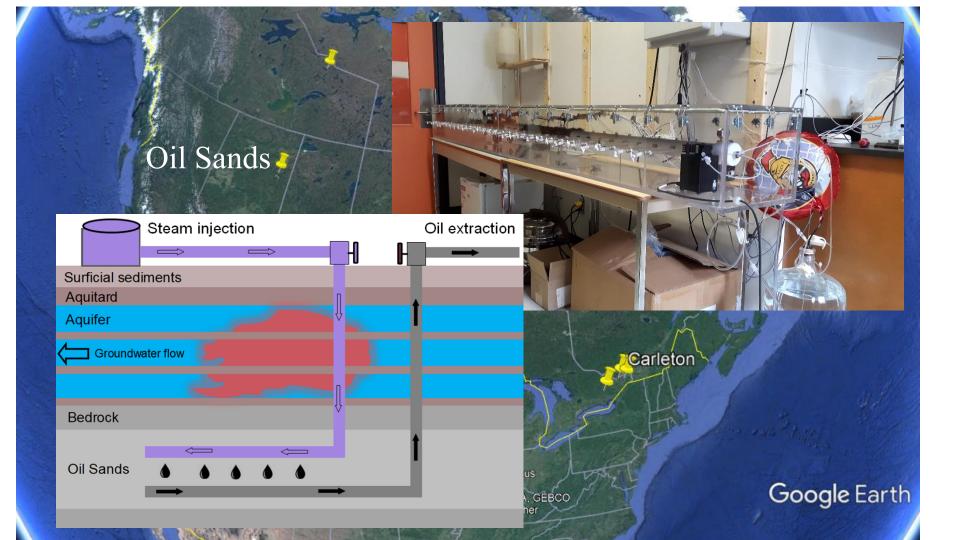
Managing groundwater contaminants in the resource development industry

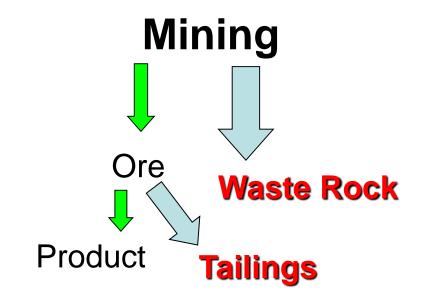
Global Water Institute: Water Conversations

Richard T. Amos

Assistant Professor


Department of Earth Sciences, Institute of Environmental Science





Oxidation of sulfide minerals

$$FeS_{2(s)} + \frac{7}{2}O_2 + H_2O \Rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$

acidic conditions

 $FeS_{2(s)} + 14Fe^{3+} + 8H_2O \Rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$

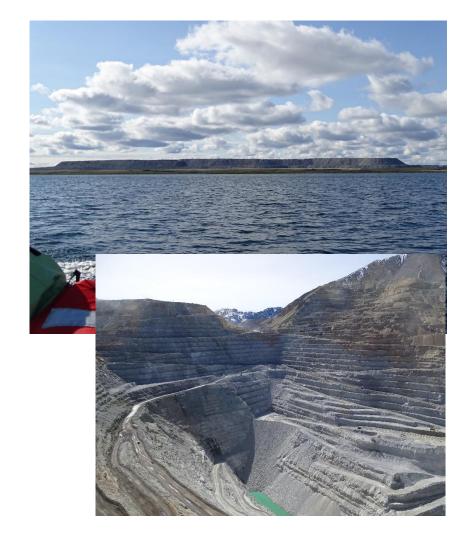
National Orphaned and Abandoned Mine Initiative (NOAMI)

Producing Mines in Canada

Base metals Precious metals Base metals, Precious metals Iron ore Uranium Other metals Industrial minerals Diamonds Coal Bitumen Gas Oil Oil/Gas

http://atlas.gc.ca/

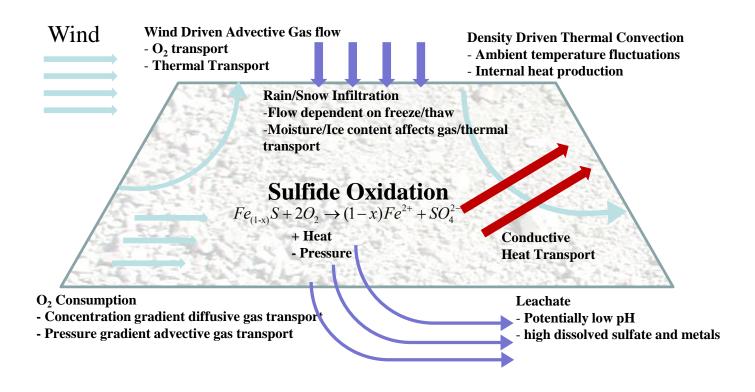
Closure Planning



Humidity Cell Tests

 Scale leaching rates from small 1 kg samples to large Mt waste-rock piles

Scale!



Waste Rock Characteristics

- Large volume
- Trace sulfide content
- Very heterogeneous
- Unsaturated

Coupled Processes

- Research Goal: Micro- to Macro-Scale
 - Scaling the temporal evolution of sulfide mineral weathering from laboratory to field systems

- Research Goal Sulfide Oxidation in a Permafrost Region
 - Understand the geochemical, hydrological, and thermal conditions controlling the generation of acidic leachate from waste rock stockpiles in a permafrost environment

- Humidity Cell Experiments
 - Static tests
 - Paste pH, total S, sulfate S, sulfide S, NP, total C, NAG, ABA, particle size, mean surface area
 - Kinetic tests: 36 humidity cells initiated in 2005
 - 18 cells at 22 °C
 - 18 cells at 4 °C
 - Effluent analysed for pH, Eh, EC, alkalinity, anions, cations, nutrients

	2004	2005	2005i
Type I	2	2	2
Type II	2	2	2
Type III	2	2	2

Active Zone Lysimeter Experiments

2-m scale field experiments

Characterize leaching in the active freeze-

thaw zone

- Test Piles Experiments
 - 15-m scale field experiments
 - approaching a realistic size

Operational-Scale Instrumentation

- Instrumented full-scale waste rock dump
- The real deal, but instrumentation is limited

Scale-up at Diavik

Full Scale Pile

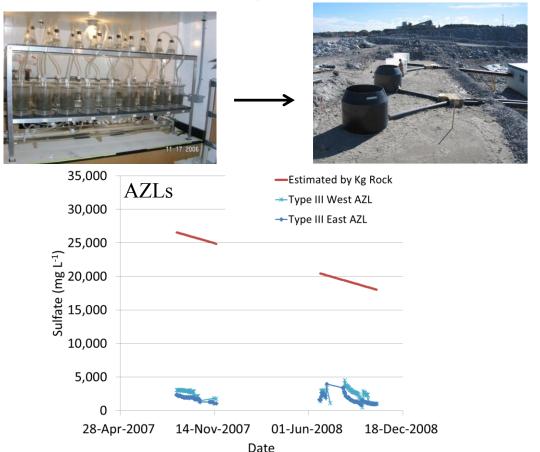
Test Piles

Active Zone Lysimeters

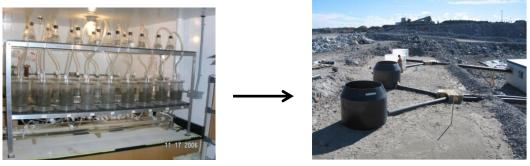
Humidity Cells

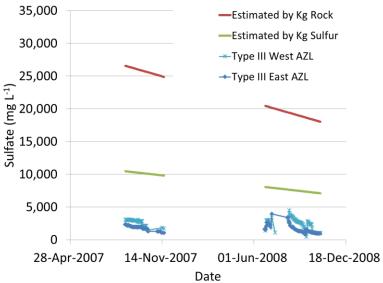
0.1 m (1 kg)

2 m (9,300 kg)

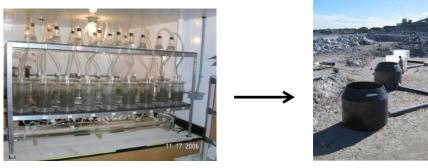


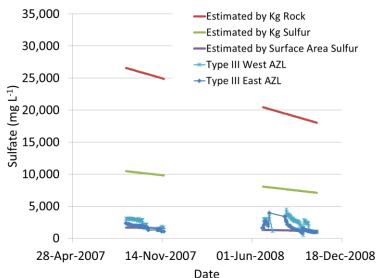
 $15 \text{ m} (8.2 \text{ x} 10^7 \text{ kg})$

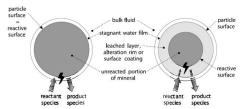


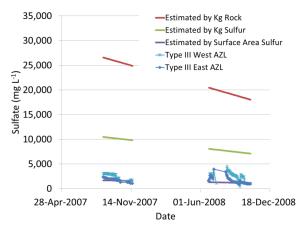

80 m (1.2 x 10¹¹ kg)

- Concentration calculations based on;
 - Reaction rates from humidity cell experiments
 - Rates scaled to weathering age of rock
 - Estimated residence time
- First (and simplest) estimate;
 - Scale to Mass of rock
 - 1 kg to 9,300 kg



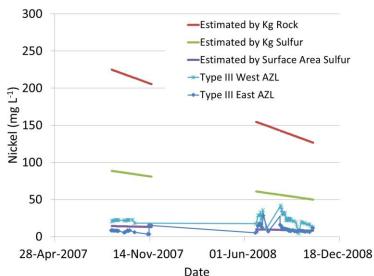

- Concentration calculations based on;
 - Reaction rates from humidity cell experiments
 - Rates scaled to weathering age of rock
 - Estimated residence time
- Second estimate;
 - Scale to mass of sulphide minerals


- Concentration calculations based on;
 - Reaction rates from humidity cell experiments
 - Rates scaled to weathering age of rock
 - Estimated residence time
- Try again;
 - Scale to estimated surface area of sulphide minerals



- Scale to estimated surface area of sulphide minerals
 - Sulphide oxidation is a surface controlled reaction

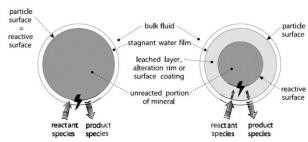
Shrinking Core Model


> Surface area per kg of rock decreases at larger scales

- Simple approach
 - No temperature correction
 - No secondary mineral precipitation/sorption
 - No pH/redox controls
 - Simple accounting of precipitation/infiltration
 - Works for conservative solutes

Reactive Transport Modelling

Conceptual model


Oxidation by $O_{2(aq)}$:

$$Fe_{0.852}Ni_{0.004}Co_{0.001}S + 1.9285O_{2(aq)} + 0.143H_2O \rightarrow 0.852Fe^{2+} + 0.004Ni^{2+} + 0.001Co^{2+} + SO_4^{2-} + 0.286H^+$$

Oxidation by Fe³⁺:

$$Fe^{2+} + 0.25O_{2(aq)} + H^{+} \rightarrow Fe^{3+} + 0.5H_{2}O$$

 $Fe_{0.852}Ni_{0.004}Co_{0.001}S + 1.714Fe^{3+} \rightarrow$
 $2.566Fe^{2+} + 0.004Ni^{2+} + 0.001Co^{2+} + S^{0}$
 $S^{0} + 1.5O_{2(aq)} + H_{2}O \rightarrow SO_{4}^{2-} + 2H^{+}$

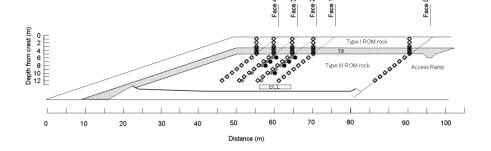
Sulfide oxidation simulated using shrinking core model.

Mayer et al., 2002

Hydrology

- FAO P-M calculated infiltration
- n, vG α, vG n, K_{sat} from site characterization

Geochemistry


- pO₂: 0.21; pCO₂: 0.000317
- Sulfides: pyrrhotite, chalcopyrite, sphalerite, pentlandite
- Host: calcite, dolomite, biotite, muscovite, albite
- Secondary: jarosite, ferrihydrite, gibbsite, amorphous silica, gypsum, siderite

Temperature

 Average daily temperature 2007-2015

Scaling

- Future Work
 - Heterogeneity
 - Operational Scale
 - Covers

Conclusions and Implications

- Humidity cell tests can be used to reasonably predict solute concentrations/loadings at the field-scale
 - Mechanistic
 - Model calibrated for humidity cells
 - Scaled with only measurable parameters
 - Complex geochemistry
 - Complex hydrology
 - Complex temperature
- Critical for long-term planning of mine closure
 - Allows appropriate plan to be developed at early in mine life
 - Cheaper and more effective
 - Regulatory and Social Licence

Acknowledgements

- Prof. Ulrich Mayer, University of British Columbia
- Barbara Bekins, U.S. Geological Survey
- Geoff Delin, U.S. Geological Survey
- Isabelle Cozzarelli, U.S. Geological Survey
- Mary Voytek, U.S. Geological Survey
- Julie Kirshtein, U.S. Geological Survey
- Randi Williams, University of British Columbia
- Sung-Wook Jeen, University of Waterloo
- Anne Weber, Dresden Groundwater Research Centre
- Lionel Sequiera, University of Waterloo
- Paul Gammon, Geological Survey of Canada
- Sam Morton, Carleton University
- Andrew Craig, Carleton University
- Stephanie Roussel, Carleton University
- Phil Dagenais, Carleton University
- Oliver Blume, Carleton University
- Cassie Stead, Carleton University
- lan Clark, University of Ottawa
- David Lapen, Agriculture Canada

- Prof. David Blowes University of Waterloo
- Prof. David Sego University of Alberta
- Prof. Leslie Smith University of British Columbia
- Prof. Marek Stastna University of Waterloo
- Doug Gould Natural Resources Canada
- Dogan Paktunc Natural Resources Canada
- Gord Macdonald Diavik Diamond Mines
- David Wells Diavik Diamond Mines
- Jim Robertson Detour Gold Mine
- David Wilson University of Waterloo
- Sheldon Chi MSc. University of Waterloo
- Lianna Smith MSc. University of Waterloo/Diavik Diamond Mines
- Brenda Bailey University of Waterloo
 - Nam Pham University of Alberta
- Matt Neuner MSc. University of British Columbia
- Mandy Moore University of Waterloo
- Jeff Langman University of Idaho
- Renata Klassen University of Alberta
- Mike Gupton University of British Columbia
- Steve Momeyer University of British Columbia
- Nate Fretz University of British Columbia
- Andrew Krentz University of British Columbia
- Sean Sinclair University of Waterloo/Diavik Diamond Mines
- Colleen Atherton University of Waterloo

Good Bye!

