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Abstract

Ensuring successful forest regeneration requires an effective monitoring program to collect information regarding the status of young crop

trees and nearby competing vegetation. Current field-based assessment methodology provides the needed information, but is costly, and

therefore assessment frequency is low. This often allows undesirable forest structures to develop that do not coincide with management

objectives. Remote sensing techniques provide a potentially low-cost alternative to field-based assessment, but require the development of

methods to easily and accurately extract the required information. Automated tree detection and delineation algorithms may be an effective

means to accomplish this task. In this study, a tree detection–delineation algorithm designed specifically for high-resolution digital imagery

of 6-year-old trees is presented and rigorously evaluated. The algorithm is based on the analysis of local transects extending outward from a

potential tree apex. The crown boundary is estimated using the point of maximum rate of change in the transect data and a rule base is applied

to ensure that the point is contextually suitable. This transect approach is implemented in both the tree-detection and crown-delineation

phases. The tree-detection algorithm refines the results of an initial local maximum filter by providing an outline for each detected tree and

retaining only one local maximum value within this outline. The crown-delineation algorithm is similar to the detection algorithm, but applies

a different rule set in creating a more detailed crown outline. Results show that the algorithm’s tree-detection accuracy was better than that

using commonly applied fixed-window local maximum filters; it achieved a best result of 91%. For the crown-delineation algorithm,

measured diameters from delineated crowns were within 17.9% of field measurements of diameter at the crown base on an individual tree

basis and within 3% when averaged for the study. Tests of image pixel spacings from 5 to 30 cm showed that tree-detection accuracy was

stable except at the lowest (30-cm) resolution where errors were unacceptable. Delineated crown-diameter accuracy was more sensitive to

image resolution, decreasing consistently and nonlinearly with increasing pixel spacing. These results highlight the need for very high

resolution imagery in automated object-based analysis of forest regeneration.

D 2002 Published by Elsevier Science Inc.

1. Introduction

Successful regeneration of coniferous species is critical

to forest sustainability in boreal regions. Conifers are the

dominant species in this biome, but can be difficult to

reestablish after disturbance due to slow growth and sensi-

tivity to competing vegetation. Timely information regard-

ing their stocking levels, health, and competing species

abundance is required for effective treatment decisions.

Current field-survey methods are labour intensive and

costly, resulting in low sample coverage and frequency.

As a consequence, undesirable forest structures can develop

between sampling periods that are difficult to restore to

desired conditions. Remote sensing has potential to provide,

at lower cost, forest information with greater coverage than

is attainable using field sampling. Early work in the devel-

opment of remote sensing methods for regeneration assess-

ment focused on manual analysis of large-scale photography

(LSP). Results have shown that reliable estimates of stock-

ing, species, crown area, health condition, and stratification

of key vegetation complexes can be made (Goba, Pala, &

Narraway, 1982; Hall, 1984; Hall & Aldred, 1992; Pitt &

Glover, 1993; Pitt, Runesson, & Bell, 2000). However,

operational practice of these methods has not been widely

undertaken because LSP acquisition and analysis are either

highly specialized, time consuming, or subjective, requiring

0034-4257/02/$ - see front matter D 2002 Published by Elsevier Science Inc.

PII: S0034 -4257 (02 )00050 -0

* Corresponding author. Tel.: +1-613-520-2600; fax: +1-613-520-4301.

E-mail address: doug_king@carleton.ca (D.J. King).

www.elsevier.com/locate/rse

Remote Sensing of Environment 82 (2002) 322–334



specially trained personnel and equipment (King, 2000).

Thus, methods to automate and simplify acquisition and

analysis are required for an effective remote-sensing-based

assessment methodology.

Potential improvement of the utility of remote sensing for

regeneration assessment may be obtained through the appli-

cation of automated tree detection–delineation algorithms.

Estimates of tree spatial pattern, tree abundance, crown size,

and canopy structure can be made given accurate detection

and delineation of crowns. Isolation of individual trees also

provides for improved species classification through analysis

of within-crown spectral data (Gougeon, 1998), spatial data

(Haddow, King, Pouliot, Pitt, & Bell, 2000), and crown shape

(Brandtberg, 1998). Further, crown dimensions can be used

to model tree structural variables (e.g., stem diameter, height,

and biomass) useful in forest inventory and evaluation of

growth success (Culvenor et al., 1998; Hayward & Slay-

maker, 2001).

Automated tree detection and crown delineation algo-

rithms developed to date have been applied almost entirely

in mature forest conditions. A summary of these is given

in the next section with details of the forest conditions in

which they were developed and tested. Some algorithms

work well in relatively closed canopies, while others are

more suited to individual trees with little crown overlap

and full rounded crowns. Most have been developed for

imagery of 0.5- to 2-m pixel spacing, which in mature

forests, results in crown diameter:pixel spacing ratios of

less than about 8:1. In remote sensing of young regenerat-

ing trees, however, Pitt et al. (1997) concluded that only

the very high-resolution capabilities of aerial photography

and digital cameras would be suitable. In this paper, a

detection–delineation algorithm is presented and evaluated

using airborne imagery of 5- to 15-cm pixel spacing and 6-

to 10-year-old conifer trees planted at 1-m spacing. In

these conditions, the crown diameter:pixel spacing ratio is

about 17:1 and individual tree crowns are well resolved

with a large number of pixels and high data variance

within each crown. The algorithm was designed specifi-

cally to improve upon current tree detection algorithms by

identifying and removing false positives corresponding to

resolved branch clusters within a crown, and to accurately

detect crown boundaries while avoiding within-crown

shadow edges.

2. Objectives

The objectives of this research were to:

1. Develop a tree detection and delineation algorithm for

very high resolution remote sensing of regenerating

coniferous forests.

2. Conduct a detailed evaluation of the accuracy of the

algorithm against field data of known tree locations and

crown diameters.

3. Previous research in tree detection and delineation

3.1. Tree detection and delineation algorithms

At present, detection and delineation algorithms are

based on two distinct spectral properties of tree crowns:

the association of a tree apex with a local maximum image

brightness value, and delineation of the crown boundary by

local minima brightness values. Visually, this spectral crown

structure is analogous to that of an upward pointing cone or

mountainous shape when viewed in three dimensions.

Approaches to tree detection have attempted to identify

local maxima using (1) enhancement and thresholding

(Dralle & Rudemo, 1997; Walsworth & King, 1998) where

a global image operation such as smoothing or high-pass

filtering is applied and the resulting pixel brightness values

within a defined range are extracted as estimates of tree

locations, (2) template matching (Pollock, 1998) involving

the correlation between a geometric–radiometric tree crown

model and image data, (3) multiscale analysis (Brandtberg

& Walter, 1998) where the occurrence of edges over several

image scales is examined to define a region in which the

brightest pixel value is taken as the tree apex, and (4) local

maximum filtering (Culvenor, Coops, Preston, & Tolhurst,

1998; Gougeon, 1997; Niemann, Adams, & Hay, 1998;

Wulder, Niemann, & Goodenough, 2000) where the max-

imum pixel brightness value in a moving-window sample of

a specified size is taken to represent the tree apex. Tree

delineation has been accomplished by (1) outlining a net-

work of minimum image values, known as valley following

(Gougeon, 1995); (2) region grouping (Brandtberg & Wal-

ter, 1998; Walsworth & King, 1998), involving the identi-

fication of groups of similar neighbouring pixels; and (3) a

combination of these two (Culvenor et al., 1998).

Specifically in this research, variable window local

maximum filtering methods identified by Wulder et al.

(2000) were expanded to improve detection and provide

for automated crown delineation. With local maximum

filtering, a moving window is passed over the image and

the location of the maximum value in each window is

recorded. These windows can be overlapping or not, the

nonoverlapping requirement ensures that pixels in the image

are evaluated within only one sample window frame,

reducing detection error caused by portions of bright trees

being repeatedly detected with overlapping windows. How-

ever, with either moving-window strategy, accurate results

are dependent on the identification of an appropriate sample

window size. Large windows result in missed trees (omis-

sion error) because the window contains multiple tree

apexes. With small window sizes, too many apexes are

identified (commission error) because the small window

does not always contain a true tree apex. Wulder et al.

addressed this problem by creating variable window sizes

for local maximum evaluation. The size of the window was

based on either the range from a semivariogram or the local

slope break (inflection point or a sign change in the second
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derivative) for the average of eight radiometric transects

extending outward from the pixel being processed. The

approach taken in this research is conceptually similar, but

is mechanically different in (1) the analysis of transect data

(maximum rate of change rather than inflection point), (2)

creating a circular rather than square sample window, and

(3) the use of a greater number of transects (up to 360 if

desired).

3.2. Tree detection and delineation accuracy assessment

Evaluation of these algorithms is typically based on

individual tree or aggregated assessments. Individual assess-

ments compare automated and reference data for single

trees, whereas aggregation averages automated and refer-

ence data within a given area for comparison (e.g., the

number of trees detected per hectare). Accurate individual

evaluations are preferred as more detailed information is

provided for decision making/analysis; however, this is

difficult to achieve. Aggregated estimates generally result

in higher accuracies than individual estimates as errors of

omission and commission in tree detection, or overshoots

and undershoots in crown boundary delineation tend to be

averaged out in the aggregation process.

Tree detection accuracy has been well researched and is

commonly performed at an individual tree level using

reference data consisting of tree locations visually inter-

preted from the imagery (Brantberg & Walter, 1998; Gou-

geon, 1995; Niemann et al., 1998; Pollock, 1998;

Walsworth & King, 1998). For example, Gougeon (1995)

found that the total number of correctly identified trees in a

mature forest plantation ranged between 35% for red pine

and 85% for a mixed stand of red pine and white spruce.

Comparisons with field data (Brandtberg & Walter, 1998;

Wulder et al., 2000) are less common due to the difficulty

and associated costs of identifying tree locations in the field.

One example is presented in Wulder et al. (2000) who,

working in natural and plantation forests, reported a best

result of 62% correctly identified trees with 11% commis-

sion error using a variable window detection algorithm.

Comparing automated and field estimates at an aggregated

level is more feasible (Gougeon, 1995; Gougeon & Leckie,

1998), as only the number of trees in the plot is required, not

their exact location. However, the number of missed and

falsely identified trees cannot be evaluated for algorithm

testing and refinement. This type of evaluation was used by

Gougeon and Leckie (1998) to determine the accuracy of a

valley-following algorithm applied to several species and

age classes of forest regeneration. Results showed that

average error for the different conditions ranged from 43%

to 11% for 7- and 8-year-old jack pine stands, respectively.

Tree delineation accuracy has not commonly been eval-

uated because of the difficulty of precisely measuring tree

crowns in the field. Field-based crown measurements are

subject to errors relating to how well field personnel can

project the crown boundary down to a measuring device and

identification of a suitable boundary point to measure for

tightly overlapping or irregular crowns. Instead, studies in

natural forests have commonly used crown diameter to

evaluate delineation accuracy. Pollock (1998) evaluated

crown-diameter accuracy for individual trees, but results

were only compiled for dominant tree crowns. More impor-

tantly, the template-matching algorithm that was evaluated

does not actually delineate the crown, which is required to

isolate spectral data for enhanced species classification.

Brandtberg and Walter (1998) evaluated crown-diameter

accuracy for plot-level data and found no relation between

the automated and ground estimates. Culvenor et al. (1998)

validated a delineation algorithm using crown area and

simulated forest imagery where defined crowns of known

area served as the reference data. In conifer forest regener-

ation conditions, small tree sizes provide an ideal means to

evaluate delineation accuracy as individual trees can be

more easily identified in the field and crown-diameter

measurements can be made quickly and with greater pre-

cision than in mature forests. However, only one study to

date has conducted such validation. Gougeon and Leckie

(1998), using a hybrid delineation algorithm based on

Gougeon’s (1995) original valley-following approach,

found an aggregated study-wide error in average crown

diameter of 8.5%, but it was also determined that the 30-cm

pixel spacing was too large to detect and delineate the

smaller trees present.

A critical factor found to affect all tree detection and

delineation algorithms is within-crown brightness variation.

In high-resolution imagery, within-crown variation is large

due to the effect of branches and branch shadow patterns on

the spectral response of the crown. This causes crowns to

deviate from the conic shaped model, making detection and

delineation more complex. Decreasing the image resolution

averages spectral data over a larger areal unit and reduces

this effect. However, at lower image resolutions crown

boundaries become less distinct, making them harder to

identify (Fig. 1).

To characterize the generalization of crown shape at

different image resolutions we propose the use of a one-

dimensional ratio of the average crown diameter to the pixel

size or the range of crown diameter to pixel size ratios for

the range of crown sizes in a study. For example, in Fig. 1

this ratio is approximately 19:1 and 6:1 for the large crown

and 8:1 and 3:1 for the smaller crown at the high and low

image resolution, respectively. It is evident from this exam-

ple that ratios below 3:1 do not retain distinct crown

boundaries and ratios above or near 19:1 may contain too

much within-crown variation for accurate delineation. Thus,

this ratio can be used as a guide to determine the most

appropriate image resolution to use for detection/delineation

based on an estimate of the average crown size or expected

range of crown sizes (e.g., 95% bounds) in the study area.

To date, with the exception of Brandtberg and Walter

(1998), average crown diameter to pixel size ratios have

typically been small (e.g., about 10:1 in Gougeon, 1995; 5:1
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in Culvenor et al., 1998; 4:1 in Gougeon and Leckie, 1998).

The optimum ratio for a given algorithm will also be

dependent on its sensitivity to within-crown variation and

boundary brightness gradient. However, reporting the ratio

in tests is very useful, as it allows for comparison of

algorithm performance over a range of ratios and for

comparison of studies of similar ratios conducted in differ-

ent forest conditions.

4. Methods

4.1. Study area

The study area consists of an experimental arboretum

located outside of Sault Ste. Marie, Ontario (46j33VN,
84j27VW), established in 1994 as part of an ongoing effort

to identify the effects of various levels of vegetative com-

petition on black spruce (Picea mariana [Mill.] B.S.P.) and

jack pine (Pinus banksiana Lamb.) crop trees. The site is

arranged into three blocks based on soil properties: sand,

clay, and loam. Each block contains ten 42� 14-m subplots

of key competition species established at several densities.

Crop species (spruce and pine) were established at a con-

stant spacing of 1 m in all subplots. In this study, to

minimize the effect of known error sources on the detection

and delineation algorithm, the selection of suitable subplots

was constrained by three factors. First, subplots with com-

peting deciduous species were removed to prevent detec-

tion/delineation error occurring from the effect of

overtopping competition masking the spectral characteris-

tics of the crop trees. Second, only image data within 7j of

nadir were extracted to avoid variations in shadow–crown

geometry across the image caused by the nonvertical posi-

tion of the sun and variable optical view angle. The seven-

degree requirement was selected based on an in-depth

analysis of radiation geometry conducted for mature forests

by Culvenor (2000). Third, only the subplots containing

spruce crop trees were used, as intense intraspecific com-

petition in jack pine subplots rendered individual crowns

unidentifiable in the imagery. In total, eight subplots (198

trees) were extracted from the loam, sand, and clay blocks

and used to create the image subset for analysis. In previous

research at the site, Haddow et al. (2000), using 2.5-cm

pixel colour infrared digital camera imagery, were able to

automatically classify and count these conifers at age 2

years (1996) in the low- to no-competition plots (similar to a

leaf-off condition) with over 90% accuracy, and to model

cover and leaf area index of competing vegetation with

standard errors of 10–20%.

4.2. Ground data

For validation of crown delineation, crown diameters

were measured in late summer 1999 by Ontario Ministry of

Natural Resources staff. Measurements were made in N–S

and E–W directions at the crown base of the inner 25 trees

in each subplot and the arithmetic average taken to provide a

single summary value for comparison with image delinea-

tions. Crown diameters ranged from 16 to 145 cm with a

mean of 85 cm (Fig. 2). For validation of detection results,

tree positional data were not required, as the initial planting

arrangement of 1-m spacing was known and is identifiable

in the imagery.

4.3. Image data

Images of the study site were acquired in a leaf-off

condition on April 25, 2000 between 12:00–14:30 h using

a Kodak DCS 460 CIR digital camera. Over this period, the

sun zenith angle ranged from 52j to 56j. Three spectral

bands were acquired in the green (500–600 nm), red (570–

780 nm), and near-infrared (NIR, 710–800 nm). To achieve

the desired 5-cm pixel spacing, a flying height of 196.6 m

Fig. 2. Histogram showing the distribution of field-measured crown

diameters (average of N–S and E–W directions for each tree) used in the

analysis.

Fig. 1. Three-dimensional view of large and small tree crowns in the near-

infrared band for pixel sizes of 5 and 15 cm. This figure illustrates the

greater within-crown variability of large crowns with the 5-cm pixel size

and the less distinct crown boundary of smaller crowns at the 15-cm pixel

size.
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and lens focal length of 35 mm were used. The shutter speed

was set at 1/4000 s to optimize spatial detail and exposure,

and to minimize image motion (approx. 1/4 pixel in each

exposure).

4.4. Tree detection and delineation algorithm

4.4.1. Detection

The algorithm developed in this study consists of two

separate programs, one for detection and one for delinea-

tion. Together these programs are referred to as ‘local

maximum refinement and delineation algorithm’ or LM-

RDA. The tree detection phase consists of the seven steps

denoted A to G in the following description and in Fig. 3. In

the first stage (A), image preprocessing is undertaken to

enhance crown apex (or local maximum) distinctiveness,

minimize the amount of bright crown non-apex pixels, and

suppress the spectral response of bright soil in the imagery

for tree detection. Amongst several processing types tested,

including common vegetation indices, the best results were

obtained using an absolute difference image of the NIR and

red spectral bands. A moderate amount of Gaussian smooth-

ing (filter size = 11�11, r = 5) is also applied to simplify

crown form and reduce image noise (Fig. 4).

In stage (B) a nonoverlapping local maximum filter is

applied to the image. The window size is specified by the

user, but should be small compared to the average crown

size in the image, as the algorithm only works to reduce the

occurrence of commission errors. In this study, window

sizes of 15� 15 to 30� 30 pixels were evaluated.

In the third stage (C) image data surrounding a potential

tree apex are extracted using the transect sampling scheme

depicted in Fig. 3C. The number of transects used in the

analysis is selected by the user and can be set as high as 360

and as low as 4. Using more transects can improve results;

however, the improvement saturates quickly as a reasonable

crown radius for detection purposes can be estimated with

approximately 15–20 transects. Further, the use of more

transects requires significantly more processing time. The

initial transect length used to extract image data is defined

by the user, but should be set so that it is larger than the

largest expected crown radius in the image.

Transect scaling, determining the best transect length for

tree edge detection, is accomplished in stage (D). The

transect data are modelled with a fourth-order polynomial

and data from the end of the transect are iteratively removed

one pixel value at a time until a user-defined r2 value is

reached for the original and modeled data. This process

provides a good generalization of the image data while

appropriately scaling the transect to be slightly larger than

the actual crown radius. Fig. 5 shows how the initially

extracted transect data are reduced to a suitable length for

crown-edge detection using the r2 value from a fourth-order

polynomial fit. The choice of the r2 cut-off depends on the

variability of the data and pixel spacing. At large pixel

spacings, a small number of transect pixel values are

extracted. Thus, using high r2 values (0.95) may leave too

few remaining values for crown-edge detection if some are

removed in this process. Similarly, in the case of noisy data

or data with high variability, using a high r2 value can result

in a large amount of transect data being removed in order to

achieve the desired polynomial fit. Smoothing with a low-

pass filter as in stage (A) can be an effective means to

reduce image noise allowing for higher r2 cut-off values to

Fig. 3. Overview of tree detection algorithm process. Stages of the

algorithm are lettered A–G. On the left is the complete process, on the right

are images representing output at critical stages (note stage letter in upper

left of each image).

Fig. 4. Example images showing image preprocessing for optimal detection

and delineation: absolute difference image used in crown detection (left),

and inverted hue image used in crown delineation (right).
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be used. In this study, user-specified r2 thresholds ranged

from 0.90 to 0.98 depending on the image pixel spacing.

In the fifth stage (E), the crown radius for each transect is

estimated by examining the modeled data of the reduced

transect to identify the maximum rate of change in the

transect image values. The maximum rate of change is an

edge-detection operator that is calculated by sequentially

subtracting transect brightness values from the preceding

value and taking the maximum of these values as the

detected edge (i.e., maximum value in the first derivative

for a defined set). The use of the maximum rate of change

position requires appropriately scaled transects (from Stage

D) so that the most significant boundary (highest rate of

change) identified is indeed that for the crown under

consideration and not for a more abrupt edge of a neigh-

bouring tree. Inflection points (the change of sign of the

second derivative) were also tested for this stage of the

algorithm but were rejected because there were often more

than one identified for a given transect, representing small

within-crown edges.

Circular reference windows are created in stage (F) by

estimating the crown radius based on the average distance

from the apex to the crown boundary identified in stage (E).

However, before averaging, extreme values are removed by

converting distance estimates to Z score values and remov-

ing values greater than 2 (representing data that do not fall

within 95% of the mean). Z scores are calculated as:

Z ¼ ðXi � X Þ=s
where Xi is the distance to the most significant edge of

transect i, X is the mean distance, and s is the standard

deviation for the distances. The remaining distances are

averaged to define a radius for the new circular reference

window. The spectral data within each of the newly defined

circular windows are then examined to determine the local

maximum value, which is taken as the final tree location.

In the final stage (G), a minimum distance filter is

applied that returns the centroid of a group of pixels

identified as local maxima in the previous steps that occur

within a user-defined distance of a point, a procedure similar

to that developed by Culvenor (2000). The purpose of the

filter is to remove apexes that occur closer together than the

physical structure of the trees in the image would allow.

4.4.2. Delineation

Image preprocessing for delineation was different from

that applied for detection. To enhance the image spectral

properties for tree delineation an inverted hue image (Fig. 4)

was used, as it provided a useful spatial gradient for crown-

edge detection and maintained the distinct crown structure

on the shaded side of the crown. The absolute difference

image used for detection was not useful in delineation as it

masked the spectral response on the shaded side of the

crown causing crown boundaries to be underestimated.

Gaussian smoothing was also applied to reduce image noise

(filter size = 11�11, r = 5).

The delineation component of the LMRDA is based on

the same design as the detection program, but returns the

position of the crown edge for each transect rather than the

distance to the edge. If the distance for a detected edge is

smaller than a user specified minimum edge distance the

point is removed. The remaining edge points are then used

to construct a polygon representing the crown boundary. In

this study, the minimum edge distance used was 1 pixel.

In some cases, the delineated polygon can be improved

by removing unlikely internal and external angles. In the

case of spruce trees, the round crown shape makes acute

polygon angles unlikely and, therefore, they should be

removed. Fig. 6 shows the effect of sequentially removing

Fig. 5. Example of transect scaling process, (Stage D of the algorithm). The

top figure shows the full transect length while the bottom figure shows the

reduced transect length determined using a best fourth-order polynomial

model fit criterion (r2 = 0.95).
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larger polygon angles. Without angle removal, the de-

lineated polygon appears to be most similar to a natural

crown shape, but it has some extended points and rapid

indentations that do not match the crown boundary. Apply-

ing the 40j polygon angle removal reduces the presence of

these points providing a generalized representation of the

crown shape. Determination of the most suitable angle

removal is left to the user; in this study angles of less than

20j were removed. However, if trees have large branches, it

may be necessary to include polygon angles of less than 20j
in order to make rapid directional changes in following the

crown boundary. The choice of the size of the angle to filter

is in part related to the number of transects used in

generating the polygon. With more transects, larger polygon

angles can be removed, as several polygon vertices should

survive the filtering process. When using a smaller number

of transects, care must be taken not to remove too many

points as the polygon shape may be dramatically altered if

not removed completely.

4.5. Detection and delineation algorithm evaluation

The tree detection and delineation algorithms were tested

separately so that the error of each could be assessed

independently on an individual tree basis and for aggregated

data.

4.5.1. Detection accuracy

Detection accuracy was assessed by comparing a truth

map based on prior knowledge of tree locations (experi-

mental design) and detected apexes. For each known tree, a

single detected apex within the boundary of the crown was

chosen to represent the crown and the remainder, if any,

were counted as commission errors. Commission error was

also counted when a local maximum point identified an

image object other than a tree crown. Omission errors were

counted when no apex was detected within the boundary of

a known crown. The detection algorithm accuracy was

compared to accuracies produced by ordinary local max-

imum filters (with no additional refinement) for fixed-

window sizes ranging from 3� 3 to 30� 30 pixels. Besides

errors of omission and commission, overall accuracy of each

detection method was defined as:

AI ð%Þ ¼ ½ðn� ðOþ CÞÞ=n� � 100

where AI is an accuracy index in percent, O and C represent

the number of omission and commission errors, and n is the

total number of trees in the image to be detected. The

purpose of the index is to count all error against the correct

number of trees to be detected. This provides a single

summary value for comparison of detection results.

4.5.2. Delineation accuracy

For each delineated tree crown, dimensions were ex-

tracted in the same two directions as the ground data using a

program written to measure the delineated polygon diameter

starting from the polygon centroid determined using the

minimum bounding box method. These two values were

averaged (arithmetic) and compared with the average

ground-diameter estimates. In addition, tree crowns were

manually delineated by the first author from the screen

display of the original 5 cm imagery and their resulting

diameters were compared to the ground data. To evaluate

the individual crown measurement error, the root mean

square error (RMSE) of the crown diameters as a percentage

of the mean true diameter was calculated as:

RMSE ð%Þ ¼ 100� ½ððRðIi � GiÞ2Þ=nÞ0:5�=G
where Gi are the ground diameter measurements, G is the

mean value of ground diameters, Ii are delineated crown

Fig. 7. Example images showing the results of resampling to pixel spacings

of 10, 15, and 30 cm from the original 5-cm pixel spacing.

Fig. 6. Effect of removing points that cause extreme internal polygon angles in delineated crowns.
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diameters, and n is the number of observations. To evaluate

aggregated error on a stand level the mean differences

between the ground and delineated crown diameter meas-

urements were calculated by subtracting the average of the

two measurements (ground — automated; ground — man-

ual) for the entire data set and expressing these differences

as a percentage of the mean of the ground data. Scatterplot

analysis, of the absolute difference between image and

ground-measured crown diameters ( y-axis) versus ground-

measured crown diameter (x-axis), was also conducted to

identify the systematic and random error components for a

given delineation.

To determine the influence of image resolution on

detection and delineation accuracy, the original untrans-

formed imagery was resampled by averaging pixels with-

in 2� 2, 3� 3, and 6� 6 sample windows to produce

image pixel spacings of 10, 15, and 30 cm, respectively

(Fig. 7). This neighbourhood averaging resampling algo-

rithm was reported by Hay, Niemann, and Goodenough

(1997) to provide a better approximation of imagery

acquired at a smaller scale than the more common nearest

neighbour, bilinear, and cubic convolution resampling

methods.

5. Results

5.1. Tree detection

As expected, with fixed sized ordinary local maximum

filters, increasing the sample window size increased omis-

sion error, whereas decreasing the window size increased

commission error (Table 1). The LMRDA produced lower

commission and omission error than all local maximum

filters tested. Its overall accuracy was better in all cases but

one 5-cm pixel spacing 20� 20 local maximum filter,

where it produced the same accuracy index. Errors of

omission and commission for LMRDA were also more

balanced, not varying as widely as the fixed-window

results. Thus, LMRDA provides accurate detection results

and removes the difficulty of selecting the most appropri-

ate sample window size for a local maximum filtering

operation. The LMRDA detection results were not influ-

enced by pixel spacing in the range of 5–15 cm, whereas

the much larger 30-cm pixel spacing did reduce detection

accuracy significantly. For visual evaluation, Fig. 8 shows

the 5-cm pixel spacing results overlaid on the original

imagery. A large amount of the detection error for LMRDA

was due to the presence of short ground vegetation in the

imagery. It had a similar spectral response to that of the

conifer trees, because it had started to become green at the

time of imaging. In some cases, this led to its detection as

Tables 1

Results of tree detection for several ordinary local maximum filters with

fixed-window sizes (15� 15 to 30� 30 pixels) and for the LMRDA at each

of the pixel spacings studied (5 to 30 cm)

5-cm pixel spacing 15� 15 20� 20 25� 25 30� 30 LMRDA

Commission (%) 33.3 10.1 6.1 2.5 10.1

Omission (%) 1.0 1.0 15.7 39.9 1.0

Accuracy index (%) 65.7 88.9 78.3 57.6 88.9

10-cm pixel spacing 7� 7 10� 10 13� 13 16� 16 LMRDA

Commission (%) 54.5 13.6 7.6 2.5 9.1

Omission (%) 1.0 3.0 17.2 43.9 2.0

Accuracy index (%) 44.4 83.3 75.3 53.5 88.9

15-cm pixel spacing 5� 5 7� 7 9� 9 11�11 LMRDA

Commission (%) 38.4 9.1 2.5 0.0 3.0

Omission (%) 2.0 5.1 22.7 40.9 6.1

Accuracy index (%) 59.6 85.9 74.7 59.1 90.9

30-cm pixel spacing 3� 3 4� 4 5� 5 6� 6 LMRDA

Commission (%) 58.1 16.7 6.1 4.5 14.6

Omission (%) 2.5 9.6 31.8 50.0 5.1

Accuracy index (%) 39.4 73.7 62.1 45.5 80.3

Fig. 8. Detection results using 5-cm pixel spacing imagery. The outer row and column of trees in each plot were not included in the analysis because ground

diameters had not been measured. In the zoomed-in inset, cyan = commission error due to the presence of short ground vegetation and red = omission error.
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an apex instead of an adjacent tree. The presence of short

ground vegetation is a difficult problem, as it is hard to

mask in multispectral imagery with broad spectral bands.

Several classification attempts were made using grey-level

co-occurrence texture measures along with spectral data in

a maximum likelihood classification, but it was not possible

to effectively separate it from the smaller conifer trees. A

practical solution is true leaf-off imaging, just after snow-

melt when only the conifers are green.

5.2. Tree delineation

Diameters determined from manual delineation best

matched the ground measurements with approximately

11.2% error (Table 2). The automated method achieved a

best result of 17.9% error for the 5-cm data. However,

further testing with greater polygon angle removal (40j)
produced a best automated delineation result of 14.5%

with the smallest pixel spacing. In this case, using the

higher angle removal resulted in very generalized crown

shapes (more circular) whose measured diameters better

matched those measured on the ground. In the field, crown

diameter measured at the crown base did not include single

long branches protruding from the crown or sharp inden-

tations. It was taken as the visually representative diameter

at the E–W, N–S measurement locations to avoid intro-

duction of measurement outliers. Thus, for this study,

measurement of diameters from more generalized crown

delineations better matched the field measurement techni-

que. Decreasing image resolution also increased delinea-

tion error nonlinearly. The difference between the 5- and

10-cm image delineation was not significant (Bonferroni

multiple comparison test, P= 1.00), while increasing the

pixel spacing to 15 cm resulted in greater overestimation

of the crown diameters. At 30 cm, delineation error

became extreme (Fig. 9). This is an expected result, as

larger pixels tend to artificially increase image crown

diameters due to the averaging of the spectral radiation

over a larger areal unit. Fig. 9B most clearly shows this

effect where the 15-cm pixel delineation error follows the

same trend as the 5-cm, but is consistently larger through-

out the diameter range. The results from the 15- and 30-cm

resolution delineations were significantly different from

those using 5-cm imagery (P=.01, P=.00, respectively).

The 10-, 15-, and 30-cm delineations were also signifi-

cantly different from each other (P < .03). Aggregating the

individual tree results to average error for the study

(‘‘mean difference %’’ in Table 2); substantially reduced

Table 2

Error in average crown diameter measured from automated delineations at

four image pixel spacings and for manual delineation at the 5-cm pixel

spacing

Delineation/error measure Pixel spacing (cm)/CD:PS

5/17:1 10/8:1 15/6:1 30/3:1 Manual 5/17:1

RMSE (%) 17.9 19.0 22.9 39.0 11.2

Mean difference (%) 2.8 2.8 � 2.4 � 28.4 � 4.1

The crown diameter to pixel size ratio (CD:PS) is shown beside each pixel

size.

Fig. 9. The relation between absolute error in crown diameter measured from LMRDA-delineated crowns and ground-measured crown diameter for (A) 5- and

10-cm pixel spacings, showing little overall difference, (B) 5- and 15-cm pixel spacings, showing similar trends but greater error over all diameters for the 15-

cm data, (C) 5- and 30-cm pixel spacings showing gross overestimation of small crowns in the 30-cm data, and (D) manual delineation showing no apparent

error trends.
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error as overestimates and underestimates balanced each

other in the averaging process. For the 5- to 15-cm pixel

spacings, aggregation reduced error from 17.9–22.9% to

2.4–2.8%. In addition, the average error of each of these

automated delineations was less than that of the manual

delineation.

For visual evaluation, the automated method using 5-cm

pixel spacing and manual delineation results are presented

in Fig. 10. Comparison of the manual (cyan) and LMRDA

(yellow) delineations by this means shows that plots with

larger crowns (more crowded conditions identifiable in the

imagery) resulted in the greatest disagreement between

methods.

Examination of the individual errors revealed that the

automated methods overestimated small and underesti-

mated large crown diameters. Overestimation of the small

crown diameters, similar to detection results, was due to

the presence of short ground vegetation in close proximity

to the crown boundary. In the case of large trees, errors

were due to overlapping crowns, causing crown boundaries

to be less distinct than the within-crown spectral variance.

As the image resolution was degraded, the within-crown

variance was reduced leading to improved delineation of

larger crowns (Fig. 9C). However, at the largest pixel size

of 30 cm, small crown boundaries were heavily distorted

resulting in extreme overestimation of their diameters.

Manual delineations did not suffer from any apparent

estimation bias, producing a consistently low error across

the range of diameters tested (Fig. 9D).

Based on Fig. 9A, it appears that the algorithm is most

accurate within a range of crown diameters of 30–100 cm

assuming a spatial resolution of 5–10 cm. This represents

63% of the originally sampled trees. Using observed values

within this range improved the individual delineation results

(Table 3). The largest improvement in accuracy was for the

5-cm pixel spacing reducing error from 17.9% to 14.0%.

However, as resolution degraded, the improvement

decreased or resulted in greater error than that of the full

range, suggesting that the 30- to 100-cm crown diameter

range was most suited to the 5-cm pixel spacing (15:1

average crown diameter to pixel ratio). The manual delin-

eation remained approximately the same, as the crowns were

well delineated over the full crown-diameter range and the

manual interpreter was better able to identify the crown edge

in the presence of short ground vegetation. Contrary to the

full-diameter-range evaluation, the aggregated mean differ-

ence values for the delineations are noticeably different. For

the reduced diameter range, all delineations overestimate the

ground-measured crown diameters. The smaller mean differ-

ence values presented earlier are due to the cancelling effect

of the over- and underestimation of small and large crowns

outside the optimal range examined here. Reducing the range

of diameter sizes removed the cancellation effect revealing

this trend.

Fig. 10. Example delineation results of LMRDA (yellow) and the manual method (cyan) using 5-cm pixel spacing.

Table 3

Delineation accuracy for crown diameter range of 30–100 cm with outliers

caused by short ground vegetation removed

Delineation/error measure Pixel spacing (cm)/CD:PS

5/15:1 10/7:1 15/5:1 30/2:1 Manual 5/15:1

RMSE (%) 14.0 15.8 21.5 47.4 11.7

Mean difference (%) � 3.1 � 4.9 � 12.9 � 39.8 � 6.0

The crown diameter to pixel size ratios (CD:PS) have been modified from

Table 2 to reflect the data used in this subsample.
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6. Discussion

The LMRDA produced better tree detection accuracies

than the fixed-window local maximum filters in all cases

but one where they were equivalent. Detection accuracy

was high, to within 90%, for the well-controlled conditions

studied. Results were also invariant to small changes in

pixel spacing (5–15 cm), but larger pixel spacing caused

significantly greater error. Crown delineation was more

sensitive to changes in pixel spacing than crown detection.

The smallest pixel spacing (5 cm) produced the most

accurate diameter estimates (17.9% error), while larger

spacings increased delineation error in a nonlinear manner.

The most critical factor found to affect the delineation

algorithm performance was the relative distinctiveness of

the crown boundary in relation to within-crown variation. If

within-crown variation is high and crowns are not over-

lapping, accurate results are likely to be obtained because

the crown and background will be the most significant edge

in the transect. However, in overlapping conditions, the

within-crown variability can be more distinct than the

boundaries, causing delineation error. In this case, the

solution is to reduce within-crown variation. This requires

estimation of the optimal image pixel spacing, as larger

spacings reduce within-crown variation, but also decrease

the distinct spatial gradient used in delineation. Heuristic

estimation of optimal pixel size for delineation can be

based on previous studies in which crown size to pixel

ratios have been calculated. In this study, the optimum

average crown size to pixel ratio was found to be 15:1.

Ratios below 15:1 (fewer pixels per crown) did not

improve results as the within-crown variability remained

stable, but the crown boundary distinctiveness was reduced,

leading to greater error. Ratios larger than 15:1 (more

pixels per crown) were heavily influenced by within-crown

variation, also resulting in substantial error.

For some forest management decisions, aggregated diam-

eter measurements are required for a given management

unit. In this study, aggregating individually measured crown

diameters to the mean diameter of the sampled trees for the

whole study reduced the error between automated and

ground-measured crown diameters to less than 3%. Such

areal averages may be useful as part of an initial flagging

system to identify areas that are unlikely to meet future free-

to-grow status, or in stocking estimation, although species

composition must typically first be determined.

An important advantage of tree delineation is the poten-

tial to model tree structural variables such as tree height,

stem diameter, and biomass. In this study, preliminary

results of LMRDA delineated crown diameters showed

strong relations with tree height (r=.86), stem diameter

(r=.78), and biomass (r=.97) suggesting the potential to

estimate these values using image based crown diameter

estimates. On an individual assessment level it is unlikely

that sufficiently accurate models could be obtained for

prediction, but aggregating individual results from models

could lead to reasonable area-based tree structural estimates

useful in evaluating the growth success of crop trees.

The primary error sources in crown delineation that were

identified in this study were crown overlap and the presence

of short ground vegetation. The LMRDA algorithm pro-

duced good results even when crown overlap was signifi-

cant, but errors did increase with increasing overlap. One

reason for this is that the reference data consisted of

diameters measured at the crown base while the delineated

diameters were measured in imagery taken from above. As

crown overlap increases, the delineated crown edge in the

area of overlap is at progressively higher positions in the

crown and not at the base. Thus, there is a greater mismatch

of these two data types with increasing overlap. Crown

overlaps in this study were also greater than would be

expected in a 6-year-old plantation because the well-con-

trolled 1-m tree spacing was closer than typical operational

spacings of 1.5–2 m. Thus, the algorithm can probably

provide similar results to those presented in this paper for

plantations up to approximately 8–10 years old. In naturally

regenerated forests or planted forests, a more random

spacing will occur with greater variability in crown sizes

and crown overlap. This could lead to detection–delineation

error if crown size variability is too large to be encompassed

by a single optimal pixel spacing. Evaluation and modifi-

cation of the proposed algorithm to natural regeneration

conditions will be an important aspect of future work, as

only a small portion (maximum 18%) of forest regeneration

resulting from fire and harvesting consists of plantations

(Natural Resources Canada [NRC], 2000).

The presence of short ground vegetation in the imagery

presented problems for both the detection and delineation

algorithms due to its similarity in spectral response to tree

crowns for the spectral bands analyzed. Short ground vege-

tation reestablishes itself quickly after snow melt, making it

difficult to acquire images without its presence. Masking the

response of short ground vegetation may require the develop-

ment of an explicit algorithm to examine imagery for crown

and shadow components, as short ground vegetation does not

have an associated shadow. Alternatively, experimentation

with advanced classification methods incorporating image

textural characteristics may also be useful.

Another important element to evaluate, which was not

present in this study, is the effect of competing vegetation. If

the presence of overtopping competition strongly distorts

the key spectral and spatial characteristics used in detecting

and delineating crop tree crowns, then automated ap-

proaches may be inappropriate for assessing such regener-

ation conditions with remotely sensed data. This may occur,

even in leaf-off conditions, for woody competition species

such as willow, birch, aspen, and alder where dense branch-

ing may obscure the underlying conifer crown. Some herba-

ceous species such as raspberry and fireweed may also

impact delineation results. After snowmelt, residual stems

of these species still retain a vertical structure that could

interfere with the spectral response of lower crop tree
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branches inhibiting the delineation process. Evaluation of

this effect was not conducted at this stage of the research

because the required subplots did not occur within 7j of

nadir making it difficult to determine if detection/delineation

error was due to competition or view angle effects. How-

ever, further research is planned to develop a view angle

correction to provide for this analysis.

The algorithm presented in this study has not yet been

rigorously evaluated against other existing algorithms. Most

have been developed and applied in mature forests with

smaller crown diameter to pixel size ratios. The LMRDA

algorithm was designed to utilize the high spatial informa-

tion in large crown to pixel size (i.e., very high resolution)

imagery. Conceptually, comparison with the most com-

monly reported technique, valley following, reveals some

advantages of LMRDA in such imagery. Both approaches

require searching for local maximum or minimum bright-

ness values in an image using a moving-window strategy.

However, in tree detection, LMRDA reexamines identified

local maximum values using a secondary reference window

based on the surrounding spectral/spatial properties of a

potential tree. Thus, if several local maxima are found in a

single crown, only one should remain to represent the crown

position. In valley following, the local minima used for

delineation and subsequent apex detection are subject to

greater error with high-resolution imagery due to the

increased presence of local within-crown valleys that can

result in multiple image segments being created for a single

crown. A refinement procedure, such as that presented here,

to ensure that only appropriate local minimum values are

used in boundary delineation may help to alleviate this

problem. In crown delineation with the high-resolution

imagery of this study, crown boundary detection using local

minimum values tended to overestimate crown edges while

the position of maximum rate of change used in LMRDA

was more accurate. Thus, valley following may be more

suited to coarser resolution imagery and larger trees (crown

diameter to pixel size ratios ranging from 3:1 to 8:1) where

crown boundaries are often effectively represented by local

minimum values. However, given that delineation can

currently only be accomplished with a spatial precision of

one pixel (until subpixel algorithms are developed), valley-

following delineation of small trees such as those of this

study using coarser resolution imagery, would likely result

in significant relative error. High-resolution imagery also

provides greater within-crown data for spectral and textural

evaluation of crown condition. Further research will con-

tinue these comparative evaluations to aid in refinement of

the algorithm and to provide more quantitative comparisons

with other methods.

7. Conclusion

A tree detection–delineation methodology was devel-

oped for high-resolution remotely sensed imagery. It was

successfully applied in leaf-off 5- to 15-cm pixel imagery of

a 6-year-old regenerating forest plantation. Individual tree

detection accuracy produced a best result of 91%.

Delineated tree crown diameters were within 17.9% of field

measurements of crown base diameters on an individual tree

basis and within 3% when averaged for the study. Further

research will include evaluation of view angle and vegeta-

tive competition effects on detection–delineation accuracy,

and application of the algorithm in an operational cutover.

These methods and additional knowledge will be integrated

into a remote sensing-based methodology for free-to-grow

assessment.
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