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Abstract

Sugar maple (Acer Saccharum Marsh.) damage resulting from a severe ice storm was modeled and mapped over eastern Ontario using

pre- and post-storm Landsat 5 imagery and environmental data. Visual damage estimates in 104 plots and corresponding reflectance and

environmental data were divided into multiple, mutually exclusive training and reference datasets for damage classification evaluation.

Damage classification accuracy was compared among four methods: multiple regression, linear discriminant analysis, maximum likelihood,

and neural networks. Using the best classifier, various stratification methods were assessed for potential inflationary effects on classification

accuracy due to spatial proximity between training and reference data. Of the classifiers that were evaluated, neural networks performed best.

Neural networks ‘learn’ training data accurately (94% overall), but classify proximate reference data less accurately (65%), and distant,

spatially independent reference data least accurately (55%). Results indicate that, while remotely sensed and environmental data cannot

discriminate among many levels of deciduous ice storm damage, they can by considered useful for differentiating areas of low to medium

damage from areas of severe damage (69% accuracy). Such classification methods can provide regional damage maps more objectively than

point-based visual estimates or aerial sketch mapping and aid in identification of areas of severe damage where management intervention

may be advantageous.

D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Ice storms are a major recurring regional scale distur-

bance (Lemon, 1961) responsible for tree mortality in

temperate hardwood forests (Hauer et al., 1994; McKay &

Thomson, 1969). From January 4th to the 10th, 1998,

between 40 and 100 mm of freezing rain fell across eastern

Ontario, southern Quebec, and the northeast United States,

leading to one of the most severe ice storms in the region’s

history. The maple syrup industry, which contributes $11

million annually to the regional economy of eastern Ontario

(Kidon et al., 2001), was devastated. Compensation was

provided to maple syrup producers for cleanup and for

expected losses to maple syrup production during the period

of forest recovery. Due to the unprecedented nature of the
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event, methods for accurate regional-scale damage assess-

ment did not exist, nor was the required time for full

recovery known. Most damage assessment for compensa-

tion was conducted based on site visits and aerial sketch

mapping (Scarr et al., 2003). More objective and spatially

explicit means of mapping ice storm damage were needed to

help understand the effects of this storm and to provide a

baseline from which forest recovery could be monitored.

Remote sensing has a potential role in damage mapping

because it can provide spatially explicit vegetation reflec-

tance change due to disturbance. In particular, archived

imagery such as Landsat may enable pre- and post-storm

change analysis. Additional environmental information

from topography or meteorology data may be combined

with remotely sensed imagery to model and map damage

regionally.

This paper compares four classification methods using

available geospatial data to map forest ice storm damage

across eastern Ontario. In this process, classification accu-

racies are presented for conventional statistical and neural
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network classifiers. Classification accuracy is also compared

for different stratifications of available plot and block data

to determine the range of classification accuracies, and to

evaluate the potential inflationary effects of spatially prox-

imal training and test data.

1.1. Effects of damage on canopy reflectance

Forest damage results in altered forest structure from

either: (1) biotic or abiotic stress agents such as insects,

disease, and pollution; or (2) sudden catastrophic events

such as fire or severe weather. Structural changes can

occur at scales from individual leaves to forest canopies

(Mageau et al., 1995), depending on the spatial and

temporal extent of the damaging event. Sudden cata-

strophic disturbances such as wind or ice storms result

in immediate forest canopy damage from broken branches

and toppled trees.

Certain generalizations can be made about the image

expression of forest damage. These assume that canopy

closure is high prior to the disturbance event so that the

remote sensing signal is produced by illuminated crowns

and shadowed gaps. Where the canopy is relatively sparse

and the ground is illuminated, the effects of damage on

image expression are subtler and these generalizations may

not hold. Forest structure has been shown to be the main

determinant of above canopy reflectance over a wide range

of conditions (Treitz & Howarth, 1996), while leaf reflec-

tance also contributes.

An undamaged forest canopy seen from above will have

a characteristic shadow fraction and brightness related to the

canopy gap fraction and distribution. With increasing levels

of damage, the canopy becomes more irregular as branches

break and entire trees topple. The irregular structural con-

figuration that results from damage manifests itself as

increased image shadow due to a higher gap fraction and

increased mutual shading, generally contributing to lower

canopy reflectance. Lower reflectance is also caused by a

decrease in canopy biomass, particularly in the green peak

and NIR plateau.

At high levels of damage, the signal often becomes

brighter as gap frequency and size increase and the under-

story or forest floor becomes illuminated. This effect is

especially pronounced at the ‘hot spot’ where the observa-

tion and illumination directions coincide within the same

canopy gap (Chen & Leblanc, 1997). An inverse relation-

ship between spectral response produced by a larger gap

fraction and gap brightness (Seed & King, 2003) may offset

each other when measuring overall canopy reflectance.

Increased brightness at high levels of damage may also be

caused by greater direct scattering from damaged and

irregular canopy surfaces. These two structural effects, in

addition to stress factors that produce increased visible

reflectance at the leaf level (OMNR, 1997), have lead many

authors to report increasing visible, NIR, and mid-IR

reflectance with higher levels of canopy damage (Ardo et
al., 1997; Radeloff et al., 1999). This trend has consistently

been observed in conifers due their low reflectance in

undamaged conditions and generally deciduous understory

(Radeloff et al., 1999).

Vegetation stress may also produce changes in the

typical reflectance curve of healthy leaves. Stress gener-

ally leads to a decrease in total chlorophyll content and a

change in the proportion of light absorbing pigments,

causing less overall absorption in the visible bands

(OMNR, 1997). These changes have consistently pro-

duced greater reflectance in the green peak centred at

570 nm (Collins, 1978; Gates et al., 1965; Horler et al.,

1980) and in the red chlorophyll absorption band (Lille-

sand & Kiefer, 1999). The result of an increase in both

green and red reflectance is visible yellowing of stressed

or damaged leaves. A shift in the red edge has also

consistently been reported, though some authors have

reported a shift towards shorter wavelengths, while others

have reported a shift towards longer wavelengths (Singh-

roy, 1995). NIR reflectance is relatively insensitive to

plant stress, but sensitivity increases in the mid-IR from

1400 to 2500 nm due to severe leaf dehydration and the

accompanying decreased absorption by water (Carter,

1993; Rock et al., 1989). The structural and leaf reflec-

tance effects described above may combine to produce

either a non-linear relation or a low sensitivity of reflec-

tance to damage.

1.2. Forest damage mapping using remotely sensed imagery

Forest damage modeling and mapping studies have

applied various methods, including linear regression (Col-

lins & Woodcock, 1996; Franklin et al., 1995) and

stepwise linear regression (Ekstrand, 1994), logit regres-

sion (Lambert et al., 1995), discriminant analysis (Franklin

et al., 1995), supervised and unsupervised classification

(Franklin et al., 1995), and neural networks (Ardo et al.,

1997). Multi-temporal imagery has been used to establish a

pre-disturbance baseline from which damage can be mea-

sured (Ardo et al., 1997; Collins & Woodcock, 1996;

Ekstrand, 1994; Franklin et al., 1995; Radeloff et al.,

1999). Collins and Woodcock (1996) assessed three linear

change detection techniques for mapping forest mortality,

including multi-temporal principal components analysis.

Additional image processing techniques worth noting in-

clude the use of band ratios (e.g., Vogelmann, 1990) and

spectral unmixing (Radeloff et al., 1999). Other studies

have included topographic data to improve damage pre-

diction (Ardo et al., 1997).

Most previous damage mapping studies have assessed

defoliation in conifer forests (Ardo et al., 1997; Collins &

Woodcock, 1996; Franklin et al., 1995; Lambert et al.,

1995; Radeloff et al., 1999; Vogelmann, 1990). Deciduous

forest damage has been modeled using high-resolution

airborne imagery (Lévesque & King, 2003; Olthof &

King, 2000; Pellikka et al., 2000; Yuan et al., 1991),
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and in a few studies, satellite imagery (Ekstrand, 1994;

Vogelmann, 1990; Vogelmann & Rock, 1989) for mixed

forest damage assessment.

Vogelmann and Rock (1989) mapped deciduous forest

damage with Landsat Thematic Mapper (TM) data using

visual assessment of spectral bands, band ratios and multi-

temporal image differencing. Specifically, they sought to

distinguish between defoliated and non-defoliated sites

using RGB images consisting of a Landsat TM5/4 band

ratio, TM band 5, and TM band 3 as red, green, and blue,

respectively. Additionally, a pre–post damage difference

image of TM band 4 was combined with TM bands 5 and

3 in an RGB composite image. T-tests were used to verify

the discriminating ability between 10 defoliated and 10 non-

defoliated sites of the TM5/4 ratio and the TM4 difference

image. Resulting composite maps were visually compared

to aerial sketch maps, and the level of agreement between

them was found to be quite good.

Vogelmann (1990) discriminated high, medium, and low

levels of deciduous forest damage using two separate

vegetation indices, including a TM5/4 ratio and the normal-

ized difference vegetation index (NDVI=(TM4�TM3)/

(TM4 +TM3)). Vegetation indices from 12 non-defoliated

and 14 defoliated sites were compared using t-tests. The

TM5/4 ratio was able to distinguish between high and low

damage areas, but it did not appear to be able to discriminate

between medium and low damage. The t-test for NDVI

confirmed its ability to distinguish high, medium, and low

damage areas.
Fig. 1. Block locations and numbers in productive
Results vary among these studies due to the numerous

methods used, scales of assessment, damage measures,

image quality, and pre-processing. An additional source of

variation in classification error is associated with training

and reference site selection. For example, Friedl et al.

(2000) stratified ground data into five mutually exclusive

training and reference sets generated randomly in an 80%

to 20% ratio to examine bias effects on the accuracy

assessment of AVHRR land cover maps. By using mul-

tiple cross-validations, they showed that classification

accuracy varies due to the effects of spatial autocorrela-

tion between training and reference data. Spatial autocor-

relation implies a relation between two attributes in space

whose similarity decreases with increasing distance. Plots

used to train a classifier and those used as reference data

to test its accuracy may be similar due to spatial prox-

imity, thereby violating the assumption of independence

between training and reference data that is necessary for

proper validation.

In the study presented here, 37 blocks, each consisting

of four treatment plots and assessed independently for

damage caused by the ice storm, were established by the

Ontario Ministry of Natural Resources (OMNR) in sugar

maple (Acer Saccharum Marsh.) bushes located across

eastern Ontario (Lautenschlager & Nielsen, 1999) (Fig. 1).

Each block was 100 m on a side and was divided into four

50� 50 m plots. While this design was intended to allow

comparisons of plot treatments within each block, it also

enabled assessment of the effects of spatial proximity
sugar bushes, across southeastern Ontario.
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between training and validation data on classification

accuracy.

1.3. Objectives

The primary objective of this study was to compare

four classification methods for ice storm forest damage

mapping. The methods were: linear stepwise regression,

linear discriminant analysis, maximum likelihood, and

neural networks. A second objective was to determine

remote sensing and environmental variables that can be

effectively used to predict and map damage. The third

objective was to analyze and compare classification accu-

racies obtained using three reference datasets: the training

data, reference data samples located in close proximity to

the training samples, and reference data that were spatially

independent of the training data.
2. Data acquisition and processing

2.1. Forest damage data

The OMNR provided plot-based visual damage esti-

mates (mean percent crown loss for 6 representative focus

trees per plot; 24 per block) acquired in the fall of 1998.

Individual tree estimates of crown loss were unavailable

for 3 blocks (blocks 39, 41, and 44), leaving 34 blocks,

or 136 plots for this analysis. In this study, modelling is

conducted using these continuous damage data and clas-

sification is conducted using pre-determined damage clas-

ses. The average percent crown loss of the six focus trees

was assigned to low (0–25%), medium (26–50%), and

high (51%+) damage classes for classification purposes.

These class divisions were selected to be able to assign a

probability of mortality based on existing literature. Both

low and medium damage classes have a high to moderate

chance of survival depending on tree vigour prior to the

event, while the high damage class represents varying

probabilities of survival from moderate to low with

expected internal infection and/or growth suppression

(Coons, 1999; QMNR, 2000). These classes were also

selected because they were in common use in other ice

storm studies.

2.2. Environmental data

In order to map forest damage, a geospatial dataset

consisting of environmental data and satellite multispectral

imagery was assembled. Environmental data consisted of

elevation, slope, and aspect, total freezing precipitation,

and proximity to forest edge. These variables were

selected as likely candidates for prediction of damage

based on their representation of exposure (e.g., dominant

wind direction was from the northeast) (Milton & Bour-

que, 1999) and ice accumulation (Proulx & Greene,
2001). Satellite data consisted of pre- and post-ice storm

Landsat 5 TM spectral bands 1–5 and 7 from the visible

to the mid-IR. These data were used as independent

variables to predict and map damage as the dependent

variable. Each data type is described in more detail

below.

2.2.1. Elevation, slope, and aspect

Elevation data available for 116 of the 136 plots were

extracted from the Ontario Base Mapping (OBM) Digital

Topographic Data Base (DTDB) of eastern Ontario. The

data were provided by the OMNR as an interpolated surface

of 50-m cells derived from a 50-m grid of spot heights that

had been measured photogrammetrically from 1:10,000

airphotos. Slope and aspect variables were derived from

the elevation surface using standard GIS software.

2.2.2. Freezing rain

Total freezing rain equivalent data were provided by

Environment Canada for 284 weather stations in the ice-

affected region where rain measurements had been made

hourly or twice daily during the storm. A freezing rain

surface was generated with a 30-m cell size through kriging

interpolation of point estimates using a spherical fit.

2.2.3. Forest classification

In the study region, forests are composed primarily of

deciduous species with smaller areas of coniferous or mixed

species. For the purposes of this study, damage classifica-

tion was conducted for deciduous forests only, as damage

data for coniferous and mixed forests did not exist in the

same format as described above, and the primary application

of the map was for sugar maple damage assessment. Land

cover information was obtained from two sources of data.

The OMNR Ontario Base Map data layer ‘Woodarea’,

which was derived from interpreted 1991 1:10,000 aerial

photography, consisted of a vector representation of wood-

land boundaries. In order to extract only deciduous forest

areas, these woodland forest polygons were overlaid onto a

thematic land cover map derived from clustering using

Classification by Generalized Progression (CPG) classifica-

tion (Latifovic et al., 1999) of a mosaic of four post-storm

Landsat TM scenes (see below). CPG is an unsupervised

classification that forms clusters using both spectral and

spatial similarity criteria. The thematic map classification

included separate deciduous and coniferous classes.

In the TM map, coniferous forest was originally classi-

fied with a 78.8% user’s accuracy (100%�% errors of

commission) using TM data only and independent reference

areas that were visually interpreted from 60-cm pixel

airborne digital camera imagery. Once the TM classification

was combined with the ‘Woodarea’ layer, confusion be-

tween conifer, water, and agricultural crop classes was

eliminated, increasing the conifer classification accuracy

to 97.0%. Similarly, deciduous classification accuracy in-

creased from 59.0% in the CPG map to 91.0% after
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intersection of the two spatial datasets. In addition to

focusing damage classification on deciduous forests only,

the map was also used to calculate proximity of forest pixels

to the closest forest edge.

Though it was desirable to further stratify forest cover to

account for differential susceptibility of species to ice storm

damage (Hopkin et al., 2003), no species cover data existed

at the time of this study, nor were there accurately posi-

tioned field plots in all forest types. Since this study, the

OMNR has been in the process of updating its Forest

Resource Inventory (FRI) of eastern Ontario, which should

provide species composition and allow additional stratifica-

tion of forest types for future mapping.

2.3. Remote sensing data: Landsat TM

Eight TM scenes were used to generate two separate

mosaics—one pre- and the other post-ice storm. The best

scenes available with the desired coverage were selected

based on a report of scene quality and on visual assessment

of cloud cover. Given the limitations of data availability

primarily due to cloud cover, pre-storm data consisted of

scenes acquired in July of 1996 and 1997, while post-storm

scenes were acquired in August and September of 1998 and

July 1999 (Table 1). The 1999 scene was generated by the

Landsat 7 Enhanced Thematic Mapper (ETM+), which has

somewhat different radiometric characteristics than the

Landsat 5 TM sensor of the other scenes. There were,

however, only three study blocks contained within it.

Georeferencing was accomplished to sub-pixel positional

accuracy in a series of steps using airborne digital camera

imagery of the maple blocks as an intermediate data source

between differential GPS surveyed ground targets and Land-

sat imagery. Relative radiometric calibration was performed

by plotting radiance in overlap areas between scenes to
Table 1

Pre and post 1998 ice storm Landsat scenes selected for forest damage

mapping

Path Row Sensor Date and time

of acquisition

Scene centre

15 28 TM July 30, 1997,

15:15:21

529812.177 E,

5098447.555 N

15 29 TM July 30, 1997,

15:15:46

489003.780 E,

4959470.205 N

16 28 TM July 18, 1996,

15:04:59

416822.886 E,

5099703.094 N

16 29 TM July 18, 1996,

15:05:23

380581.208 E,

4962369.540 N

15 28 TM August 2, 1998,

15:22:43

529812.177 E,

5098447.555 N

15 29 TM August 2, 1998,

15:23:07

489003.780 E,

4959470.205 N

16 28 ETM+ July 3, 1999,

15:43:22

416822.886 E,

5099703.094 N

16 29 TM September 10, 1998,

15:29:40

380581.208 E,

4962369.540 N
determine the linear function relating stable land elements in

adjacent or multi-temporal scene pairs. A single scene

located closest to an Aerocan sun tracking photometer

station (Holben et al., 1998) was selected as the master to

which all other scenes were relatively calibrated. Once a

mosaic covering Eastern Ontario was produced, absolute

calibration to surface reflectance was performed by applying

aerosol optical depth data from the Aerocan photometer, and

sensor gains and offsets from the master to the whole

mosaic. Gain and offset information from the master scene

and aerosol optical depth data were entered into the cali-

bration program 6S (Vermote et al., 1997) to convert scene

radiance to surface reflectance for each of the six TM bands

(TM1–5 and 7).

Landsat image variables used in damage classification

included pre- and post-storm reflectance in six bands and

NDVI, as well as ratios of pre-/post-storm TM bands and

NDVI. Single pixels that fell entirely within plot boundaries

were used to represent plot reflectance.
3. Methods of classification of ice storm damage and

stratification of training and reference data

Forest damage was first modelled as a continuous vari-

able using linear stepwise regression. Subsequently, using

the three damage classes, four classifiers were implemented

and compared: classification of the linear regression contin-

uous function, linear discriminant analysis, maximum like-

lihood, and a neural network.

For the parametric methods (regression, discriminant

analysis, and maximum likelihood), histograms were visu-

ally checked for normality and transformations were applied

to non-normal data in an attempt to normalize their distri-

butions. The spectral bands, band ratios and NDVI, eleva-

tion, and precipitation were determined to be sufficiently

normal for input into parametric models. Aspect could not

be included as an independent variable in the parametric

models due to its circular nature. Slope was highly related to

elevation in the study area (r= 0.43, P < 0.01) and could not

be transformed to a normal distribution. A logarithmic

transformation was applied to proximity to forest edge to

normalize its distribution.

3.1. Modeling and classification methods

3.1.1. Linear regression

In modelling of damage as a continuous variable,

forward stepwise linear regression was performed 100

different times (trials) using samples drawn from the

104 plots as shown in Table 2. Probabilities to enter

and remove were set at 0.05 and 0.10, respectively. The

resulting models consisted of between two and six sig-

nificant predictive variables. As models consisting of

certain groups of variables were generated more frequent-

ly than others, a comparative analysis of prediction errors



Table 2

Samples used in different phases of damage modeling and classification

error analyses

Phase/application 1

Examine

regression

errors and

variable

reduction

2a

Comparison

among

classifiers

3a

Assess NN

accuracy

distribution

from set 2

4

Assess NN

accuracy

using

block-based

stratification

Damage variable Continuous Ordinal

Stratification Plot Plot Plot Block

Method

Regress x x

Discrim x

Max

likelihood

x

NN x x x

# cross-

validation

trials

100 10 10 20

# training

plots/trial

80 80 80 84

# reference

plots/trial

24 24 24 20

a Subsets extracted from set 1.
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between these model groups was conducted. The identi-

fication of significant predictive variables from the regres-

sions also allowed a reduction in the number of variables

input into subsequent maximum likelihood and neural

network classifications. A maximum of 16 input channels

could be handled by the neural network algorithm, while

maximum likelihood classifiers often perform best when

trained with a limited number of discriminating channels

(see below). Given the total number of available variables

was 41, the regression results aided in reducing the

number input to these classifiers.

In damage classification, for comparison with the other

classifiers, 10 training/reference sets were selected from the

original 100 trials and checked to ensure that they repre-

sented the full range of models in those trials.

3.1.2. Linear discriminant analysis

Linear discriminant analysis seeks k� 1 discriminant

functions, where k is the number of classes to differentiate.

These functions are linear combinations of the predictor

variables that give the greatest amount of squared differ-

ence between groups relative to the variance within groups.

Each class mean (centroid) in k� 1 dimensional space is

determined. Observations are assigned to the class whose

discriminant function has the smallest Mahalanobis dis-

tance to the class mean (Lachenbruch, 1975). In two-

dimensional space (where k = 3 classes), the Mahalanbois

distance is identical to the Euclidean distance. Stepwise

discriminant analysis was performed using the same prob-

abilities for entry and removal as the stepwise regression

analysis. All available normally distributed spectral and

environmental data were entered as independent variables

into the analysis.
3.1.3. Maximum likelihood

Before running the maximum likelihood classifier, vari-

able selection was carried out to eliminate redundant infor-

mation contained in multiple discriminating variables

(Mather, 1999; Piper, 1992). Sixteen significant discrimi-

nating variables were identified in the stepwise regression

analysis. Of these, the five variables that accounted for

maximum variance in the original data, determined through

principal components analysis, were selected for input to the

maximum likelihood classification. These included post-

storm spectral band 3, pre-/post-storm ratios of TM bands

3 and 5, and freezing precipitation. Transformed proximity

to forest edge was also included based on results from the

regression analysis. The number of discriminating variables

(5) exceeded Piper’s (1992) recommendation of one vari-

able per 10–30 observations for the low damage class,

which contained between 12 and 17 observations.

3.1.4. Neural network

A simple back propagation neural network (Atkinson &

Tatnall, 1997; Pao, 1989) was used that consisted of an

input layer, one hidden layer and an output layer. Separate

neural networks were trained for 40 sets of training/refer-

ence data, 20 sets using plot-based, and 20 sets using block-

based stratification (see below). The maximum number of

channels that could be handled by the algorithm was used,

consisting of 11 TM spectral bands and band transforma-

tions determined to be significantly predictive of damage

from the stepwise regression analysis, and all available

environmental data. While neural networks can approximate

any function type, selection of input variables was based on

linear data reduction techniques for simplicity. For all trials,

default parameters in the PCI algorithm were used: 1000

iterations, learning rate of 0.1 (controls the step size when

weights are iteratively adjusted), momentum rate of 0.9

(refers to the size of the step at each iteration), maximum

individual class error of 0.001, maximum total error of 0.01

(PCI Geomatics Group, 2001).

3.2. Stratification methods

From the total set of 104 plots with complete coverage of

all of the above-mentioned geospatial data types, mutually

exclusive training and reference samples were randomly

generated for classification and accuracy assessment using

multiple cross-validation trials (Efron & Tibshirani, 1993).

An approximate 80/20% ratio of training to reference data

was used for stratification on both plot and block bases. In

the case of plot-based stratification, 100 separate samples of

training and reference data were generated with this ratio for

treatment of damage as a continuous variable (% crown

loss) in the stepwise regression analysis (Table 2). Follow-

ing this analysis, 10 of these samples were selected to

compare among classification methods for treatment of

damage as an ordinal variable (i.e. the three classes). In

both of these analyses, randomly selected training and

nvironment 89 (2004) 484–496 489



Table 3

Regression model errors for 100 cross-validation trails

R2 S.E. Reference RMSE

Minimum 0.24 13.7 12.6

Maximum 0.52 16.9 25.0

Mean 0.39 15.3 18.2

S.D. 0.065 0.7 2.5

Units of S.E. and RMSE are percent crown loss.

Table 5

Overall training data classification accuracies—the most accurate training

data classification is shown in bold

Training set # Regress Discrim Max likelihood Neural net
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reference data plots could be in close proximity to each

other since each block was comprised of four adjacent plots.

Spatial proximity between plots was expected to produce

artificially high classification accuracies due to the effects of

spatial autocorrelation already discussed, registration errors

and the point spread function of the TM sensor, which

integrates reflectance over a larger area than the pixel

bounds. To evaluate spatially independent training and

reference data, an additional 20 samples were generated

using block-based stratification with 5 blocks (20 plots) set

aside as reference data. From the above three datasets and

analyses, the effects of spatial proximity on classification

accuracy were assessed as described in Section 3.3.

3.3. Accuracy assessment

Classification accuracy was determined using three ref-

erence data types. The first was a comparison of the

classification to the training data used to develop it. This

method over-estimates true classification accuracy but is a

useful means for comparison of multiple classification trials

using different input data, parameters, or classifiers (as in

this study). The second used plots randomly set aside as

reference data in each trial. As these reference plots were

almost always in close proximity to training plots taken

from the same blocks, this method was expected to produce

positively biased accuracy due to spatial proximity in the

data. The third method used entire blocks as reference data.

Blocks were generally spaced far apart from one another

(typically more than 25 km) so these reference data were

assumed to be spatially independent.

In regression modeling of percent crown loss, the root

mean square error between the predicted and actual values

was examined for both training, and reference sets for all

100 trials. For training data, this error is the standard error

(S.E.) of regression, while for independent reference data, it

is reported as the root mean square error (RMSE).
Table 4

Regression model errors grouped according to common predictor variables

Model group Significant predictors N S.E. Reference RMSE

1 B1_pre, B5_pre, Edgeprox 33 14.9 18.0

2 B3_post, Edgeprox 19 15.1 16.4

3 B3_Ratio, Edgeprox 10 16.2 18.0

4 B7_post, Edgeprox 13 15.7 18.4

5 Other, Edgeprox 25 15.5 19.9

Pre = pre-storm, Post = post-storm, Ratio = ratio of pre- to post-storm

spectral band, Edgeprox = proximity of plot to nearest forest edge.
Ordinal classification errors are reported as the user’s

accuracy (100%�% errors of commission), producer’s

accuracy (100%�% errors of omission), overall accuracy

(total correct plots/total plots), and j statistic (overall accu-

racy� accuracy achievable through random class assign-

ment) (Lillesand & Kiefer, 1999). Overall accuracy within

each classification and stratification method was calculated

by summing the error matrices of all trials performed within

the classification and stratification method. Differences

among classification accuracies were assessed using pair-

wise t-tests, with each pair consisting of a reference set

classification accuracy obtained using different classifiers.

Difference distributions were visually assessed for normality.
4. Results

4.1. Damage as a continuous variable: linear regression

models

All 100 regression models were significant at P < 0.0005

and had standard errors between 13.7% and 16.9% crown

loss (Table 3). The range of RMSE of the reference datasets

was greater than the range of standard errors, having both

lower minimum and higher maximum errors. The mean

error for the reference sets was 2.9% crown loss higher than

the mean standard error. This difference was due to regres-

sion minimizing the residual sum of squares between actual

and predicted values. The error generated from the reference

sets is a more realistic estimate of true model error when

applied to the whole geospatial dataset.

While the total error was relatively constant among the

100 trials, there was some variability due to the different

significant predictors selected by the stepwise regressions

(Table 4). Of the 100 models, 75 could be grouped

according to 1 of 4 sets of significant predictors (model

groups 1–4 in Table 4). These predictors were common to

all regressions in the model group, while other variables

not listed were either entered subsequently or were not

common to all models of that group. Proximity to forest
1 62% 70% 76% 96%

2 53% 60% 70% 99%

3 56% 64% 72% 97%

4 53% 66% 73% 98%

5 53% 62% 70% 100%

6 52% 51% 69% 99%

7 57% 65% 72% 91%

8 53% 58% 71% 92%

9 60% 59% 73% 75%

10 57% 65% 79% 94%

Average 55% 62% 72% 94%

Range 10% 19% 10% 25%



Table 6

Overall plot-based reference data classification accuracies—the most

accurate reference data classification is shown in bold

Reference

set #

Regress Discrim Max

likelihood

Neural net

1 38% 38% 50% 50%

2 64% 64% 62% 85%

3 65% 62% 54% 54%

4 55% 45% 58% 63%

5 56% 44% 56% 69%

6 67% 61% 56% 67%

7 38% 52% 45% 67%

8 36% 64% 56% 67%

9 50% 45% 52% 60%

10 50% 41% 62% 76%

Average 51% 52% 55% 65%

Range 31% 26% 17% 35%
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edge was automatically entered in all 100 models, suggest-

ing that it is highly related to ice storm damage and

complementary to spectral and other environmental data.

Of the other environmental data, elevation was a signifi-

cant predictor in only two models, while freezing precip-

itation was significant in four.

Pre-storm TM bands 1 and 5 were entered together 33

times and were therefore related to the susceptibility of

forest species and structure to subsequent ice storm damage.

These bands have been shown to be useful for forest type

mapping and vegetation moisture content, which may affect

forest susceptibility to ice storm damage (Hauer et al., 1994;

Van Dyke, 1999). However, the relation between pre-storm

blue reflectance and ice storm damage is difficult to explain,

as this band is particularly sensitive to Rayleigh scattering

(Lillesand & Kiefer, 1999). Post-storm band 3 and a pre-/

post-storm band 3 ratio were significant predictors a com-

bined total of 29 times. Thirteen models entered post-storm

TM band 7, while no more than 5 of the 25 remaining

models could be grouped according to 1 or more common

predictors.

Models that entered post-storm TM band 3 first had

the lowest independent reference set errors, suggesting

that perhaps this band is most useful for differentiating

levels of damage. Post-disturbance TM band 3 has been
Fig. 2. Distribution of neural network damage classification accuraci
found to be useful for discriminating different levels of

deciduous damage in at least one other study (Vogelmann

& Rock, 1989). In another study by Vogelmann (1990),

NDVI was determined to be suitable for distinguishing

low, medium and high deciduous damage. This contrasts

with results found here where none of the regression

models entered the post-storm NDVI as the most signif-

icant predictor, but two models entered the pre–post-

storm NDVI ratio first.

Based on results from the regression analysis, the fol-

lowing spectral variables were retained for classification

using neural networks: pre-storm TM bands 1–3, 5, and 7,

post-storm TM bands 3 and 7 and NDVI, ratios of pre- to

post-storm reflectance for TM bands 1, 3, and 5, and all

available environmental variables. The potential to identify

non-linear patterns using neural networks justified the

inclusion of environmental variables that were not linearly

related to damage, while the selection of the spectral and

edge proximity variables was based on linear variable

reduction techniques.

4.2. Damage as an ordinal variable: classification

comparison results

4.2.1. Training data accuracies

Table 5 presents the overall training data classifications

accuracies of three damage levels using the four methods

described above.

The 10 neural network classifications predicted the

training dataset most accurately in all cases, achieving an

overall accuracy of 94%. The maximum likelihood classifier

did not perform nearly as well as the neural networks, with

an overall accuracy of 72% for its 10 classifications.

However, it performed most consistently, with training set

accuracies ranging from 69% to 79%. Pairwise t-tests

performed to assess the significance of differences among

classification accuracies showed significantly different ac-

curacies between all pairs of classifiers at P < 0.01. Both

discriminant analysis and regression classifiers predicted

training data poorly. Even with the typically inflated accu-

racies of training data over that expected from independent

reference data, these results show that only the neural
es from 20 cross-validation trials and plot-based stratification.



Fig. 3. Distribution of neural network damage classification accuracies from 20 cross-validation trials and block-based stratification.

Table 7

Combined error matrix for 20 neural network classifications, each assessed

using 20 reference plots and block-based stratification

Classification Reference damage class Total User’s

1 2 3

1 15 16 8 39 38.5%

2 43 63 33 139 45.3%

3 19 63 140 222 63.1%

Total 77 142 181 400

Producer’s 19.5% 44.4% 77.3%

j 0.25 Overall 54.5%
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network and maximum likelihood classifiers are useful for

such damage classification.

4.2.2. Plot-based reference data accuracies

A direct comparison of the 10 plot-based reference data

accuracies for the four classifiers again revealed the supe-

riority of the neural network (Table 6). Its accuracies were

highest seven out of 10 times, while its performance was

tied for first 2 of the remaining three times. Only 1 of the 10

plot-based reference datasets had a lower overall accuracy

than the other classifiers (trial #3). The range of classifica-

tion accuracies was lowest for the maximum likelihood

(17%) and highest for the neural network (35%) (Table 6).

Pairwise t-tests performed among the classifiers showed that

all produced non-significantly different accuracies, except

for the neural networks, which were significantly better than

the others (P < 0.01).

The distribution of neural network accuracies shown in

Table 6 is approximately normal, however, 10 trials were

insufficient to properly assess it. A second set of randomly

split training and plot-based reference datasets were there-

fore generated and the classification results added to those

of the first set to increase the number of trials to 20 (Table

2). The second set produced slightly higher accuracies than

the first set, primarily due to two networks with accuracies

greater than 90%. However, the difference between the two

sets was determined to be insignificant using a t-test. Fig. 2

shows the distribution of accuracies for the combined 20

neural network classifications.

4.3. NN reference data accuracies using block-based

stratification

Comparison of the accuracies of the block-based strat-

ifications of training and reference data (Fig. 3) to the plot-

based results of Fig. 2 revealed the inflationary effects of the

spatial proximity between training and reference data in the

plot-based assessment. Overall block-based accuracy for 20

sets was 54.5% with a j of 0.25 (Table 7), which was 14.2%

lower than the overall accuracy obtained from the 20 neural

networks using plot-based stratification. Because neural

networks learn training data exceptionally well, and because

the plot-based reference data were spatially autocorrelated
with the training data, these reference data were essentially

pseudo-replicates of adjacent training data, thereby produc-

ing inflated accuracy estimates.

Table 7 shows that while the overall classification accu-

racy was quite low, high damage areas were mapped

relatively well. Indeed, 77.3% of spatially independent

blocks having suffered high damage were correctly identi-

fied as such in the classifications. A 63.1% user’s accuracy

for the high damage class suggests that 63.1% of blocks

classified as severe damage were actually severely damaged.

The low and moderate damage classes were subsequently

merged into a single class to determine the accuracy with

which high damage (significant probability of further de-

cline) and low to moderate damage (low chance of further

decline) could be classified. The overall accuracy increased

to 69.3%, while the j statistic improved to 0.39 with a

standard deviation of 0.07, which was significantly different

from chance agreement at P < 0.0001.

A map of the two deciduous forest ice storm damage

classes was produced (Fig. 4) using a voting strategy to

select the most frequently occurring class for the 20 neural

network classifications at each pixel location (Kanellopou-

los & Wilkinson, 1997). The frequency of the most often

occurring class (the mode) at each location provided a

measure of confidence for the mapped output on a per pixel

basis.

The resulting map suggests that greater damage oc-

curred close to forest edges and at higher elevations

found in the northwestern portion of eastern Ontario.

Damage does not appear to be directly related to precip-

itation, which was heaviest in the central to southeastern



Fig. 4. Deciduous forest damage in eastern Ontario resulting from the January 4–10, 1998 ice storm.
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parts of eastern Ontario. Factors that affect the magnitude

of damage suffered from ice storm events are numerous,

such as tree species, age and size, ice accretion, and stand

position, among others (Proulx & Greene, 2001), but

complete discussion of them is beyond the scope of this

paper.
5. Discussion

Due to the relatively small number of deciduous damage

mapping studies in the literature and the absence of pub-

lished deciduous damage classification accuracies, compar-

ison of results found here must be made primarily to studies

of coniferous forest damage. In modelling damage as a

continuous variable, Ekstrand (1994) obtained a correlation

(r) of � 0.75 (P < 0.001) between TM band 4 reflectance

and conifer percent needle loss for 30 sites. The correlation

coefficient improved to r = 0.81 for 39 sites when field and

air photo determined stand characteristics were included in

the model. In another study, Collins and Woodcock (1996)

used orthogonal transformations of multidate and multispec-

tral TM data. The best correlation coefficient obtained was

r = 0.89 (P < 0.0001) for 25 mixed conifer sites using

Kauth-Thomas change components. While all regression

models in this study had an equal or lower correlation

coefficient of r = 0.72 (Table 3), the significance level of

all models was similar due to the larger sample sizes used in

this study.
Damage classification typically requires assignment of a

continuous damage measure into discrete damage classes. A

limitation of the classification approach is that the bound-

aries between damage classes are artificial and subjective.

For example, in this study, while a distinction is made

between 24% crown loss and 26% crown loss in terms of

damage classes, the difference between them is insignifi-

cant, especially in relation to the precision of visual crown

loss estimation. Damage classes in this study were chosen to

be consistent with those employed by other ice storm

research groups, and to be able to assign a probability level

of further decline from the literature based on the amount of

crown loss suffered.

Lambert et al. (1995) provided an overview of nine

previous satellite-based damage studies in coniferous forests

that demonstrated the variability of methods and results

obtained from nine different studies. TM bands 1, 3, 4, 5,

and 7 have all been used to map conifer damage, as well as

various ratios of these bands. However, most of the studies

had inadequate sample size (8–22) to allow direct compar-

ison to this study with two exceptions. Rosengren and

Ekstrand (1988) used 92 stands to obtain an accuracy of

76% for four damage classes, while Lambert et al., used 243

stands and logit regression to map even-aged stand damage

with an accuracy of 71–75% for three classes.

Franklin et al. (1995) achieved a best overall accuracy of

86% using discriminant functions to classify 21 coniferous

plots into three defoliation classes. Multi-temporal TM

indices were used to obtain this result, consisting of pre-
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and post-disturbance Tasseled Cap (Kauth-Thomas) bright-

ness, greenness, and wetness. The same plot data that were

used to produce the discriminant functions were also used to

assess the classification accuracy. Thus, the accuracy

obtained in Franklin et al. is optimistic and a similar

accuracy would not be achieved with an independent

reference set, as was shown in this study. Average training

set accuracy for the discriminant analysis in this study

(Table 5) was not found to be as high as those obtained in

Franklin et al.. However, they assessed defoliation in pure

conifer stands and a relatively small sample size was used.

Additionally, the range of accuracies of 48–86% was wider

than the range found here and the minimum accuracy was

less than that of this study.

Franklin et al. (1995) also evaluated supervised and

modified unsupervised k-means classifications using the

21 sites mentioned above, producing an overall training

data accuracy of 67% for both methods. In this study, an

average training set accuracy of 72% was achieved using a

maximum likelihood classification (Table 5). This dropped

to 55% when assessed using the 10 independent plot-based

reference sets, with a best overall accuracy of 62% for a

single classification (Table 6).

The overall accuracy obtained using neural networks and

plot-based stratification in this study was similar to those

obtained by Ardo et al. (1997) when using single date TM

and topographic data to classify three conifer damage

classes (62–68% overall classification accuracy). However,

their results improved when using bi-temporal TM and

topographic data (77–78% accuracy). The block-based

stratification of data produced lower overall accuracies than

the plot-based stratification for the neural network classifier.

This was due to the high accuracy with which neural

networks classify training data, and the effect of spatial

proximity between training and reference plots. Block-based

stratification was not performed with the other classifiers as

none performed well enough in the plot-based stratification

to consider further. However, the inflationary effects of

spatial autocorrelation on accuracy of other classifiers will

depend on how well the classifier predicts training data.

Poorer classification of training data will likely result in less

inflated accuracy of spatially proximal reference data. These

results demonstrate the importance of spatial independence

between training and reference data for proper validation.

Few studies report distance between training and reference

data or consider its effects on model accuracy.

Better overall classification accuracy may have been

achievable had several neural network architectures been

tested (e.g., different momentum and learning rates, number

of hidden layers, number of iterations). A lack of consistent

guidelines on network configuration led us to choose a basic

architecture for evaluation. In addition, other input variables

could be included depending on availability. For example,

forest species and structure or forest management methods

may be linked to damage. Inclusion of these was intended

for this study but such data had not been collected for the
OMNR plots and forest inventory for eastern Ontario was

too out of date.

Although neural networks performed better than other

classifiers in this study, they have not been commonly

applied in operational mapping due to perceived difficulties

in extension of well learned training data over regional areas

and in the time required to train the network and test

different configurations. In this research, rigorous assess-

ment of a high and low damage classification using spatially

independent test data has shown that accuracy is reasonable

for the whole eastern Ontario region. A set of 10 networks

required only 2 days to train and use of neural networks

enabled testing of more variable types than was possible

with the parametric classifiers. Thus, for the purpose of this

study, to produce a more precise and objective damage map

than was obtained immediately following the storm using

aerial sketch mapping, the methods have proven to be

moderately successful.

The final map produced from the research is not intended

to replace sketch mapping as a means for near real-time

assessment, as Landsat data must be acquired in the growing

season following such a storm and the environmental data

require a certain period of time to integrate into the

database. It can, however, in conjunction with the knowl-

edge gained from the study, be used over the longer term in

policy development for improved forest and landscape

management to reduce susceptibility to future storms. After

future storms, the methods can be applied to provide

damage maps in the medium term (by the end of the

summer following the storm) to supplement sketch maps

and be used for insurance and salvage/restoration needs.
6. Conclusions

Modelling and classification of forest ice storm damage

was conducted using Landsat and environmental data. This

study sought to examine some of the variation in damage

mapping error associated with (1) modeling or classification

methods and (2) stratification methods of available plot data

into training and reference sets. In comparison of classifiers,

a simple neural network outperformed three parametric

classifiers and compared favorably with results reported in

other studies. Among the other classification methods se-

lected for comparison, the range of accuracies obtained

generally agreed with results from other studies where

similar methods were used. The neural networks had diffi-

culty discriminating low and moderate damage, but pro-

duced reasonable accuracies for high damage areas. The

map that was produced using voting strategies could there-

fore by considered useful for targeting areas for cleanup and

compensation to maple syrup producers where high damage

was most likely to have occurred.

In data stratification for training and validation, the

distance between training and reference data must be

considered when assessing classification accuracy to ensure
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spatial independence. Single training and reference sets can

produce significantly biased classification accuracy, with the

magnitude of bias being dependent on the classification

method used. In order to obtain robust and representative

classification accuracies, multiple trials should be performed

and assessed using random subsets of data.
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Vermote, E. F., Tanré, D., Deuzé, J. L., Herman, M., & Morcrette, J. J.

(1997). Second simulation of the satellite signal in the solar spectrum,

6S: An overview. IEEE Transactions on Geoscience and Remote Sens-

ing, 35, 675–686.

Vogelmann, J. E. (1990). Comparison between two vegetation indices for

measuring different types of forest damage in the north-eastern United

States. International Journal of Remote Sensing, 11, 2281–2297.

Vogelmann, J. E., & Rock, B. N. (1989). Use of Thematic Mapper data for

the detection of forest damage caused by the pear thrips. Remote Sens-

ing of Environment, 30, 217–225.

Yuan, X., King, D. J., & Vlcek, J. (1991). Sugar maple decline assessment

based on spectral and textural analysis of multispectral aerial videog-

raphy. Remote Sensing of Environment, 37, 47–54.


	Mapping deciduous forest ice storm damage using Landsat and environmental data
	Introduction
	Effects of damage on canopy reflectance
	Forest damage mapping using remotely sensed imagery
	Objectives

	Data acquisition and processing
	Forest damage data
	Environmental data
	Elevation, slope, and aspect
	Freezing rain
	Forest classification

	Remote sensing data: Landsat TM

	Methods of classification of ice storm damage and stratification of training and reference data
	Modeling and classification methods
	Linear regression
	Linear discriminant analysis
	Maximum likelihood
	Neural network

	Stratification methods
	Accuracy assessment

	Results
	Damage as a continuous variable: linear regression models
	Damage as an ordinal variable: classification comparison results
	Training data accuracies
	Plot-based reference data accuracies

	NN reference data accuracies using block-based stratification

	Discussion
	Conclusions
	Acknowledgements
	References


