
Chapter 11
Long Time-Scale Recurrences in Ecology:
Detecting Relationships Between Climate
Dynamics and Biodiversity Along a Latitudinal
Gradient

Raphaël Proulx, Lael Parrott, Lenore Fahrig, and David J. Currie

Abstract Climate is an important driver of ecological dynamics. However, many
quantitative methods still ignore the fact that both ecological and climatic dynamics
are inherently non-linear. While temporal variability is commonly measured as
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the standard deviation of the records in a time-series, temporal determinism and
predictability can be measured using the approach of Recurrence Plots–Recurrence
Quantification Analysis (RP–RQA). In this study, we explore the relationship
between climate dynamics and biodiversity of two taxonomic groups (mammal
species and tree family richness) over the North- and South-American landmasses.
We found that higher biodiversity levels in both taxonomic groups are associated
to lower values of climate predictability, determinism and variability in monthly
temperature data. Our results also revealed a multiplicity of climate–biodiversity
relationships, suggesting that the mechanisms underlying large-scale geographic
variations in biodiversity may be more complex that originally envisioned.

11.1 Background

Ecology is the study of how organisms relate to one another and to their surround-
ings. Because organisms interact in many ways with both their biotic and abiotic
environment, ecological dynamics may be highly non-linear and have inspired
expressions such as: “on the edge of chaos” [1], “dynamically transient” [2], and
“subject to critical transition” [3]. Yet, when confronted with such an array of
dynamical behaviors, many ecologists do not know how or what to analyze in a
time-series. In fact, most time-series in ecology are still characterized using mean
and standard deviation measures, thus discarding information that may (or may not)
be relevant to the understanding of ecological processes.

Climate is an important driver of ecological dynamics. Independently of biotic
factors such as competition for resources, reproductive success, or predator–prey
interactions, populations tend to be more abundant if climatic conditions are
favorable to them and to decline if conditions are too harsh. Community ecology in
particular has a long history of relating the global geographic distribution of species
richness and diversity to contemporary climatic conditions [4]. Early successes of
correlating taxonomic biodiversity to climatic variables, such as the long-term mean
of annual temperature and precipitation, have bolstered the search for a mechanistic
underpinning of these relationships (reviewed in [5]).

Other studies have emphasized that time-series of climatic variables can be
described and interpreted in contrasting ways. Using long time-series of air
temperatures at a spatial resolution of 0.5ı over the globe, von Bloh et al. [6]
showed that even though monthly temperatures at low latitudes do not fluctuate
much, seasonal and inter-annual temperature dynamics are harder to forecast near
the equator than towards the poles. In another study conducted in the Qinghai-
Tibet plateau region, Zhao et al. [7] showed that the temporal determinism and
predictability of temperature dynamics has decreased over recent decades, more
prominently so in croplands and urbanized areas. The above studies have in common
that they both used the method of recurrence plots to describe the determinism and
predictability of time-series.
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Recurrence plots are an excellent method for detecting dynamical patterns in
time series [8], and, coupled with recurrence quantification analysis, permit the
characterisation and detection of deterministic structures that may not be captured
using classical statistical methods. Recurrence analysis should be of particular
interest to ecologists as it is well-adapted to the analysis of short time series and, in
its multivariate form, provides a valuable tool for detecting and describing nonlinear
relationships between dynamical processes. In this chapter, we demonstrate the use
of recurrence quantification analysis to explore the relationship between climate and
biodiversity over large geographic scales.

11.2 Recurrence Plots and Recurrence Quantification
Analysis

Recurrence plots (RP) were developed in statistical physics by Eckmann et al. [9]
to visualize the system states in a phase space. System states are reconstructed
by the method of time-delay embedding (see [8]). To illustrate how embedding
works, let us create a time-series of plant species abundances surveyed over six
consecutive years: 15, 25, 5, 7, 10, and 28 individuals per square meter. We define
the dimension (the number of independent variables needed to capture a particular
dynamic such as plant abundances e.g., m D 3) and time-delay (the time lag
which minimizes autocorrelation, e.g., d D 2) of the embedding. Using these two
parameters we reconstruct the system states from the above time-series, yielding
the two successive states of: [15, 5, 10] and [25, 7, 28]. If n is the time-series length,
one can only reconstruct n � d(m � 1) system states. For example, embedding the
above time-series with parameters of m D 4 and d D 1, three reconstructed states
are obtained: [15, 25, 5, 7], [25, 5, 7, 10] and [5, 7, 10, 28]. The RP is then a
square matrix, with time on both axes, of pairwise Euclidean distances between the
reconstructed system states to which a distance threshold (thresh) is applied. A black
dot in the plot indicates the presence of a “recurrence”; i.e., two system states that
differ by less than the threshold (Fig. 11.1). If the threshold is too large, most states
are considered similar and the plot is mainly black. Conversely, if the threshold is
too small, most states are considered different and the plot is mainly white. RPs
can be visually interpreted to detect non-stationary dynamics with either smooth or
abrupt transitions, as well as identifying the presence of periodic and non-periodic
processes (e.g., [10]). Several algorithms have been proposed to assist the analyst
with the choice of m, d and thresh parameters [8].

Recurrence quantification analysis (RQA) forms a toolbox of mathematical
measures for characterizing RPs [11]. In particular, RQA is capable of detecting
the signature of chaotic dynamics in long time-series [12, 13]. In the ecological
sciences, however, the time-series are usually too short or stochastic for detecting
chaos or assessing the dimensionality of the system (i.e., the minimum number of
variables required for capturing the system’s dynamics). Nevertheless, RQA allows
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Fig. 11.1 Representation of a reference time-series of environmental (ecological or climatic)
records (a) to which modifications were applied by: reducing variance (b), increasing stochasticity
(c), introducing regime shifts (d). Next to the time-series are reported the effects of these
modifications (# or D) on measures of temporal variability (std. deviation), determinism and
predictability. Recurrence plots (with m D 1, d D 1, and 10 % recurrence rate) are displayed on
the right-hand side

Table 11.1 Three fundamental measures of ecological and climatic dynamics

Measure Definition Measure Comment

Temporal
variability

Fluctuation of
environmental
records in a
time-series

Standard deviation
(SD) of the
environmental
records

Temporal variability
depends on the
scaling of the
records and has no
upper bound

Temporal
determinism

Recurrence of two
environmental
states over time
(see text)

Percentage of
recurrences that are
part of diagonal
lines with 2 or more
recurrences (DET)

Temporal determinism
is a reciprocal
measure of
temporal
stochasticity

Temporal
predictability

Time period over
which
environmental
states can be
predicted into the
future

The average length of
diagonal lines in
the RP (length)

Temporal
predictability can
be low even if
determinism is
high

us to calculate dynamical measures (Table 11.1) that are a priori unrelated to those
of central tendency and variance and which may provide some indication of the
degree of determinism in a system, even for short time series.
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11.3 Ecological and Climatic Dynamics

Ecological and climatic dynamics can be characterized along three major axes
(Table 11.1): (1) temporal variability, (2) temporal determinism, and (3) temporal
predictability. Temporal variability is most typically measured as the standard
deviation of the environmental records in a time-series. From a mathematical
standpoint, temporal variability is not independent of the time-series’ mean and
does not account for temporal periodicities. The two additional axes, temporal
determinism and temporal predictability, can be represented by dynamical mea-
sures calculated using the approach of Recurrence Plots–Recurrence Quantification
Analysis (RP–RQA). Determinism is the reciprocal of stochasticity. Temporal
determinism represents the percentage of all recurrences in the RP that are part
of diagonal lines. A diagonal line is one that contains two or more recurrences
forming an uninterrupted sequence running parallel to the line of identity; i.e., the
longest diagonal line splitting the RP in two halves. Determinism will be zero if all
recurrences are single dots. The second measure, temporal predictability, represents
the average forecasting horizon of the system states and is expressed in time units.
Temporal predictability is calculated as the mean of the frequency distribution of
diagonal lines in the RP, excluding the line of identity.

Other RP–RQA measures, such as the tendency of records in time-series to drift
away from the long term mean (Trend; [8]), may also be useful for characterizing
transiency in ecological and climatic dynamics (see Chap. 12). In general, the
recurrence plot approach provides alternative ways of describing dynamical systems
but is not without its own shortcomings. RP–RQA measures cannot be interpreted
beyond sampling limitations in terms of missing data, time-series length and
temporal resolution. These limitations are discussed in detail in Marwan [14].

11.4 A Case Study of Climate–Biodiversity Relationships

11.4.1 Context

The relationship between climate and biodiversity is one of the most pervasive
patterns of community ecology. Several studies, covering a range of ecosystems,
have shown that large-scale geographic variations in taxonomic biodiversity corre-
late to energy- and water-related climatic variables (reviewed in [15, 16]). Over
large geographic distances, the variation in plant and mammal biodiversity has
been associated to the long-term mean or temporal variability of temperature and
precipitation (e.g., [17–20]).

Non-spatial competition models in community ecology suggest that, unless
environmental conditions vary unpredictably, even small functional differences
among species may eventually lead to competitive exclusion (e.g., [4, 21]). Thus,
one could hypothesize that lower levels of temporal determinism and predictability

http://dx.doi.org/10.1007/978-3-319-07155-8_12


340 R. Proulx et al.

in climatic dynamics may slow the rate of competitive exclusion, allowing more
species to coexist. Lower climatic predictability would thus translate into greater
environmental heterogeneity in time, creating more opportunities for species coex-
istence.

In this case study, we explore the validity of this premise through the use of
RP–RQA measures to quantify temporal determinism and predictability in climatic
time series. We then explore the relationships between biodiversity and climate
dynamics at different locations along a north–south gradient. For the first time, these
relationships will be contrasted against those obtained using conventional measures
of climatic dynamics (i.e., long-term mean and standard deviation).

11.4.2 Methods

We used as biodiversity variables the number of mammal species [22] and
angiosperm tree families [18] over the North- and South-American landmasses
at a resolution of 1ı and 2ı, respectively. We extracted monthly climatic time-series
from the global dataset compiled by the Climate Research Unit on grid-cells of 0.5ı,
for the period 1920–2002 (CRU TS 2.1; [23]). We then calculated the mean and
standard deviation of monthly temperature (ıC) and precipitation (mm) time-series.
Finally, we built two recurrence plots (RPs) for each grid-cell, one for monthly
temperature and the other for precipitation. Following von Bloh et al. [6], we chose
an embedding dimension of m D 3, a time-delay of d D 1, as well as adjustable
threshold values (thresh) allowing us to fix the recurrence rate to 10 % in the
RPs. We used the CRP Matlab toolbox [8] to calculate temporal determinism and
predictability measures.

For each climatic variable (temperature and precipitation), we spatially averaged
the measures of determinism, predictability, mean and standard deviation at the
grid-cell resolution of each biodiversity dataset. We graphed bivariate climate–
biodiversity relationships and calculated their coefficient of determination (R2)
using recursive trees. A recursive tree is comparable to a regression model without
the statistical assumptions of linearity and normality of the predictors. Recursive
trees were fitted using the R package “rpart” version 2.15.3 [24].

11.5 Results and Discussion

The three dynamical measures—temporal variability, determinism and predictabil-
ity measures—were weakly correlated with each other for the precipitation data
(Fig. 11.2a), suggesting that determinism and predictability contain important
dynamical information not captured by the standard deviation. The highest
association was between determinism and predictability (Pearson’s r2 D 0.46)
and the lowest between determinism and variability (Pearson’s r2 D 0.13).
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a

b

Fig. 11.2 Relationships among measures of temporal variability (standard deviation; SD), deter-
minism and predictability for (a) precipitation and (b) temperature data. Monthly climatic
time-series covered the period 1920–2002 at a spatial resolution of 0.5ı over North- and South-
America. Each point represents one location

In comparison, the three measures were rather strongly correlated for the
temperature data (Fig. 11.2b), with the highest association between determinism
and predictability (Pearson’s r2 D 0.85) and the lowest between predictability and
variability (Pearson’s r2 D 0.66).

Bivariate biodiversity–climate relationships for the two datasets revealed con-
trasting patterns (Fig. 11.3), extending from none (e.g., mammal species richness
vs precipitation determinism.) to strongly linear (e.g., mammal species richness
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vs temperature mean.), and including asymptotic (e.g., tree family richness vs.
precipitation standard deviation) as well as more complex functions (e.g., tree family
richness vs. temperature predictability). Both the number of mammal species and
tree families were positively related to long-term averages of monthly temperature
and precipitation time-series (Fig. 11.3; panel A). No such generality existed for the
other variables, although some patterns can be observed (Fig. 11.3; panels B–D). At
higher biodiversity levels, taxonomic richness decreased with increasing temporal
variability, determinism and predictability of monthly temperatures. In comparison,
richness related positively to the temporal variability of monthly precipitation,
especially at lower biodiversity levels (Fig. 11.3; panel B).

How then might the global geographic distribution of biodiversity relate to the
determinism and predictability of climatic variables? Our preliminary findings
suggest that biodiversity increases with increasing temperature stochasticity and
decreasing predictability, at least in the upper range of biodiversity values. Hubbell
[25] suggested that species can coexist because they are essentially indistinguishable
from one another in their realized demographic traits; that is the long-term persis-
tence of species is independent of per capita birth–death rates. Subsequent tests have
detected differences, although they are probably small (e.g., [26]). Alternatively,
Clark et al. [27] proposed that species coexistence is possible because individuals
within species differ and interact with their environment in many different ways.
Maintenance of biodiversity in the above theories requires that, independently of
the specific mechanisms involved, within-species variability in demographic traits
is large in comparison to between-species variability (i.e., that ecological niches
are high-dimensional). Both theories thus suggest a tight coupling between the
dimensionality of ecological niches and environmental dynamics.

In atmospheric sciences, high-dimensional climatic systems are typified by
dynamical measures of low temporal determinism and predictability [28]. Species
may have higher-dimensional ecological niches if their resources respond to varying
(e.g., less deterministic and predictable) climatic conditions, providing more oppor-
tunities for the niches of species to be distinguished [21]. Consequently, species
may show different responses to their common varying climate and experience
strongest intraspecific competition when favored by the environment, thus buffering
population growth. This equalizing mechanism of species coexistence has been
termed the “storage effect” (e.g., [21]). The storage effect has received support in
a recent study by Usinowicz et al. [29] who showed that coexistence in tropical
forests is facilitated through asynchronous variation in seed production among
tree species. Runkle [30] had previously argued that the storage effect could
explain the latitudinal gradient in forest diversity because in his own words:
“Winter decreases effective environmental variation and imposes a synchronization
in seasonal phenology upon species of trees in temperate zones. Therefore the
probability that a rare species may encounter the unusual favorable period which
will enable it to persist in the community is reduced”. It remains to be examined if
latitudinal differences exist in the strength of the storage effect.

The multiplicity of climate–biodiversity relationships seems to call for a mul-
tiplicity of hypotheses, but this may only confound the search for a general
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Table 11.2 Coefficients of determination (R2) calculated from the recursive trees fitted to each
bivariate climate–biodiversity relationship

Precipitation Temperature

Measure Mammal species Tree family Mammal species Tree family

Long-term average (Mean) 0.617 0.461 0.723 0.912
Temporal variability (SD) 0.701 0.687 0.831 0.739
Temporal determinism (DET) 0.123 0.054 0.802 0.438
Temporal predictability (L) 0.219 0.049 0.809 0.528

mechanism. When considering only the bivariate relationship strengths, one might
conclude that mean temperature controls the number of tree families in the
Americas, but that the geographic distribution of mammal species richness is
determined by temporal dynamics in temperature (Table 11.2). In fact, 12 of the
16 measures of climatic dynamics were associated to nearly, or more than, 50 %
of the geographic variation in biodiversity (Table 11.2). When the eight climatic
variables were included in a model of recursive partitioning, the coefficient of
determination attained values of 0.882 (88 %) and 0.922 (92 %) for mammals and
trees, respectively. In models considering only the variables of mean precipitation
and mean temperature, the coefficient of determination was distinctly lower for
mammals (R2 D 0.785), but only slightly lower for trees (R2 D 0.912).

Alternatively, the multiplicity of relationships may indicate that biodiversity is
constrained by more fundamental climatic processes, such as the latitudinal gradient
in solar radiation dynamics. At the global scale, yearly solar irradiation at the
top of the atmosphere is strongly negatively correlated to absolute latitude. Solar
irradiation on Earth defines the maximum amount of energy that can, ultimately, be
transformed into biomass and shared among species (the species-energy hypothesis;
e.g., [15, 16, 31]). Moreover, latitudinal differences in solar heating drive the vertical
and horizontal motion of air masses, which in turn entrain the broad-scale temporal
dynamics in temperature and precipitation. Thus, over large geographical regions,
different climatic variables may all relate to the same underlying variable, solar
irradiation. In partial support of this idea, if we enter only the latitude coordinates
of grid-cells in a recursive tree model, the coefficients of determination we obtained
were as high as R2 D 0.857 and R2 D 0.934 for mammals and trees, respectively.

In summary, we found evidence that higher biodiversity levels of two taxonomic
groups are associated with lower values of predictability, determinism, variability
and higher long-term means in monthly temperature data. Our results also revealed
a multiplicity of climate–biodiversity relationships, suggesting that identifying the
specific mechanisms of large-scale geographic variations in biodiversity may be
more complex that originally envisioned. In this context, the study of Nevo [32]
is instructive as he compared the biodiversity of a large number of plant and animal
taxonomic clades on two opposite south- and north-facing slopes at the Evolution
Canyon in Mount Carmel, Israel. He found that plants (angiosperms) and animals
(many insect and arthropod groups, reptiles and birds) were more diverse on the
south-facing slope than on the north-facing slope. Genetic diversity was also higher
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on the south-facing slope. Nevo described the south-facing (high biodiversity) slope
in the following words: “ : : : warmer and drier (receiving up to 300 % more
solar radiation), micro-climatically less predictable than the north-facing slope”. He
added: “The south-facing slope represents a ‘spatiotemporally broader niche’ : : : ”
[32]. We propose that representation of a spatiotemporally broader niche may be
extended to include large-scale variations in climate dynamics.

11.6 Perspectives

The RP–RQA approach can contribute to the investigation of other research
hypotheses in community ecology. For example, the mismatch hypothesis (e.g.,
[33]) states that the survival of populations and communities is impaired if ecolog-
ical processes, such as plant greening and flowering, animal migration, or breeding
events, are desynchronized over time. Loss of seasonal or inter-annual predictability
in the timing of climatic events is known to be detrimental to the functioning of
plant and animal species [34, 35]. In this context, the vulnerability of communities
to temporal mismatch may depend on the predictability of climatic and ecological
processes. Temporal mismatch between ecological and climatic processes could be
readily assessed with the approach of cross-recurrence plots (CRP; [8]).

Another hypothesis posits that species-rich communities host a variety of life
strategies that respond differently to environmental conditions and contribute to
ecological functioning in different ways, thus increasing the temporal stability
of ecosystems (e.g., [36, 39]). Considering that the concept of stability is neces-
sarily multifaceted, different measures of temporal variability, determinism and
predictability are needed to uncover the mechanisms of biodiversity–stability
relationships. For example, using a multi-species competition model with environ-
mental forcing, Proulx et al. [10] found a positive biodiversity–stability relationship
when community stability was defined using measures of temporal determinism
and predictability. No such relationship was observed when measures of temporal
variability were used to define community stability [10]. Multivariate recurrence
plots (MRP; [37]) can be used to calculate measures of temporal determinism and
predictability of dynamical systems with many interacting variables.

In conclusion, recurrence plots and recurrence quantification analysis hold
promise for describing and detecting dynamical patterns in ecological time series.
They provide a simple alternative to other methods of non-linear analysis (e.g.,
attractor reconstruction, Lyapunov exponents, correlation dimension analysis) that
require long time series and have rarely provided convincing results for ecological
data (e.g., [38]). In contrast, the RP–RQA approach provides a more subtle
description of determinism and predictability in a time series, and thus may prove
more useful than other approaches for detecting deterministic structure in ecological
data. Ecological systems have a dynamic that is inherently non-linear; however,
many quantitative methods in ecology ignore this fundamental aspect of the time
series to which they are applied. RP–RQA thus provides a good complement to the
ecologist’s quantitative toolbox.
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