M Reza Kholghy, Ph.D.

Canada Research Chair (Tier II) in Particle Technology & Combustion Engineering Director of the Energy and Particle Technology Laboratory,

Department of Mechanical & Aerospace Engineering, Carleton University,

Ottawa, Canada. 3202 Canal Building

reza.kholghy@carleton.ca, www.carleton.ca/eptl/

Canadian Citizen, expecting to receive PEng license on DEcember 2022

I. Education

2019	Post-doctoral training, ETH Zurich, Switzerland, w/ Sotiris Pratsinis
2016	Ph.D., University of Toronto, Canada, w/ Murray Thomson
	Thesis readers: <u>Guillaume Blanquart</u> (Caltech), <u>Charles A. Ward</u> (U
	Toronto), <u>James S. Wallace</u> (U Toronto), <u>Ömer L. Gülder</u> (U Toronto)
2012	M.Sc., University of Toronto, Canada, w/ Murray Thomson
	Thesis readers: James S. Wallace (U Toronto), Seth B. Dworkin (Ryerson U)
2010	P.Sc. Sharif University of Technology Iran

2010 B.Sc., Sharif University of Technology, Iran.

II. Employment

- 2019 now Assistant Professor, Carleton University, Canada.
- 2017 2019 Research Associate and Lecturer, ETH Zürich, Switzerland.
- 2016 2017 Course Instructor, University of Toronto, Canada.
- 2010 2016 Research & Teaching Assistant, University of Toronto, Canada.

III. Awards, Scholarships & Fellowships

- 2019 Canada Research Chair in Particle Technology & Combustion Engineering.
- 2017 Natural Research Council of Canada postdoctoral fellowship.
- 2013 Natural Research Council of Canada Vanier PhD scholarship.
- 2016 Natural Research Council of Canada Michael Smith supplement award.
- 2016 BioFuelNet Canada exchange award.
- 2012 Pierre Rivard Hydrogenics graduate fellowship.
- 2014 Neil Duncan Thompson graduate fellowship.
- 2012 Best oral presentation award, 3rd MIE symposium, Toronto.

IV. <u>Publications</u>, 22 published, 2 in preparation, citations: 1131, H-index: 16, H10-index: 17 Trainee's names underlined.

- i. **Kholghy, M. R.**, "Soot optical bad gap and its absorption function", in preparation for *Carbon*, (2022).
- 221. <u>Naseri, A</u>, **Kholghy, M. R.**, <u>Juan, N</u>, and Thomson, M. J., "Simulating yield and morphology of carbonaceous nanoparticles during fuel pyrolysis in laminar flow reactors enabled by reactive inception and aromatic adsorption", *Combustion and Flame*, 237, 111721, (2022).

- 21. Juan, N, Naseri, A, **Kholghy, M. R.**, and Thomson, M. J., "NanoParticle Flow Reactor (NanoPFR): a tested model for simulating carbon nanoparticle formation in flow reactors", *International Journal of Chemical Reactor Engineering*, (2022).
- 20. Kelesidis, G.A., **Kholghy, M. R.**, "A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime", *Materials*, 14, 3882, (2021).
- 19. **Kholghy, M. R.**, <u>DeRosa, V.</u>, "Morphology, Composition and Optical Properties of Jet engine-like soot made by Flame Spray Pyrolysis", accepted in Combustion and Flame, 231, 111480, (2021).
- 18. Kholghy, M. R., and <u>Schumann, A</u>., "Process Design for Gas Phase Synthesis of Nickel Nanoparticles", *Energy and Fuels*, 35, 5383 (2021).
- 17. **Kholghy, M. R.**, Kelesidis, G.A., "Surface Growth, Coagulation and Oxidation of Soot by a Monodisperse Population Balance Model in Laminar Flames", *Combustion and Flame*, 227, 456, (2021).
- 16. Kelesidis, G.A., **Kholghy, M.R.**, Zuercher, J., Robertz, J, Allemann, M., Duric, A., and Pratsinis, S.E., "Light scattering from nanoparticle agglomerates", *Powder Technology*, 365, 52, (2020).
- 15. **Kholghy, M.R.**, Eaves, N.A., Veshkini, A., and Thomson, M.J., "The role of reactive PAH dimerization in reducing soot nucleation reversibility", *Proceedings of the Combustion Institute*, 37, 1003, (2019).
- 14. Saggese, C., Singh, A.V., Xue, X., Chu. C., **Kholghy, M.R.**, Zhang, T., Thomson, M.J., Sung, C., Wang, H., "Effect of distillate fraction of real Jet fuel on sooting propensity", *Fuel*, 235, 350, (2019).
- Zhang, T., Zhao, L., Kholghy, M.R., and Thomson, M. J., "Detailed simulation of soot formation for Jet fuel with Hybrid Chemistry (HyChem) and comprehensive chemistry kinetic models", *Proceedings of the Combustion Institute*, 37, 2037, (2019).
- 12. Kholghy, M.R., Kelesidis, G.A. and Pratsinis, S.E., "Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation", *Physical Chemistry Chemical Physics*, 20, 10926, (2018).
- 11. **Kholghy, M.R.**, Weingarten, J., Sediako, A., Barba, J., Lapuerta, M., Thomson, M.J., "Structural effects of biodiesel on soot formation in a laminar coflow diffusion flame", *Proceedings of the Combustion Institute*, 36, 1321 (2017).
- Kholghy, M.R., Afarin, Y., Barba, J., Lapuerta, M., Sediako, A., Thomson, M.J., "Comparison of multiple diagnostic techniques to study soot formation and morphology in a diffusion flame", *Combustion and Flame*, 176, 567 (2017).
- 9. Lapuerta, M., Barba, J., Sediako, A., **Kholghy, M.R.**, Thomson, M.J., "Morphological analysis of soot agglomerates from biodiesel surrogates in a coflow burner", *Journal of Aerosol Science*, 11, 65 (2017).

- Sediako, A., Soong, C., Howe, J., Kholghy, M.R., Thomson, M.J., "In situ observation of soot oxidation with an environmental transmission electron microscope", *Proceedings of the Combustion Institute*, 36, 841 (2017). (*distinguished paper*)
- Kholghy, M.R., Veshkini, A., Thomson, M.J., "The core-shell internal nanostructure of soot, a criterion to model soot maturity", <u>Carbon</u>, 100, 508 (2016).
- Kholghy, M.R., Weingarten, J., Thomson, M.J., "A study of the effects of the ester moiety on soot formation in a laminar coflow diffusion flame of a surrogate for B100 biodiesel", *Proceedings of the Combustion Institute*, 35, 905 (2015).
- 5. Cain, J., Laskin, A., **Kholghy, M.R.**, Thomson, M.J., Wang, H., "Molecular characterization of organic content of soot along the centerline of the coflow diffusion flame", Physical Chemistry Chemical Physics, 16, 25862 (2014).
- Saffaripour, M., Veshkini, A., Kholghy, M.R., Thomson, M.J., "Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of jet A-1, a synthetic kerosene, and n-decane", *Combustion and Flame*, 161, 848 (2014).
- 3. **Kholghy, M.R.**, Saffaripour, M., Yip, C., Thomson, M.J., "The evolution of soot morphology on the centerline of a laminar coflow diffusion flame of a surrogate for Jet A-1", *Combustion and Flame*, 160, 2119 (2013).
- 2. Saffaripour, M., **Kholghy, M.R.**, Dworkin, S.B., Thomson, M.J., "A numerical and experimental study of soot formation in a laminar coflow diffusion flame of a Jet A-1 surrogate", *Proceedings of the Combustion Institute*, 34, 1057, (2013).
- 1. Saffaripour, M., Zabeti, P., **Kholghy, M.R.**, Thomson, M.J., "An experimental comparison of the sooting behavior of synthetic Jet fuels", *Energy and Fuels*, 25, 5584, (2011).

V. Conference Presentations

Oral Presentations

- 24. <u>Rahbar, H</u>, Goudeli, E., **Kholghy, M. R.**, "Sintering Rate of Nickel Nanoparticle by Molecular Dynamics", 5th International Symposium on Gas-phase Synthesis of Functional Nanomaterials: Fundamental Understanding, Modeling and Simulation, Scale-up and Application, Duisburg, (2022).
- <u>Riad, K</u>, <u>Peters, J.</u>, Woods, P. M., **Kholghy, M. R.**, "Flame Made Quantum Dots", 5th International Symposium on Gas-phase Synthesis of Functional Nanomaterials: Fundamental Understanding, Modeling and Simulation, Scale-up and Application, Duisburg, (2022).
- <u>Rahbar, H</u>, Goudeli, E., **Kholghy, M. R.**, "Sintering Rate of Nickel Nanoparticle by Molecular Dynamics", World Congress on Particle Technology, Madrid, (2022).

- Morán, J., Henry, C., Yon, J., Kholghy, M. R., "Approximating the van der Waals interaction potentials between agglomerates and their collision enhancement effect", World Congress on Particle Technology, Madrid, (2022).
- 20. <u>Saceleanu, F</u>, Wen, J., **Kholghy, M. R.**, "Mechanism of selfsustained aluminum-water batch reactions", CI/CS Spring Technical Meeting, Ottawa, (2022).
- Scott, J., Lobo, P., Smallwood, G., Kholghy, M. R., "Flame spray pyrolysis to assess sustainable aviation fuel emissions", CI/CS Spring Technical Meeting, Ottawa, (2022).
- 18. <u>Rahbar, H</u>, Goudeli, E., **Kholghy, M. R.**, "Sintering Rate of Nickel Nanoparticle by Molecular Dynamics", CI/CS Spring Technical Meeting, Ottawa, (2022).
- Adib, M, Kholghy, M. R., "Prediction of mass yield, morphology and composition of soot particles generated by pyrolysis of methane", CI/CS Spring Technical Meeting, Ottawa, (2022).
- 16. Kholghy, M. R., Kelesidis, G.A., "Surface Growth, Coagulation and Oxidation of Soot by a Monodisperse Population Balance Model in Laminar Flames", 24th ETH Conference on Combustion Generated Nanoparticles (virtual), Zurich, (2021).
- 15. **Kholghy, M. R.**, "Morphology, Composition and Optical Properties of Jet Engine Like Soot Made by Flame Spray Pyrolysis", Cambridge Particle Virtual Meeting, Cambridge, (2021).
- 14. Kholghy, M. R., "Morphology, Composition and Optical Properties of Jet Engine Like Soot Made by Flame Spray Pyrolysis", 12th U.S. National Combustion Meeting, Virtual meeting, Texas, (2021).
- Kholghy, M. R., Kelesidis, G.A., "Surface Growth, Coagulation and Oxidation of Soot by a Monodisperse Population Balance Model in Laminar Flames",12th U.S. National Combustion Meeting, Virtual meeting, Texas, (2021).
- 12. **Kholghy, M. R.**, Kelesidis, G.A., "Surface Growth, Coagulation and Oxidation of Soot by a Monodisperse Population Balance Model in Laminar Flames",10th European Combustion Meeting, Virtual meeting, Napoli, (2021).
- 11. Kholghy, M. R., "Morphology, Composition and Optical Properties of Jet Engine Like Soot Made by Flame Spray Pyrolysis",10th European Combustion Meeting, Virtual meeting, Napoli, (2021).
- Kholghy, M. R., <u>DeRosa, V</u>, and Pratsinis, S.E., "Morphology, Composition and Optical Properties of Jet Engine Like Soot Made by Flame Spray Pyrolysis",4th International Symposium Gas-Phase Synthesis of Functional Nanomaterials, Virtual Meeting, Duisburg, (2020).

- Kholghy, M. R., Kelesidis, G.A., Pratsinis, S. E., "Free Molecular Coagulation Dynamics of Agglomerates at High Concentrations by a Monodisperse Model", *European Aerosol Conference*, Gottenburg, (2019).
- Kholghy, M.R., Kelesidis, G.A. and Pratsinis, S.E., "Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation", *European Aerosol Conference*, Gottenburg, (2019).
- Kholghy, M.R., Kelesidis, G.A. and Pratsinis, S.E., "Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation", 3rd International Symposium Gas-Phase Synthesis of Functional Nanomaterials, Duisburg, (2018).
- 6. Kholghy, M.R., Kelesidis, G.A. and Pratsinis, S.E., "Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation", ETH conference on Combustion generated nanoparticles, Zurich, (2018).
- Kholghy, M.R., Kelesidis, G.A. and Pratsinis, S.E., "Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation", 37th International Symposium on Combustion, Dublin, (2018).
- Zhang, T., Zhao, L., Kholghy, M.R., and Thomson, M. J., "Detailed simulation of soot formation for Jet fuel with Hybrid Chemistry (HyChem) and comprehensive chemistry kinetic models", 37th International Symposium on Combustion, Dublin, (2018).
- Kholghy, M.R., Weingarten, J., Sediako, A., Barba, J., Lapuerta, M., Thomson, M.J., "Structural effects of biodiesel on soot formation in a laminar coflow diffusion flame, 36th International Symposium on Combustion, Seoul, (2016).
- Sediako, A., Soong, C., Howe, J., Kholghy, M.R., Thomson, M.J., "In situ observation of soot oxidation with an environmental transmission electron microscope", 36th International Symposium on Combustion, Seoul, (2016).
- Kholghy, M.R., Weingarten, J., Thomson, M.J., "A study of the effects of the ester moiety on soot formation in a laminar coflow diffusion flame of a surrogate for B100 biodiesel", 35th International Symposium on Combustion, San Francisco, (2014).

Poster Presentations

21. <u>Morán, J.</u>, Henry, C., Yon, J., **Kholghy, M. R.**, "Approximating the van der Waals interaction potentials between agglomerates", International Aerosol Conference, Athens, (2022).

20. <u>Adib, M.</u>, **Kholghy, M. R.**, "Prediction of mass yield, morphology and composition of soot particles generated by pyrolysis of hydrocarbons, 6th International Sooting Flame Workshop, Vancouver, (2022). (*Received 3-minute competition award*)

19. <u>Rahbar, H.</u>, Goudeli, E., **Kholghy, M. R.**, "Sintering Rate of Nickel Nanoparticle by Molecular Dynamics", Waterloo Nanotechnology Conference (virtual), Waterloo, (2022). (*Received best poster award*)

19. <u>Scott, J.</u>, **Kholghy, M. R.**, "Morphology, Composition and Optical Properties of Jet Engine Like Soot Made by Flame Spray Pyrolysis", 24th ETH Conference on Combustion Generated Nanoparticles (virtual), Zurich, (2021). (*Received best poster award*)

18. <u>Scott, J.</u>, **Kholghy, M. R.**, "Morphology, Composition and Optical Properties of Jet Engine Like Soot Made by Flame Spray Pyrolysis", European Aerosol Conference (virtual), Birmingham, (2021). (*Received best poster award*)

17. <u>Adib, Mo.</u>, Kelesidis, G.A., **Kholghy, M. R.**, "Surface Growth, Coagulation and Oxidation of Soot by a Monodisperse Population Balance Model in Laminar Flames", European Aerosol Conference (virtual), Birmingham, (2021). (*Received best poster award*)

16. <u>Rahbar, H.</u>, <u>Schumann, A</u>., **Kholghy, M. R.**, "A Simple Model for GAs-Phase Synthesis of Nickel Nanoparticles", European Aerosol Conference (virtual), Birmingham , (2021).

15. **Kholghy, M. R.**, Kelesidis, G.A., "Surface Growth, Coagulation and Oxidation of Soot by a Monodisperse Population Balance Model in Laminar Flames", 5th International Sooting Flame Workshop (virtual), Adelaide, (2021).

14. **Kholghy, M. R.**, <u>Schumann, A</u>., and Pratsinis, S.E., "Process Design for Gas Phase Synthesis of Nickel Nanoparticles", 4th International Symposium Gas-Phase Synthesis of Functional Nanomaterials, Virtual Meeting, Duisburg, (2020).

13. **Kholghy, M. R.**, Kelesidis, G.A., "Free Molecular Coagulation Dynamics of Agglomerates at High Concentrations by a Monodisperse Model", *Gordon Research Conference on Laser Diagnostic in Energy and Combustion Science*, Switzerland, (2019).

12. **Kholghy, M.R.**, Kelesidis, G.A., Zuercher, J., Robertz, J, Allemann, M., Duric, A., and Pratsinis, S.E., "Light scattering from nanoparticle agglomerates", *Gordon Research Conference on Laser Diagnostic in Energy and Combustion Science*, Switzerland, (2019).

11. Kelesidis, G.A., **Kholghy, M. R.**, Fan, L., and Pratsinis, S.E., Impact of Composition and Morphology on Soot Optical Properties", *Gordon Research Conference on Laser Diagnostic in Energy and Combustion Science*, Switzerland, (2019).

10. **Kholghy, M. R.**, <u>Floader, R</u>, and Pratsinis, S.E., "Soot light absorption and its optical bad gap", ETH conference on Combustion generated nanoparticles, (2019).

9. **Kholghy, M.R.**, Kelesidis, G.A. and Pratsinis, S.E., "Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation", ETH conference on Combustion generated nanoparticles, (2019).

8. **Kholghy, M. R.**, Kelesidis, G.A., and Pratsinis, S.E., "Free Molecular Coagulation Dynamics of Agglomerates at High Concentrations by a Monodisperse Model", *European Aerosol Conference*, Gottenburg, (2019).

7. Kelesidis, G.A., Brunn, A., **Kholghy, M. R.**, Fan, L., and Pratsinis, S.E., Impact of Composition and Morphology on Soot Optical Properties", ETH conference on Combustion generated nanoparticles, (2019). (*Received best poster award*)

6. **Kholghy, M.R.**, Kelesidis, G.A. and Pratsinis, S.E., "Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation", 3rd International Sooting Flame Workshop, Dubling, (2018).

5. **Kholghy, M.R.**, Veshkini, A., Thomson, M.J., "The core-shell internal nanostructure of soot, a criterion to model soot maturity", 2nd International Sooting Flame Workshop, SanFransisco, (2014).

4. **Kholghy, M.R.**, Veshkini, A., Thomson, M.J., "The core-shell internal nanostructure of soot, a criterion to model soot maturity", 35th International Symposium on Combustion, SanFransisco, (2014).

3. **Kholghy, M.R.**, Weingarten, J., Thomson, M.J., "Structural effects of biodiesel on soot formation in a laminar coflow diffusion flame, 35th International Symposium on Combustion, SanFransisco, (2014).

2. **Kholghy, M.R.**, Saffaripour, M., Yip, C., Thomson, M.J., "The evolution of soot morphology on the centerline of a laminar coflow diffusion flame of a surrogate for Jet A-1", 34th International Symposium on Combustion, Warsaw, (2012).

1. **Kholghy, M.R.**, Saffaripour, M., Yip, C., Thomson, M.J., "The evolution of soot morphology on the centerline of a laminar coflow diffusion flame of a surrogate for Jet A-1", 1st International Sooting Flame Workshop, Warsaw, (2012).

#	Project Title, (PI or Co PI)	Agency, Program Source	Value (%)	Award
				Dates
15	Novel aluminum-water	National Research Council	\$1,500,000	2022-
	reactor for sustainable	of Canada and German	(\$25%)	2025
	cogeneration of green	Aerospace Center (DLR),		
	hydrogen, heat, and alumina	Canada – Germany 3+2		
		collaborative call for		
		proposals on low-carbon		
		hydrogen technologies		
		In collaboration with GH		
		Power, ParteQ, Aachen		
		University and the National		
		Research Council of Canada		
14	Flame Spray Pyrolysis burner	Transport Canada	\$120,000	2022-
	as a laboratory surrogate to		(50%)	2023
	enable rapid development	In collaboration with the		
	and low-cost screening of			

VI. Research Grants, 1'970'000 CAD in total as PI.

	sustainable renewable fuels	National Research Council		
	for aircraft and marine	of Canada		
	engines and assess their			
	environmental impacts			
13	Multiscale Modeling of	Compute Canada Resource	360 CPU/y	2022-
	Nanoparticle Formation in	Allocations (RAC)	2 GPU/y	2023
	Gas Phase		Value:	
			\$51,211	
			(100%)	
12	Novel aluminum-water	OCI	\$225,000	2022-
	reaction for co-generation of	GH Power	(100%)	2023
	green hydrogen, heat and			
	alumina			
11	Process Design for Co-	MITACS	\$120,000	2022-
	generation of Carbon Black	Monolith Materials (USA)	(100%)	2025
	and Hydrogen from			
	Methane Pyrolysis (PI)		4	
10	Aluminum-Water Reactors	MITACS	\$18,750	2021-
	for Sustainable Generation	Frontenac Energy	(%100)	2021
	of Hydrogen			
9	Fund Developing Plausible	Carleton Office of the Vice-	\$40,000	2021-
	Deep Decarbonization	President (Research and	(0%)	2022
	Pathways for the Canadian	International)		
	the Dele of Lindreger (CoDI)	Multidisciplinary Research		
_	the Role of Hydrogen (COPI)		¢50.000	2021
ð	in elimete ebenee, food	Carleton Office of the vice-	\$50,000	2021-
	in climate change, joou	International)	(100%)	2025
	security and neutricare (P)	Multidisciplinary Posparch		
		Catalyst Fund		
7	Estimating the Global	Carleton International	\$10,000	2021-
	Warming Impact of Black	Research Seed Grant	(100%)	2023
	Carbon Emissions (PI)		()	
6	Multiscale Modelina of	Compute Canada Resource	160 CPU/v	2021-
	Nanoparticle Formation and	Allocations (RAC)	Value:	2022
	Their Optical Properties (PI)		\$20,000	
			(100%)	
5	Aluminum-water reactions	NSERC Alliance/OCE VIP	, \$75'000	2021-
	promoted by nano catalyst	Frontenac Energy	(100%)	2022
	made with Flame Spray	Cleanwave Energy		
	Pyrolysis (PI)			

4	System for Flame Synthesis,	Canada Foundation for	\$185'000	2020
	Collection and	Innovation & Ontario	(100%)	
	Characterization of	Research Fund		
	Functional Nanoparticles (PI)			
3	Flame Made Nanoparticles	Canada Research Chair	\$600'000	2019-
	(PI)	(Tier II)	(100%)	2024
			\$100K for	
			research	
			only	
2	Energy Storage by Plasma	NSERC Discovery Grant &	\$162'000	2019-
	Methane Decarbonization	Early Career Supplemental	\$12'500	2025
	for CO ₂ -free Synthesis of H ₂	Award & COVID	\$4'320	
	and Carbonaceous	supplement	(100%)	
	Nanoparticles (PI)			
1	Start-up Fund (PI) from	Faculty of Eng & Design	\$30'000	2019
	Carleton University	MAE Department,	\$30'000	
		Office of Vice Pres Res & Int	\$50'000	
		Lab reno & equip install	\$131,000	
		covered by MAAE & FED	(100%)	

VII. Teaching

- 8. Directed Study on Mass Transfer, (PhD), W 2022, Carleton
- 7. Micro and Nanoparticle Engineering, (B.Sc.), F 2020, F 2021, F 2022, Carleton
- 6. Applied Thermodynamics, (B.Sc.), W 2020, W 2023, Carleton
- 5. Fluid Mechanics I, (B.Sc.), W, F 2020, W 2021, W 2022, Carleton
- 4. Micro and Nanoparticle Engineering, (B.Sc.), W 2019, ETH Zurich
- 3. Mass Transfer, (B.Sc.), Lecturer, F 2018, ETH Zurich
- 2. Fundamentals of Combustion (Ph.D. & M.Sc.), W 2017, University of Toronto
- 1. Fundamentals of Computer Programming (B.Sc.), W 2016, University of Toronto

VIII. Supervision of Students & Post-Doctoral Fellows

- PDF: 1 completed, 2 ongoing
- Ph.D.: 3 ongoing, 1 completed (co supervised from U of T)
- M.Sc: 3 competed, 1 ongoing, (2 in ETH Zurich)
- B.Sc: 12

Cui	Current Post-Doctoral Fellows					
#	Name	Research Project	Start Date			
2	Dr. Keroles Riad	Scalable synthesis of graphene using flame spray pyrolysis for carbon-capture technologies and the catalysis of renewable fuels	2022.04			
1	Dr. Florin	Aluminum Water Reaction for Renewable	2021.03			
	Saceleanu	Hydrogen Generation				

Cui	Current Graduate Students				
#	Name	Research Project	Start Date		
5	Thomas Kirton	Aluminum Water Reaction for Renewable	2022.05		
	MASc	Hydrogen Generation			
4	Mahsa Salehi PhD	Modeling Aluminum Water Reactions	2021.01		
3	Hossein Rahbar PhD	Multiscale Process Design of Nickel Nanoparticle Synthesis	2021.01		
		Best poster Award in Waterloo Nanotechnology Conference, 2022			
2	Mo Adib PhD	Process Design for High Concentration Synthesis of Carbon Black and Hydrogen	2021.01		
		Awarded Douglas Miller Scholarship (\$6'887)			
		Best poster Award by a Junior Scientist,			
		European Aerosol Conference, 2022, (100 EUR)			
1	Jason Scott MASc	Jet Engine like Soot Generated by Flame Spray Pyrolysis	2020.09		
		Partially funded by NRC Canada (\$16'000 + ~\$40'000 in equipment)			
		Mitacs Globalink Research Award (\$6'000)			
		Queen Elizabeth II Graduate Scholarship in			
		Science and Technology Award (\$15'000)			
		Best Poster Award, ETH Combustion Generated			
		Nanoparticles Conference, 2021, (600 CHF)			
		Best poster Award by a Junior Scientist,			
		European Aerosol Conference, 2022, (100 EUR)			

Foi	Former Post-Doctoral Fellows						
#	Name	Project Title and Information	Dates	Initial position			
1	Dr. José Morán	Estimating van der Waals forces	2021.12	Postdoctoral			
		between fractal-like agglomerates	2022.04	fellow in the			
		and their collision enhancement		University of			
		effect		Minnesota			
		Mitacs Globalink Research Award					
		(\$6'000)					

Former Graduate Students						
#	Name	Project Title and Information	Dates	Initial position		
4	Jason Scott	Jet Engine like Soot Generated by	2020.09	Research		
	MASc	Flame Spray Pyrolysis	to	Associate in the		
		Partially funded by NRC Canada	2022.09	Black Carbon		
		(\$16'000 + ~\$40'000 in equipment)		Metrology		
				Group, National		

		Mitacs Globalink Research Award		Research
		(\$6'000)		Council of
		Queen Elizabeth II Graduate		Canada
		Scholarship in Science and		
		Technology Award (\$15'000)		
		Best Poster Award, ETH		
		Combustion Generated		
		Nanoparticles Conference, 2021,		
		(600 CHF)		
		Best poster Award by a Junior		
		Scientist, European Aerosol		
		Conference, 2022, (100 EUR)		
3	Ali Naseri	Formation of Carbonaceous	2018-	Process
		Nanoparticles in Flow Reactors	2021	Engineer in
	Main advisor:			Ekona power,
	Murray	Awarded NSERC PGSD (\$21'000×3)		Postdoctoral
	Thomson <i>U of T</i>			Fellow in
	-			Cambridge
2	Valentina	Spray synthesis of carbon	2019	Roche
	DeRosa	nanoparticles		Diagnostics
	(ETH Zurich)			Zurich
1	Armen Zendeli	A monodisperse Population	2018	Siemens Home
	(ETH Zurich)	Balance Model Accounting for		Technologies
		Particle Morphology and		Zug
		Polydispersity		
		i oryuispersity		

For	Former Undergraduate Research Students					
#	Name	Project Title and Information	Dates	Initial		
				position		
12	Adam Jone	Awarded CCE fund (\$4'000)	2022.05			
			2022.08			
11	Jeremy	Awarded MITACS Globalink Award	2022.05			
	Eggasse	(\$6'000)	2022.08			
10	Deepak	Awarded MITACS Globalink Award	2022.05			
	Somani	(\$6'000)	2022.08			
9	Jeremy	Awarded NSERC USRA (\$6'000) and	2022.05			
	Peters	CCE fund (\$4'000)	2022.08			
8	Max	Awarded NSERC USRA (\$6'000) and	2022.05			
	Campbell	CCE fund (\$4'000)	2022.08			
7	Ryan	Awarded CCE fund (\$4'000)	2021.05			
	McPherson	and I-CUREUS (\$2'500)	2022.04			

6	Jules Breau	Awarded NSERC USRA (\$6'000) and	2021.05	
		CCE fund (\$4'000)		
5	Hend	Awarded NSERC USRA (\$6'000), CCE	2020.05	
	Mhemed	fund (\$4'000) and I-CUREUS (\$2'500)		
4	Ewald	An open-source code for simulating	2019	IT developer
	Kleefstra	gas phase synthesis of nanoparticles		in Gyselroth
		with laminar flames		Zurich
3	Alexander	Process design for gas phase synthesis	2019	Graduate
	Schumann	of Nickel nanoparticles		Student in
				ETH Zurich
2	Raphael	Developing an automated tool for	2019	Siemens
	Floader	measuring nanoparticle optical band		Home
		gap		Technologies
				Zug
1	Stephan	Developing a two-dimensional		Graduate
	Wendelspiess	moving sectional model to simulate		Student in
		nanoparticle synthesis during		ETH Zurich
		simultaneous nucleation, surface		
		growth, sintering and coagulation		

IX. Community service: Media Outreach

"<u>How is nanotechnology affecting your wine, gut and climate?</u>" Presented at 4TH SPACE at Concordia University. March 24th, 2021.

Internal, Carleton

4. Developing Graduate Engineering Communications Course for the Faculty of Engineering and Design in Collaboration with School of Linguistics and Language Studies, 2021

3. Undergraduate Scholarship Committee, Department of Mechanical & Aerospace Engineering, 2020/2021, 2021/2022

2. Hiring committee for the Department of Mechanical & Aerospace Engineering, 2020/2021 & 2021/2022

1. Fluid, thermo and heat transfer strand Committee for the Department of Mechanical & Aerospace Engineering, 2019/2020, 2020/2021, 2021/2022

International

4. Session chair for the 38th American Association of Aerosol Research annual conference, 2020, Online virtual meeting

3. Program leader for the International Sooting Flame Workshop, 2019-2022.

2. Session chair for the 37th international symposium on Combustion, August 2018, Dublin.

1. Jury members for MaP symposium, ETH Zurich, June 2018.

Graduate Examinations

9. Andrei Bronipolskey, MASc Thesis, Aerodynamic Study of a Strut and a Row of Guide Vanes in Tandem Configuration, September 2022, Carleton

8. Damon Burtt, MASc Thesis, Efficiency and Emission Rates of Flares in a Turbulent Crosswind, September 2022, Carleton

7. Cameron Roth, MASc Thesis, Gas- and Particulate-Phase Emissions from Lab-Scale Flares Experiencing Liquid Carryover, April 2022, Carleton

6. José Carlos Moran, PhD Thesis, Improving the numerical simulation of soot aerosol formation in flames, November 2021, CORIA, France

5. Devron Colley, MS.c. Thesis, Optical properties of substrate-supported mixtures of Ag and Au nanoparticles, September 2021, Carleton

4. Zachary R. Milani, MS.c. Thesis, Remote Detection of Sodium and Potassium Atomic Emission Signatures as an Indicator of Liquid Carry- Over into Flare Systems in North Dakota, Sothern Saskatchewan, and Ecuador, June 2021, Carleton

3. Fadi Araji, MS.c. Thesis, Effects of Porosity, Wall Thickness and Length on the Filtration Efficiency of Gasoline Particulate Filters, December 2020, Carleton

2. Chanon Pretorius, MS.c. Thesis, Aerodynamic and Structural Design of Flow Conditioning, Flow Seeding and Testing Sections of a High-Speed Wind-Tunnel, Carleton University, October 2020, Carleton

1. Parvin Mehr, MS.c. Thesis, Experimental Modelling of Black Carbon Emissions from Gas Flares in the Oil and Gas Sector, Carleton University, September 2020, Carleton

Editorial Activates

- 1. *Guest editor* for special issue in *processes* on "Gas-Phase Manufacturing of Nanoparticles: Synthesis and Multiscale Modelling",
- 2. Reviewer for
 - 2.1. Journals:

Applications in Energy and Combustion Science (1) International Journal of Chemical Kinetics (1) International Journal of Hydrogen Energy (1) Proceedings of the Combustion Institute (27) Aerosol Science and Technology (2) Journal of Aerosol Science (2) Nature Communications, Chemistry (1) Combustion and Flame (15) Physical Chemistry C (1) Ceramic International (1) Powder Technology (1) HERM 2018 (2) Langmuir (1) Fuel (3)

2.2. Proposals:

MITACS Accelerate (1)

X. Membership:

Combustion Institute The Aerosol Society The American Association for Aerosol Research

XI. Equity, Diversity, and Inclusion (EDI): I am committed to EDI for reasons of fairness but also because it is linked to creativity, productivity, and innovation. I am aware of some barriers that have hindered different groups from advancing in academia and try to eliminate those in my teaching and research environment. For example, Implicit bias and the "mirror-tocracy", our tendency to recognize and reward individuals who remind us most of ourselves, can limit the diversity of those whom we recruit and promote. To mitigate such barriers, I do my best to learn about them and adopt appropriate teaching, coaching, and recruiting strategies to eliminate them in my day-to-day work. I also try to recruit a diverse range of students in my research group and encourage an inclusive working environment by promoting flexible working days/hours/locations, offering research assistant financial support that is on the higher end range of the Faculty of Engineering and Design in Carleton, and supporting individuals in my team for taking classes to enhance specific skills. Currently my group has members from five countries.