks about future productivity are based on
1An alternative approach to evaluate the importance of news shocks has been to estimate/calibrate dynamic

stochastic general-equilibrium (DSGE) models that feature anticipated shocks to technology. This approach has been
pursued by Jaimovich & Rebelo (2009), Fujiwara et al. (2011), Karnizova (2012), Schmitt-Grohé & Uribe (2012), and
Khan & Tsoukalas (2012).

2Beaudry & Portier (2006), Beaudry & Lucke (2010), and Beaudry & Portier (2014) estimate small-scale systems
(two to five equations) in which news shocks are identified using a mix of short- and long-run restrictions. Kurmann
& Mertens (2014) show that Beaudry & Portier (2006)’s identification scheme does not have a unique solution when
applied to a Vector Error Correction Model (VECM) with more than two variables. This identification scheme
is therefore uninformative about the effects of news shocks and their importance for business cycles. Kurmann &
Mertens (2014) further point out that the validity of the identification strategy proposed by Beaudry & Lucke (2010)
critically depends on the plausibility of zero restrictions for other non-news shocks necessary to identify news shocks.
Finally, Forni et al. (2014) argue that small-scale VARs and VECMs do not contain enough information to recover
anticipated technology shocks from observable variables, a problem commonly known as non-fundamentalness.

3Barsky & Sims (2011) identify the news shock as the shock that best explains future movements in total factor
productivity not accounted for by its own innovation.

4See, for instance, Jinnai (2013), Barsky et al. (2015), and Kurmann & Otrok (2014).
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the premise that total factor productivity (TFP) is entirely and exclusively driven by two orthogonal
disturbances: unanticipated and news shocks, the latter generally affecting TFP with a lag. This
assumption is consistent with the standard treatment of TFP in theoretical macroeconomic models.
Hence, the above-mentioned studies invariably include a measure of TFP in the information set
when attempting to identify news shocks from the data.

In this paper, we argue that the TFP measures typically utilized in the empirical literature
contain important measurement errors that call into question the interpretation of TFP as a pure
measure of technology. This is despite the corrections aiming at purging measured TFP of its
non-technological component by controlling for unobserved variations in labor and capital. Most
importantly, we demonstrate that the negative comovement of macroeconomic aggregates and the
disinflation puzzle documented in recent empirical studies are spurious and are just an artifact of
using a polluted measure of technology. In fact, we show that the news shocks identified in these
studies are mostly picking up the effects of unanticipated technology shocks.

We document the severity of measurement errors in the adjusted TFP measure constructed
by Fernald (2014) — which is the most widely used TFP series — by examining the dynamic
effects of an unanticipated technology shock, identified as the reduced-form innovation to TFP, as
is done in all existing VAR-based studies on news shocks.5 The most revealing symptom of the
presence of measurement errors is that unanticipated technological improvements are found to be
inflationary, an outcome that runs against the conventional interpretation of surprise technology
shocks as supply shocks, and violates the prediction of any sensible theory of aggregate fluctuations.
A favorable surprise technology shock is also found to have counter-intuitive effects on stock prices
and consumer confidence, which are initially unresponsive to the shock but fall persistently in the
subsequent periods. We interpret these anomalous responses as an indication that the TFP series
used in the empirical literature is an uncleansed measure of technology. Since a correct identification
of news shocks hinges on the surprise technology shocks being properly identified, measurement
errors in TFP are likely to undermine existing identification approaches.

We then propose an agnostic identification strategy that is robust to the presence of measure-
ment errors in TFP. Our methodology relaxes the assumption that only technological shocks can
affect measured TFP. Instead, we allow for the existence of non-technology shocks, which may
capture measurement errors arising from the imperfect observability of inputs and their utilization
rates, from the potential misspecification of the production function, and from aggregation bias.
Non-technology shocks may affect measured TFP contemporaneously or at any future horizon, just

5The only exception is the study by Kurmann & Sims (2017), in which there is no attempt to identify surprise
technology shocks.
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like surprise technology shocks. To identify the latter, we rely on the sign-restriction approach
proposed by Mountford & Uhlig (2009), imposing a negative sign on the inflation response to a
positive shock. Hence, by construction, our strategy avoids the inflation anomaly engendered by
identification schemes that associate surprise technology shocks with reduced-form innovations to
TFP. We then extract the news shock as the linear combination of reduced-form innovations that is
orthogonal to the surprise technology shock and that maximizes the contribution of the news shock
to the forecast-error variance of TFP at a long but finite horizon. The argument underlying this
criterion, originally proposed by Francis et al. (2014) and commonly referred to as the Max Share,
is that the contribution of non-technology shocks to movements in TFP is likely to be negligible at
very low frequencies.

We take our agnostic approach to the data by estimating a seven-variable VAR similar to that
considered by Barsky & Sims (2011), first using their original data set, which spans the period
1960Q1–2007Q3, and then using an updated sample that extends the data coverage to 2016Q4. We
find that non-technology shocks account for nearly half of the forecast error variance of Fernald’s
TFP series at the one-quarter horizon. This observation confirms the existence of non-trivial
measurement errors in measured TFP and raises skepticism about available estimates of the effects
of news shocks. Our results also show that the estimated effects of unanticipated technology shocks
are remarkably consistent both with the predictions of the medium-scale New Keynesian model
of Smets & Wouters (2007) and with the empirical evidence based on identification via long-run
restrictions. In addition to being disinflationary by construction, an unanticipated technological
improvement leads to a persistent and hump-shaped increase in consumption and output and to a
short-term decline in hours worked. Moreover, the shock is found to have a positive effect on stock
prices and consumer confidence.

Turning to the effects of news shocks, we find no evidence of negative comovement between
consumption, output, and hours worked using our methodology. In the sample ending in 2007, a
favorable news shock triggers an increase in consumption, but the initial response of output and
hours worked is small and statistically indistinguishable from zero. In the updated sample, all
three variables increase significantly and persistently in response to the shock. Importantly, this
simultaneous increase — indicative of positive comovement — occurs even before TFP starts to
rise, thus lending support to the view that aggregate fluctuations can be driven by expectations
of higher productivity. Our results also indicate that the inflation response is mostly statistically
insignificant in both samples. In other words, the disinflation puzzle essentially vanishes under our
identification strategy. More generally, the effects of a news shock identified using our agnostic
strategy differ markedly from Barsky & Sims’ results. The latter turn out to be very similar to our
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estimated effects of a surprise technology shock, pointing to a misidentification of the news shock.
Finally, variance-decomposition results and the historical decomposition of the time series of

consumption, output, and hours strongly suggest that news shocks are unlikely to have been a
major contributor to business-cycle fluctuations before 2007. In the extended sample, however,
we find that news shocks account for roughly 40 to 60 percent of the forecast error variance of
consumption, output, and hours worked at business-cycle frequencies, and that they explain a
significant share of the decline in these quantities during the recent U.S. downturns, including
the Great Recession. Together, these findings indicate that TFP news shocks have become an
important source of business-cycle fluctuations in recent years, a conclusion that contradicts the
verdict of the recent empirical literature that builds on Barsky & Sims’ methodology (e.g., Forni
et al. (2014), Barsky et al. (2015), and Kurmann & Sims (2017)).

The presumption that TFP is measured with error is of course not new; it has been discussed, for
instance, in Christiano et al. (2004), Basu et al. (2006), and Fernald (2014). In a contemporaneous
paper closely related to ours, Kurmann & Sims (2017) also study the implications of measurement
errors in TFP for the identification of news shocks. These authors, however, do not establish a link
between the anomalous responses to a surprise technology shock and the existence of measurement
errors in TFP. Instead, their suspicion of the presence of such errors is based on the sensitivity of
the estimated effects of news shocks using Barsky & Sims’ methodology to revisions in Fernald’s
TFP series. Kurmann & Sims (2017) document that these revisions mainly reflect changes in the
estimate of factor utilization, and argue that mis-measured utilization invalidates the identifying
restriction that news shocks do not affect adjusted TFP on impact. Based on an identification
strategy that relaxes this restriction and relies on the Max Share criterion to extract the news
shock, they obtain very similar results to those documented by Barsky & Sims (2011) — namely,
a negative comovement between consumption and hours and a limited contribution of news shocks
to business-cycle fluctuations — with the difference that the results remain robust to revisions in
Fernald’s TFP series.

A crucial assumption of Kurmann & Sims’ identification scheme is that the news shock is not
orthogonalized with respect to the surprise technology shock (which is not identified). The two
shocks are therefore likely to be muddled up since they both affect TFP in the short and in the
long run, making it impossible — without further assumptions — to disentangle their respective
contribution to the forecast error variance of TFP at any given horizon. Importantly, when we
impose the orthogonality between the news and the surprise technology shock while relaxing the
zero-impact restriction, we find no evidence of negative comovement and a significant role of news
shocks in explaining aggregate fluctuations at business-cycle frequencies in the updated sample.
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In fact, our results are almost identical to those obtained by imposing the zero-impact restriction.
This suggests that Kurmann & Sims’ approach may be confounding news and surprise technology
shocks.

The rest of this paper is organized as follows. Section 2 discusses the symptoms of measurement
errors in TFP. Section 3 presents our agnostic identification strategy. Section 4 discusses the results
based on Barsky & Sims (2011) original data and on an updated sample. Section 5 studies the
robustness of our results when we relax the zero-impact restriction. Section 6 concludes.

2 The Inflation Anomaly and Other Symptoms of Measurement
Errors in TFP

In this section, we illustrate the extent to which the effects of unanticipated technology shocks
typically reported in the VAR-based “news” literature are inconsistent with the predictions of New
Keynesian models and, for that matter, any sensible theory of aggregate fluctuations. We view these
inconsistencies as symptoms of the presence of measurement errors in the TFP series commonly
used in the literature.

2.1 Unanticipated technology shocks: measurement...

In the VAR-based literature on news shocks, unanticipated technology shocks are usually identified
as the reduced-form innovations to TFP. Formally, let yt be a k× 1 vector of observables of length
T , which includes TFP and which has the following moving-average (MA) representation

yt = B(L)ut,

where ut is a k×1 vector of statistical innovations, whose variance-covariance matrix is denoted by
Σ. Let εt be a k× 1 vector of structural innovations, including the unanticipated technology shock,
whose variance-covariance matrix is normalized to Ik. If a linear mapping between the statistical
innovations, ut, and the structural shocks, εt, exists, then we can write

ut = Aεt,

where the impact matrix, A, must be such that AA′= Σ. Assuming (without loss of generality)
that TFP is ordered first in yt and that the unanticipated technology shock is ordered first in εt,
a Cholesky decomposition of Σ ensures that the surprise technology shock is proportional to the
statistical innovation to TFP.

We use the strategy above to measure the effects of a surprise technology shock within a seven-
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variable VAR similar to that estimated by Barsky & Sims (2011). The vector of observables includes
adjusted TFP, output, consumption, hours, inflation, stock prices, and consumer confidence, mea-
sured at a quarterly frequency. We start by using Barsky and Sims’ original data, which span the
period 1960Q1–2007Q3; we then update the sample by extending it to 2016Q4.6

The results are shown with solid black lines in Figure 1.7 The (one-standard-error) confidence
intervals around the estimated impulse responses are computed using the bias-corrected bootstrap
procedure proposed by Kilian (1998). A surprise technology shock triggers a transitory increase
in TFP, output, and consumption. In all three cases, the estimated response is rather monotonic
and the variable reverts to its pre-shock level rather rapidly. In contrast, hours worked exhibit
a relatively muted — and mostly statistically insignificant — response. The Figure also shows
that, in response to the identified surprise technology shock, inflation rises persistently and in a
hump-shaped manner, with a peak occurring at around 10 quarters after the shock. Stock prices
and consumer confidence, in contrast, are unresponsive on impact and eventually fall below their
pre-shock levels for a prolonged period of time. Very similar results are reported by Forni et al.
(2014), Barsky et al. (2015), and Fève & Guay (2016).

When we extend the sample to 2016Q4, two notable differences with respect to the results above
stand out (see Figure 2). First, hours worked now fall initially in response to the shock, but their
response remains mostly statistically insignificant. Second, stock prices and consumer confidence
now rise for about three quarters after the shock, but they continue to decline persistently during
the subsequent quarters. These two exceptions aside, the results based on the updated sample are
very similar to the original ones. In particular, the response of TFP, output and consumption are
transitory, inflation rises persistently and in a hump-shaped manner, and consumer confidence falls
persistently with a delay.

2.2 ... and theory

How do the empirical findings discussed in the previous section compare with the predictions of
New Keynesian theory of aggregate fluctuations? We answer this question by studying the effects
of unanticipated technology shocks both within the simplest version of the New Keynesian model
and the more realistic medium-scale version proposed by Smets & Wouters (2007). To do so, we

6The series used in estimation are constructed as follows. Adjusted TFP is the quarterly series constructed by
Fernald (2014), which controls for unobserved input variation. Output is measured by the log of real GDP in the non-
farm business sector. Consumption is measured by the log of real personal spending on non-durables and services.
Hours are measured by the log of total hours worked in the non-farm business sector. Output, consumption and
hours are expressed in per capita terms by dividing them by the civilian, noninstitutional population, age 16 and
over. Inflation is measured by the percentage change in the CPI for all urban consumers. Stock prices are measured
by the log of the S&P index. Consumer confidence is retrieved from the Michigan Survey of Consumers.

7These results are based on a VAR with 3 lags. Alternative lag lengths yield similar results.
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Figure 1: Impulse responses to a surprise technology shock. Sample: 1960Q1–2007Q3.

Notes: The figure shows the impulse responses to a surprise technology shock. The solid lines are the median impulse responses estimated based
on the reduced-form innovation to TFP. The 68 percent confidence bands are the bias-corrected bootstrap confidence intervals computed using
Kilian (1998)’s procedure with 2000 replications. The dotted lines are the impulse responses obtained from the standard New Keynesian model.
The dashed lines are the impulse responses obtained from the Smets & Wouters (2007) model.

assume that the log of TFP (in deviation from its mean), at, is governed by the following process:

at = ρaat−1 + xt−1 + εst , (1)

xt = ρxxt−1 + εnt , (2)

where εst and εnt are, respectively, the surprise and anticipated (or news) technology shocks, and
0 ≤ ρa, ρx < 1. Notice that ρx is irrelevant to the dynamic effects of the surprise shock and
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Figure 2: Impulse responses to a surprise technology shock. Sample: 1960Q1–2016Q4.

Notes: The figure shows the impulse responses to a surprise technology shock. The solid lines are the median impulse responses estimated based
on the reduced-form innovation to TFP. The 68 percent confidence bands are the bias-corrected bootstrap confidence intervals computed using
Kilian (1998)’s procedure with 2000 replications. The dotted lines are the impulse responses obtained from the standard New Keynesian model.
The dashed lines are the impulse responses obtained from the Smets & Wouters (2007) model.

thus ρa and the size of the disturbance εst are the only parameters that one needs to calibrate to
study those effects. We choose those two parameters such that the implied response of TFP to
the surprise technology shock mimics as closely as possible the response estimated from the data.
The model-based responses of TFP, consumption, output, hours, and inflation are superimposed
on their empirical counterparts in Figures 1 and 2.
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2.2.1 The basic New Keynesian model

Consider first the basic New Keynesian model, summarized by the following log-linearized equations
(around a zero-inflation steady state):8

ct = yt, (3)

yt = at + nt, (4)

mct = σct + +ϕnt − at, (5)

ct = Etct+1 − σ−1(it −Etπt+1 − ln β), (6)

πt = βEtπt+1 + λmct, (7)

it = ln β + φππt + φy(yt − yft ), (8)

where ct is consumption, yt is output, nt is hours worked, mct is real marginal cost, πt is the
inflation rate, it is the nominal interest rate, and yft = (1 + ϕ) (σ + ϕ)−1 at is the flexible-price
(or natural) level of output. All the variables are expressed as percentage deviations from their
steady-state values except πt and it, which are expressed in levels. The parameters are defined as
follows: σ > 0 is the inverse of the elasticity of intertemporal substitution, ϕ > 0 is the inverse of
the Frisch elasticity of labor supply, 0 < β < 1 is the discount factor, λ = (1 − θ) (1 − βθ) /θ > 0,
0 < θ < 1 is the Calvo probability of not changing prices, and φπ, φy > 0 are the coefficients
attached to inflation and the output gap in the interest rate rule.

Model (3)–(8) can be solved analytically to determine the effects of a surprise technology shock.
Assuming that εnt = 0 for all t, one can use the method of undetermined coefficients to show that

πt = −σλ (1 + ϕ) (1 − ρa)
∆a

at,

where ∆a = λ(σ + ϕ) (φπ − ρa) + (1 − βρa) [σ (1 − ρa) + φy] > 0.9 Since the numerator in the
expression above is positive, an unanticipated technological improvement will cause inflation to fall
persistently as long as ρa < 1. This disinflationary effect reflects the persistent fall in real marginal
cost or, equivalently, the negative output gap resulting from the shock.10 This can be seen by
noticing that

mct = −σ (1 + ϕ) (1 − ρa) (1 − βρa)
∆a

at.

8This is essentially the model presented in Gaĺı (2008). The only difference is that we assume (for simplicity)
constant returns to scale in the production technology. This simplification has no impact on the results.

9The necessary and sufficient condition for the existence of a unique linear rational expectations equilibrium is
given by λ(σ + ϕ) (φπ − 1) + (1 − β)φy > 0. It is straightforward to see that this condition implies that ∆a > 0.

10By iterating equation (7) forward, inflation can be expressed as a discounted sum of current and expected future
real marginal costs.
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The surprise technology shock has a positive effect on output (and thus consumption) but an
ambiguous effect on hours worked. The solutions for these variables are given by

yt =
(1 + ϕ)

[
λ (φπ − ρa) + (σ + ϕ)−1 (1 − βρa)φy

]
∆a

at,

nt =

(1 + ϕ)
[
λ (φπ − ρa) + (σ + ϕ)−1 (1 − βρa)φy

]
∆a

− 1

 at.
Under plausible parameter values, however, hours worked fall in response to a positive unanticipated
technology shock. The responses depicted in Figures 1 and 2 (with green dotted lines) are obtained
using the following standard parameterization of the model: σ = ϕ = 1, β = 0.99, θ = 0.75, φπ =
1.5, φy = 0.125. Under these parameter values, a positive surprise shock to technology raises output
and consumption and decreases hours worked and inflation.

The dynamic responses implied by the model hardly match those estimated from the data, but
the most striking discrepancy concerns the response of inflation, which has the opposite sign and a
completely different shape relative to what is predicted by the VAR.

2.2.2 The Smets and Wouters (2007) model

Next, consider the medium-scale model developed by Smets & Wouters (2007). To conserve space,
we only summarize the main features of the model and refer the reader to their paper for a more
detailed description. The model features a representative household whose preferences exhibit habit
formation in consumption. The final good is produced using an aggregator of intermediate goods
that exhibits a non-constant elasticity of substitution. Intermediate goods are produced using a
technology that depends on TFP, labor, and capital, and that exhibits variable capital utilization
and fixed costs. Capital accumulation is subject to investment adjustment costs. Both prices and
wages are set in a staggered fashion à la Calvo, whereby the non-optimizing agents partially index
their prices and wages to past inflation, thus giving rise to a New Keynesian Phillips curve that
depends not only on current and expected future inflation but also past inflation. Monetary policy
follows an interest rate rule with a smoothing component. The model is estimated by Bayesian
techniques using U.S. data over the period 1966Q1–2004Q4.

We use Smets and Wouters’ posterior means for the structural parameters to generate the
implied responses to an unanticipated positive technology shock, which are represented by the
dashed red lines in Figures 1 and 2. Despite some quantitative differences, these responses are in
line with the predictions of the basic New Keynesian model: output and consumption rise while
hours worked and inflation fall in response to the shock. The fall in inflation persists for about eight

10



quarters after the shock, which is in stark contrast with the positive response obtained from the
VAR.11 Notice also that the VAR-based responses of output and consumption lack the persistent
and hump-shaped pattern implied by the model.

2.3 Discussion

As we have just shown, reduced-form innovation to TFP are found to be inflationary, an outcome
that runs against the conventional interpretation of technology shocks as supply shocks, and con-
tradicts the prediction of any sensible macroeconomic model. It is also at odds with the results
reported by a number of empirical studies that rely on the long-run restriction approach proposed
by Gaĺı (1999) to identify exogenous technology shocks (e.g., Edge et al. (2003), Christiano et al.
(2003), Fève & Guay (2010)). Moreover, the result that technology shocks have a delayed negative
effect on stock prices and consumer confidence also appears hard to reconcile with the view that
technology enhances efficiency and raises the productive capacity of the economy.

These observations cast serious doubt on the interpretation of reduced-form innovations to TFP
as pure unanticipated technological improvements. The identified shocks appear to be contaminated
by other non-technological disturbances that also affect measured TFP contemporaneously and
whose effects are akin to those of a demand shock. Since a proper identification of news shocks about
future productivity hinges on purging TFP of its non-technological component, the anomalous
responses just discussed suggest that existing methodologies — albeit sound in theory — may still
fail to correctly identify news shocks and their effects due to measurement errors in TFP.

In the models discussed in Section 2.2, TFP is assumed to be exogenous to the state of the
economy and, as such, is not expected to be affected by demand shocks — note that this is precisely
the identifying assumption underlying the empirical literature on news shocks. TFP, however, is
not readily observable in the data and must be inferred from production and input use, a task that
poses a number of measurement challenges. First, some inputs may not be observable or measur-
able; second, input utilization varies in response to non-technology shocks; third, the production
technology may have non-constant returns to scale; fourth, aggregating inputs across heteroge-
neous production sectors may introduce a bias. Failing to eliminate any of these potential sources
of measurement errors may result in an incorrect measure of TFP and thus a poor proxy for tech-
nology. In their seminal paper, Basu et al. (2006) went a long way towards constructing a purified
annual measure of technology by adjusting TFP for observed and unobserved input variations and
non-constant returns to scale. The quarterly TFP series used in the empirical literature on news

11A persistent decline in inflation following a favorable surprise technology shock is also predicted by the New
Keynesian models estimated by Ireland (2004) and Altig et al. (2011), though the inflation response is relatively
small in magnitude in the latter case.
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shocks was constructed by Fernald (2014) following Basu et al. (2006)’s methodology but without
correction for non-constant returns to scale since the industry level data needed for this correction
are only available at an annual frequency.

To get a sense of how this impacts the measurement of TFP, we plot in Figure 3 annual TFP
growth based on the measures constructed by Fernald (2014) and Basu et al. (2006) for the period
1960–1996.12 Although there is some similarity between the two series, their correlation is modest
(0.57), suggesting that the constant-returns-to-scale assumption underlying the construction of the
quarterly TFP series is counterfactual and is likely to be one of the culprits for the anomalous
responses documented above.
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Figure 3: Annual TFP growth based on the series constructed by Fernald (2014) and Basu et al.
(2006).

To further illustrate the importance of this assumption as a potential source of measurement er-
rors, we estimate the effects of a surprise technology shock identified as the reduced form innovation
to Basu et al. (2006)’s series using the same observable variables as in section 2.1, measured annu-
ally. The estimated impulse responses and their confidence bands are shown in Figure 4, in which
a period corresponds to a year.13 The figure shows that, following a positive technology shock,

12Basu et al. (2006)’s TFP series ends in 1996.
13The results reported in Figure 4 are based on a VAR with one lag. We obtain very similar results when we
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output remains essentially unresponsive on impact but increases in a hump-shaped manner during
the subsequent years, whereas hours worked fall significantly at the time of the shock. Inflation
also falls sharply on impact, consistently with the expected disinflationary effect of a technological
improvement, and in sharp contrast with the rise in inflation obtained using the quarterly TFP
series. This observation hints at the fact that Basu et al. (2006)’s TFP series is less polluted by
non-technological factors than Fernald (2014)’s quarterly series.
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Figure 4: Impulse responses to a surprise technology shock based on Basu et al. (2006)’s annual
TFP series.

Notes: The figure shows the impulse responses to a surprise technology shock. The solid lines are the median impulse responses estimated based
on the reduced-form innovation to TFP. The 68 percent confidence bands are the bias-corrected bootstrap confidence intervals computed using
Kilian (1998)’s procedure with 2000 replications.

include two lags. Because we are estimating a VAR with 7 variables using 36 annual observations, including more
lags leaves too few degrees of freedom to obtain reliable estimates.
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Yet, Figure 4 shows that even Basu et al. (2006)’s purified TFP measure generates some anoma-
lies that are hard to reconcile with conventional wisdom about the effects of technology shocks. For
instance, the initial disinflationary effect of the shock is followed by a protracted episode (of several
years) during which inflation is above average. Moreover, while stock prices initially rise in response
to a positive technology shock, they decline persistently during the subsequent years. Likewise, the
shock triggers a delayed fall in consumer confidence that persists for a prolonged period of time.
These responses cast doubt on the interpretation of the shock as a pure technological disturbance.

In sum, despite the colossal work carried out by Basu et al. (2006) and Fernald (2014) to
construct a cleansed measure of technology, it is probably unrealistic to believe that the corrected
TFP series is purged of all its non-technological factors, which in turn suggests that TFP-based
measures of technology shocks will most likely be contaminated by measurement errors. This
conclusion motivates the agnostic approach that we describe in the next section.

3 An Agnostic Identification Approach

3.1 Idea

The maintained assumption underlying the empirical identification of news shocks about future
productivity is that measured TFP is exclusively driven by surprise and anticipated technology
shocks, the latter affecting TFP only with a lag. The common approach to identify the news shock
is then to select the linear combination of reduced-form innovations that best explains (or forecasts)
future movement in TFP while being orthogonal to the surprise technology shock. This strategy
will correctly identify news shocks only to the extent that surprise technology shocks are the only
disturbances that affect measured TFP contemporaneously, which, as we just argued above, seems
highly unlikely.

We propose an alternative empirical strategy based on the assumption that measured TFP
is affected by two types of disturbances: technological and non-technological shocks. The latter
capture measurement errors due to the imperfect observability of inputs and their utilization rates,
to the potential misspecification of the production function, and to aggregation bias. From this
perspective, it may be inappropriate to characterize these shocks as structural, given that they do
not bear a clear economic interpretation. However, this is not a concern for our methodology since
we need not identify these shocks; we simply allow them to affect measured TFP contemporaneously
and at any future horizon, just as surprise technology shocks.

To identify the surprise technology shock, we adopt an agnostic strategy based on the sign-
restriction approach proposed by Mountford & Uhlig (2009). More specifically, we select the impulse
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vector that (most markedly) satisfies the restriction that inflation falls for at least eight quarters
after the shock, consistently with the prediction of the Smets & Wouters (2007) model. Hence, by
construction, our strategy avoids the inflation anomaly engendered by identification schemes that
associate surprise technology shocks with TFP innovations. We then identify the news shock as
the linear combination of reduced-form innovations that is orthogonal to the surprise technology
shock and that maximizes the contribution of the news shock to the forecast-error variance of TFP
at a long but finite horizon, H. The latter criterion, initially proposed by Francis et al. (2014) and
commonly referred to as the Max Share, differs from the one used by Barsky & Sims (2011), which
involves maximizing the contribution of the news shocks to the forecast error variance of TFP over
all horizons up to a finite truncation horizon. Barsky & Sims’ approach has been criticized on the
ground that it may confound shocks that have either permanent or temporary effects on TFP, and
has been shown to be quite sensitive to the truncation horizon (see Beaudry et al. (2011)). Since
our approach allows for the presence of non-technology shocks, whose effects on measured TFP are
likely to be much more important at short horizons than at more distant ones, this makes the case
for using the Max Share even stronger.

3.2 Implementation

Let Ã denote the Cholesky decomposition of Σ and assume again that TFP is ordered first in yt.
Any impact matrix A0 =ÃD, where D is an orthonormal matrix, also satisfies the requirement
A0A

′
0 = Σ. Let γj denote the jth column of D, ε1 denote the surprise technology shock, and ε2

denote the news shock.
We identify the surprise technology shock by selecting the orthonormal matrix D that satisfies

the requirement that inflation does not increase during the first eight quarters after the shock while
yielding the largest response in the desired direction. Because the impulse vector to this shock is
Ãγ1 (the first column of ÃD), we only need to characterize γ1.

Denote by rj,i(h) the impulse response of the jth variable to the ith column of Ã at horizon
h (that is, the reduced-form impulse response), and by ri(h) the k−dimensional column vector
[r1,i(h), · · · , rk,i(h)]. The k−dimensional impulse response rγ1(h) to the impulse vector Ãγ1 is
given by

rγ1(h) =
k∑
i=1

γi,1ri(h),

where γi,1 is the ith entry of γ1.
Following Mountford & Uhlig (2009)’s approach, we select the vector γ1 of unit length that
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solves the following minimization problem:

min
{γ1}

Ψ(Ãγ1),

with the criterion function, Ψ(Ãγ1), being given by

Ψ(Ãγ1) ≡
7∑

h=0
f

(
rπ,γ1(h)
sπ

)
,

where the loss function, f, is such that f(x) = 100x if x > 0 and f(x) = x if x ≤ 0, and sπ is
the standard deviation of the reduced-form innovation to inflation. The criterion Ψ(Ãγ1) therefore
strongly penalizes impulse vectors that generate a positive inflation response at any given horizon.
If multiple impulse vectors are consistent with the imposed sign restriction on the response of
inflation, the unique solution to the minimization problem above will be the impulse vector that
yields the largest fall in inflation over eight quarters.

Once the surprise technology shock, ε1, is identified, we identify the news shock, ε2, as the linear
combination of the reduced-form residuals that is orthogonal to ε1 and that explains the largest
fraction of the forecast error variance of TFP at a long but finite horizon, H. The h-step ahead
forecast error of vector y is

yt+h −Etyt+h =
h−1∑
τ=0

Bτ ÃDεt+h−τ .

Denoting by Ωi,j(h) the share of the forecast error variance of variable i attributable to structural
shock j at horizon h, this quantity is given by

Ωi,j(h) ≡
e
′
i

(∑h−1
τ=0 Bτ ÃDeje

′
jD
′
ÃB

′
τ

)
ei

e
′
i

(∑h−1
τ=0 BτΣB′τ

)
ei

=
∑h−1
τ=0 Bi,τ Ãγjγ

′
jÃB

′
i,τ∑h−1

τ=0 Bi,τΣB′i,τ
,

where
Bi,τ = e

′
iBτ , γj = Dej ,

and ei is a selection vector with 1 in the ith position and zero elsewhere. The identification of
the news shock therefore amounts to selecting the vector γ2 that solves the following maximization
problem:

max
{γ2}

Ω1,2(H) ≡
∑H−1
τ=0 B1,τ Ãγ2γ

′
2ÃB

′
1,τ∑H−1

τ=0 B1,τΣB′1,τ
s.t.

γ2(1) = 0, γ
′
2γ1 = 0, γ

′
2γ2 = 1.

The first constraint ensures that the news shock does not affect TFP contemporaneously; the second
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constraint ensures that the news shock is orthogonal to ε1; and the third constraint ensures that
γ2 is a column vector of an orthonormal matrix. In practice, we choose H = 80 quarters.

4 Results

We apply our agnostic identification strategy to the same seven-variable VAR estimated by Barsky
& Sims (2011). We consider two data sets: the one originally used by these authors, which spans the
period 1960Q1–2007Q3, and an updated data set that extends the data coverage through 2016Q4.
For each of these samples, we discuss the impulse responses to a surprise and an anticipated
technology shock, the contribution of news shocks to the forecast error variance of macroeconomic
aggregates, and their historical decomposition. In the process, we contrast our findings with those
obtained using Barsky & Sims’ methodology.

4.1 Sample period 1960Q1–2007Q3

Impulse responses We start by discussing the estimated impulse responses to a surprise and
an anticipated technology shock. To gauge these responses from the standpoint of New Keynesian
theory, we compare them with those implied by the Smets & Wouters (2007) model. To do so, we
again assume that TFP is described by process (1)–(2) and calibrate the parameters ρa and ρx and
the size of the disturbances εst and εnt so as to replicate as closely as possible the estimated response
of TFP to the surprise and the news shock. The confidence intervals around the estimated impulse
responses are computed using Kilian (1998)’s bias-corrected bootstrap procedure.

The estimated impulse responses to a surprise technology shock are reported in the right column
of Figure 5. For ease of comparison with the results based on reduced-form innovations to TFP (as
in Barsky & Sims (2011) and the rest of the empirical literature on news shocks), the left column
of Figure 5 reproduces the responses reported in Figure 1 using the same scale for each response
as in the right column.

TFP increases on impact and remains persistently higher than its pre-shock level, a pattern that
contrasts with the rapid return obtained when surprise technology shocks are identified as TFP
innovations (shown in the upper left panel of Figure 5).14 Consumption and output also increase
persistently and in a hump-shaped fashion. The estimated responses are remarkably similar to
those implied by the Smets & Wouters (2007) model (particularly for consumption), and sharply
contrast with the small, transitory and rather monotonic pattern obtained from the identification
scheme associating the shock with the TFP innovation.

14This is reflected in the larger estimate of the parameter ρa implied by our estimated response of TFP (0.956)
than that implied by the TFP response estimated using Barsky and Sims’ methodology (0.897).
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Figure 5: Impulse responses to a surprise technology shock. Sample: 1960Q1–2007Q3.

Notes: The figure shows the impulse responses to a surprise technology shock. The solid lines are the median impulse responses estimated based
on the reduced-form innovation to TFP (left panels) and on the agnostic approach (right panels). The 68 percent confidence bands are the
bias-corrected bootstrap confidence intervals computed using Kilian (1998)’s procedure with 2000 replications. The shaded red area indicates the
horizons at which the inflation response is constrained to be negative. The dashed lines are the impulse responses obtained from the Smets &
Wouters (2007) model.
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Hours worked initially fall for about five quarters, then increase in a hump-shaped manner before
converging to their pre-shock level from above. This pattern is consistent with the prediction of the
Smets & Wouters (2007) model, at least qualitatively, and differs from the muted reaction shown
in the corresponding left panel. The result that unanticipated technological improvement has a
contractionary effect on employment in the short run has been documented in several studies using
different empirical approaches.15

Our estimated response for inflation is, by construction, restricted to be negative for the first
eight quarters after the shock, as indicated by the shaded red area. Beyond that horizon, the
inflation response becomes small and statistically insignificant. Interestingly, although our identifi-
cation strategy does not impose a precise numerical value for the inflation response, the estimated
response is strikingly similar to that implied by the Smets & Wouters (2007) model. The latter lies
within the estimated confidence band at almost any given horizon.

Our identified surprise technology shock raises stock prices and consumer confidence. Stock
prices are initially unresponsive but increase significantly and persistently during the subsequent
quarters. The increase in consumer confidence is more transitory and is only statistically significant
on impact and between the sixth and eighth quarters after the shock. These responses are at
variance with the persistent decline in stock prices and consumer confidence shown in the left
panels of Figure 5.

In sum, these findings show that identifying surprise technology shocks by restricting their effect
on inflation to be negative produces impulse responses that are more consistent with conventional
wisdom and better grounded in theory than those obtained by using reduced-form innovations to
TFP as a measure of surprise technology shocks. Interestingly, our estimated responses mimic
remarkably well those implied by the Smets & Wouters (2007) model. The latter mostly lie within
the confidence bands of the VAR-based responses.

The estimated responses to a news shock are illustrated in the right column of Figure 6. The
response of TFP is similar in shape but significantly smaller in magnitude than that based on
Barsky & Sims’ approach. An important conclusion from Barsky & Sims’ paper is that output
and hours worked initially decline in response to a favorable news shock about future productivity
(see the third and fourth panels on the left column of Figure 6), an outcome that violates the
predictions of the Smets & Wouters (2007) model. Both variables then rise persistently during
the subsequent quarters, although the rise in hours is mostly statistically insignificant. A similar
pattern for hours is reported by Forni et al. (2014), Barsky et al. (2015), and Kurmann & Sims

15See Gaĺı & Rabanal (2005) for a survey.
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(2017).16 The short-run contractionary effect of the news shock on aggregate output and hours
worked no longer occurs, however, when we use our agnostic empirical methodology, as the output
response is now statistically insignificant during the first two quarters after the shock, and that of
hours worked is statistically indistinguishable from zero at any given horizon. In other words, we
find no evidence of negative comovement between macroeconomic aggregates conditional on our
identified news shock.17

Turning to the response of inflation, Barsky & Sims’ approach implies that a favorable news
shock about future technology decreases inflation sharply and persistently. This disinflationary
effect, also documented by Forni et al. (2014), Barsky et al. (2015), Fève & Guay (2016), and
Kurmann & Sims (2017), is puzzling in light of New Keynesian theory, as pointed out by Barsky &
Sims (2009), Jinnai (2013), and Kurmann & Otrok (2014). In the context of the basic New Key-
nesian model presented in Section 2.2.1, it is possible to show (using the method of undetermined
coefficients) that the initial response of inflation to a news shock is given by

dπt
dεnt

= σλ(1 + ϕ) [λ(σ + ϕ)(φπ − 1) + (1 − β)φy − βσ(1 − ρa)(1 − ρx)]
∆a∆x

,

where ∆x = λ(σ + ϕ) (φπ − ρx) + (1 − βρx) [σ (1 − ρx) + φy] > 0. While the sign of the expression
above is, in principle, ambiguous, it typically tends to be positive under sufficiently high values of
ρa and ρx and a plausible calibration of the remaining parameters. Using the estimated values of
ρa and ρx and the calibration discussed in Section 2.2.1, the basic New Keynesian model predicts a
positive response of inflation to a favorable TFP news shock. The Smets & Wouters (2007) model
also implies that inflation rises temporarily after a positive news shock but the response is tiny and
essentially indistinguishable from 0 at any given horizon. This disinflation puzzle has prompted
some researchers to suggest modifications to the prototype New Keynesian model so as to reconcile
its predictions with the empirical evidence.18 Contrasting with the existing evidence, however,
our results indicate that the inflation response to a favorable news shock is rather muted and

16Forni et al. (2014)’s approach is based on an estimated factor-augmented VAR in which the news shock is
identified as the shock that best anticipates TFP at the 60-quarter horizon while being orthogonal to the reduced-
form innovation in TFP. Barsky et al. (2015) identify the news shock as the innovation in the expectation of TFP at
a fixed horizon in the future (20 quarters). Kurmann & Sims (2017) rely on the Max Share method (with H = 80)
but without imposing the orthogonality of the news shock with respect to current TFP.

17Kurmann & Sims (2017) point out that the results based on Barsky & Sims’ methodology are sensitive to revisions
in Fernald’s adjusted TFP series. Using the 2016 vintage of this series, they find, based on a four-variable VAR, that
the response of hours worked to a favorable news shock is statistically insignificant during the first two quarters and
positive thereafter. We also observed some sensitivity in the results based on our seven-variable VAR, though not to
the extent documented by Kurmann & Sims (2017). Using the 2016 vintage of adjusted TFP, we found that hours
worked fall for a single period after the shock, whereas the initial response of output is statistically insignificant. On
the other hand, the results based on our agnostic strategy prove to be robust to the use of the revised TFP series.
These results are not reported but are available upon request.

18See, for instance, Jinnai (2013), Barsky et al. (2015), and Kurmann & Otrok (2014).
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Figure 6: Impulse responses to a news shock. Sample: 1960Q1–2007Q3.

Notes: The figure shows the impulse responses to a news shock. The solid lines are the median impulse responses estimated based on Barsky
and Sims’ approach (left panels) and on the agnostic approach (right panels). The 68 percent confidence bands are the bias-corrected bootstrap
confidence intervals computed using Kilian (1998)’s procedure with 2000 replications. The dashed lines are the impulse responses obtained from
the Smets & Wouters (2007) model.
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statistically insignificant at all horizons, consistently with the theoretical prediction. In other words,
the disinflation puzzle vanishes under our agnostic identification strategy. The disinflationary effect
documented in earlier studies appears to be an artifact of the misidentification of anticipated
technology shocks, due to measurement errors in TFP.

Variance decomposition Before evaluating the contribution of news shocks to the variability
of macroeconomic variables, it is worth discussing the relative importance of the identified surprise
technology shocks in explaining TFP. The results are reported in Table 1.19 By construction, when
surprise technology shocks are identified as the reduced-form innovations to TFP, they explain
all of the forecast error variance of TFP at h = 1 (recall that the news shock does not affect
TFP contemporaneously). Under our agnostic strategy, however, this need not be the case. In
fact, our identified surprise technology shocks account for roughly half of the one-quarter ahead
forecast error variance of TFP, thus implying that non-technological shocks (potentially reflecting
measurement errors) account for the remaining half, which in turn raises a serious objection against
the interpretation of the estimated TFP series as a purified measure of technology.

Table 1: Share of Forecast Error Variance of TFP attributed to Surprise Technology Shocks.
Sample: 1960Q1–2007Q3.

Horizon
h = 1 h = 4 h = 8 h = 16 h = 24 h = 40

Reduced-form innovation to TFP 1.000 0.976 0.783 0.502 0.632 0.537
Agnostic approach 0.519 0.559 0.562 0.502 0.447 0.373

Note: The Table reports the median fraction (across 2000 bootstrap replications) of the h-step ahead
forecast error variance of TFP due to surprise technology shocks identified as the reduced-form innovations
to TFP and using our agnostic approach.

Table 2 shows the contribution of news shocks to the h-step ahead forecast error variance of the
series used in estimation. The table also reports the results implied by Barsky & Sims’ methodology.
Our identified news shocks explain less than 3 percent of the conditional variance of TFP at the
one-year horizon and less than 25 percent at the ten-year horizon. They account for more than 35
percent of the forecast error variance of consumption but less than 2 percent of the forecast error
variance of output at the one-year horizon. The contribution of news shocks to output variability
rises steadily with the forecasting horizon, reaching 38 percent at the ten-year horizon. For hours
worked, inflation, stock prices and consumer confidence, the share of the forecast error variance

19The results shown in the table are the median fractions across the 2000 bootstrap replication.
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attributed to news shocks never exceeds 16 percent at any given horizon. Compared with the
results based on Barsky & Sims’ approach, we generally find a smaller contribution of the news
shock to aggregate fluctuations at business-cycle frequencies.

Table 2: Share of Forecast Error Variance attributed to News Shocks. Sample: 1960Q1–2007Q3.

Horizon
h = 1 h = 4 h = 8 h = 16 h = 24 h = 40

Barsky & Sims’ Approach
TFP 0.000 0.068 0.157 0.311 0.394 0.459
Consumption 0.087 0.207 0.366 0.491 0.503 0.478
Output 0.079 0.073 0.199 0.385 0.428 0.425
Hours 0.419 0.171 0.128 0.155 0.162 0.160
Inflation 0.106 0.172 0.198 0.180 0.175 0.170
Stock Prices 0.040 0.068 0.083 0.112 0.124 0.133
Confidence 0.210 0.223 0.234 0.230 0.218 0.210

Agnostic Approach
TFP 0.000 0.027 0.049 0.105 0.154 0.233
Consumption 0.355 0.434 0.419 0.363 0.360 0.381
Output 0.019 0.143 0.219 0.244 0.268 0.313
Hours 0.071 0.091 0.125 0.132 0.137 0.150
Inflation 0.078 0.081 0.072 0.073 0.082 0.096
Stock Prices 0.091 0.100 0.100 0.104 0.112 0.136
Confidence 0.150 0.161 0.148 0.139 0.143 0.151

Note: The table reports the median fraction (across 2000 bootstrap replications)
of the h-step ahead forecast error variance of each variable due to news shocks
identified using Barsky & Sims’ approach (top panel) and our agnostic approach
(bottom panel).

Historical decomposition In order to further investigate the importance of news shocks in
accounting for business-cycle fluctuations, we simulate the time paths of consumption, output,
and hours worked from the estimated VAR assuming that the news shocks are the only stochastic
disturbances driving the data. The median results (across 2000 bootstrap replications) are depicted
in Figure 7, where the series are expressed in growth rates. The correlation between the actual
and simulated series is high for consumption (0.72) but fairly low for output and hours worked
(0.21 and 0.15, respectively). News shocks appear to have played a very limited role in explaining
post-war U.S. recessions, especially the 1969–1970, 1973–1975, and 1981–1982 recessions.

Using the simulated series, we also compute the cross-correlations of the growth rates of con-
sumption, output, and hours. The medians across the 2000 bootstrap replications are reported
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Figure 7: Historical decomposition. Sample: 1960Q1-2007Q3.

Notes: The figure shows the actual series (thick black lines) and the ones simulated from the VAR assuming that news shocks are the only stochastic
disturbances (thin blue lines). The simulated series are the median across 2000 bootstrap replications. The shaded areas indicate the dates of the
U.S. recessions identified by the NBER.

in Table 3. While there is positive comovement between consumption and hours worked in the
data, the news shocks identified using Barsky & Sims’ methodology imply negative comovement,
consistently with the impulse responses shown in the left panels of Figure 6. Our agnostic strategy,
on the other hand, implies a positive correlation between consumption and hours worked.

Together with the variance decomposition results discussed above, these observations lead us to
conclude that news shocks are unlikely to have been a major driver of business-cycle fluctuations
during the period 1960–2007. While this conclusion corroborates that reached by Barsky & Sims
(2011), our argument for making such a claim differs from theirs. Indeed, Barsky & Sims (2011) base
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their conclusion on the fact that consumption co-moves negatively with output and hours worked
in response to a news shock, a result that, as we have shown, is largely driven by measurement
errors in TFP, just as the disinflationary effect of the shock. Instead, our conclusion is founded on
the observation that news shocks explain only a modest fraction of the variability of output and
hours worked at business-cycle frequencies.

Table 3: Comovement in the Data and Conditional on News Shocks. Sample: 1960Q1–2007Q3.

U.S. Data Barsky & Sims’ Approach Agnostic Approach
Corr(∆ lnCt, ∆ lnYt) 0.505 0.316 0.560
Corr(∆ lnCt, ∆ lnNt) 0.387 −0.036 0.291
Corr(∆ lnYt, ∆ lnNt) 0.688 0.854 0.822

Notes: The table reports the historical correlations computed from the data and the ones based on the simulated
series (medians across 2000 bootstrap replications) under the assumption that news shocks are the only stochastic
disturbances. The variables Ct, Yt, and Nt denote, respectively, consumption, output, and hours worked.

4.2 Sample period 1960Q1–2016Q4

Impulse responses The impulse responses based on the extended sample are reported in Figures
8 and 9 for the surprise and the news shock, respectively. As before, the left column of each figure
shows the results based on Barsky & Sims’ methodology while the right column shows the results
based on our agnostic approach.

Starting with the surprise technology shock, the results based on the updated sample are very
similar to those depicted in the right column of Figure 5. The shock has a long-lasting effect
on TFP, consumption, and output. Hours worked fall significantly during the year following the
shock, but their response is now statistically insignificant during the subsequent horizons. The
inflation response to the surprise technology shock is negative by construction during the first eight
quarters, and is virtually nil afterward. Stock prices exhibit a positive delayed response, while
consumer confidence rises significantly for about ten quarters before returning to its pre-shock
level.

Turning to the responses to the news shock, the left column of Figure 9 shows that one of Barsky
& Sims’ main results, namely the contractionary effect of an anticipated technology shock on output
and hours, disappears when we apply their identification strategy to the updated sample. Output
increases significantly and persistently but with a delay of three quarters, whereas the response
of hours worked is mostly statistically insignificant. The rest of the responses are consistent with
those based on the shorter sample. In particular, inflation falls significantly and persistently in
response to a good news about future technology.
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Figure 8: Impulse responses to a surprise technology shock. Sample: 1960Q1–2016Q4.

Notes: The figure shows the impulse responses to a surprise technology shock. The solid lines are the median impulse responses estimated based
on the reduced-form innovation to TFP (left panels) and on the agnostic approach (right panels). The 68 percent confidence bands are the
bias-corrected bootstrap confidence intervals computed using Kilian (1998)’s procedure with 2000 replications. The shaded red area indicates the
horizons at which the inflation response is constrained to be negative. The dashed lines are the impulse responses obtained from the Smets &
Wouters (2007) model.
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Figure 9: Impulse responses to a news shock. Sample: 1960Q1–2016Q4.

Notes: The figure shows the impulse responses to a news shock. The solid lines are the median impulse responses estimated based on Barsky
and Sims’ approach (left panels) and on the agnostic approach (right panels). The 68 percent confidence bands are the bias-corrected bootstrap
confidence intervals computed using Kilian (1998)’s procedure with 2000 replications. The dashed lines are the impulse responses obtained from
the Smets & Wouters (2007) model.
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The results based on our agnostic identification strategy show important differences both with
respect to those implied by Barsky & Sims’ methodology and/or those based on the shorter sample.
First, TFP exhibits a much more inertial response to the shock, starting to increase in a statistically
significant manner only after about three years. This slowly diffusing process contrasts with the
rapid increase in TFP estimated based on the shorter sample and using Barsky & Sims’ method-
ology. Second, consumption, output, and hours worked increase significantly and persistently in
response to the news shock. This simultaneous increase in macroeconomic aggregates — indica-
tive of positive comovement — occurs well before TFP starts to rise; a result that corroborates
Beaudry & Portier (2006)’s original findings. Third, inflation falls in response to the shock but its
response exhibits very little persistence and is (barely) statistically significant only on impact. In
other words, the disinflation puzzle appears to be much less acute under our identification strategy.
Finally, unlike the results based on the shorter sample, the estimated impulse responses match
rather poorly those implied by the Smets & Wouters (2007) model.

Variance decomposition Variance decomposition results for the updated sample are reported
in Table 4. One of the striking differences with the results based on the shorter sample and on
Barsky & Sims’ methodology is that news shocks account for a relatively large fraction of the
forecast error variance of output and hours worked at short horizons. At the one-year horizon, this
fraction amounts to 42 percent for output and 28 percent for hours. At business-cycle frequencies,
the contribution of news shocks to the variability of consumption, output, and hours worked ranges
roughly between 40 and 60 percent. In contrast, Barsky & Sims’ approach predicts that news
shocks explain between 0.07 and 0.16 percent of the variability of hours worked at business-cycle
frequencies. On the other hand, news shocks continue to explain a small fraction of the forecast
error variance of inflation, stock prices, and, consumer confidence at business-cycle frequencies.
Our agnostic approach continues to attribute a smaller role to news shocks in accounting for the
conditional variance of these variables than does Barsky & Sims’ methodology.

Historical decomposition Figure 10 shows the actual growth rates of consumption, output,
and hours worked, along with their counterparts based on the artificial series simulated under the
assumption that news shocks are the only underlying disturbances. The actual and simulated series
for output and hours worked are more highly correlated than in the shorter sample, while actual
and simulated consumption growth continue to track each other very closely.20 The figure also

20The correlation between the actual and simulated series is 0.76 for consumption, 0.37 for output, and 0.38 for
hours worked.
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Table 4: Share of Forecast Error Variance attributed to News Shocks. Sample: 1960Q1–2016Q4.

Horizon
h = 1 h = 4 h = 8 h = 16 h = 24 h = 40

Barsky & Sims’ Approach
TFP 0.000 0.024 0.087 0.200 0.315 0.455
Consumption 0.137 0.226 0.355 0.493 0.531 0.527
Output 0.041 0.125 0.257 0.427 0.473 0.482
Hours 0.067 0.070 0.101 0.153 0.162 0.161
Inflation 0.188 0.206 0.219 0.212 0.193 0.181
Stock Prices 0.059 0.085 0.119 0.166 0.186 0.320
Confidence 0.291 0.360 0.388 0.372 0.342 0.210

Agnostic Approach
TFP 0.000 0.012 0.025 0.073 0.144 0.242
Consumption 0.372 0.498 0.534 0.597 0.484 0.452
Output 0.203 0.416 0.494 0.486 0.461 0.438
Hours 0.119 0.280 0.367 0.406 0.390 0.371
Inflation 0.130 0.103 0.092 0.088 0.096 0.105
Stock Prices 0.102 0.113 0.124 0.142 0.152 0.171
Confidence 0.251 0.296 0.288 0.265 0.252 0.246

Note: The table reports the median fraction (across 2000 bootstrap replications)
of the h-step ahead forecast error variance of each variable due to news shocks
identified using Barsky & Sims’ approach (top panel) and our agnostic approach
(bottom panel).

shows that news shocks account for a significant share of the decline in consumption, output, and
hours worked during the recent U.S. recessions, including the Great Recession.

Table 5 reports the median cross-correlations of the growth rates of consumption, output, and
hours worked based on the simulated series. The table confirms that the negative comovement
between consumption and hours worked documented by Barsky & Sims (2011) vanishes when their
methodology is applied to the extended sample period. Consistently with the impulse responses es-
timated using our agnostic strategy, the growth rates of consumption, output, and hours worked are
highly correlated, implying strong positive comovement. These findings, along with the variance-
decomposition results, suggest that news shocks have become an important driver of business-cycle
fluctuations in recent years. In this respect, our agnostic identification strategy provides a sharply
contrasting conclusion to that based on Barsky & Sims’ methodology or variants of it used in recent
empirical studies.
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Figure 10: Historical decomposition. Sample: 1960Q1-2016Q4.

Notes: The figure shows the actual series (thick black lines) and the ones simulated from the VAR assuming that news shocks are the only stochastic
disturbances (thin blue lines). The simulated series are the median across 2000 bootstrap replications. The shaded areas indicate the dates of the
U.S. recessions identified by the NBER.

5 Robustness: Systematic Measurement Errors

The identification strategy proposed in this paper relies on the commonly used assumption that
news shocks do not affect measured TFP contemporaneously. However, to the extent that non-
technological shocks affecting TFP subsume systematic measurement errors in factor utilization,
the zero-impact assumption may become unwarranted, since news shocks could affect measured
TFP through their effects on input utilization. Based on the latter argument, Kurmann & Sims
(2017) relax the assumption that measured TFP does not react contemporaneously to news shocks
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Table 5: Comovement in the Data and Conditional on News Shocks. Sample: 1960Q1–2016Q4.

U.S. Data Barsky & Sims’ Approach Agnostic Approach
Corr(∆ lnCt, ∆ lnYt) 0.538 0.761 0.894
Corr(∆ lnCt, ∆ lnNt) 0.391 0.363 0.743
Corr(∆ lnYt, ∆ lnNt) 0.667 0.757 0.884

Notes: The table reports the historical correlations computed from the data and the ones based on the simulated
series (medians across 2000 bootstrap replications) under the assumption that news shocks are the only stochastic
disturbances. The variables Ct, Yt, and Nt denote, respectively, consumption, output, and hours worked.

and identify these shocks solely based on the Max Share criterion described above. Using this
strategy, Kurmann & Sims (2017) find very similar effects of the news shock to those reported by
Barsky & Sims (2011). In particular, they find that consumption rises while hours worked and
inflation decline in response to a favorable news shock. Importantly, they show that these results
remain robust when they use the 2016 vintage of Fernald’s adjusted TFP series.

A crucial assumption of Kurmann & Sims’ identification scheme is that the news shock is
not orthogonalized with respect to the surprise technology shock. Because the latter is typically
identified as the reduced-form innovation to TFP, imposing orthogonality with respect to this shock
necessarily implies that the contemporaneous response of TFP to the news shock is nil,21 which is
precisely the restriction that Kurmann & Sims (2017) aim to relax (and to which we henceforth
refer as the “zero-impact” restriction). This in turn suggests that Kurmann & Sims’ strategy is
likely to confound surprise and anticipated technological shocks, as both shocks affect TFP in the
short and in the long run, making it impossible — without further assumptions — to disentangle
their respective contribution to the forecast error variance of TFP at any given horizon.

Our agnostic approach, on the other hand, allows us to relax the zero-impact restriction while
still imposing the orthogonality of the news shock with respect to the surprise shock, since the
latter is identified via sign restrictions. The prior identification of the surprise shock enables us
to identify the news shock by maximizing its contribution to the remainder of the forecast error
variance of TFP at any given (range of) horizon(s).

We apply this variant of our agnostic approach to the two sample periods considered in the
previous section. To do so, we relax the restriction γ2(1) = 0 in the maximization problem described
in Section 3.2. The impulse responses to a news shock based on this approach are shown in Figure
11. Interestingly, even though the zero-impact restriction is relaxed, the median initial response of
adjusted TFP turns out to be equal to zero — with very little sampling uncertainty — regardless of

21Assuming again that TFP is ordered first in yt, the impulse vector associated with the surprise technology shock
has zeros everywhere except for the first element. For this impulse vector to be orthogonal to the one associated with
the news shock, the latter must have zero as its first element.
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Figure 11: Impulse responses to a news shock: Relaxing the zero-impact restriction.

Notes: The figure shows the impulse responses to a news shock estimated using the agnostic strategy under the assumption that the news shock
can affect TFP on impact. The solid lines are the median impulse responses. The 68 percent confidence bands are the bias-corrected bootstrap
confidence intervals computed using Kilian (1998)’s procedure with 2000 replications.
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the sample period. The estimated response of TFP during the subsequent quarters is remarkably
similar to that estimated under the zero-impact restriction. This can be seen by comparing the
upper left panel of Figure 11 with the upper right panel of Figure 6 for the 1960Q1–2007Q3 sample
period, and the upper right panels of Figures 11 and 9 for the 1960Q1–2016Q4 sample period.
Not surprisingly (given this similarity), the impulse responses of the remaining variables are hardly
affected when the zero-impact restriction is relaxed. In particular, hours worked continue to be
unresponsive to the news shock in the sample ending in 2007, and to increase significantly and
persistently along with consumption and output in the updated sample, while the disinflation
puzzle essentially vanishes in both samples. These findings contradict those reported by Kurmann
& Sims (2017) and suggest that their identified news shock is partly picking up the effects of the
unanticipated technology shock.

We also find that the variance-decomposition results and the historical decomposition of macroe-
conomic aggregates exhibit very little sensitivity to the zero-impact restriction,22 thus confirming
our main conclusions: news shocks contributed modestly to business-cycle fluctuations during the
1960Q1–2007Q3 period, but their importance has increased significantly in recent years.

6 Conclusion

Much of the recent VAR-based evidence on the effects of news shocks about future productivity
casts doubt on the plausibility and importance of TFP-news-driven business cycles, as these shocks
are found to generate negative comovement between consumption and hours worked. Another
robust finding of this literature is that favorable news shocks tend to be associated with sharp and
persistent declines in inflation.

In this paper, we have shown that these conclusions are spurious and are largely due to the pres-
ence of measurement errors in TFP. We have documented the severity of these errors by examining
the effects of unanticipated technology shocks, usually identified as the reduced-form innovations
to TFP. We found these effects to be inconsistent with the interpretation of unanticipated techno-
logical disturbances as supply shocks. We have then proposed an agnostic identification strategy
that is robust to measurement errors, successfully isolating the technological component of TFP.
We found no evidence of negative comovement between consumption and hours worked conditional
on a news shock, and the disinflation puzzle essentially disappears under our identification strategy.
Importantly, we found that news shocks have become a major source of business-cycle fluctuations
in recent years, consistently with Beaudry & Portier (2006)’s original view.

22To conserve space, these results are not reported but are available upon request.
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News about TFP, however, are clearly not the only factor that can cause changes in agents’
expectations. Some recent studies have empirically examined the importance of changes in expecta-
tions caused by factors unrelated to TFP, such as news about investment-specific technology (e.g.,
Ben Zeev & Khan (2015)) or sentiments (e.g., Beaudry et al. (2011), Levchenko & Pandalai-Nayar
(2015) and Fève & Guay (2016)). The identification of these shocks, however, usually relies on the
prior identification of TFP news shocks, which implies that the empirical approaches developed
in this strand of the literature are also likely to be plagued by measurement errors in TFP. By
correctly identifying TFP news shocks, the empirical strategy developed in this paper can therefore
help shed light on the relative importance of non-TFP news shocks for aggregate fluctuations.
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