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1. Introduction  

 In macroeconomics, it is accepted that economies undergo short-run variation 

apart from their long-run general behavior but the relation between the two has not yet 

been fully identified. The relationship between the short-run and long-run could be 

explained if the characteristics of short-run variation are fully known. Several 

hypotheses have been proposed to identify the characteristics of short-run variation.  One 

of these hypotheses of short-run activity, as studied in conventional macroeconomic 

theory, is a shock originating from the imperfections in the market that causes the 

economy to deviate from its the long-run behavior (Keynes, 1936).  Imperfections 

prevail because of staggered price adjustments, wage rigidities, price stickiness, and 

asymmetry of information (for details see, Romer, 2001).  On the other hand, real 

business cycle theory claims that a short-run variation is also a short-run activity that 

causes the economy to deviate from its long-run behavior but is based on technological 

innovations instead of the presence of imperfections in the market1.  Whether it is the 

conventional macroeconomic theory or the real business cycle approach, the economy is 

assumed to undergo shocks that have transitory effects on the long-run trend of the 

economy.  An alternative perspective for identification of the characteristics of the short-

run variation is to consider them as innovations that permanently effect the output 

(Nelson and Plosser, 1982).  Under this perspective, the economy is assumed to undergo 

shocks that have permanent affects on the long-run trend of the economy. 

     All business cycle theories are based on time series concepts in identifying 

whether the shocks are permanent or transitory.  If the shocks are permanent, the 

                                                 
1 See Kydland and Prescott (1982); Long and Plosser (1983); Prescott (1986); and Black (1982). 
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macroeconomic series inherits a stochastic trend or else if the shocks are transitory, the 

macroeconomic series inherits a deterministic trend. 

             My analysis indicates that the short-run variations have permanent effects on the 

long-run trend for the U.S GDP series and this is supported by an ARIMA (1, 1, 2) 

process, which indicates that the series has a unit root.  The analysis is pursued in two 

sections.  In section 2, brief definitions, explanations and environment for the time series 

concepts of autocorrelations, stationarity, autoregressive moving average models, non-

stationarity and unit root test are provided.  In Section 3, a literature review on U.S GDP 

series is provided.  Then, the dynamics of the U.S GDP series is analyzed by studying 

the autocorrelation (ACF) and partial autocorrelation function (PACF) of the series.  

This examination indicates that the GDP series is non-stationary. Afterwards, 

Augmented Dickey-Fuller (1984) and Phillips-Perron (1988) unit root tests are 

implemented and it is found that the series has a unit root.  Next, ACF, PACF and 

residual diagnostic for the first differenced stationary series are analyzed and the 

diagnostics indicate towards an ARIMA (1, 1, 2) and ARIMA (2, 1, 2) model.  Later, a 

forecast environment is designed to compare the performance of the ARIMA (1, 1, 2) 

and ARIMA (2, 1, 2) models.  It is found that ARIMA (1, 1, 2) has more forecast 

accuracy.  Next, the same forecast technique is implemented to compare ARIMA (1, 1, 

2) with the random walk model of Nelson and Plosser (1982) and the trend-stationary 

model of Perron (1989).  The comparison suggested that the ARIMA (1, 1, 2) model has 

the best forecast accuracy. Hence, the U.S GDP has a stochastic trend component as 

indicated by the ARIMA (1, 1, 2) model. I conclude with Section 4.   
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2. Concepts, Definitions and Environment  

 

2.1 Definitions of time series 

       A serial data over an ordered time sequence is called time series data.  A time 

series of an event may convey the possibility that a time pattern amongst observations is 

apparent.  The time pattern is formed from dependence amongst observations.  The 

dependence should be such that at least one of the lags is correlated to any other lag.  

This dependence characterizes the underlying time series process and allows an analyzer 

to specify a model to understand the implications and also to undertake future 

predictions. 

      Amongst all other time series, this research examines macroeconomic time series.  

Such time series may include quarterly consumption figures, seasonally adjusted GNP or 

GDP figures, money demand, annual investment and consumption.  Time series analysis 

of such macroeconomic indicators would reveal the particular behavior of the economy 

by explaining whether the shocks to a particular economy are permanent or transitory and 

would allow the analyzer to undertake future predictions. 

 

 

 

 

 

 

 6



2.2 Autocorrelation Function (ACF) 

      The foundation of a time series analysis is that there are dependencies in the data 

and hence in pursing a time series analysis, the examiner should first examine whether 

there are autocorrelations visible in the data.  This could simply be examined by 

calculating the correlation coefficient of jρ  which measures the degree of correlation 

between any lag j.  If the coefficients are statistically significant, then the series is not 

independently and identically distributed but correlations are apparent amongst 

observations.  

    There are two ways by which an examiner may verify the existence of 

autocorrelations in the data.  First, one may construct a confidence interval for the sample 

jρ  and test if jρ  is off the boundaries or not, and second, one may design a hypothesis to 

test for the degree of the statistical significance.  

      In order to illustrate the former, consider the equation given below where 

 is a time series as such and { } { ...,,... 11 +−= tttt yyyy } jρ  is the correlation coefficient of 

any two lags 

)var()var(
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2 Stationarity condition has been used where )var()var( jtt yy −= .   
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where T is the sample size and 10 −≤≤ Tj . 

If  is independently and identically distributed, then the central limit theorem 

would imply that  

ty

jρ  has zero mean and variance of .  A 95% confidence interval 

can be used to verify if there are autocorrelations in the data.  Based on the central limit 

theorem, actual confidence intervals are 

T/1

T/96.1± (Zivot, 2002).  If for instance, the 

sample jρ  is outside such confidence intervals, the test would imply that  is not 

independently and identically distributed and hence, statistically significant correlation 

between those lags exists.   

ty

Alternatively, autocorrelations could be tested by the Ljung-Box (1978) test3.  

Under the null hypothesis,  is independently and identically distributed.  The test is 

designed such that  

ty

    mH ρρρ === .......: 210         

    0: ≠baH ρ       

where m is the degrees of freedom and b is any time within the boundaries of m.             

The test statistic is given below  

∑
= −

+=
m

l

j

jT
TTmQ

1

ˆ
)2()(

ρ
        (2.2.3) 

where Q(m) has an asymptotic chi-squared distribution with m degrees of freedom.  

When pursuing this particular test the examiner should pay attention to two 

important issues.  At first, the examiner should keep in mind that under the rejection of 

                                                 
3 Ljung Box (1978) test is a modified Box and Pierce (1970), with a greater power than the other.   See 
Tsay (2001), Section 2.2.  
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the null hypothesis, the test would not reveal which lags are correlated.  It only indicates 

that there is autocorrelation.  Secondly, the examiner should be careful in choosing the 

degrees of freedom.  The literature indicates that the choice of the degrees of freedom is 

approximately equal to for a reliable power (for details see Tsay, 2001).  )ln(T

Partial autocorrelation functions (PACF) demonstrate the statistical significance 

of the lags in the time series process.  They investigate the dependence of each individual 

lag with the original series.  Analogous to autocorrelations, partial autocorrelations can 

either be tested by confidence intervals or by hypothesis testing.  

 

2.3 Definitions of Stationarity  

       Apart from autocorrelations in the series, the examiner should study whether the 

data is stationary through the necessary conditions for stationarity.  These necessary 

conditions are certain restrictions on the moments of the underlying distribution.  

There are two types of stationarity.  The first type is strict stationarity, and the 

second type is weak stationarity.  In order to prove under which conditions such 

properties are revealed, consider a time series{ } { }...,,... 11 +−= tttt yyyy  and 

 where k is any time shift from the origin.  If the 

probability distribution of {  is identical to that of  

{ } { ...,,... 11 +++−++ = ktktktkt yyyy }

}ty { }kty + , then  is strictly 

stationary.  That is a very strong condition, requiring that all moments of the two 

distributions be identical.  A weaker condition is just to verify whether the first two 

moments of the distributions are the same.  In other words, a weak stationarity criterion 

requires that the first two moments of the series be time invariant, so that they are 

identical to each other.  That would imply the following: 

{ ty }
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)()( ktt yEyE +=      (2.3.1) 

)var()var( ktt yy +=   .   (2.3.2) 

Because of the difficulty of testing strict stationarity, weak stationarity is used commonly 

as a test for stationarity in economic time series.  

 

2.4 Autoregressive Moving Average (ARMA) Models 

2.4.1 General linear process 

     A time series represented by a weighted sum of past and present random shocks is 

called a general linear stochastic process.  In such a process, all previous shocks have a 

specified long lasting effect on the process.  The only shock that is not fully known is the 

present shock which is required to be estimated.  The process is illustrated below, where 

 is a white noiseta 4,  

..........2211 ++++= −− tttt aaay ψψμ   (2.4.1) 

5∑
∝

=
−++=

1j
jtjtt aay ψμ .  (2.4.2) 

 

2.4.2 Moving average processes  

     A moving average process of an order q is a linear process having a finite time 

domain.  The process remembers the shocks that occurred in past periods down to lag q 

and assigns a value to each one.  The only shock that the process fails to assign a certain 

                                                 
4  and 0)( =taE 2)var( ata σ= . 

5 It is worthwhile to note that in order to satisfy the stationary conditions,  ∑
=

<
0

1

0
j

jψ . 
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value to is the shock that is coming from the present time.  The present shock is a random 

shock that could attain any unpredicted value due to limited or insignificant information 

available.  Therefore, an expectation of a current shock should be formed based on the 

information available along with the knowledge of previous shocks as determined by lag 

q in order to specify the model properly. 

 

2.4.2.1 The first order moving average process (MA (1))  

 The first order moving average process utilizes the information gathered from the 

present and previous shocks.  The process has information down to the first lag only at 

which some value is assigned to it as determined by 1θ .  In order to understand the 

dynamics of the model properly, an expectation of the current shock should be formed 

along with the knowledge of the previous shocks.  The process is shown in equation form 

below 

11 −++= ttt aay θμ .  (2.4.3) 

Taking the first and the second order expectations and calculating the first auto-

covariance would yield the following three identities6  

μ=)( tyE ,  (2.4.4) 

22
1 )1()var( σθ+=ty ,     (2.4.5) 

2
1),cov( σθ=− jtt yy .                                                                                      (2.4.6) 

Considering the essentials of stationary conditions and using the above identities, we 

obtain the following from equation (2.2.1) for the first auto-correlation for an MA (1) 

process,  
                                                 
6 For details see Hamilton (1994), Section 3.3. 
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 Autocorrelation function of MA (1) would depend on the sign of 1θ .  Positive 

values of 1θ  indicate positive autocorrelation, whereas negative values of 1θ  indicate 

negative autocorrelation.  In other words, a positive sign of 1θ  induces large values of  

to be followed by larger values of  and a negative value of 

ty

1+ty 1θ  induces large values of 

 to be followed by small values of (Hamilton, 1994). ty ty

 

 2.4.2.2 The qth Order Moving Average Process (MA (q)) 

       As mentioned previously, the qth order moving average process remembers the 

previous shocks down to qth lag and forms expectations for the current shock.  It is shown 

in equation form below 

qtqtttt aaaay −−− +++++= θθθμ .....2211 . (2.4.8) 

Taking the first and the second order expectations and calculating the first auto-

covariance would yield the following four identities7 

μ=)( tyE   ,  (2.4.9) 

22
2

2
1 .....1()var( qty θθθ +++= ),     (2.4.10) 

{ } 2
2211 .....),cov( σθθθθθθθ jqqjjjjtt yy −++− +++=  ,     for qj ,......2,1=        (2.4.11) 

0),cov( =− jtt yy   for qj > .     (2.4.12) 

Considering the essentials of stationary conditions and using the above identities, we 

obtain the following from equation (2.2.1),                                                 

                                                 
7 For details see Hamilton (1994). 
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= −++   .  (2.4.13) 

 The dynamics of the autocorrelation function of MA (q) would rely on the order q.  

As explained previously, if the order is one, then the sign of 1θ  would be indicative of the 

autocorrelation function.  If the order is two, then the autocorrelation function lies within 

the segments of three curves as determined by the same criterion for the correlation 

coefficients8. 

 

2.4.3 Autoregressive Processes  

 An autoregressive process of order p utilizes the information gathered from past 

events.  All of the information about past events is known down to lag p and a proportion 

of each has been reflected in the process.  Analogous to moving average processes, the 

only segment which remains to be forecasted is the current shock.  Thus, in order to 

specify the model properly, an expectation of a current shock should be formed based on 

the information available along with the knowledge of previous events as determined by 

lag q.        

 

2.4.3.1 The first order autoregressive process (AR (1)) 

 The first order autoregressive process utilizes the information gathered from the 

previous event.  The process assigns a value to the previous event only based on the 

information available.  As mentioned earlier, in order to understand the dynamics of the 

                                                 
8 For more details on this subject see Box and Jenkins (1994), Chapter 3. 
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model properly, an expectation of the current shock should be formed along with the 

knowledge of the previous event.  The process is shown in equation form below 

ttt ayy ++= −110 φφ                                                                            (2.4.14) 

with the characteristic equation of   

BB 11)( φφ −=                                               (2.4.15) 

where B is the lag operator. 

Taking the expectation of equation (2.4.14) and solving for  )( tyE

1

0

1
)(

φ
φ
−

=tyE  .       (2.4.16)   

Taking the square of equation (2.4.14) and taking the expectation would yield the 

following 

)1(
)var( 2

1

2

φ
σ
−

=ty   (2.4.17) 

where 11 <φ .  

Also, multiplying equation (2.4.14) by  and taking the expectation would yield the 

following  

kty −

11 −= jj γφγ     (2.4.18) 

and hence  

11 −= jj ρφρ .  (2.4.19) 

 It is also known that 10 =ρ , and hence .  Therefore, the autocorrelation 

function of an AR (1) process decays at an exponential rate of 

j
j 1φρ =

1φ (Tsay, 2001). 
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2.4.3.2 The second order autoregressive process (AR (2)) 

 The second order autoregressive process utilizes the information gathered from 

the last two events as measured by the coefficients, 1φ  and 2φ .  As mentioned earlier, in 

order to understand the dynamics of the model properly, an expectation of the current 

shock should be formed along with the knowledge of the past two events. The process is 

shown in equation form below 

tttt ayyy +++= −− 22110 φφφ        (2.4.20)  

with the characteristic equation of   

2
211)( BBB φφφ −−=   (2.4.21)  

where B is the lag operator. 

Taking the expectation of the above and solving for  )( tyE

21

0

1
)(

φφ
φ
−−

=tyE   (2.4.22)   

where 121 ≠+φφ for stationary conditions to satisfy. 

Also, multiplying equation (2.4.20) by and taking the expectation would yield the 

following where 

kty −

jγ  denotes the lag j covariance,  

2211 −− += jjj γφγφγ   (2.4.23) 

 and hence  

2211 −− += jjj ρφρφρ    (2.4.24) 

with starting values of 10 =ρ  and 
2

1
1 1 φ

φ
ρ

−
= . 
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Equation (2.4.24) could also be written as  where kk
j RCRC 2211 +=ρ 11 R  and  21 R  are 

the roots of the characteristic equation  (2.4.21) (Tsay, 2001),  

2
4 2

2
11 φφφ ++

=x  .  (2.4.25)                 

 The autocorrelation function either exhibits damped exponentials or pseudo 

periodic behavior depending on the sign of .  If , then the ACF 

consists of a composition of damped exponentials.  That is, it either decays smoothly or 

decays as alternating signs depending on the signs of 

2
2

1 4φφ + 04 2
2

1 ≥+ φφ

1φ  and 2φ  (Box and Jenkins, 1970).  

On the other hand, in case , ACF exhibits pseudo periodic behavior.  That is, 

it exhibits damping sine and cosine waves (Tsay, 2001). 

04 2
2

1 ≤+ φφ

    

 2.4.3.3 The pth order autoregressive process (AR (p)) 

 As mentioned earlier, the pth order autoregressive process remembers the previous 

events down to the pth lag and forms expectations for the current shock.  It is shown in 

equation form below 

tptpttt ayyyy +++++= −−− φφφφ ......22110                                                    (2.4.26) 

with the characteristic equation of   

p
p BBBB φφφφ ++−−= .....1)( 2

21    (2.4.27) 

where B is the lag operator. 

Taking the expectation of (2.4.26) and solving for  )( tyE

p
tyE

φφ
φ

−−−
=

......1
)(

1

0   (2.4.28) 
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where 1.....1 ≠++ pφφ  for stationary conditions to satisfy. 

Also, multiplying equation (2.4.26) by and taking the expectation would yield the 

following  

kty −

pjpjj −− ++= γφγφγ .....11    (2.4.29) 

 and hence  

pjpjj −− ++= ρφρφρ ......11 .   (2.4.30) 

 Equation (2.4.30) cannot be written as root form unless p is known.  Therefore, 

you may not come up with a firm conclusion regarding the shape of the ACF without 

knowing the order of AR process.  

             Fortunately, the order of AR may be checked by inspecting partial 

autocorrelation coefficients of the equations below 

ttt ayy ++= −1110 φφ  

tttt ayyy 22221210 +++= −− φφφ  

          . 

          . 

ptptpptptpt ayyyy +++++= −−− φφφφ ......22110  

where jjφ  represents the coefficients of  partial autocorrelations.  For instance, if the 

process is AR (1), then 11φ  is nonzero and the rest of the coefficients are zero.  Or if the 

process is AR (1), then 11φ  is nonzero and the rest of the coefficients are zero. 
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2.4.4 Autoregressive Moving Average Processes  

          Autoregressive moving average processes are the mixture of autoregressive 

processes and the moving average process.  That is, they remember the information 

gathered from past events as determined by the memory index of lag p, and past shocks 

as determined by a memory index of lag q.  All of the information about past events and 

shocks is known and some proportion of each has been carried in the process.  Analogous 

to moving average processes and autoregressive processes, the only part which remains 

to be forecasted is the current shock.  Thus, in order to specify the model properly, an 

expectation of a current shock should be formed based on the information available along 

with the memory of index p of previous events and the memory of index q of the past 

shocks.   

 

2.4.4.1 ARMA (1, 1) 

 ARMA (1, 1) utilizes the information gathered from the previous event and 

previous shock.  The process has information down to the first lag on past events and past 

shocks carrying out a proportion of each.  As mentioned earlier, in order to specify the 

model correctly, an expectation of the current shock should be formed along with the 

knowledge of the previous event and previous shock.  The process is shown in equation 

form below,   

tttt aayy +++= −− 11110 θφφ .  (2.4.31) 

Normalizing , multiplying above by  and taking expectations, the following three 

identities are obtained 

ty kty −

2
1110 )(1( aσθφθφγγ −−+=                        for j=0,  (2.4.32) 
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2
01 aθσφγγ −=                                for j=1,  (2.4.33) 

11 −= jj γφγ                                       for .  (2.4.34) 2≥j

 Solving equations (2.4.32) and (2.4.33) for ))(var(0 tyγ  yields  

2
2

2
111

0 1
)21(

aσ
φ

θφθ
γ

−
+−

=  .                                                                            (2.4.35) 

Each recursive substitution would yield9 

1
2

11

1111

21
))(1( −

+−
−−

= k
k φ

θφθ
θφϕθ

γ  for k 1≥ .   (2.4.36) 

Equation (2.4.36) illustrates that the autocorrelation function of ARMA (1, 1) decays at 

an exponential rate of 1ϕ starting at an initial value of 1ρ  depending on the value 1θ  

(Cryer, 1985). 

2.4.4.2 ARMA (p, q) 

As mentioned earlier, the ARMA (p, q) remembers the past events down to the pth 

lag and remembers the past shocks down to the qth lag and forms expectations for the 

current shock.  It is shown in equation form below 

tptptptptt aaayyy +++++++= −−−− ................ 11110 θθφφφ .  (2.4.37) 

Normalizing , multiplying above by  and taking expectations ty kty −

pjpjjj −−− +++= γφγφγφγ .........2111     for  j=q+1, q+2,…  (2.4.38) 

and hence 

pjpjjj pp −−− +++= φφρφγ .........2111  .  (2.4.39) 

 

                                                 
9 For detailed explanation see Cryer (1985).  
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2.6 Trend Stationary versus Stochastic Trends 

ARMA models are stationary, however many financial and economic data exhibit 

non-stationary dynamics.  Examples include interest rates, exchange rates, gross domestic 

product (GDP), consumption and investment series.  

    There are two types of non-stationary models.  The first type is trend-stationary; 

the second type is stochastic trend.  They both have a trend component but trend-

stationary models inherit trend reverting dynamics, whereas stochastic trends do not.  The 

behavior of trend-stationary series could be anticipated, whereas stochastic trends could 

not. 

 

2.5.1 Trend Stationary Models 

A simple trend stationary model is illustrated below where α  is a constant; ν is 

the rate of time and  is an error term that is independently and identically distributed 

with a mean of zero and a variance of .  

te

2
aσ

tt eTRy += ,  (2.5.1) 

  vtTR +=α .  (2.5.2)  

Taking the expectation and variation of equation (2.5.1) would yield the following two 

equations 

vtyE t += α)(   (2.5.3) 

2)var( aty σ= .   (2.5.4) 

The above equations prevail because 0)( =teE , and the variation of  is that of 

.  Equation (2.5.3) is due to the assumption that   is independently and identically 

ty

te te
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distributed with a zero mean.  Equation (2.5.4) is due to the only random variable in the 

process,  having a variation of   . te 2
aσ

     The findings so far illustrate that a trend-stationary model passes on a smooth 

trend on average.  Any movement around a trend is temporary and the series comes back 

to the trend.  In a macroeconomic data such as the gross domestic product, a temporary 

movement is called short-run economic activity and can be treated as noise.  The 

temporary short-run activity arises because there are rigidities in the economy.  The 

rigidities prevail because there are market imperfections such as, missing markets, 

asymmetric information, and staggered price adjustments.  On the other hand, in the long- 

run the series always comes back to its trend because all of the imperfections in the 

market cannot last forever10. 

Also, the series should be transformed to a stationary series if further analysis is 

desired, such as an examination of autocorrelation function.  In order to transform models 

into stationary time series, de-trending is required.  That simply means taking the trend 

out from the original series as illustrated below so that the series reverts to constantα . 

tt evty +=− α .  (2.5.4) 

 

2.5.2 Stochastic Trends 

In order to understand the dynamics of a stochastic trend, a simple trend 

stochastic model is illustrated below where the notations are identical to the previous 

section.  

tt bTRy +=   (2.5.5)  

                                                 
10 For more information, see Chapter 4 and Chapter 5 in Romer (2001).  
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where  

ttt ebb += −1   (2.5.6) 

and  

vtTR +=α .  (2.5.7) 

By using the properties of AR (1), equation (2.5.5) could be re-written as,  

101 ebvy +++= α   (2.5.8) 

210212 22 eebvebvy ++++=+++= αα   (2.5.9) 

                  

1210 .... eeeebTRy tttt +++++= −− .  (2.5.10) 

Taking the first and the second order expectations of equation (2.5.10) would yield the 

following,  

vtyE t += α)( +   (2.5.11) 0b

2)var( at ty σ= .     (2.5.12) 

         Equation (2.5.11) is due to the fact that 0)( =teE  and the expectation of  is 

itself ( ).  Therefore the expectation of  is TR  plus ( ). 

0b

00 )( bbE = ty 0b 0)( bTRyE t +=

      Equation (2.5.12) is because the only random variable in the process is  having 

a variation of .  Since there are t numbers of  in the process, the variation of   is t 

times  ( ). 

te

2
aσ te ty

2
aσ 2)var( at ty σ=

            The result of equation 1.5.12 illustrates that the second moment is not well 

defined due to the presence of the time component.  This points out that the process is 

unpredictable.  In macroeconomic literature, this situation arises when the shocks are 

permanent so that the series would not revert to the initial trend disabling the analyzer to 
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observe the general dynamics of the model.  In macroeconomic literature it is accepted 

that such shocks are not simple demand and supply shocks but complicated shocks like 

technology11 

  Furthermore, the series should be converted to stationary if further analysis is 

desired.  In order to convert such models to a stationary time series, the examiner should 

take the differences of lags until the series is stationary.   

 

2.6 Unit Root Tests 

Unit root tests exploit the mean-reverting dynamics of the time series data.  Under 

the null hypothesis, the series has no mean-reverting dynamics and hence the process has 

a unit root.  Conversely, in the alternative hypotheses, the series has a mean-reverting 

dynamic and hence the process has no unit root.   

 

2.6.1 A test for AR (1) without any constant (Dickey-Fuller) 

 A design of a unit root t-test for a possible AR (1) model without any constant is 

called the Dickey-Fuller test and is shown below  

ttt ayy += −11φ       (2.6.1) 

)1(1: 10 IH ⇒=φ    (2.6.2) 

)0(1: 11 IH ⇒<φ    (2.6.3) 

where  is the least square estimate and  is the standard error. Dickey and Fuller 

(1979) showed that under the null hypothesis, the process is non-stationary with a 

1̂φ )ˆ( 1φSE

                                                 
11 See Romer (2001), Chapter 5. 
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variance of and first differencing is appropriate to convert the series to a stationary 

series. The test is shown below 

2σt

)ˆ(
1ˆ

1

1
11 φ

φ
φ SE

t −
==  .   (2.6.4) 

However, the above equation is not sustainable since under the null hypothesis sample 

moments converge to fixed constants.  Instead, Phillips (1987) showed that the correct 

test statistic is 

∫

∫
→= 1

0

2

1

0
1

)(

)()(

1

drrW

rdWrW
tφ   (2.6.5) 

at which sample moments converge to Brownian Motion (Zivot and Wang, 2002). 

 

2.6.2 A test for AR (1) with time components 

A design of a unit root t-test for a possible AR (1) with trend is shown below 

ttt ayy ++= −110 φφ         (2.6.6)     

where 0φ  exhibits a time component. 

)1(1: 10 IH ⇒=φ  with trend  (2.6.7) 

)0(1: 11 IH ⇒<φ  with  deterministic  trend.   (2.6.8) 

Under the null hypothesis, the process is non-stationary with a time trend component12 

and first differencing is appropriate to convert the series to a stationary series.  The t-test 

                                                 
12 However, the trend component is not deterministic.  There is no trend reverting dynamics. In 
Econometrics literature such a trend component is named as drift. 
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design differs from equation (2.6.5)  mainly in how it accommodates for the constant 

term13. 

 

2.6.3 Augmented Dickey-Fuller Unit Root Tests 

    So far, the unit root tests explained were for simple AR (1) models but were not 

suitable for ARMA (p, q) models. The model’s tests are modified by Said and Dickey 

(1984) to capture the dynamics of ARMA (p, q) for an unknown order of p and q. Two 

types of test regression are considered, 

        (2.6.9) ∑
=

−− +Δ++=
p

j
tjtjttt eyyy

1
1 λφω

∑
=

−− +Δ++=Δ
p

j
tjtjttt eyyy

1
1 λδω        (2.6.10) 

where tω  is a vector that captures the constant or trend component and  is an error 

term that is independently and identically distributed. 

te

 Under regression (2.6.9), the null hypothesis is 11 =φ  which implies that the 

series has a unit root. The test statistic is that of (2.6.2). The normalized bias statistic is 

shown below                    

p
n

Tt
λλ

φ
−−−

−
=

......1
)1ˆ(

1

   .                                                                                 (2.6.12) 

 Under regression (2.6.10), the null hypothesis is 0=δ  which tests the 

significance of each lag. The test statistic is the usual test statistic when 0=δ .  The 

normalized bias statistic is shown  

                                                 
13 For details see Hamilton (1994), Section 17.3 Case 4.  
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p
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Tt
λλ

δ
−−−

=
......1 1

 . 

 The subtle part in this analysis is the selection of lag p. Dickey and Fuller (1984) 

suggested that a possible lag p is chosen and a model is specified by using regressions 

(2.6.9) and (2.6.10).  After, another model is specified with lag p-1.  If the two models 

specified exhibit similar dynamics, then lag p chosen may be correct. (Hamilton, 1994) 

                           However, the selection of p described above is arbitrary and may bias the test if 

p is chosen to be very large or very small. For that reason, Zivot and Wang (2002) 

considered another type of procedure.  First choose14 

           ⎥⎦
⎤

⎢⎣
⎡= 4/1

max )
100

(12 Tp         .            (2.6.11) 

Afterwards, an ADF test regression is performed as in regression (2.6.10) testing for the 

significance of each lag up to .  If the last lag is statistically significant as granted by 

the test statistics greater than the absolute value of 1.6, then choose  and 

perform a regression as in (2.6.9).  Otherwise, reduce the lag length by one and start the 

procedure again. 

maxp

maxpp =

 

2.6.4 Phillips-Perron Unit Root Tests 

 The design of Phillips-Perron (1988)’s unit root tests are similar to that of 

Augmented Dickey-Fuller (1984)’s unit root tests but different in accommodating 

moving average terms and heteroskedasticity in the errors.  They both have the same type 

of test statistic asymptotic distributions under the null and they both deal with the 

deterministic terms in the same way. Augmented Dickey-Fuller (ADF) tests 
                                                 
14 For details see Schwert (1989). 
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accommodate moving average terms but disregard heteroskedasticity in the error terms. 

Conversely, Phillips-Perron (PP) tests accommodate heteroskedasticity in the error terms 

but disregard moving average terms. Furthermore, lag specification is necessary for ADF 

but not necessary for the PP test.  The test regression for the PP is shown below 

tttt uyy ++=Δ −1δω  (2.6.12) 

where  is an error component that may be heteroskedastic.  Under the null hypothesis, tu

0=δ and the first difference of  is a stationary process.  Zivot and Wang (2002) shows 

that the test statistic and normalized bias statistics are modifications of   and .  

They are shown below 

ty

0=δt δ̂T
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0

0
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γλ
γ

δδδ −−=
SETTZ                  (2.6.14)  

 

where  and  denote  the least square estimate sample variance of   on a different 

basis

0γ̂ 2τ̂
tu

15 . 

 

 
 
 
 
 
 
 

 

                                                 
15 For details, see Hamilton (1994), Section 17.6. 
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3. An Application to Macroeconomic Time Series 

 

3.1 Literature Review 

The applications of time series concepts to macroeconomic series in literature 

focus on identification of trends and cycles in the series.  Nelson and Plosser (1982) 

performs Dickey Fuller’s (1979) unit root test on the logarithm of real quarterly U.S  

GNP from 1909 to 1970.  They formally accept the null that the GNP series has a unit 

root and hence the process is similar to a random walk.  Even though they accept the fact 

the economy experiences monetary and fiscal shocks that have transitory effects on the 

trend, they claim that they are dominated by real shocks that have permanent effects. 

Perron (1989) designs a unit root test for U.S real quarterly GNP16 with the null 

hypothesis that the series has a unit root with possibly a non-zero drift for U.S GNP.  He 

allows for a structural change17 in his regression by adding dummy variables that would 

become zero in times of that change.  Unlike Nelson and Plosser (1982), he formally 

rejects the null and concludes that the trend is stationary but there is a break in slope 

when the structural changes occur, postulating that those shocks were not a realization of 

the series. Thus, he concludes that the shocks that the economy experiences are 

transitory. 

Zivot and Andrews (1992) modify Perron’s (1989) unit root test accommodating a 

structural change that is unknown for U.S GNP.  This accommodation makes his result 

                                                 
16 He uses the data set of the Nelson and Poller (1982) and postwar quarterly GNP series. 
17 He refers to the Great crash of 1929 and the oil price shock of 1973. 
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robust to any structural change.  Zivot and Andrews (1992) conclude that the trend is 

deterministic, finding even more evidence than Perron (1989).  

Leybourne and McCabe (1994) develop a unit root test in which the null is that of 

the stationary ARIMA (p, 0, 0)18 process against the alternative hypothesis of a non-

stationary ARIMA (p, 1, 1) for U.S GNP series.  Unlike the Dickey Fuller test, they 

claim that the selection of p would affect the test.  Nelson and Murray (1997) choose 

p=2, and conduct the Leybourne and McCabe test for the postwar U.S real GDP.  They 

reject the null and conclude that the model is that of ARIMA (2, 1, 1).  Thus, the series 

contains a unit root. 

 

3.2 Dynamics of U.S GDP series. 

The dynamics of the U.S.GDP series are analyzed by conducting a Ljung Box 

(1978) test, inspecting the plot of the series and analyzing the plot of ACF and PACF. 

For the U.S GDP series, the Ljung Box (1978) test is implemented for 5 degrees 

of freedom19.  The p-value for this test is zero which strongly suggests that the null 

hypothesis cannot be rejected.  Thus, there are autocorrelations present in the data.  

As shown in Figure 1, the U.S GDP series clearly exhibits non-stationarity.  The 

non-stationarity dynamics may result from the existence of a time component in its mean 

or the presence of a time component in its variance or both.  Since it is observed in the 

series that the data is increasing over time, the mean embodies a time component.  Thus, 

                                                 
18 It is worthwhile to note that under the null, MA component has a unit root.  
19 As explained in section 1.2 the degrees of freedom should be selected so that it is approximately equal to 
ln(m).   ln a  sample size of 228 that corresponds to five. 
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the series has a trend component.  However, no further details could be revealed 

regarding the dynamics of the series.  

The ACF on the top of Figure 2 not only suggests that there are autocorrelations 

apparent in the data, but that the series is non-stationary.  The autocorrelations are 

apparent because autocorrelation coefficients are outside of confidence bands.  Also, the 

data is non-stationary because there is persistence in autocorrelations.  However, the 

figures do not reveal any further information regarding the characteristics of non-

stationarity. 

The above findings illustrate that there are dependencies in the observations and 

that the series has a non-stationary dynamics.  It seems that the dependencies and non-

stationarity are caused by the trend, however it may also be caused by the variance.  The 

findings do not reveal any further information regarding the characteristics of the 

variance.  

 

3.3 Unit Root tests 

The Augmented Dickey Fuller (1984) and Phillips-Perron (1988) (PP) tests are 

implemented for the U.S GDP series20.  Under the null hypotheses in both tests, the 

series inherits a stochastic trend component, and under the alternative hypothesis the 

series inherits a deterministic trend component. 

The PP test yields a t-value of -2.491 through equations (2.6.13). That 

corresponds to a p-value of 0.3326 representing moderate evidence to accept the null.  

                                                 
20 All calculations are carried out in S-Plus. 
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Thus, the series contains a unit root and first differencing is appropriate to transform the 

series into a stationary series. 

As mentioned earlier, the specification of lag p in the Dickey Fuller (1984) test 

requires recursive steps.  Based on equation (2.6.11),  is chosen to be 15 for a 

sample size of 228 and the degree of significance of it is calculated by (2.6.4) which 

results from regression (2.6.10).  The results when p is 15 are reported in Table 1.  A t-

value of 0.3422 indicates that the last lag is insignificant since it is lower than the critical   

value of absolute value of 1.6.  Thus, lag 15 should be reduced by 1 to 14 and the 

process should be repeated.  The results when p is 14 are reported in Table 2.  A t-value 

of -0.6007 indicates that the last lag is insignificant since it is lower than the critical 

value of absolute value of 1.6.  Thus, lag 14 should be reduced by 1 to 13 and the 

process should be repeated.  The results when p is 13 are reported in Table 3.  A t-value 

of -2.8270 indicates that the last lag is significant since it is higher than the critical value 

of absolute value of 1.6.  Therefore, lag p should be set to 13. 

maxp

As shown in Table 3, the Dickey Fuller (1984) test, when p=13 yields a t-value of 

-2.372 through equation (2.6.14).  This corresponds to a p-value of 0.3326 representing 

moderate evidence to accept the null.  Thus, the series contains a unit root and requires 

first differencing to exhibit stationarity.  
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3.4 Possible Model Specifications 

 

3.4.1 Inspection of ACF and PACF 

The autocorrelation function of the first differenced stationary U.S GDP series is 

shown on top of Figure 4.  It exhibits damping cosine and sine waves.  This is a 

characteristic of an AR (2) process.  Thus, the series may contain an autoregressive 

component of order 2.   

The partial autocorrelation function of the first differenced stationary U.S GDP 

series is shown in the bottom panel of Figure 4.  The partial autocorrelation function of 

the underlying GDP series is similar to its autocorrelation function in exhibiting 

damping waves like cosine and sine.  The duality between the moving average process 

and the autoregressive process indicates that a moving average component of order 2 

may exist.  

The partial autocorrelation function of the G.D.P series also indicates that the 1st  

and the 12th lags are statistically significant. The significance of the 12th lag may be 

captured by either MA (1) or MA (2) added to AR (1) or AR (2) keeping in mind that 

either AR (2) or MA (2) should exist in the process as indicated by ACF and PACF. 

In brief, the inspection of ACF and PACF of the first differenced U.S GDP series 

may suggest that the series is possibly an ARMA (2, 1), ARMA (2, 2) or ARMA (1, 2). 

For the original U.S GDP series; it is possibly an ARIMA (2, 1, 1), ARIMA (2, 1, 2) or 

ARIMA (1, 1, 2). 
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 3.4.2 Residual Diagnostics 

Residual diagnostic indicates whether the model is correctly specified or 

misspecified. If the residuals are independently and identically distributed, then the 

model is correctly specified. Otherwise, there are autocorrelations in the residuals and 

the model is misspecified.   

      In this analysis, three types of techniques are discussed to test whether residuals 

behave as an independently and identically distributed process.  The first technique 

involves detecting ACF for autocorrelations amongst residuals; the second technique 

involves inspecting PACF for the degree significance of the lags; the third technique 

involves conducting the Ljung-Box test for testing autocorrelations amongst residuals.  

In order to conclude that the residuals are independently and identically distributed, both 

techniques should yield similar results. 

The residual diagnostic is conducted for the ARIMA (2, 1, 2) and ARIMA (1, 1, 

2) models21.  Figure 6 illustrates the results for ARIMA (2, 1, 2) and Figure 5 illustrates 

the results for ARIMA (1, 1, 2).  On the second panel of Figure 6, ACF of the residuals 

indicates that the residuals are independently and identically distributed for ARIMA (2, 

1, 2) since all the correlation coefficients lie within confidence intervals.  On the 

contrary, on the second panel of Figure 5, ACF of the residuals indicates that the 

residuals may not be independently and identically distributed for ARIMA (1, 1, 2) since 

the correlation coefficient for lag 2 is outside of the confidence interval.  On the third 

panel of Figure 6, the PACF of residuals indicates the significance of 4th, 5th and 12th lag 

for ARIMA (2, 1, 2). On the third panel of Figure 5, the PACF of residuals indicate the 

                                                 
21 The residual Diagnostic for ARIMA (2, 1, 1) is omitted because when estimated, the coefficients 
becomes greater than one suggesting that the process becomes explosive.   
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significance of the 2th lag and 12th only for ARIMA (1, 1, 2).  On the last panel of Figure 

6, the Ljung Box test indicates that the residuals of ARIMA (2, 1, 2) have no 

autocorrelations as supported by a p-value lower than 0.05 for the 10th lag.  On the last 

panel of Figure 5, the Ljung Box test indicates that the residuals of ARIMA (1, 1, 2) 

have no autocorrelations as supported by a p-value that is almost zero for 10 consecutive 

lags. 

The findings so far illustrate that each model has its strengths and weaknesses in 

comparison to one another.  ARIMA (1, 1, 2) has its strength in the PACF and p-values 

for the Ljung Box test but its weakness in the ACF of autocorrelations.  On the other 

hand, ARIMA (2, 1, 2) has its strength in the ACF of residuals but its weakness in the 

PACF.  Thus, the findings of residual analysis fail to distinguish one model from the 

other and further analysis is required for model selection.  

 

3.5 Forecasts 

 A useful method of comparing different models is to forecast the actual data from 

the in-sample series. The comparison is finalized in three steps.  First, an in-sample data 

is generated from the original series by excluding the last few observations.  Second, the 

out-of sample observations are estimated by the original models proposed. Third, a 

model that has the most accurate prediction is chosen. 

 

3.5.1 Forecast for ARIMA (1, 1, 2) and ARIMA (2, 1, 2) 

A comparison of ARIMA (2, 1, 2) and ARIMA (1, 1, 2) is also conducted in three 

steps. First, the last 20 observations, which correspond to the last 5 quarters, are 
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excluded from the series and a new set of observations is generated ending in the 1st 

quarter of 1999.  Second, the quarters that are between the first of 1999 and the last of 

2003 are forecasted. Third, the model that has the most accurate prediction is chosen. 

Figure 7 represents a prediction of ARIMA (2, 1, 2).  Even though the actual data 

appears to lie within the distribution confined by the standard deviation, the model fails 

to capture the general dynamics of the series.  It seems that the trend in the actual data is 

larger than the forecasted trend.  Thus, the model fails to forecast the quarters accurately. 

Figure 8 represents a prediction of ARIMA (1, 1, 2).  The predicted values are 

around the predicted trend indicating that there are no significant deviations apart from 

the data.  Thus, the model succeeds in forecasting quarters accurately and is chosen over 

ARIMA (2, 1, 2). 

 

3.5.2 Forecast for trend-stationary and stochastic trend models  

          In this analysis, the model proposed for the U.S GDP series is ARIMA (1, 1, 2), in 

addition to the ARIMA (2, 1, 1) model proposed by Nelson and Murray (1997) and the 

random walk model proposed by Nelson and Plosser (1982).  Both of these models have 

a unit root in their representation and require first differentiation to exhibit stationary 

dynamics.  However, there are also other models proposed by Perron (1989) and Zivot 

(1992) for U.S GNP22 which contain a deterministic trend in their representation and 

require de-trending to exhibit stationary dynamics.  To further explore which model 

                                                 
22 The dynamics of gross domestic national product series should be almost identical to that of gross 
national product because gross national product differs from the gross domestic product in separating 
nation income from foreign income.  
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correctly accommodates the dynamics of the particular series, a method of forecast as 

described earlier may be implemented23. 

  Figure 9 represents a Perron (1989) type of model which contains a deterministic 

trend with an autoregressive component of order 1.  Even though the model seems to 

capture the trend in the data, there are some deviations visible apart from the actual data. 

Thus, the model fails to forecast the GNP series accurately.  

           Figure 10 represents a Nelson and Plosser (1982) type of a random walk model. 

Even though the actual data appears to lie within the distribution confined by the 

standard deviation, the model fails to capture the general dynamics of the series. It 

appears that the model estimates the same value for each quarter. Thus, the model fails 

to forecast the quarters precisely. 

              The model that has the only precise estimates is ARIMA (1, 1, 2).  Thus, the 

results of the findings of the analysis are correct. The U.S GDP series has a stochastic 

trend in its representation and is best described ARIMA (1, 1, 2).  

 

 

 

 

 

 
                                                 
23 A method of forecast is not implemented for ARIMA (2, 1, 1) because when estimated, the coefficients 
becomes greater than one suggesting that the process becomes explosive.   
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4. Conclusions 

 The purpose of this analysis is to specify an ARIMA (p, d, q) model to examine 

the impact of short-run variations on the long-run trend for the U.S GDP series.  The 

analysis is divided into two parts.  In the first part, time series concepts are briefly 

introduced to study an ARIMA (p, d, q) model.  In the second part, a literature review on 

U.S GDP series is provided together with the empirical findings. 

         The models that are proposed in the literature24 are compared against the 

ARIMA (1, 1, 2) model by using a forecast method which involves creating an in-

sample data by excluding the last few observations and forecasting the out-of-sample 

data.  As a result, it is found that amongst all the models, ARIMA (1, 1, 2) yields the 

best forecast accuracy and hence the dynamics of the U.S GDP series is best described 

by an ARIMA (1, 1, 2) model.  This specific model points out that in every period the 

growth rate is affected by the previous event and the last two shocks, and more 

importantly it points out that the U.S economy undergoes short-run fluctuations that 

have permanent effects on the long-run trend of the economy. 

      There can be three limitations of the findings of this analysis. One limitation 

may be due to the brevity of the sample making it difficult to fully identify the long-run 

dynamics of the series.  Usually an infinite sample is needed to characterize the long-run 

dynamics of the series (Romer, 2001).  Thus, an attempt to claim that the long-run trend 

is stochastic under a sample size of 228 may be too assertive.  The second limitation is 

that there may be a long memory process in the U.S GDP as indicated by the ACF in the 

top panel of Figure 2.  Thus, a partially integrated process may have been even more 

                                                 
24   Except for ARIMA (2, 1, 1), AR (1) coefficient is greater than one. 
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appropriate to capture the dynamics of the underlying GDP series.  The third limitation 

is that the studied models here are linear.  As Potter (1995) suggested, a nonlinear model 

outperform the standard linear models for the U.S GNP. 

 Further research could be conducted by using longer time spans; the dynamics 

of the long memory could be further examined and also a non-linear model could be 

designed. Overall, these possible models can be compared by the forecast technique 

described and the one that has the best predictive can be studied.  
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QUARTERLY AND SEASONALLY ADJUSTED U.S.GDP (log scale)
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FIGURE 1: Quarterly and seasonally adjusted Gross Domestic Product in log scale.  
The sample period is from January 1, 1947 to October 1, 2003.  x-axis represents the 
years of the sample and y-axis represents the sample in log scale.  The presence of trend 
indicates non-stationarity.  Source: U.S. Bureau of Economic Analysis, National Income 
and Product Accounts. 
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FIGURE 2:  Top:  Autocorrelation function of quarterly and seasonally adjusted 
GDP series.  x-axis corresponds to lags and y-axis corresponds to correlation 
coefficients of the series.  If the series is identically and independently distributed, the 
correlation coefficients should be within confidence interval bands.  The confidence 
interval bands are represented by the dotted line.  The figure indicates the significance 
of the autocorrelations in the series.  Bottom:  Partial autocorrelation function of 
quarterly and seasonally adjusted U.S. GDP series. x-axis corresponds to lags and y-
axis corresponds to correlation coefficients of the series.  If the lag is insignificant, the 
correlation coefficient lies within confidence interval bands.  The confidence interval 
bands are represented by the dotted line.  The figure indicates the 1st lag is statistically 
significantly.  
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FIRST DIFFERENCE OF QUARTERLY AND SEASONALY ADJUSTED U.S.GDP(log scale)
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FIGURE 3: The first difference of quarterly and seasonally adjusted U.S. GDP in log 
scale.  x-axis represents the years of the sample and y-axis represents the first difference of 
the series.  The sample period is from January 1, 1947 to October 1, 2003.  The mean 
reverting dynamics is an indication of stationarity.  
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FIGURE 4:  Top:  Autocorrelation function of the first difference of quarterly and 
seasonally adjusted U.S. GDP series.  x-axis corresponds to lags and y-axis corresponds 
to correlation coefficients of the series.   The presence of damping and cosine waves may 
be an indicative of AR(2) process.  Bottom:  Partial autocorrelation function of 
quarterly and seasonally adjusted U.S. GDP series. x-axis corresponds to lags and y-axis 
corresponds to correlation coefficients of the series.  If the lag is insignificant, the 
correlation coefficient lies within confidence interval bands.  The confidence interval 
bands are represented by the dotted line.  The figure indicates the 1st and the 12th lags 
are statistically significant.   MA(2) process is suspected due to the duality between AR 
and MA processes.  
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Figure 5: 1st Top:  Plot of standardized residuals of the ARIMA (1, 1, 2) model.  Each 
residual is divided by the standard deviation (σ). x-axis represents the number of 
standardized residuals and y-axis represents standard deviations. 2nd Top: 
Autocorrelation function of residuals of the ARIMA (1, 1, 2) model.  x-axis 
corresponds to lags and y-axis corresponds to correlation coefficients of the series.  
The model is correctly specified if the residuals are identically and independently 
distributed.  Since the correlation coefficient for the second lag is statistically significant, 
the figure indicates that the model is misspecified.  2nd Bottom:  Partial autocorrelation 
function of the residuals of the ARIMA (1, 1, 2) model.  x-axis corresponds to lags and 
y-axis corresponds to correlation coefficients of the series.  The correlation 
coefficients on the y-axis are measured for the original residual series and with other lags 
on the x-axis.  If the lag is insignificant, the correlation coefficient lies within 
confidence interval bands.  The confidence interval bands are represented by the 
dotted line.  The figure indicates that the 2nd and 12th lag is statistically significant.  
Bottom:  Ljung-Box test for detecting autocorrelation in the residuals of the ARIMA (1, 
1, 2) model.  x-axis represents the lags and y-axis represents p-values from the test.  If the 
model is correctly specified, then the p-values would be lower than the 0.05 critical value.  
The critical p-value is represented by the dotted line.  Since the p-value’s up to 10th lag is 
almost zero, the figure indicates that the model is correctly specified.  
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Figure 6: 1st Top:  Plot of standardized residuals of the ARIMA (2, 1, 2) model.  Each 
residual is divided by the standard deviation (σ).  x-axis represents the number of 
standardized residuals and y-axis represents standard deviations. 2nd Top: 
Autocorrelation function of residuals of residuals of the ARIMA (2, 1, 2) model.  x-axis 
corresponds to lags and y-axis corresponds to correlation coefficients of the series.  
The model is correctly specified if the residuals are identically and independently 
distributed.  Since no lag is significant, the figure indicates that the model is correctly 
specified.  2nd Bottom:  Partial autocorrelation function of the residuals of the ARIMA (2, 
1, 2) model.  x-axis corresponds to lags and y-axis corresponds to correlation 
coefficients of the series.  The correlation coefficients on the y-axis are measured for the 
original residual series and with other lags on the x-axis.  If the lag is insignificant, the 
correlation coefficient lies within confidence interval bands.  The confidence interval 
bands are represented by the dotted line. The figure indicates that the 4th, 5th, and 12th 
lags are statistically significant.  Bottom:  Ljung-Box test for detecting autocorrelation in 
the residuals of the ARIMA (2, 1, 2) model designed.  x-axis represents the lags and y-axis 
represents p-values from the test.  If the model is correctly specified, then the p-values would 
be lower than the 0.05 critical value.  The critical p-value is represented by the dotted line.  
Since none of the p-values is greater than the critical p-value, the figure indicates that the 
model is correctly specified. 
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Figure 7:  Forecast with ARIMA (2, 1, 2) for the out-of sample series from the 
first quarter of 1999 to last quarter of 2003.   x-axis represents the truncated years 
and y-axis represents the log of quarterly and seasonally adjusted U.S series.  The 
solid line indicates the forecasted series with ARIMA (2, 1, 2).  The broken line lines 
represent the predictions.  The dotted lines represent 95% confidence intervals.  
The figure indicates that ARIMA (2, 1, 2) do not forecasts the actual data 
accurately.  
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Figure 8:  Forecast with ARIMA (2, 1, 1) for the out-of sample series from the 
first quarter of 1999 to last quarter of 2003.   x-axis represents the truncated years 
and y-axis represents the log of quarterly and seasonally adjusted U.S series.  The 
solid line indicates the forecasted series with ARIMA (2, 1, 1).  The broken line lines 
represent the predictions.  The dotted lines represent 95% confidence intervals.  
The figure indicates that ARIMA (2, 1, 1) forecasts the actual data accurately.  
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Figure 9:  Forecast with AR(1) trend-stationary model for the out-of sample 
series from the first quarter of 1999 to last quarter of 2003.  x-axis represents the 
truncated years and y-axis represents the log of quarterly and seasonally adjusted 
U.S series.  The solid line indicates the forecasted series with ARIMA (2, 1, 1).  
The broken line lines represent the predictions.  The dotted lines represent 95% 
confidence intervals.  The figure indicates that AR(1) trend-stationary model  do 
not forecast the actual data accurately.  
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Figure 10:  Forecast with a random walk for the out-of sample series from the 
first quarter of 1999 to last quarter of 2003.   x-axis represents the truncated years 
and y-axis represents the log of quarterly and seasonally adjusted U.S series.   The 
broken line lines represent the predictions.  The dotted lines represent 95% 
confidence intervals.  The figure indicates that random walk model fails to 
forecast the actual data precisely.  
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The results of Augmented Dickey-Fuller Test 
 

 t-value P-value

Lag  1 -2.0178 0.0450

Lag  2 4.15 0.0

Lag  3 1.565 0.1192

Lag  4 -0.3767 0.7068

Lag  5 -0.6266 0.2317

Lag 6 -1.0494 0.2953

Lag 7 0.9706 0.3330

Lag 8 -0.6740 0.5011

Lag 9 -0.8835 0.3780

Lag 10 0.5926 0.5541

Lag 11 0.8976 0.3705

Lag12 0.8031 0.4229

Lag 13 -2.4864 0.0137

Lag 14 -0.6324 0.5279

Lag 15 0.3422 0.7326

Test Statistic -2.018 0.5879
 
 
Table1:  The results of Augmented Dickey-Fuller Test for the maximum lag length of 15.  For this 
particular test if the absolute value of the t-value is grater lower than the absolute value of 1.6, which 
is assumed to be the critical value, then the lag is statistically insignificant. 
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The results of Augmented Dickey-Fuller Test 
 

 t-value P-value

Lag 1 -2.1843  0.0301  

Lag 2 4.2507  0.0000

Lag 3 1.9020  0.0586

Lag 4 -0.6864  0.4933

Lag 5 -0.4922  0.6231

Lag 6 -1.0274  0.3055

Lag 7 0.7815  0.4354

Lag 8 -0.6677  0.5051

Lag 9 -0.9124  0.3627

Lag 10 0.6570  0.5119

Lag 11 0.8972  0.3707

Lag 12 0.7932  0.4286

Lag 13 -2.5453  0.0117

Lag 14 -0.6007  0.5487

Test Statistic -2.184 0.4955
 
Table 2: The results of Augmented Dickey-Fuller Test for the maximum lag length of 14.  For this 
particular test if the absolute value of the t-value is lower than the absolute value of 1.6, which is 
assumed to be the critical value, then the lag is statistically insignificant. 
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The results of Augmented Dickey-Fuller Test 
 

t-value P-value

Lag 1 -2.3722 0.0186

Lag 2 4.8195 0.0000

Lag 3 1.8218 0.0700

Lag 4 -0.6583 0.5111

Lag 5 -0.5109 0.6100

Lag 6 -1.0652 0.2881

Lag 7 0.8373 0.4034

Lag 8 -0.6958 0.4874

Lag 9 -0.8191 0.4137

Lag 10 0.7467 0.4561

Lag 11 0.9540 0.3412

Lag 12 0.7012 0.4840

Lag 13 -2.8270 0.0052

Test  Statistic -2.372 0.3931
 
Table 3: The results of Augmented Dickey-Fuller Test for the maximum lag length of 15.  For this 
particular test if the absolute value of the t-value is lower than the absolute value of 1.6, which is 
assumed to be the critical value, then the lag is statistically insignificant. 
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