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Part 1:

Basic theories
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Why do occupants matter in buildings?

e Occupants are not Occupant(s)
passive recipients of *
bu||d|ng5. C(:)r;zrii;c;r;i Building Performancey,

* They actively and
continually attempt
to improve comfort.




Why do occupants matter in buildings?
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Why do occupants matter in buildings?
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Why do occupants matter in buildings?

|
Renewable energy generation

capacity for 50% chance of
achieving net-zero energy

Uncertainty
from occupant
behaviour

Probability

................ 90% chance of
achieving net-zero
energy

Energy Use

Occupant effects: 10 to 1000%




What are occupant behaviors?

Triggers

Contextual factors:
* Control systems
* Cost of energy

e Social constraints

Comfort:

* Thermal
* Visual
* Acoustic
* 1AQ

Behaviors

Non-adaptive:
e Occupancy (i.e. presence of occupants)

g Using plug-in equipment

* Turning off lights

Adaptive:
* Turning on lights
* Opening/closing windows/blinds
* Adjusting thermostats
* Changing clothing level




What are occupant behaviors?

Direct physical causal effect
------- Indirect physical causal effect
— — Comfort related causal effect

Key occupant behaviors and
how they may impact building
energy performance:

Office equipment

—_— Heating
/
Cooling
/
/
/ \/\
/ 4 Lighting

Indirectly affects /
heating/cooling

load I/
comgiel [ | (O'Brien et al., 2018)
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What are occupant modeling approaches?

Two main occupant modeling approaches:
e Standard-based models
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deterministic
o mo del
=)
o Uncertainty
g ‘7 bounds for
8 static stochastic
b= model
D
—
. »
* Advanced occupant models o Time of day (hours) 24
1--————=——
= c I Dynamic
g o le— deterministic
© @ | model
2 = | Dynamic
= 2 | stochastic
82 |
° g I
o | (O’Brien et al., 2018)
0 > Z

[lluminance



What are occupant modeling approaches?

e Standard-based models are the current practices in
modeling occupant in buildings.

* Limitations:
* |naccurate prediction of building performance
* Poor design decision-making based on the inaccurate

simulation results
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What are advanced models?

Advanced occupant modeling

1. Dynamic
y Occupant(s)
Comfort Adaptive
conditions actions
Operating T Performance
conditions - Bwldmg >

(O’Brien, Gunay, 2015)

>

2. Stochastic

Probability

Building performance
(O’Brien et al., 2018)

3. Agent-based

4. Data-driven



What are advanced model forms?

1. Markov chain:

This model form predicts whether an occupant

takes an action in the next timestep or next event:
1. Discrete-time

2. Discrete-event

2. Bernoulli:

This model from predicts the state of a building
system or component.

3. Survival

This model form predicts the duration of a state
right before an event happens.



Which occupant models to use?

Occupant modeling strategies vary for different
applications:

* What is our aim from simulating a building or a
room-level model?

* How big is the building we simulate?

* What type of building we simulate?



What is our aim from simulating a
building or a room-level model?

* Code compliance

* HVAC design

* Net-zero energy design
* Comfort assessment

* Facade design
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How big is the building we simulate?

* The larger the building size, the lower the
uncertainty in the predicted whole-building energy
use

-
N

—

o
=
|

S e e Coo
2 =S
]

Lighting electricity use intensity
[KWh/m?]
»

0 50 100 150 200 250 300 350 400 450 500
Number of offices (Gilani et al., 2018)



What type of building we simulate?

* Energy uses of various building types have different
sensitivities to occupant behaviors.

Regular staff/
Employees

Medical

office
Non-med.

office

Nursing
home/care
Hospital gchoo facility

Warehouse

Food/beverage
store

Retail Mote'/

Building owner/ Visitors/guests/customers/
manager patients/students

(O’Brien et al., 2018)



Which occupant models to use?

Use cases:

* Whole-building energy prediction

* Building system and plant equipment sizing
* Net-zero energy buildings

* Occupant comfort

* Facade design



Whole-building energy prediction

e Current method:

Standard schedules 5 N'E' 6 i e g e o
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Building system and plant equipment sizing
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Net-zero energy buildings

* Current method: o
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e Current method:

Standard sched

Lack of distribution of energy use

ules

and number of occupants’
interactions with buildings

* Proposed method:

Dynamic-deterministic or
dynamic-stochastic models

Potential for robust design by

reducing occupants’ interactions

with buildings
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Facade design

e Current method:

Standard schedules

Lack of providing an insight into %2,
occupant-related uncertainty and
occupants' interactions with
facades' components

* Proposed method:

Dynamic-deterministic or
dynamic-stochastic models

Potential for optimal design

3.0m

(Gilani et al., 2016)
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Part 2:

Implementation of advanced
models in EnergyPlus
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Discrete-time Markov chain models
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Advanced occupant models from literature
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EnergyPlus EMS Application

(1) Schiavon and Lee (2013)

Clothing

(1) Reinhart (2004)
(2) Wang et al. (2005)
(3) Page et al. (2008)

Presence

(1) Hunt (1979)
(2) Reinhart (2004)

Light Switch-on

(1) Bovce et al. (2006)
(2) Reinhart (2004)

Light Switch-off

(1) Reinhart (2004)
(2) Newsham (1994)
(3) Haldi (2010)

Blinds Use

(1) Rijal et al. (2008)

(2) Haldi and Robinson (2009)
(3) Yun and Steemers (2008)
(4) Haldi and Robinson {2008)

Window Use

(Gunay et al. 2015)
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nergyPlus EMS Application

EMS variables

* Sensors

* Actuators

* Built-in variables
* Global variable

\ 4
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South-facing shoebox model

Daylight sensor in the center and at the workplane
height (0.8 m)
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EnergyPlus EMS Application

* We will implement advanced occupant
models for:

1. Occupancy: Wang et als (2005) model

2. Light: Reinhart’s (2004) model



Wang et al.’s occupancy model

EMS Sensor EMS Program EMS Actuator

Current time Wang et al.'s model Occupancy state

Event time (arrival, departure,
lunch, two breaks):
Normal distribution

Vacancy duration:
Exponential distribution
2
1.0 £
c 0.8 First break 0.25 )
o a
=l Lunch 1 o 25
g 0.6 Second break 0.25 0.1
° .
> 1
2 04
§ Event time
s mmm
0.0 Arrival
0 0.2 0.4 0.6 0.8 1 First break 10
Lunch 12 0.25
Random number
Second break 15

Departure 18



Reinhart’s light switch model

EMS Sensor

EMS Program EMS Actuator

Current time

32

*Occupancy Reinhart’s model Light state
*Daylight
1.0
c
208
S _— Arrival 1.6+0.3  -0.009 +0.002
3 WO ntermediate  -3.9£0.5  -0.002 + 0.0005
.: 06 L Switch-off at departure -1.3+0.3 0.003 + 0.001
£ 0.
20
>04 | eBotB.x;
5 P — ,3 Light switch-on:
© +B X
'§ 0.2 r 1 + ero T x = workplane illuminance
o
0.0 ' '
0 200 400 600 800 1000

Workplane illuminance (Ix)



Part 3:

Sensitivity analysis



Sensitivity analysis

Glazing systems design parameters
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Sensitivity analysis

* Two window shade control systems:
(1) blinds are closed all the time
(2) blinds are open all the time
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Sensitivity analysis
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* Impact of energy conservation measures (ECMs) on the
predicted building energy use

00

0.7

0.6

Occupancy

[
1]
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Time of the day
= =Default schedule — Average measured
—Maximum measured Minimum measured
9

woe om om a o=

Power density W/m?

1 2 3 4 5 6 T 8 9 10 11 12 13 14 15 16 17 18 19

Time of the day

= = Default schedule Average measured
——Maximum measured Minimum measured

(Abuimara et al., 2018)

20 21 22 23 24

Design option with default loads & schedules Design options with average
measuredloads & schedules
Rank De s.ig . EUIMJ/m2] Reduction De s.ig . EUIMJ/m2 | Reduction
Options Options

1 (WT-01) 507 9% (WT-01) 469.63 10%

2 (WWR20) 523 6% (WWR20) 491.9 6%

3 (BO-0.95) 532.56 5% (BO-0.95) 496.65 5%
4 (CH-COP) 539.6 3% —l > (WI-4.4) 505.32 3%

5 (WI-4.4) 539.87 3% »| (CH-COP) 506.18 3%

6 (RI-8.81) 540.64 3% (RI-8.81) 506.48 3%

7 (WT-02) 542.31 3% (BO-0.9) 506.81 3%

8 (WI-3.52) 542.66 3% » (DCV) 500.39 3%

9 (BO-0.9) 542.71 3% " (RI-7.04) 510.23 2%
10 (RI-7.04) 544.99 3% » (WI-3.52) 510.51 2%
11 (INFL30) 547.85 2% » (WT-02) 510.64 2%
12 (RI-5.28) 549.12 2% (RI-5.28) 515.69 1%
13 (DCV) 549.29 2% " (WI-2.64) 515.91 1%
14 (WI-2.64) 549.53 2% » (INFL30) 516.12 1%
15 (ERV) 553.77 1% (ERV) 518.16 1%
16 (P&F) 557.57 0% (P&F) 521.67 0%

|7 mse s o | | mese w1 o |

18 (SH-0.4) 561.74 0% (SH-0.4) 526.86 -1%
19 (SH-0.6) 566.07 -1% (SH-0.6) 528.94 -1%
20 (WWR40) 571.95 -2% (WWR40) 537.3 -3%
21 (WWRG0) 618.22 -11% (WWRG0) 585.12 -12%




Sensitivity analysis

 Various parameters:
o ECMs
o Climate zones

o Building types

o Building sizes

o Building users-related domains
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