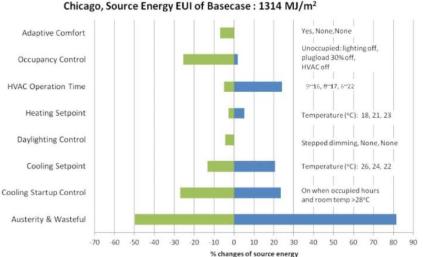


EBC Annex 79

Occupant behaviour-centric building design and operation

Andreas Wagner Karlsruhe Institute of Technology Building Science Germany Liam O'Brien Carleton University Civil and Environmental Engineering Canada



Energy in Buildings and Communities Programme

Background

- Occupant behaviour has a strong influence on building performance
- Reasons for occupants' interventions:
 - dissatisfaction with building automation
 - interfaces are not designed/equipped for intended purpose
 - planners do not consider occupants' needs in building design (same is true for building operation)
- → Occupants have to be included into overall building concept (by providing adaptive opportunities) and into control strategy (with appropriate interfaces)

Hong and Lin, 2013

Gilani and O'Brien, 2018

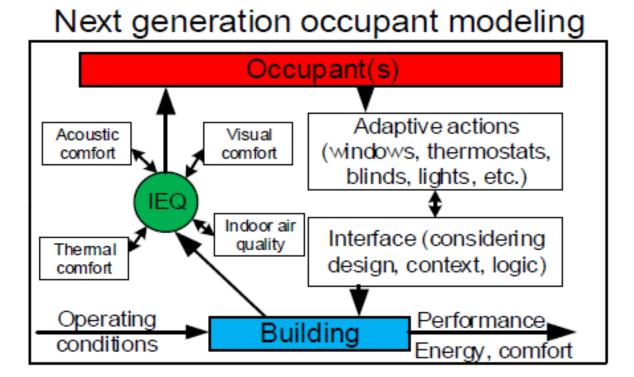
Open Questions

Annex 66 provided sound framework for

- experimentally studying and modeling different (but single!) behavioral actions
- implementation of models into simulation platforms

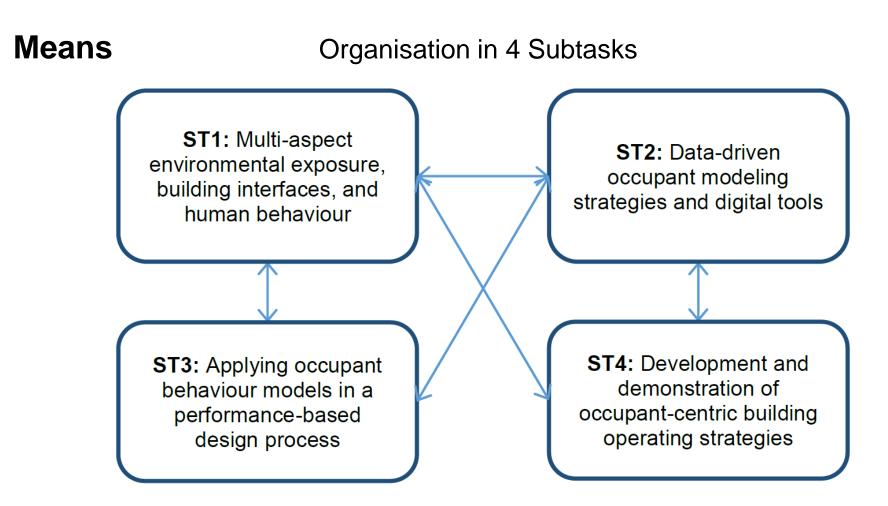
But: discrepancy with design and building operation practice:

- What is impact of multiple and interdependent indoor environmental parameters on human perception and resulting behavioural reactions?
- How do building controls' interfaces and their underlying logic affect behaviour?
- How can building automation systems and other readily-available data sources be better leveraged for improving occupant-centric building concepts?
- What kind of information has to be provided to better inform designers and building managers on how to apply occupant behaviour knowledge and models in practice?


Objectives of Annex 79

- Improvement of knowledge about occupants' interactions with building technologies. Specific focus on
 - comfort-driven actions caused by multiple and interdependent environmental influences which are not yet covered by current models
 - building technologies' interfaces in terms of their suitability for taking advantage of adaptive opportunities, and their effect on building energy consumption
- Deployment of 'big data' (e.g. data mining and machine learning) for the building sector based on various sources of building and occupant data as well as sensing technologies
- Sustainable implementation of occupant behaviour models in building practice
 - guidelines / recommendations for standards for applying occupant behaviour models during building design and operation
 - focused case studies to implement and test the new models in different design and operation phases in order to get valuable feedback

Objectives (2): occupant-centric buildings


Scope of the work

- Building up a framework for identifying and describing the main influencing factors of occupancy and occupants' actions in buildings and their interrelations
- Examine exemplary use cases with primary focus on office and residential buildings (depending on available data and case study buildings focus may extend to other building types)
- All activities contribute to reduce operating energy of buildings, while improving comfort by offering applicable adaptive opportunities to occupants
- Focused case studies as a platform to implement, test and demonstrate new models, standards and guidelines emerging from Annex research in a real building context during different design and operation phases
- Research methods from various domains like engineering, architecture, information technology, psychology, social sciences, etc.

Research approaches and topics

	Occupant behaviour	Technologies, interfaces	"Big data" from BMS etc.	Advanced models
Experiments (lab / in situ)	ST1	ST1		
Data mining, machine learning			ST2	
Modeling and design guidelines, building policy (standard and code) recommendations				ST3/4
Field application - testing, monitoring and verification in case studies			ST3/4	ST3/4

Expected outcomes

- Enhanced knowledge about coupled environmental influences on occupants and their interaction with building technologies (interfaces)
- New data-based occupant behavior models based on various large data sources/sensing technologies
- Open collaboration platform for data and software supporting the use of datamining methods and tools
- Model repository for digital planning environments
- Proposals for standards and policy support / guidelines for designers and building operators in order to implement OB models in building practice

Deliverables and target audience

Stakeholder	Deliverable (responsible subtask(s) in brackets)				
Scientists and	Report on:				
academics	Comprehensive literature review for the four Subtasks (1,2,3,4)				
	 Unified theoretical framework for perceptual and behavioural theory of building occupants; 				
	 Guidelines for research methods related to: evaluating occupant comfort and building interfaces (1), occupant data collection (2), and applying data analytics to occupant data (2) 				
Practitioners	Report on:				
(architects, engineers, building managers)	• Best-practices for building interfaces (1), occupant-centric design workflows (3), and optimal control strategies (4)				
	 Focused case studies, including lessons learned (3 and 4) 				
Industry (controls,	Report on:				
HVAC, mechanical and electrical equipment, etc.)	Best-practices for interface design and evaluation criteria of new products considering multi-aspect comfort (1)				
Policy-makers (e.g.,	Report on:				
government, building code	Recommendations on occupant modelling in building energy codes (1)				
officials)	 Recommendations for standards on occupant metering/sensing infrastructure and controls (2) 				

Annex Management

OAs: Andreas Wagner (Germany), Liam O'Brien (Canada)

ST	Subtask leaders
1	Ardeshir Mahdavi, TU Wien, Austria Marcel Schweiker, Karlsruhe Institute for Technology, Germany Julia Day, Washington State University, USA
2	Mikkel Kjaergaard, University of Southern Denmark, Denmark Bing Dong, University of Texas San Antonio, USA Salvatore Carlucci, Norwegian University of Science and Technology, Norway
3	Farhang Tahmasebi, TU Wien, Austria Tianzhen Hong, Lawrence Berkeley National Laboratory, USA Da Yan, Tsinghua University, China
4	Zoltan Nagy, University of Texas Austin, USA Burak Gunay, Carleton University, Canada Daniel Wölki, RWTH Aachen University, Germany

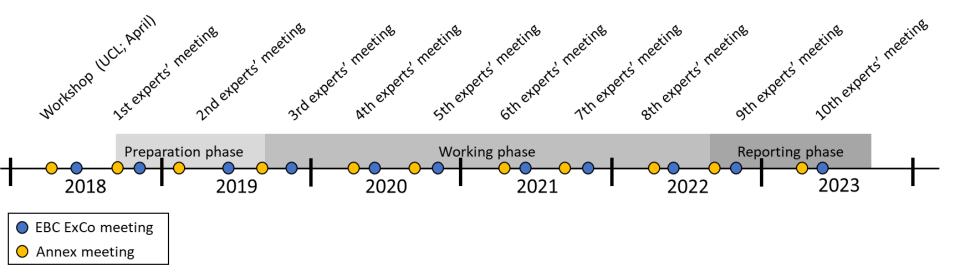
Expected Participants

25 persons from **14** countries participated in the international workshop held in London on April 11/12 to prepare the draft Annex text

60 persons from **16** countries expressed interest in participation with indication of subtask-related contribution

14 countries completed the Technology Readiness Assessment

Technology Readiness Assessment


	Technology				
	1. Conceptual and mathematical modelling of - and research methods (laboratory, field studies) for - studying human comfort and behaviour with respect to multi- aspect environmental variables.	2. Application of fields of human factors, occupant comfort, occupant behaviour, and building physics to inform the design and deployment of building interfaces.	common data sources and	4. Integration of occupant models and sensed occupant data to: (A) the simulation- aided building design process and (B) building controls and automation systems.	Confidence in the accuracy of your assessment
Average	2.3	3.0	2.5	2.9	3.9
Min	1	1	1	1	3
Max	4	5	4	5	4

Timeline

Planning workshop: April 2018 (London) First meeting: October 2018 Preparation phase: October 2018 – September 2019 Working Phase: October 2019 – September 2022 Reporting Phase: October 2022 – September 2023

Relations to EBC Strategic Plan and other EBC or IEA activities

EBC's five High-priority Research Themes: Integrated planning and building design, building energy systems, building envelope, real building energy use

- Annex 66 Occupant Behavior
- Annex 53 Total Energy Use in Buildings: Analysis & Evaluation Methods
- Annex 69 Strategy & Practice of Adaptive Thermal Comfort in Low Energy Buildings
- Annex 8 Inhabitant Behavior with Regard to Ventilation
- Annex 68 Design and Operational Strategies for High IAQ in Low Energy Buildings
- Annex 70 Building Energy Epidemiology: Analysis of Real Building Energy Use at Scale

IEA DSM TCP Task 24, activities of IEA Secretariat work on occupant behavior