The Arctic and Antarctic are profoundly different environments. The southern portion of the Arctic is dominated by continental land masses, many of which are seasonally ice-free, whereas the Arctic Ocean and its associated sea ice prevail in the highest northern latitudes. In contrast, Antarctica is a continental land mass surrounded by the Southern Ocean, and only about 0.3% of the Antarctic land area is seasonally ice-free (Shaw et al. 2014). The isolation and extreme cold of the Antarctic have contributed to pronounced ecological differences from the Arctic, including the absence of terrestrial megafauna and a continental shelf ecosystem nearly devoid of post-Paleozoic predators (Aronson et al. 2011).

The intensity and governance of human activities also vary greatly between the Arctic and Antarctic. The Arctic has been continuously inhabited, albeit sparsely, for millennia, and most Arctic land masses belong to sovereign states. While much of the Antarctic has also been claimed by various states, it is governed by the international Antarctic Treaty System, which sets issues of sovereignty aside. The Treaty includes the Protocol on Environmental Protection (the “Madrid Protocol”), which commits Treaty Parties to “comprehensive protection” of the Antarctic environment and prohibits mineral resource exploitation. The Antarctic is also much less explored than the Arctic, and our understanding of broad-scale biogeographic patterns there is still developing.

Despite these differences, the Arctic and Antarctic share characteristics that make them vulnerable to anthropogenic change, including low temperatures that can delay recovery from disturbance, lack of functional redundancy in ecosystems, and potential long-term attractiveness for resource exploitation as more accessible resources are depleted elsewhere. Here, we examine some of the major environmental issues common to both polar regions: climate change, pollution, fisheries overexploitation, and incursion by invasive species (Figure 1). Principal among these is climate change, which interacts with and exacerbates other threats. There is little doubt that addressing climate change is essential for protecting polar environments.

In a nutshell:

- Climate change is the most important environmental threat to both the Arctic and Antarctic
- However, until the greenhouse-gas emissions that drive climate change can be reduced, it is crucial to address other threats (including pollution, fisheries overharvesting, and invasive species) that interact with climate change
- International cooperation and the sharing of scientific lessons between the Arctic and Antarctic will allow resource managers to more effectively mitigate these threats and to better protect polar environments

1Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Australia *(j.bennett5@uq.edu.au);
2Terrestrial and Nearshore Ecosystems, Australian Antarctic Division, Department of the Environment, Kingston, Australia;
3Department of Biology, Queen’s University, Kingston, Canada;
4Department of Ecological Science, VU University Amsterdam, Amsterdam, the Netherlands; continued on p 324

www.frontiersinecology.org © The Ecological Society of America
decades), however, we suggest that focusing on these interacting threats is crucial to Arctic and Antarctic environmental protection. By sharing research outputs and lessons learned across the poles, we can more easily counteract these problems.

Climate change – the greatest threat

Anthropogenic climate change not only directly affects the environment but also exacerbates other environmental stressors (Panel 1 and Figure 2; IPCC 2014a). Overwhelmingly, it represents the greatest long-term threat to polar ecosystems.

Arctic warming is widespread, with measurable ecological impacts. For example, shorter and milder Arctic winters have coincided with rapid greening and reduced variation in photosynthetic activity during the growing season (Xu et al. 2013). This has led to apparent mismatches between caribou (Rangifer tarandus) migration, which is triggered by day length, and temperature-controlled emergence times for forage species, resulting in reduced food availability and increased calf mortality (Post and Forchhammer 2008). Climate change has also promoted seasonal desiccation of many high-Arctic ponds that had been permanent water bodies for millennia, diminishing potential habitat for waterfowl and aquatic organisms (Smol and Douglas 2007).

Changes in Arctic sea-ice cover, snow cover, and greenhouse-gas (GHG) emissions (including methane) from permafrost thaw may induce positive feedbacks that exacerbate anthropogenic warming (Euskirchen et al. 2013). Soil warming by only 1°C in the vast Arctic peatlands will increase respiration of carbon (C) stored in peat, potentially releasing up to 100 megatons of C annually, providing further positive feedbacks with anthropogenic warming (Dorrepaal et al. 2009). However, permafrost thaw increases nitrogen availability at the thaw front, potentially either increasing biomass production—which could partially offset carbon dioxide (CO₂) release from peat respiration—or facilitating decomposition and subsequent CO₂ release via higher litter quality (Keuper et al. 2012). The balance among such opposing influences on atmospheric CO₂ will likely be an important factor in the trajectory of future global climate change.

Sea-ice retreat in the Arctic Ocean has led to increased primary productivity (Pabi et al. 2008) but decreased habitat for ice-dependent marine invertebrates, fish, and mammals (Laidre et al. 2008; Meier et al. 2014). Among Arctic mammals, the hooded seal (Cystophora cristata), polar bear (Ursus maritimus), and narwhal (Monodon monoceros) appear to be the most vulnerable to sea-ice retreat (Laidre et al. 2008). In addition, poleward migration of temperate fish species has prompted range shifts and dietary changes for marine birds, including the thick-billed murre (Uria lomvia), and mammals such as the harbor seal (Phoca vitulina), the northern populations of which specialize on prey such as Arctic cod (Boreogadus saida) (Meier et al. 2014).

Climate change in Antarctica has been characterized by pronounced regional differences. Parts of east and central Antarctica have experienced decreased annual temperatures. This is due to the loss of ultraviolet-light-absorbing ozone causing stratospheric cooling over the South Pole, resulting in the polar jet stream strengthening and shifting south, and an increased thermal gradient between polar latitudes and mid-latitudes (Robinson and Erickson 2014). Yet the Western Antarctic Peninsula – the repository of most Antarctic terrestrial biodiversity – and Central West Antarctica are warming rapidly (Nicolas and Bromwich 2014), also in part due to the southern shift in the polar jet stream (Robinson and Erickson 2014). Recent research has identified the initial stages of the collapse of the West Antarctic Ice Sheet (Joughin et al. 2014). In Antarctic terrestrial ecosystems, climate-related changes are difficult to predict given the paucity of basic data on biodiversity. While differences between the two polar terrestrial systems can complicate direct comparisons, the potential for positive feedbacks from soil temperature changes is likely to be lower in the Antarctic than in the Arctic because of the generally colder climate, lower productivity, and low soil C content; changes to
Antarctic vegetation and associated invertebrate fauna may therefore be less dramatic (Nielsen and Wall 2013).

In the Western Antarctic Peninsula region of the Southern Ocean, sea-ice retreat may have been caused by enhanced meridional winds (Stammerjohn et al. 2012), as well as by a southern shift in the polar jet stream (Robinson and Erickson 2014). Sea-ice retreat has been linked to reductions in Antarctic krill (Euphausia superba) populations in this region (Meyer 2012). Retreating coastal sea ice may also promote increased primary production by benthic macroalgae and could lead to decreased invertebrate biodiversity in previously ice-covered, low-light, invertebrate-dominated habitats (Clark et al. 2013). Moreover, synergistic effects of decreased sea ice and smaller regional krill populations may threaten populations of crabeater seals (Lobodon carcinophaga) in the future (Siniff et al. 2008).

Ocean acidification, another threat linked to rising CO2 levels, may lower hatch rates of krill (Kawaguchi et al. 2013) and cause shell dissolution in pteropods (Bednaršek et al. 2012), potentially inducing population collapses for these key mid-trophic-level organisms. These changes may lead to decreased fecundity and range contractions in Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins (Trivelpiece et al. 2011). Climate-related collapses in Antarctic silverfish (Pleuragramma antarcticum) populations may also be responsible for local declines in Adélie penguins (Sailley et al. 2013), although the exact nature of climate impacts on Antarctic marine ecosystems in general is still highly uncertain (Constable et al. 2014).

Diffuse-source pollution

Many toxic organic compounds released in lower latitudes tend to concentrate in polar regions as a result of condensation in cooler atmospheric temperatures and decreased degradation in cooler environments (Wania and McKay 1996). Chemical contaminants can also be transported considerable distances via ocean currents, and may reach peak levels in the Arctic long after their production has ceased (Gouin and Wania 2007). Hazards to Arctic fauna likely include behavioral modification and reduced fecundity (Jenssen 2006). In addition,
“emerging” diffuse-source contaminants, such as long-chain perfluorinated carboxylates, may be affecting hormone levels and hatching success of Arctic birds, although there is a paucity of information available about the effects of these chemicals (Tartu et al. 2014).

Diffuse-source pollutant levels are generally much lower in the Antarctic than in the Arctic because of the lower emission rates of these substances in the Southern Hemisphere and the greater isolation of polar air masses in the Antarctic (Bargagli 2008). Nevertheless, increased chemical use in developing Southern Hemisphere countries, together with relatively little regulatory capacity or use of abatement technologies, has promoted the transfer of pollutants – such as pesticides – to the Antarctic (Bargagli 2008). Furthermore, despite a reduction in ozone-depleting chemical emissions since the Montreal Protocol entered into force in 1989, depleted stratospheric ozone over the South Pole continues to exert a strong influence on the Antarctic climate, which may persist for the next 50 years or so (Robinson and Erickson 2014).

Point-source pollution

The contrasting human histories of the polar regions have led to a greater legacy of point-source pollution in the Arctic. In the North American Arctic, the Distant Early Warning (DEW) Line of 63 military radar stations and associated smaller sites – stretching from Greenland to western Alaska – created many point sources of heavy metals, polychlorinated biphenyls (PCBs), and other contaminants. Remediation of 21 sites managed by the Canadian Department of National Defence is expected to cost CAD$575 million (DND 2014). Moreover, increased petroleum extraction and shipping in the Arctic (Bargagli 2008). Furthermore, despite a reduction in ozone-depleting chemical emissions since the Montreal Protocol entered into force in 1989, depleted stratospheric ozone over the South Pole continues to exert a strong influence on the Antarctic climate, which may persist for the next 50 years or so (Robinson and Erickson 2014).

Fisheries overexploitation

Polar fisheries are generally less exploited than many temperate ones (eg Zeller et al. 2011); however, they are not insulated from overexploitation. As more accessible stocks in lower latitudes have diminished, polar fisheries have come under increased pressure, and some stocks are now severely depleted (Ainley and Pauly 2013; Kjesbu et al. 2014). For example, depletion of finfish stocks along the Antarctic continental margin likely contributed to the increasing focus on krill that began in the late 1970s (Ainley and Pauly 2013).

Arctic fisheries are generally managed both cooperatively and nationally. Several stocks are reasonably well-managed (eg Barents Sea stock of Atlantic cod [Gadus morhua]; Kjesbu et al. 2014), although future climate change and overexploitation elsewhere will increase pressure on these resources (Cheung et al. 2010). Antarctic fisheries are managed collectively through the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). This management regime uses a precautionary, ecosystem-based approach that aims to ensure long-term fishery stability and ecosystem protection (CCAMLR 2012). Nevertheless, Antarctic fish stocks have still experienced overfishing, including illegal and unreported fishing for species such as the Antarctic toothfish, Dissostichus mawsoni (Ainley and Pauly 2013).

Threats to Antarctic krill – the largest Antarctic fishery and a vital forage species for several iconic Southern Ocean predators – are complex, interactive, and still poorly understood. Krill distributions are difficult to map and characteristically patchy (Miller 2014). Additionally, the krill fishery has the potential to compete with predator species in areas where there are concentrated krill populations, making its impact disproportionate to the percentage of total stock harvested (Woehler et al. 2014).
Climate change (see Panel 1) and ocean acidification exacerbate the vulnerability of krill and krill-dependent trophic networks.

- **Species invasions and range expansions**

In the Arctic, connectivity to more temperate regions, via terrestrial land masses and ocean currents, is far greater than in the Antarctic. Thus, the distinction between invasion and climate-driven range expansions in the Arctic is often blurred; most species movements to higher latitudes are range expansions, rather than direct introductions by humans. The “shrubification” of Arctic tundra (Myers-Smith et al. 2011), for instance, is driven by dispersal and phenological changes due to warming. This phenomenon will likely diminish the habitat of tundra grassland specialists, such as the migratory Lapland longspur (Calcarius lapponicus), with the degree of impact depending on the pace of climate change and the dispersal abilities of shrub species (Boelman et al. 2015). However, invasive species directly introduced by humans are likely to increase in both terrestrial and marine Arctic ecosystems (Ware et al. 2012, 2014), and climate warming will interact with expanded human activity to synergistically increase the risk of human-mediated species invasions in the Arctic (see Panel 1).

Isolation, harsh conditions, and relatively sparse human activity have somewhat insulated the Antarctic from species invasions (Hughes et al. 2014). Despite these natural barriers and a formal ban on species introductions, human-facilitated introductions to the Antarctic include two grasses and several terrestrial invertebrates. A recent risk assessment for species introductions to Antarctica (Chown et al. 2012) found that approximately 24% of human visitors to Antarctica unintentionally transport seeds on clothing and equipment. Less is known about introduced marine species in the region, mostly due to a lack of baseline biodiversity data (Griffiths et al. 2013). Ships traveling to Antarctic waters have been found to transport non-native species (Lewis et al. 2005) and Arctic marine species can survive in Antarctic waters (Tavares and De Melo 2004), raising the possibility of human-mediated invasions between the poles.

- **Cooperative effort and shared lessons learned**

In contrast to threats elsewhere on the planet, the most important environmental threats to both polar regions originate from ex-situ human activities, making international cooperation essential if conservation is to be successful. In particular, effective action to reduce GHG emissions is critical if large-scale impacts on polar environments are to be avoided. The lack of progress in reducing global GHG emissions (IPCC 2014b), however, suggests that immediate strategies focusing on threats that interact with climate change may be crucial for improving environmental protection. Such threats may be easier to address in the short to medium term and, unlike reduction of GHG emissions, are often directly within the influence of existing governance structures for both the Arctic and Antarctic. Fostering international cooperation and sharing lessons learned between the poles will be imperative in effectively engaging these threats (Table 1).

New information on emerging persistent organic pollutants should be quickly translated into coordinated action in countries of both hemispheres, given the propensity of these chemicals to accumulate even after production has ceased. The rapid phase-out of perfluoroalkyl sulfonamide production after the discovery of potential toxicity and broad environmental distribution suggests that coordinated action is possible, although in this case phase-out was facilitated by the availability of alternatives and there being only one principal manufacturer (Giesy and Jones 2015). For point-source pollution, technology developed in the Arctic to accelerate remediation has already been transferred to the Antarctic (Figure 3).

To reduce the risk of chemical spills and the need for remediation in the Antarctic, we argue that the best spill

| Table 1. Summary of shared lessons learned to improve Arctic and Antarctic environmental protection |
|---------------------------------|---------------------------------|-----------------------------|
| **Threat** | **Shared lesson** | **Knowledge transfer** |
| Climate change | Reduce GHG emissions; address additional threats interacting with climate change | Arctic ↔ Antarctic |
| Diffuse-source pollution | Translate new information on impacts of emerging contaminants into swift reductions or bans in both northern and southern hemispheres | Arctic ↔ Antarctic |
| Point-source pollution | Incorporate best national practices from Arctic nations into Antarctic spill prevention and response programs; improve spill prevention programs in both polar regions | Arctic → Antarctic |
| Fisheries overexploitation | Apply ecosystem-based precautionary principles similar to those of CCAMLR to Arctic fisheries; encourage international cooperation on fisheries protection and MPAs; recognize limits of collective management by consensus and prepare to make difficult decisions when managing the krill fishery | Arctic ↔ Antarctic |
| Invasive species | Adapt biosecurity protocols used in Antarctic to key Arctic points of entry | Arctic ↔ Antarctic |

© The Ecological Society of America
Long-term management of polar environments
prevention and response standards from Arctic nations could be incorporated into protocols for Antarctic stations. For example, Alaska has strong regulations for preventing oil spills and an integrated network of units designed to respond to a large spill, including a joint spill response and training program with Canada (Grabowski et al. 2014). At present, there is no hydrocarbon extraction in the Antarctic, and the volumes of oil being shipped on any single vessel are small relative to those transported by bulk carriers in the Arctic. Nonetheless, with the small resident population and scattered stations belonging to various nations, mounting an effective response to a major marine oil spill would be extremely difficult. This emphasizes the critical importance of developing an integrated prevention, response, and mitigation plan among Antarctic Treaty Parties, similar to that used by Alaska and Canada.

In general, there are many challenges in responding to an oil spill in either polar region. These include the vast distances involved, extended periods of darkness, cold temperatures (which create logistical difficulties and impede hydrocarbon degradation), potential jurisdictional issues in international waters, and a paucity of basic knowledge on the chemical and biological implications of oil in polar environments (Grabowski et al. 2014). Thus, preventive measures such as strict shipping codes and improved navigational charts are vital in both regions.

As climate change alters the distributions of commercially important fisheries (eg Cheung et al. 2010), effective regulation of new fishing areas – supported where appropriate by the establishment of marine protected areas (MPAs) – will help to ensure that those fisheries are properly maintained. Currently, coverage of MPAs in the Arctic is inadequate, with most of the region falling far below the UN Convention on Biological Diversity’s target of 10% protection of coastal and marine areas (Watson et al. 2014).

Recent recovery of Barents Sea cod stocks due to effective cooperative management and increased ocean tem-
temperature (Kjesbu et al. 2014), and CCAMLR’s success at reducing illegal, unreported fish catches (eg Patagonian toothfish, Dissostichus eleginoides; Woehler et al. 2014), show that successful cooperative management of polar fisheries is feasible. Attempts to establish MPAs in Antarctic waters have met with limited success, but designating new MPAs remains high on the agenda of many nations. Given the demonstrable conservation outcomes associated with well-designed MPAs (eg Edgar et al. 2014), establishing a network of such protected areas in collectively managed polar seas should be a priority.

Because krill serve as crucial prey for many fish, seabirds, and marine mammals, krill harvest has been banned in the US Pacific Northwest (US Federal Register 2009). Although the Antarctic krill fishery may be relatively underexploited according to current abundance estimates, caution is also required in its management, and further research is warranted given the uncertainties in the response of krill to climate change and ocean acidification (Constable et al. 2014). The collapse and subsequent recovery of the Atlantic herring (Clupea harengus) fishery in the subarctic North Sea provides a relevant cautionary example. Before its collapse during the 1970s, the fishery was exploited by several countries, with collective catch limits agreed upon by all parties (Dickey-Collas et al. 2010). Increased prices linked to diminishing catches in the 1970s temporarily insulated fishers from the economic effects of an impending collapse, and contributed to a lack of consensus on catch reductions. Only after the expansion of exclusive economic zones (EEZs), the unilateral closure of the British fishery within its EEZ, and the near-total collapse of the fishery was the stage set for a wider moratorium, subsequent recovery, and more effective collective management (Dickey-Collas et al. 2010).

Biosecurity measures will be necessary at both poles to slow the rate of non-native species introductions; reducing this rate may provide time for action to address climate change and thus limit the spread of invasive species. Antarctic biosecurity for marine and terrestrial environments is continually improving and incorporates visitor education, ballast-water management guidelines, and inspection and cleaning procedures that substantially reduce invasion risk (CEP 2011). Adopting more stringent protocols for the main ports in Arctic ecosystems would also reduce the risk of invasions. The challenge will be greater for controlling invasive marine organisms, which are generally more dispersive than their terrestrial counterparts and more difficult to detect and eradicate. National requirements for ballast-water management to minimize invasive species transfer already exist in some Arctic nations, such as the US, Canada, and Norway, but not in Russia, Sweden, Denmark, or Finland. Even though Russia, Sweden, and Denmark have acceded to the International Convention for the Control and Management of Ships’ Ballast Water and Sediments, ballast-water management in much of the Arctic Ocean remains voluntary until the treaty comes into force, 12 months after ratification by the 30 countries representing 35% of global shipping.

■ Conclusions

Globally, habitat loss and degradation directly caused by local human activities appear to be the greatest threats to biodiversity (eg Vié et al. 2009). In polar environments, although human-caused habitat loss is important, the primary threats are largely a result of human activities in distant lower latitudes, particularly as a result of CO2 emissions and other pollutants, and increased pressure to exploit polar resources as those elsewhere become depleted. Anthropogenic climate change is the predominant threat, directly precipitating massive ecological change and interacting synergistically with other threats. In light of the key role that polar regions play in regulating global climate and oceanic currents, addressing global GHG emissions is imperative (IPCC 2014b); otherwise feedbacks between altered polar climate and ice regimes will affect lower latitudes. However, dealing with additional threats that interact with climate change is also essential, given that managing these threats has a higher likelihood of success in the short to medium term. Establishing a robust and systematic network of protected areas to conserve ecosystems and species, removing threats of chemical pollution, and improving cooperative multinational fisheries management are all achievable goals that would have measurable environmental benefits globally (eg CCAMLR 2012; DND 2014; Edgar et al. 2014). Sharing and incorporating lessons learned between the poles will help to successfully respond to these shared challenges.

■ Acknowledgements

N Gales provided helpful comments on previous versions of this paper.

■ References

Borgerson S. 2013. The coming Arctic boom – as the ice melts, the region heats up. Foreign Aff 92: 76–89.

Miller DGM. 2014. Antarctic marine living resources: “the future is not what it used to be”. In: Tin T, Liggett D, Mahler PT, and Lamers M (Eds). Antarctic futures: human engagement with the Antarctic environment. Dordrecht, the Netherlands: Springer.

1Department of Biology, University of Ottawa, Ottawa, Canada; 2Sea Around Us, Fisheries Centre, University of British Columbia, Vancouver, Canada; 3School of Biological Sciences, Monash University, Clayton, Australia; 4Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Australia; 5Hawkesbury Institute for the Environment and School of Science and Health, University of Western Sydney, Penrith, Australia; 6Environmental Sciences Group, Royal Military College of Canada, Kingston, Canada; 7School of Life Sciences, Silwood Park Imperial College London, Ascot, UK