

Best-practices Guideline on Advanced Occupant Modeling

Sara Gilani

Post-doctoral Fellow

Liam O'Brien

Associate Professor

Content

- Part 1: Basic theories
- **Part 2:** Implementation of advanced occupant models in EnergyPlus
- Part 3: Sensitivity analysis

Part 1:

Basic theories

- Occupants are not passive recipients of buildings.
- They actively and continually attempt to improve comfort.

(Saldanha, Beausoleil-Morrison, 2012)

Lights 10 W/m² Blinds 10% transmittance South-facing office in Ottawa

⁽Burak Gunay)

What are occupant behaviors?

What are occupant behaviors?

Occupancy

(presence)

Key occupant behaviors and how they may impact building energy performance:

What are occupant modeling approaches?

Two main occupant modeling approaches:

Standard-based models

What are occupant modeling approaches?

- Standard-based models are the current practices in modeling occupant in buildings.
- Limitations:
 - Inaccurate prediction of building performance
 - Poor design decision-making based on the inaccurate simulation results

What are advanced models?

What are advanced model forms?

1. Markov chain:

This model form predicts whether an occupant takes an action in the next timestep or next event:

- 1. Discrete-time
- 2. Discrete-event

2. Bernoulli:

This model from predicts the state of a building system or component.

3. Survival

This model form predicts the duration of a state right before an event happens.

Which occupant models to use?

Occupant modeling strategies vary for different applications:

- What is our aim from simulating a building or a room-level model?
- How big is the building we simulate?
- What type of building we simulate?

What is our aim from simulating a building or a room-level model?

- Code compliance
- HVAC design
- Net-zero energy design
- Comfort assessment
- Façade design

How big is the building we simulate?

 The larger the building size, the lower the uncertainty in the predicted whole-building energy use

What type of building we simulate?

• Energy uses of various building types have different sensitivities to occupant behaviors.

(O'Brien et al., 2018)

Which occupant models to use?

Use cases:

- Whole-building energy prediction
- Building system and plant equipment sizing
- Net-zero energy buildings
- Occupant comfort
- Façade design

Whole-building energy prediction

- Current method: Standard schedules
- Proposed method: Small buildings:
 - Agent-based models
 - Medium to large buildings:

Static-deterministic models for non-adaptive behaviors and dynamic-deterministic models for adaptive behaviors

Building system and plant equipment sizing

(0'Brien et al., 2018)

 Current method: Standard schedules

Lack of potential to evaluate the risk of downsized building system and plant equipment

 Proposed method: Zone-level:

> Static-deterministic (i.e. standard schedules) **Building level:**

> > Static-stochastic models

50

3.5

4.5

peak load (W)

100

5

125

6.5 ×10⁵

6

115

5.5

Net-zero energy buildings

- Current method: Standard schedules Lack of accurate predicted building energy use
- Proposed method: static-stochastic or dynamicstochastic models

Provide an insight into the impact of occupant-related uncertainties on building energy use

Occupant comfort

• Current method: Standard schedules

Lack of distribution of energy use and number of occupants' interactions with buildings

• Proposed method: Dynamic-deterministic or dynamic-stochastic models

Potential for robust design by reducing occupants' interactions with buildings

Façade design

- Current method:
 - Standard schedules

Lack of providing an insight into occupant-related uncertainty and occupants' interactions with facades' components

• Proposed method:

Dynamic-deterministic or dynamic-stochastic models Potential for optimal design

Part 2:

Implementation of advanced models in EnergyPlus

Discrete-time Markov chain models

Advanced occupant models from literature

Journal of Building Performance Simulation

ISSN: 1940-1493 (Print) 1940-1507 (Online) Journal homepage: http://www.tandfonline.com/loi/tbps20

Implementation and comparison of existing occupant behaviour models in EnergyPlus

H. Burak Gunay, William O'Brien & Ian Beausoleil-Morrison

To cite this article: H. Burak Gunay, William O'Brien & Ian Beausoleil-Morrison (2015): Implementation and comparison of existing occupant behaviour models in EnergyPlus, Journal of Building Performance Simulation, DOI: <u>10.1080/19401493.2015.1102969</u>

To link to this article: http://dx.doi.org/10.1080/19401493.2015.1102969

Taylor & Francis

EnergyPlus EMS Application

EnergyPlus EMS Application

Gi IDF Editor					
File Edit View Jump Windov Help					
😭 F:\Sara\backup-OneDriveForBusi	whats New	iideBook\Figures\EnergyPlus\RunSimulation\GuideBook_SmallOffice 👝 💷 💌			
Class List [0003] PlantEquipmentOperationScher [] CondenserEquipmentOperationS Energy Management System (EMS)	Contents Index Documentation EnergyPlus Documentation Menu				
[] EnergyManagementSystem:Sen: [] EnergyManagementSystem:Actu (0001) EnergyManagementSystem:Pro [0001] EnergyManagementSystem:Subr [] EnergyManagementSystem:Glob [] EnergyManagementSystem:Outp	EnergyPlus Getting Started EnergyPlus I/O Reference EnergyPlus Output Details and Examples EnergyPlus Engineering Reference EnergyPlus Auxiliary Programs	nt Field lefines an Erl program			
[] EnergyManagementSystem:Met [] EnergyManagementSystem:Tre [] EnergyManagementSystem:Inte [] EnergyManagementSystem:Cons	EnergyPlus EMS Application Guide Osing EnergyPlus for Compliance External Interface Application Guide Tigs and Tricks Using EnergyPlus	e or EMS Fundime Language owed in name			
Field Name	EnergyPlus Acknowledgments				
Program Line 1 Program Line 2 A4 A5 A6 A7 A8 A9 A10 A11	Create objectList.txt Create allObject.idf Create fieldsMissingUnits.txt Create RefObjList.txt About IDF Editor SET A7_1 = @Ran ENDIF	-			

South-facing shoebox model

Daylight sensor in the center and at the workplane height (0.8 m)

EnergyPlus EMS Application

- We will implement advanced occupant models for:
 - 1. Occupancy: Wang et al.'s (2005) model
 - 2. Light: Reinhart's (2004) model

Wang et al.'s occupancy model

Event time (arrival, departure, lunch, two breaks): Normal distribution

Vacancy duration: Exponential distribution

Event time

Event time	Mean (hr)	Std (hr)
Arrival	8	
First break	10	
Lunch	12	0.25
Second break	15	
Departure	18	

Reinhart's light switch model

Part 3: Sensitivity analysis

Glazing systems design parameters					
Туре	U-factor (kWh/m ²)	SHGC	VT		
1	1.82	0.36	0.64		
2	1.42	0.48	0.69		

- Two window shade control systems:
- (1) blinds are closed all the time(2) blinds are open all the time

 Impact of energy conservation measures (ECMs) on the predicted building energy use

- Various parameters:
 - \circ ECMs
 - $_{\circ}$ Climate zones
 - $_{\circ}$ Building types
 - $_{\rm O}$ Building sizes
 - $_{\odot}$ Building users-related domains

References

Abdelalim A, O'Brien W. 2018. An approach towards achieving net-zero energy buildings based on a stochastic tenant model. In: eSim 2018. Montreal, Canada.

Abuimara T, O'Brien W, Gunay HB, Carrizo JS. 2018. Assessing the impact of changes in occupants on design decision making. In: eSim 2018. Montreal, Canada.

Gilani S, O'Brien W, Gunay HB. 2018. Simulating occupants' impact on building energy performance at different spatial scales. Building and Environment 132:327-337.

Gilani S, O'Brien W, Gunay HB, Carrizo JS. 2016. Use of dynamic occupant behavior models in the building design and code compliance processes. Energy and Buildings: Special Issue on Advances in BEM and Sim 117:260-271.

Gunay HB, O'Brien W, Beausoleil-Morrison I. 2016. Implementation and comparison of existing occupant behavior models in EnergyPlus" Journal of Building Performance Simulation.

O'Brien W, Abdelalim A, Abuimara T, Beausoleil-Morrison I, Carrizo JS, Danks R, Gilani S, Gunay HB, Kesik T, Ouf M. 2018. Roadmap for occupant modelling in building codes and standards. In: eSim 2018. Montreal, Canada.

O'Brien W, Abdelalim A, Gunay HB. 2018. Development of an office tenant electricity use model and its application for right-sizing HVAC equipment. Journal of Building Performance Simulation.

O'Brien W, Gunay HB. 2015. Mitigating office performance uncertainty of occupant use of window blinds and lighting using robust design. Building Simulation:1-16.

Reinhart CF. 2004. Lightswitch-2002: a model for manual and automated control of electric lighting and blinds. Solar Energy 77:15-28.

Saldanha N, Beausoleil-Morrison I. 2012. Measured end-use electric load profiles for 12 Canadian houses at high temporal resolution. Energy and Buildings 49:519-530.

Wang D, Federspiel CC, Rubinstein F. 2005. Modeling occupancy in single person offices. Energy and Buildings 37:121-126.

Carleton project team

Tareq Abuimara PhD student Civil Engineering

Aly Abdelalim, PhD Post-doc Environmental Engineering

Sara Gilani, PhD Post-doc Civil Engineering

Mohamed Ouf, PhD Post-doc Civil Engineering

Prof. Liam O'Brien

Prof. Burak Gunay

Prof. Ian Beausoleil-Morrison

Partners and Sponsors

Natural Resources Ressources naturelles Canada Canada

Thank You

Sara Gilani

Email address: SaraGilani@cmail.carleton.ca