Extreme weather: envisioning Ontario agriculture

Scott Mitchell¹, Anna Zaytseva¹, Dan MacDonald², and Ruth Waldick^{1,2}

Adaptation Canada 2016

Purpose -> constraints

- "... create and deliver information about prospective climate extremes that will affect Ontario's agriculture sector and rural communities. We will develop a decision support model (DSM) to characterize risk and vulnerabilities associated with climate change and extremes in agriculture, allowing users to plan for and mitigate risks by evaluating different adaptation choices."
 - spatial scenario modelling framework impacts on crops and livestock*
 - map-based, field-level mapping; expectations
 - data realities: weather stations (time), GCM resolution
 - temporal scales at which can say much about future extreme events are hard to translate to impacts to crops and livestock
- use of seasonal, phenology-linked indices with links to specific crops

(some) Issues with existing information

- (as you've heard) there are limitations in using limited weather data, or climate model projections, to characterize extreme weather
 - how extremes usually considered? (climate model variability)
 - spatial-temporal resolution issues/discrepancies
 - how are those relevant to farm-scale / local level planning?
- some of the options we've considered
 - GCM output: custom downscaling, PCIC downscaling (to station or grid)
 - past weather data: everything available? "cleaned" data?
 - station-based or grid (10 km regular grid used by AAFC, EC)?
 - temporal resolution: aggregate summaries? Daily variability?
- scenarios:
 - GCM: AR4/AR5? All models? Subset?
 - agriculture, demographics, economic (scale)

Why focus on scenarios and phenological impact modelling?

- every GCM model run is a scenario, not a prediction
 - ecosystem response on top of that impacted by range of possible reactions / adaptation from all ecosystem components, including humans
- GCMs lack spatial and temporal detail, but there is demand for information relevant to locally evaluating levels of risk and potential tradeoffs
 - finer resolutions (space & time) → assumptions & potentially very high data needs
 - usually can't confidently fill all those needs, but can explore a likely range, consider sets of likely parameters under future alternate scenarios
- crop modelling typically focuses on yield, using either a process-based approach (high uncertainty in parameterization across large regions) or empirical models (usually assuming stationary conditions)
 - phenological impact modelling allows us to identify times when crops are particularly vulnerable to climatological events, and assign a typical impact to crop yield; concentrate on relative impacts rather than specific physiological processes

Study area: eastern Ontario

A. Zaytseva's DRAFT M.Sc. Thesis (Carleton University).

Indices derived from "just" weather data

- E. Ontario not expected to be a hotspot of weather extremes
 - but types of extremes of particular relevance in "regular" agricultural operations are not necessarily what people first think of as "extreme"
- "standard" indices are available to analyse and compare weather / extremes
 - useful to describe general trends
- some, however, mask processes that are important to agriculture

Why extremes? This is NOT the whole story!

Growing season length

Crop heat units

A. Zaytseva's DRAFT M.Sc. Thesis (Carleton University).

Example: general index relevant to human health

• 3 day periods where $T_{max} > 32$ °C

Example: extreme index: warm nights

A. Zaytseva's DRAFT M.Sc. Thesis (Carleton University).

Example: precipitation

Example: precipitation

CUMULATIVE DRY DAYS

VERY WET DAYS

A. Zaytseva's DRAFT M.Sc. Thesis (Carleton University).

MORE CROP RELEVANT: SEASONAL PHENOLOGY INDICES

• Corn (for example):

Index name	Definition	Units
Corn:		
Poor seeding conditions	Weekly precipitation 30% greater than weekly mean precipitation (between April 23 and May 20)	weeks/year
Early flooding	Weekly precipitation 30% greater than weekly mean precipitation with 1 to 780 accumulated CHUs	weeks/year
Pollination drought	CDD >10 with 1,301 to 1,600 accumulated CHUs	annual occurrence (Yes or No)
R2 (blister) drought	P<45mm with 1,601 to 1,825 accumulated CHUs	annual occurrence (Yes or No)
R3 (milk) drought	P<45mm with 1,826 to 2,000 accumulated CHUs	annual occurrence (Yes or No)
Early killing frost	Tmin <=-2°C with 2,165 to 2,475 accumulated CHUs	days/year
R4 (dough) drought	P<8mm with 2,001 to 2,165 accumulated CHUs	annual occurrence (Yes or No)
Fall killing frost	Tmin <=-2°C with 2,476 to 2,600 accumulated CHUs	days/year

A. Zaytseva's DRAFT M.Sc. Thesis (Carleton University).

Example: poor seeding conditions

Example: early flooding

A. Zaytseva's DRAFT M.Sc. Thesis (Carleton University).

Example: seed development drought

Example: projected seeding delays

Area "lost" to fallow due to seeding delays

Lessons and future considerations:

- crop- and phenology-specific, scenario impact-based approach to extremes allows us to highlight relative risks of "subtle" but agriculturally relevant shifts in climate
 - relevance: impact on farm operations
 - potential to evaluate switching to (or need to develop) different varieties
- scenario modelling: uses field-level decisions but does not rely on needing to confidently parameterize field-level details with a specific "reality"
 - relevant to categories of farming operations as they exist in this region, with real biophysical constraints
 - allows us to manage uncertainty, and concentrate on scenarios that have relevance to adaptation planning

