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ABSTRACT. Two agents share a common benchmark model for dividends. Each is risk-
neutral but uncertainty averse, i.e., preferences are linear in consumption, but each agent
has doubts about the specification of the dividend process. These doubts manifest them-
selves as a preference for robustness (Hansen and Sargent (2008)). Robust preferences
introduce pessimistic drift distortions into the benchmark dividend process. These dis-
tortions increase with the level of wealth, and give rise to endogenous heterogeneous
beliefs. Belief heterogeneity allows asset price bubbles to emerge, as in Scheinkman and
Xiong (2003). A novel implication of our analysis is that bubbles are more likely to occur
when wealth inequality increases. A key advantage of our analysis is that detection error
probabilities can be used to assess whether empirically plausible doubts about dividends
can explain observed bubble episodes.

JEL Classification Numbers: D84, G12

1. INTRODUCTION

Conventional wisdom blames the recent financial crisis on a bubble in the housing
market. Bubbles have been blamed for previous crises as well. Economists do not agree
on what causes bubbles. Some argue that the concept is meaningless, or that bubbles are
a case of hindsight being 20/20. Others have pointed out that bubbles can be perfectly
rational in a world where current outcomes depend on expectations of future outcomes.
Still others argue that bubbles are prima facie evidence of irrationality, and suggest that
economists build models in which agents suffer from various sorts of psychological biases.

Each of these approaches to bubbles has problems. Denying that bubbles exist presents
the challenge of explaining why prices rise so much and fall so quickly. Although Garber
(2000) points to the possibility that real-time assessments of fundamentals could have
justified price increases in several bubble episodes, these examples do not explain their
magnitude, nor do they explain why some people buy while others are selling, or why the
bubble suddenly bursts. Theories of ‘rational bubbles’ show that the conditions supporting
the existence of bubbles tend to be quite fragile (Santos and Woodford (1997)). Rational
bubble theories also do not explain why bubbles get started in the first place, or why they
are invariably correlated with large trading volumes. Finally, although models based on
irrationality have the distinct advantage of being able to explain anything, the concern is
that theories that explain anything explain nothing.

In our view, the most coherent and convincing account of bubbles was proposed by
Scheinkman and Xiong (2003). Their model builds on the previous work of Harrison
and Kreps (1978). It is based on two key ingredients: (1) Heterogeneous beliefs, and
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(2) Short-selling constraints. Heterogeneous beliefs imply the coexistence of optimists and
pessimists, while the presence of short-selling constraints means that the views of optimists
are more fully expressed than those of pessimists. Hence, prices tend to be biased up on
average, even when beliefs themselves are unbiased. What makes the model work is the
fact that an agent’s relative optimism fluctuates. An asset holder recognizes that at some
point in the future, other traders may become relatively more optimistic. This creates an
option value of selling to future optimists. Scheinkman and Xiong (2003) define a bubble
as the value of this option, and then apply well known tools from the options pricing
literature to formally calculate it as a function of the model’s underlying parameters. The
fact that they are able to quantify both the timing and magnitude of bubbles is what sets
Scheinkman and Xiong’s work apart from previous efforts to understand bubbles, because
it makes their theory testable. For example, a key prediction of their model is that bubbles
should be accompanied by large trading volumes.

Although we regard Scheinkman and Xiong (2003) as state-of-the-art when it comes to
bubbles, it is not without flaws, as Scheinkman (2014) himself acknowledges in his recent
Arrow lecture. One drawback concerns the underlying source of belief heterogeneity. In
their model, belief heterogeneity is exogenous. Agents receive exogenous signals about
future fundamentals, and are assumed to over-react to distinct signals. This makes relative
optimism fluctuate. Hong and Scheinkman (2008) attempt to flesh this story out with a
model of financial advisors. Still, even though by construction beliefs are unbiased on
average, one could argue that the magnitude and fluctuations in relative optimism lack
discipline in the sense that they are not linked to observable data (other than the bubble
itself). Another drawback is that Scheinkman-Xiong abstract from learning. Over-reaction
in their model is caused by agents thinking a useless signal is in fact useful. Wouldn’t
agents eventually learn that their signal is useless? Why don’t beliefs eventually merge
(Morris (1996))?

Our paper addresses these shortcomings. Like Scheinkman-Xiong, we assume agents
are risk-neutral. However, they are not ‘uncertainty neutral’. They have doubts about
the (common) benchmark model for fundamentals. In continuous-time, these doubts are
expressed as pessimistic drift distortions that are proportional to the marginal value of
wealth (Hansen, Sargent, Turmuhambetova, and Williams (2006)). Hence, if wealth differs
across agents, so do beliefs. Since wealth is endogenous, so are belief differences. As a
corollary, an intriguing prediction of our model is that bubbles are most likely to emerge
during periods of increasing wealth inequality.

Like Scheinkman-Xiong, the key mechanism in our model is belief reversals, which
create an option to resell to future (relative) optimists. Although utility functions are
linear, value functions are not, as they embody the option value of selling the asset in the
future. In fact, the value function is convex. This implies that drift distortions increase
with wealth. Effectively, the agent who owns the asset becomes more pessimistic as prices
rise and his wealth increases. This makes sense since he has more to lose following a
price decline." This endogenously increasing pessimism is the source of belief reversals in
our model. Although both agents are pessimistic relative to the (untrusted) benchmark
model, the agent who owns the asset gets progressively more pessimistic. Eventually, he

1See Bhandari (2013) for a related discussion in the context of optimal risk sharing under ambiguity.
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becomes even more pessimistic than the agent who sold him the asset in the first place,
and he exercises his option to sell.

Besides making belief heterogeneity endogenous, another advantage of our approach
is that it imparts discipline on the degree of belief heterogeneity. Following Anderson,
Hansen, and Sargent (2003), we can link belief distortions to detection error probabilities.
This enables us to check whether empirically plausible doubts about fundamentals can
create sufficient belief heterogeneity to allow bubbles to emerge.

The remainder of the paper is organized as follows. Section 2 describes the benchmark
dividend process and agent preferences. Section 3 characterizes the single-agent compet-
itive equilibrium, using a first-order perturbation approximation of the agent’s Bellman
equation. With no possibility of trading, doubts about fundamentals cause asset prices
to be biased below their fundamental values. Section 4 introduces a second agent. We
begin by pointing out an important distinction between risk-sensitivity and robustness.
In single-agent problems these two interpretations are mathematically equivalent. That is
no longer the case with heterogeneous agents. If distortions are an aspect of preferences,
they motivate agents to share risks. In contrast, if distortions are an aspect of beliefs,
they motivate speculative trading. The two-agent competitive equilibrium now features
a tension between robustness-induced pessimism, which depresses prices, and the option
value of selling in the future, which raises them. In general, prices can be either above or
below their Rational Expectations value. However, they are more likely to exceed their
‘fundamental value’ when wealth inequality increases, since this raises the resale option
value. Section 5 uses simulations to explore this tension quantitatively. Using standard
parameter values, we find that prices are typically below their Rational Expectations coun-
terparts, but occasionally and persistently rise above them. This occurs when the current
asset owner’s relative wealth increases, which makes him relatively pessimistic. The fact
that bubbles emerge when the underlying fundamentals are favorable is consistent with
the evidence discussed in Garber (2000) and Scheinkman (2014). They note that bubbles
typically occur in response to the introduction of new technologies or markets. In some
preliminary calculations, we show that the (average) detection error probabilities associ-
ated with these bubble episodes are quite high, typically in excess of 45%. That is, the
doubts that asset owners have about fundamentals would be very difficult to statistically
reject, based on historical evidence. Finally, Section 6 offers a few suggestions for future
work.

2. THE MODEL

2.1. Fundamentals. Two risk neutral investors can trade claims on an asset. The asset
is in fixed supply, normalized to one. The asset yields a stream of nonstorable dividends
governed by the following geometric Brownian motion:

dr = px - dt +ox-dB (2.1)

Unlike in Scheinkman-Xiong, this stream of dividends is assumed to be observable. Het-
erogeneous beliefs are instead determined by (Knightian) uncertainty about the dividend
process in (2.1). That is, (2.1) is viewed as merely a useful benchmark model. Pessimistic
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drift distortions reflect each investor’s preference for robustness. As is typical in this lit-
erature, we assume there are no commodity or asset rental markets. Hence, if you want
to consume, you have to buy the asset.

2.2. Preferences. Each agent has the following risk-neutral preferences:

c,x

V(xo, Wp) = maXE'o/ ce "t (2.2)
0

where ¢ is consumption and r is an exogeneous interest rate (assumed to be constant).
The agent’s budget constraint is

aW = [(r+a(pp —r))W —c]dt + aWo - dB (2.3)

where « is the share of wealth invested in the dividend paying asset, and p,, is its equilib-
rium expected rate of return. Note that if the agent does not invest in the asset (a = 0),
his wealth just grows at the interest rate, dW = rW - dt, since ¢ = 0.

2.3. Rational Expectations Equilibrium. The key aspect of the preferences in eq.
(2.2) is the hat over the expectations operator, E. This emphasizes the fact that a prefer-
ence for robustness can be thought of as producing pessimistically distorted expectations.
Before getting to that, it is useful to first quickly review the nondistorted, Rational Ex-
pecations equilibrium. In this case, the dividend-paying asset is a perfect substitute for
borrowing and lending, and so must offer the same rate of return. The choice of « is then
a matter of indifference to the agent.

To find this rate of return, we must solve the agent’s optimization problem. His
Hamilton-Jacobi-Bellman (HJB) equation can be written

1 1
rV(x, W) = max {c + paxVy + [(r+ alpp —1))W — c|Viy + 502:132%” + 502042W2VWW + Uza:EWVmw}

c,a

(2.4)
and the first-order condition for « is
(p — )V + 022 Vow

—2WVww

we can then sub this back into the HJB equation and solve under different assumptions
about consumption. Solving PDEs is never fun, but in this case economic theory comes to
the rescue. Since there is only one underlying shock, there is really only one state variable
here. In equilibrium, the asset price and the agent’s wealth will be functions of x. One
can then readily verify the following solution to the HJB equation

x
Vv = 2.6
@)= (2.6
This is the Rational Expectations price of the asset, and from eq. (2.1) it implies the
following equilibrium price process

dP = pP-dt+oP-dB (2.7)

o =

(2.5)

At the same time, given risk neutrality, there are good reasons to be believe that viewed
as a function of wealth, the agent’s value function is just V(W) = W. Given the FOC
in eq. (2.5) this verifies what we already knew, that in equilibrium the expected return



DOUBTS, INEQUALITY, AND BUBBLES 5

on the asset must be p, = r, otherwise the agent would want to take an infinite position.
That is, since the asset pays dividends, its total rate of return equals its capital gain plus
its dividend yield. From the previous results:?

pp=p+z/P=p+(r—p) =r

Unfortunately, we know from the work of Shiller (1989), and many others, that this is
a woefully inadequate model of observed asset prices.

3. SINGLE-AGENT EQUILIBRIUM WITH ROBUSTNESS

Let’s start with the case of just one (representative) agent. Obviously there is no trading
in this case. However, in contrast to the above Rational Expectations equilibrium, now
suppose the agent has doubts about the dividend process in eq. (2.1), doubts that cannot
be captured by a conventional Bayesian prior. Following Hansen and Sargent (2008), we
assume the agent enlists the services of a so-called ‘evil agent’, who is imagined to select
models so as to minimize the agent’s expected utility. Since this worst-case model depends
on the agent’s own policy, the agent views himself as being immersed in a dynamic zero-
sum game. To prevent the agent from being unduly pessimistic, in the sense that he
would be hedging against empirically implausible models, the evil agent is assumed to pay
a penalty that is proportional to the relative entropy between the evil agent’s worst-cast
model and the agent’s own benchmark model in (2.1). It turns out that in continuous-time,
these alternative models only differ in their drift terms.

To see how this works, let ¢ be the probability measure defined by the Brownian motion
process in the benchmark model (2.1), and let ¢; be some alternative probability measure,
defined by some competing model. The (discounted) relative entropy between ¢; and ¢
is then defined as follows:?

R(q) = /0 Tt [ / log (%) dqt] dt (3.8)

Evidently, R(q) is just an expected log-likelihood ratio statistic, with expectations com-
puted using the distorted probability measure. It can also be interpreted as the Kullback-
Leibler ‘distance’ between ¢; and ¢). From Girsanov’s Theorem we have

th 1A/t 2
log (24t dg, = ~E [ |ho|2d
/"g(dqg) o= [ Inds

where E denotes expectations with respect to the distorted measure ¢;, and hs represents
a square-integrable process that is progressively measureable with respect to the filtration

2These results about value functions and asset prices are not quite as obvious as they seem. One might
reasonably wonder what happened to the second-order partials in the above HJB equation. How did we
know we could drop them? As noted by Froot and Obstfeld (1991), these higher-order terms offer the
possibility of introducing nonlinear intrinsic bubble terms into equilibrium asset prices. Prices rise above
fundamentals simply because they are expected to. However, as noted above, we do not view such rational
bubbles as convincing accounts of observed bubble episodes. For one thing, they do not generate any
trading volume.

3See Hansen, Sargent, Turmuhambetova, and Williams (2006) for a detailed discussion of robust control
in continuous-time models, and in particular, on the role of discounting in the definition of relative entropy.
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generated by ¢;. Again from Girsanov’s Theorem, we can view ¢; as being induced by the
following drift distorted Brownian motion*

B(t) = B(t) — /0 s

which then defines the following conveniently parameterized set of alternative models

dx = (px + oxh)dt + oxdB (3.9)
and distorted budget constraint®
AW = [(r + a(pp — 7))W — c + aWah]dt + aWo - dB (3.10)

The evil agent picks h subject to a (discounted) relative entropy penalty. This produces
the following dynamic zero-sum game:

[e.e]

V(zg, Wy) = max min E‘O/ (c + lth> e "tdt (3.11)
ca  h 0 2

subject to the state transition and budget equations in (3.9) and (3.10). The crucial

parameter here is 6, which penalizes the actions of the evil agent. We shall see that

as § — oo, outcomes converge to the above Rational Expectations equilibrium. The

Hamilton-Jacobi-Isaacs equation for this game is

rV = maxmhin {c + %th + (px + oh)Va + [(r + alpp — 1) )W — c+ aWoh|Viy + lUZ:CZVM + l02042‘/1/'2‘/};;/‘;[/ + OéO'ZLEWVzW}

c,a 2 2
(3.12)
which produces the following policy functions
_ h 2 ;
N [(1p r)—l—c;' Vi + o2xVw (3.13)
—*WVww
h = —eo(xVy+ aWoWVyy) (3.14)

where for notational convenience in what follows, we have defined ¢ = §~'. The point
to notice here is that these are game-theoretic reaction functions. The agent’s optimal
investment policy depends on what he thinks his evil twin is up to. At the same time,
the worst-case scenario for the agent depends on his own policy function. These reaction
functions allow the agent to explore in a systematic way the fragility of his policies.®
Although (3.13) and (3.14) are linear, and easily solved, once they are subbed back into
the Bellman equation in (3.12) we obtain a nonlinear PDE that is only slightly simpler
than the equations of General Relativity. Fortunately, once again, we can use economic
reasoning to greatly simplify it. First, we can impose the equilibrium conditions ¢ = =
and a = 1. As in Lucas (1978), the agent’s FOC for « can then be interpreted as an

4There are some subtleties here arising from the possibility that Band B generate different filtrations.
See Hansen, Sargent, Turmuhambetova, and Williams (2006) for details.

SWith only one underlying stochastic state variable, the evil agent is only at liberty to introduce one
distortion. Hence, the h in the dividend process is the same as in the budget constraint.

6As in Hansen and Sargent (2008), we assume that doubts are only the mind of the agent. When
simulating the model, we assume the benchmark dividend process is in fact the true data-generating
process. The agent just doesn’t know this. Robustness only matters because it changes the agent’s
policies.
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equation determining the asset’s equilibrium rate of return, which makes him content to

hold it. Second, since again there is only one underlying state variable, we can without

loss of generality drop all terms containing W, and solve for V as only a function of z.”
At the end of the day, we are left with the following PDE

1 1
rV =x+ pxV, + 502:132Vm — 5602:132(%)2 (3.15)

The solution determines wealth and the equilibrium price, V() = W(x) = P(x), and
Ito’s Lemma can then be used to characterize their dynamics. Although much simplified,
the robust HJB equation in (3.15) is still nonlinear, and as a result, does not possess
a closed-form solution. Following standard practice, we therefore pursue a perturbation
approximation. This is especially appealing here, since we already know the solution when
£ =0, so € becomes a natural perturbation parameter.®

To begin, write the unknown value function as follows

V(z) =Voz) +eVi(z) (3.16)

where we have dropped O(g?) terms. We then match terms in e. The ¥ = 1 term just
gives

1
V0 = a4 pxVy? + 50%21/;;

The solution to this is easy. It’s just the Rational Expectations solutions we found before?
T

VO(z) = p— (3.17)
Matching the ' terms gives the equation
1 1
rViz) = paV}i(z)+ 502:E2Vm1m - 502$2(V£)2
1 1 z?
= /L:EV;(ZE) + 50-21"2‘/:21:2 — 502m

Note this is a linear ODE, with a quadratic forcing process. Solutions of the homogeneous
equation generate intrinsic bubble terms, and as before we omit them.'® Given the qua-
dratic forcing process, it is natural to posit a particular solution of the form V(z) = Az?,
where A is an undetermined coefficient. Subbing in and solving for A we find

Vi) =~ <2<r - mz(:z— 2p = 02>> g

Combining, we get the following first-order perturbation solution to the HJB equation

X 0'2
Ve == <2<r—u>2<r—2u—02>

7Doing this is an example of the macroeconomist’s standard ‘big K’, ’little k’ trick. Since the agent is
representative, his wealth becomes a function of x.

> 22 + 0(?) (3.18)

8See Anderson, Hansen, and Sargent (2012) for a more sophisticated (and accurate) approach to per-
turbation solutions of robust control problems.

gAgain, we are omitting nonlinear intrinsic bubble terms, which would be of the form Az here.

loLater, when discussing heterogeneous beliefs and speculative trading, these intrinsic bubble terms
will be interpreted as resale option values, and will play a crucial role in the analysis.
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This is concave as long as 7 > 2+ 02. In this case, notice from (3.14) that the evil agent’s
drift distortion decreases as dividends increase. That is, the agent’s doubts dissipate as
he grows wealthier. In the limit, prices converge to their Rational Expectations values.
This sort of nonhomotheticity motivated Maenhout (2004) to propose a scaled version of
robust control, in which 6 ~ 0/V (z). This scaling keeps doubts alive, since the robust
agent’s distortion penalty effectively shrinks as the economy grows.

While homotheticity is convenient mathematically, we claim that it rules out by assump-
tion a host of interesting and important phenomena related to the distribution of wealth.!
For example, it seems quite reasonable that wealthier individuals would be less concerned
about robustness. That’s what nest eggs and rainy day funds are all about. However, if
that’s the case, and wealthy individuals are more willing to invest in higher yielding but
more ambiguous assets, then inequality will clearly grow over time. On the other hand,
one could instead argue that wealth creates doubts and paranoia, since wealthy people
have more to lose. To quote a famous song - “Freedom’s just another word for nothing
left to lose”.

In the following section, we consider a model where both forces are at play. The key
new element is the introduction of a second agent. With nonhomothetic preferences for
robustness and multiple agents, heterogeneous beliefs emerge endogenously via wealth
inequality. When wealth inequality is small, doubts mainly depress asset prices, but as
above, this effect will diminish as collective wealth increases. However, heterogeneous
beliefs create the option to sell in the future, and like other option values, it induces
convexity in the value function. This convexity component implies that distortions can
actually increase with wealth, especially when wealth grows unequally.

4. TWO-AGENT EQUILIBRIUM WITH ROBUSTNESS

The previous section considered the problem of a single agent with linear utility who
wants to maximize an expected present value. The only catch was that his expectations
were distorted because of doubts about the fundamentals process. In the usual way, we can
then interpret the outcome as a decentralized competitive equilibrium. However, wealth
dependent expectations introduces some subtleties. Notice that the agent’s value function
in eq. (3.18) is concave, despite his linear consumption preferences. This suggests that in
some sense the agent is actually risk-averse, despite his linear consumption preferences.
Indeed, this is the case. The HJB equation in (3.15) is the same HJB equation that would
arise if we had endowed the agent with Duffie and Epstein’s (1992) Stochastic Differential
Utility preferences. In that case, the agent would have no doubts about fundamentals. He
would simply dislike variance in continuation utility.

The mathematical equivalence between robustness and risk-sensitivity has been a recur-
ring theme in the Robust Control literature. It rests on the following Legendre Transform
duality

HEor example, Bhandari (2013) studies a wide range of issues in a model with multiple agents and non-
homothetic preferences for robustness. He focuses on risk-sharing, asset pricing, and the market selection
hypothesis.
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min  EmV + 0E(mlogm) = —0log E exp (—1V> (4.19)
m>0,Em=1 0

where m is a (distorted) probability measure, V' is a value function, and 6 is a parameter.

The left-hand side provides the robust control interpretation. The hypothetical evil agent

picks m subject to a relative entropy cost function. The right-hand side provides the risk-

sensitivity interpretation. Here there is no evil agent, and m disappears. Optimization

over m has been embedded in nonlinearity.

Although the Legendre Transform duality in eq. (4.19) points to a mathematical equiv-
alence between robustness and risk-sensitivity, they are not economically equivalent. This
is true even in single-agent settings. For example, Barillas, Hansen, and Sargent (2009)
emphasize that the two problems call for different interpretations and calibration strate-
gies for the # parameter. According to Robust Control, 8 is an aspect of the underlying
environment. It will change if the environment changes, and its value should be calibrated
using detection error probabilities. According to Risk-Sensitivity, 8 is an aspect of prefer-
ences. For the usual reasons, it should then be interpreted as invariant to changes in the
environment, and estimated from the data just like other preference parameters are.'?

The economic distinction between Robust Control and Risk-Sensitivity is even more
important with multiple agents, because beliefs and preferences elicit different interactions
between agents. Belief differences motivate speculation, whereas preferance differences
motivate risk-sharing. Unfortunately, even though the Robust Control literature has been
active now for nearly two decades, applications with multiple agents are still hard to find.
In one of the earliest examples, Anderson (2005) adopts the Risk-Sensitivity interpretation,
and characterizes complete markets allocations by solving a Pareto problem. Bhandari
(2013) and Borovicka (2013) adopt the Robust Control interpretation, and again use a
Pareto problem to characterize complete markets allocations. A key feature of all three is
that Pareto weights become endogenous state variables. In Anderson (2005) this reflects
wealth dependent risk attitudes. In Bhandari (2013) and Borovicka (2013) this reflects
wealth dependent beliefs. All three conclude that the distribution of wealth tends to be
nonstationary with complete markets.'3

The fact that the long-run distribution of wealth is often degenerate with complete
markets and heterogeneous beliefs has sparked a recent debate about the desirability
of complete markets and the suitability of the Pareto criterion when evaluating market
outcomes. For example, Blume, Cogley, Easley, Sargent, and Tsyrennikov (2014) pose the
following question - Suppose it’s time-0 and you know that some agents will be endowed
with correct beliefs, and some with incorrect beliefs. Would you vote for complete markets,
or might you prefer to place restrictions on the ability to speculate? They provide examples
where agents would actually vote for incomplete markets. Of course, it is crucial that this
vote take place behind a veil of ignorance. Once beliefs have been endowed it is too late.

12Gtrzalecki (2011) and Maccheroni, Marinacci, and Rustichini (2006) provide more formal axiomatic
linkages between robustness and recursive/risk-sensitive preferences.

BBorovicka (2013) is actually a bit of a hybrid. He combines (exogenous) belief distortions with
recursive/risk-sensitive preferences. He finds that the distribution of wealth is more likely to be stationary
with heterogeneous beliefs when preferences allow for a separation between intertemporal substitution,
which governs saving, and risk aversion, which governs portfolio choice.



10 IN-KOO CHO AND KENNETH KASA

By definition, no one thinks their prior is wrong (although they will obviously update it
in response to new information). Once priors have been endowed, agents with incorrect
beliefs will continue to place immiserizing bets, forever convinced that their luck is about
to change.'*

Although certainly related, this recent literature is not directly relevant for us, for a
couple of reasons. First, we do not study a complete markets general equilibrium model.
As in Scheinkman and Xiong (2003), we arbitrarily shut down markets (e.g., rule out
short sales), assume the existence of an exogenous risk-free asset, and do not worry about
default and borrowing constraints.!® Second, since beliefs depend on wealth in our econ-
omy, they are only truly ‘heterogeneous’ to the extent that initial wealth allocations are
heterogeneous.

What is important for us is the economic distinction between risk aversion and belief
distortions. If the agents in our economy are viewed as being risk averse, they will have
an incentive to pool risk. Diversification will generally produce interior solutions to their
portfolio problems. In contrast, heterogeneous beliefs (combined with linear consumption
preferences) will generally produce corner solutions, with the most optimistic agent ab-
sorbing all available shares of the ambiguous asset, and its market clearing price being
determined by his beliefs.

NEEDS MORE DISCUSSION

With two agents and heterogeneous beliefs, the equivalence between an agent’s wealth
and the value of the asset breaks down. Individual wealth trajectories depend on portfolio
decisions, which depend on beliefs (which, in turn, depend on wealth). As a result, our
earlier strategy of simplifying the agent’s HJB equation by imposing market-clearing and
dropping one of the state variables will apparently no longer work. However, given that
agents choose to invest all their wealth in either the risk-free asset or the higher yielding
risky asset, we can still exploit our earlier results using the following two-step strategy.
First, we can calculate the buy-and-hold price given an agent’s current level of wealth.
Then, we can simply add on the option value of selling to the other agent. This second
component represents the solution to the homogeneous part of the agent’s HJB equation.

Consider an agent with wealth W who chooses to hold the asset. Imposing market-
clearing (v = 1) in the FOC’s in eqgs. (3.13)-(3.14) and then substituting back into the
HJB eq. (3.12) delivers the following PDE

1 1 1
rV = pzV, + 50%21/“ + WV — 502W2VWW + 5502(1@% —V2) (4.20)

MBrunnermeier, Simsek, and Xiong (2014) and Gilboa, Samuelson, and Schmeidler (2014) propose
closely related modifications of the Pareto criterion in settings with heterogeneous beliefs.

15Actually, given the restriction on short sales, the inattention to bankruptcy and borrowing constraints
is not really an issue, given that our economy grows over time.

16Although we are using singular pronouns when discussing the two agents, it is important to keep
in mind that we are actually considering two agent types, each consisting of a large number of identical
agents, so that we can continue to rely on competitive market forces to determine prices and allocations.
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As before, this equation is nonlinear, and does not possess a closed-form solution. However,
notice that when ¢ = 0 we obtain the obvious solution V(W) = W. So once again we can
pursue a perturbation approximation. Following the same steps as before delivers'”

3 02 2 8
viw) = W—§ " W= +eBW
2
- 7 —5< 7 2>W2+eBW5
r—p 2\r—o

where the second equation follows from the fact that V' = z/(r — u) when € = 0. The
equilibrium price and owner’s wealth are then determined by the fixed point condition
P(x) = W(z) = V(W(x)). The only difference here arises from the last term, which
represents the solution of the homogeneous part of the V(W) ODE. It captures the
option value of selling the asset.!® The § exponent is a root of the characteristic equation,
%azﬁ(ﬁ— 1) —rB+7r = 0. The two roots are 1 2 = (1, 2r/0?). In what follows, we assume
21 > ¢2. In this case, the last term imparts a convezity component into the agent’s value
function.

Equation (4.21) nicely summarizes the opposing forces that arise when agents confront
ambiguity, but at the same time realize that others confront ambiguity as well, which cre-
ates valuable trading opportunities. The middle term represents the effects of ambiguity
for a Robinson Crusoe, who must face his doubts alone. This term depresses asset values.
The last term represents the option value of selling to someone who becomes less doubtful
than you. This increases asset values. Following Scheinkman and Xiong (2003), we inter-
pret this as a bubble. In contrast to their work, however, it is not at all clear whether the
combined forces produce asset prices that exceed their Rational Expectations values.

As usual in option pricing problems, the constant of integration, B, and the option
exercise threshold are determined by the following pair of value-matching and smooth-
pasting conditions

Ve = v (4.21)
Ve = Ve (4.22)

where T represents a fixed transactions cost, and (V°, V") denote the value functions of
the current asset owner and nonowner, respectively. These conditions ensure that when
one agent wants to sell, the other wants to buy, and in addition, that there is no benefit
to waiting just a little bit longer to see what happens. The only tricky part is that the
exercise threshold is not a fixed barrier, but rather a manifold in (W,, W,,) space. This
simply reflects the fact that option values depend on belief differences, which depend on
wealth differences. A given difference of opinion can arise for a multitude of different
wealth levels. To resolve this indeterminancy, we can view the owner’s wealth level that
triggers a sale as a function of the nonowner’s wealth level. This makes the integration

17ps before, under a buy-and-hold strategy there is really only one state variable. Hence, we can drop
the terms involving x.

18We do not need to consider the homogeneous solution of the V° (W) ODE, because when ¢ = 0, there
are no belief differences, and so no trading or option values arise.
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constant, B, a function of W,, as well. Following this approach, the smooth-pasting
condition delivers the following expression
20 -
B= gwj—ﬁ
where for notational convenience we have defined ¢ = 02 /(r — o?). Notice that B depends

on W,,, because the owner’s selling threshold, W,, depends on W,,,. Substituting this into
the value-matching condition then delivers the following polynominal for W,(W,,)

2\ - - 2
(1 — 5) wh— (Wﬁo + é) Wh=2 ¢ Bwfo =0
Figure 1 depicts the value functions and optimal selling threshold when r = .06 and
02 = .04. In this case, 3 = 3 and the equation determining the threshold becomes a cubic.

The nonowner’s wealth has been held fixed at W,,, = 20. Notice that his valuation is less
than this due to doubts about the dividend process (e = .01).

Value Functions
T T

18.25

18.2

18.15-

18.1r

18.051

18-

17.95

17.9 I I I I I I
19 20 21 22 23 24 25 26

FIGURE 1. Selling Threshold: W, = 20, ¢ = .01, 02 = .04, r = .06, 7 = .2

The flat line plots the nonowner’s valuation net of the transactions cost. When W, <
Wiheo, the current owner values the asset more. However, once W, begins to rise above W,,,,
the owner’s relative pessimism increases, since he becomes increasingly worried about the
resale value of his asset. Eventually, when W, approaches 25, his relative pessimism is
sufficient to offset the transactions cost, and a sale occurs.
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5. SIMULATIONS

As noted in the Introduction, an important advantage of our robust resale option value
theory of bubbles is that it makes quantitative predictions about the magnitude and timing
of bubble episodes. This means that in principle it can be tested against the data. Whether
this story is convincing will depend on whether the agents within the model are displaying
empirically plausible doubts about the fundamentals process. This can be assessed by
computing detection error probabilities (Anderson, Hansen, and Sargent (2003)). If these
are small, then the worst case scenario that motivates the agent’s behavior could be
statistically rejected by the historical data. This would make the results unconvincing, as
they would rely on imparting an undue degree of pessimism to the agents.

Unfortunately, we are still not quite there yet, so for now we content ourselves with
performing simulations. Figures 2-4 report the results of a few representative simulations.
The parameter values are the same in all three, and the implicit time unit is a year. The
drift in the fundamental is 1% (p = .01) and the variance is 3% (02 = .03). The risk-free
rate is set to 7 = .045, and the transaction costs is set to 7 = 0.2. Note that the severity
of this cost will depend units. We initialize fundamentals at xy = 3, so that the initial
Rational Expectations value is P = 200. This implies a very small transaction cost, on
the order of 0.1%.

Asset Prices Drift Distortion
800 0.1
0
-0.1
-0.2
0 -0.3
0 20 40 60 0 20 40 60
Time Time
Trading Dynamics Relative Wealth
1 4
0.8 ‘ 3
0.6 “
2
oaf |
02} | ‘ !
ol 0
0 20 40 60 0 20 40 60
Time Time

FIGURE 2. Simulation: = .01, 02 = .03, ¢ = .001

Figure 2 displays two key features of model. First, robust values can be either above or
below their Rational Expectations values. The blue line plots the Rational Expectations
value, and the red line plots the robust valuation. There are two ways to define a bubble
here. The first is in reference to the Rational Expectations value. By this definition,
the ‘bubble’ in the early years of Figure 2 is quite modest. This is because doubts are
depressing asset values below their Rational Expectations value. The other way is to follow
Scheinkman and Xiong (2003), and define a bubble as the value of the resale option. With
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this definition, bubbles would be more significant. The second key feature revealed in
Figure 2 is the interplay between inequality and bubbles. The bottom right panel displays
the ratio of the owner’s wealth to the nonowner’s wealth. Notice that around 7" = 15,
the owner’s relative wealth rises in response to favorable fundamentals. This starts to
make him worried about the resale value of his asset. He becomes so worried that the evil
agent’s drift distortion exceeds 20%! In response, he decides to sell the asset.

Is this a reasonable outcome? Following Anderson, Hansen, and Sargent (2003), the
Chernoff rate function is p(z) = §|h(z)[%.. We can then compute a very rough detection

error probability using the bound
1
avg det error prob < §e_pT

where p is the mean-squared drift distortion. This turns out to be .47 in Figure 2, basically
because the average drift distortion is quite small. We need to do more work to calculate
a tighter, state-dependent, bound. This would allow us to assess whether doubts during
the bubble are reasonable.

Asset Prices Drift Distortion
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FIGURE 3. Simulation: p = .01, 02 = .03, e = .001

Figure 3 reveals the interesting fact that ‘bubbles’ can emerge without any trade taking
place. It is merely the option to trade that creates the bubble. Once again, the average
detection error probability here is .47, implying that the agent’s average doubts could not
be statistically rejected by the historical data.
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Finally, Figure 4 reports the results of a more atypical simulation. It is atypical for
a couple of reasons. First, for these parameter values, we typically only see one or two
trades. Three trades are rare. Second, the final trade is triggered by a huge drift distortion,
in excess of 100%! Although this seems implausible, it is noteworthy that the average
detection error probability using the above Chernoff bound only falls to 0.28. This suggests
that we need to compute a tighter bound.

Asset Prices Drift Distortion
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FIGURE 4. Simulation: = .01, 02 = .03, ¢ = .001
6. CONCLUSION

TO BE ADDED
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