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Abstract

The  current  paper  reviews  models  of  arithmetic  fact  retrieval  in  adults,  as  well  as

evidence from empirical studies and neuropsychological findings.

The focus is on the form of mental representations used to access and store arithmetic

facts. Additionally, the solution methods used by adults are reviewed, as are individual

differences in proficiency and solution methods.  Finally, criteria for future models of

arithmetic  fact  retrieval  are  suggested  with  respect  to  mental  representations  and

solution methods.
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Just the facts: On the Representation and Solution 

of Basic Arithmetic Facts in the Adult Mind/Brain

Work in the area of numerical cognition is concerned with questions including:

How is arithmetic information represented in the mind? (i.e., what are the symbols),

How do people solve arithmetic tasks? (i.e., how are the symbols processed), What are

the factors affecting problem solution?(e.g., culture, skill level, anxiety, problem format),

and What memory structures are involved? (e.g., working memory, long-term memory).

The purpose of the current paper is to review models of arithmetic fact solution in

adults, primarily with a concern for the form of mental representations of facts but also

for the solution methods used. The issue of representation is central and controversial

within cognitive science more generally, as well as within the area of numerical

cognition. The focus in the current paper is on basic arithmetic facts, the single-digit

facts for addition and multiplication and the corresponding subtraction and division

facts, because they are learned (to some extent) by all members of our society and

serve as a basis for more advanced calculations. 

The most robust finding in the study of arithmetic fact solution is the problem-

size effect, the finding that calculation times and errors increase with the product of the

operands (Ashcraft, 1992). Thus, larger problems (generally defined as problems where

the product of the operands is greater than 25, e.g., 8 + 7) take longer to solve than

smaller problems (generally defined as problems where the product of the operands is

less than or equal to 25, e.g., 4 + 3). The introduction of the problem-size effect is made

in the current paper because, as a cognitive phenomena, it can be assumed to arise

either due to the representations and/or solutions. The explanation for the problem-size
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effect varies across models. 

In the current paper an exploration of the mental representations used in the

solution of basic arithmetic facts will be undertaken using evidence in the form of

empirical studies, computational modeling, and neuropsychological findings. The

framework for the investigation will be current models of numerical cognition. A number

of models of numerical cognition have been proposed. The models differ in the

representations they posit, the solution methods they assume (such as direct retrieval

of a fact from memory or other procedural methods), and the tasks they model.

Dehaene's Triple-code model (1992, 1997) is based on neuropsychological evidence,

as is the modular model of McCloskey, Caramazza, and Basili (1985). Ashcraft's (1982)

Network Retrieval model and Siegler and Shipley 's (1995) Adaptive Strategy Choice

model both have a developmental influence, and Campbell's (1995) Network

Interference model and Anderson's Brain-state-in-a-box model are based on adult

empirical evidence. Most of the models have been implemented computationally.

Models of Numerical Cognition

Dehaene (1992, 1997) outlines the Triple Code Model of numerical cognition.

Within the model, numerical information is represented in Arabic numerals, verbal (i.e.,

phonological), and analogue-magnitude codes. The form of mental representation used

depends on the task being performed: simple calculation (i.e., single digit), complex

calculation (i.e., multi-digit), quantification, or approximation. The analogue magnitude

code is posited to take the form of a compressed number line (following Weber's Law)

wherein larger numbers are less discriminable than smaller numbers. The analogue

codes correspond to the semantic representation of number. Along with the three
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proposed code formats, Dehaene also proposes two separate calculation pathways,

one for exact arithmetic (which uses Arabic or verbal codes) and one for approximate

calculation (which uses analogue-magnitude codes).

Calculation of simple arithmetic facts within the Triple Code Model relies solely

on verbal (phonological) representations and makes use of the exact arithmetic

pathway. The arithmetic facts are stored as a “learned lexicon of verbal associations”

(p.34, Dehaene,1992) that makes use of more general language areas not specialized

for arithmetic. Dehaene's model predicts the “concurrent breakdown of language and

calculation”.

Campbell (1995) outlines a computational simulation of the network-

interference model. The scope of Campbell's model is smaller than that of Dehaene's,

in that it only models the retrieval of simple addition and multiplication facts. Within the

network interference model, numerical information is represented in both magnitude

codes and physical codes (visual and verbal). The magnitude code is compressed

using the same scaling method as proposed in Dehaene's model, such that larger

magnitudes are less discriminable than smaller magnitudes. Visual codes again

correspond to Arabic numerals. Thus, the actual codes used agree with Dehaene's.

The difference, however, lies in the combined versus selective use of magnitude and

physical codes for the solution of basic arithmetic facts. In Campbell's model the

operand pair and operation are represented in physical codes, the approximate size of

the answer is represented in a magnitude code. Each fact is stored as a combination of

operand pairs, operation sign, and answer (e.g., 3 5 + 8). Arithmetic facts are stored in

an interactive network wherein similarity of physical and magnitude codes leads to
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parallel activation of associated facts. 

Within the Network Interference model, retrieval consists of a number of

processing cycles during which facts receive excitatory input based on their similarity to

the fact in question and inhibitory input based on the activation of other facts. Once a

fact exceeds a threshold, its answer is given. As the magnitudes of larger problems are

less discriminable, they activate more facts and thus result in more inhibition producing

the problem-size effect.  One of the largest criticisms leveled against the network

interference model is that it is unfalsifiable.

Ashcraft (1997) outlines a computer simulation of the Network Retrieval model.

The scope of Ashcraft's model is larger than that of Campbell's in that it models both

production and verification of basic addition and multiplication facts over the course of

arithmetic development to adulthood. Within the network retrieval model, facts are

stored in an interconnected network. The network can be viewed as an arithmetic table

with operands as row and column labels with the answer at the intersecting cell.

Ashcraft's model also has dual-route calculation pathways, one for retrieval of facts and

another for procedure use. The two pathways are activated in parallel and compete in

horse race fashion. 

In the Network Retrieval model, retrieval consists of spreading activation from

the operands to the answer and is always faster than procedure use. The strength of

activation for a given fact is a function of experience with the fact based on evidence of

exposure through textbooks and other medium for the appropriate level of

development. Given this definition, larger problems have lower activation rates based

on less frequent exposure, leading to the problem-size effect in retrieval trials.
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Procedure use only “wins the horse race” when no answer exceeds the threshold

during retrieval. The only procedure built into the simulation was counting, but the use

of other procedures was slated for future versions. The problem-size effect in procedure

trials is a result of longer counting times for larger problems. Ashcraft, however, does

not see much of a role for procedures in adult's solution of basic facts. Indeed, he

states that procedure use is not expected to extend much beyond fourth grade.

Ashcraft's model does not make specific the format or contents of arithmetic fact

representations. Ashcraft does state, however, that he believes “the domain of

arithmetic is, in principle, similar to other long-term memory knowledge, both in it's

representational format and in the processes used to access this knowledge.” (1997, p.

302).

McCloskey, Caramazza, and Basili (1985) outline a modular model of cognitive

arithmetic. The scope of the modular model encompasses calculation of basic facts, as

well as multi-digit calculations, and the encoding and transcoding between multiple

forms of numerical representation. Although the modular model posits roles for multiple

representational forms including Arabic and verbal codes, “number-semantic

representations constitute the principal numerical “language of thought,” and other

internal representations serve principally to interface the semantic representations with

external numerical formats”(p. 357, McCloskey & Macaruso, 1995). Number-semantic

representations are magnitude representations akin to those posited by Dehaene and

Campbell. McCloskey posits the content to be the quantities and associated power of

ten for the numeral (e.g., 5030 as {5}10 EXP 3, {3}10 EXP 1). 

Retrieval in the modular model consists of converting the problem to number-
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semantic representation which activates the stored fact in memory, allowing  access to

the number-semantic answer representation . The answer can then be converted to an

external format for response. McCloskey states that it is unclear whether arithmetic

performance uses specific processing areas but expects that at least the use of verbal

codes for production and comprehension is expected to make use “general lexical

processing mechanisms” (p. 152, 1992).

Seigler and Shipley (1995) outline a computational simulation of the adaptive

strategy choice model (ASCM). The scope of ASCM is developmental, looking at the

strategy choices children make in simple addition over the course of development from

age 4 – 12. The model has also been used, however, by researchers interested in

understanding adult performance, as ASCM provides a role for procedure use. ASCM

is a further development of the distributions of associations (DOA) model of Siegler and

Shrager (1984). In both the ASCM and DOA models, associations are formed between

operands and answers based on experience. The associations may be peaked –

associated strongly with one answer, or flat – weakly associated with multiple answers.

One new feature of ASCM is the strategy database that stores information on all an

individuals known strategies including the speed and accuracy (based on data and

inference) for each strategy overall, for problems sharing a specific feature (e.g., 2's

facts), and for specific problems (e.g., 2 + 3), along with an index of the strategy's

novelty. 

In ASCM, when a fact is presented for solution the data is used to predict how

well each strategy will be at solving it. The choice of strategy to implement is made

based on the predicted strength of each strategy relative to all other strategies. If the
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strategy chosen is a procedure it is implemented and completed and the arrived at

answer is stated. If the strategy chosen is retrieval a retrieval attempt is made and

evaluated based on a confidence criterion (i.e., how confident the individual is that the

answer is correct) if the confidence criterion is not met then another retrieval attempt is

made, assuming a set search length (i.e., the maximum number of search attempts

permitted) has not been reached. Retrieval attempts continue until either the confidence

criterion is met – and the answer is stated, or the search limit has been reached – at

which time another strategy is chosen and completed. The problem-size effect arises in

the ASCM model from two sources: weaker associations for larger problems and more

lengthy procedures for larger problems. The form of the representations in ASCM is not

explicit.  It does, however, provide for non-retrieval strategy choices lacking in most

other models of numerical cognition.

Anderson (1998) outlines a neural network model that makes use of the more

general Brain-state-in-a-box model (BSB) of Anderson, Silverstein, Ritz, and Jones

(1977). The BSB model is an auto-associative network (i.e., all nodes are connected to

all other nodes, as in a Hopfield network), which gives the network a completion

property such that it can regenerate missing parts of a pattern. The BSB model is

psychologically based and is versatile; it has been used to model a variety of tasks. The

focus in BSB models is on representations versus complex learning algorithms. The

scope of the Anderson model was primarily multiplication fact retrieval, although

number comparison, verification, and priming tasks were also completed by the model,

demonstrating its versatility. Anderson (1998) posits a hybrid representation of number

with an arbitrary symbolic component (i.e., number name) and an analog sensory
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component. The analog sensory component corresponds to a mental representation of

magnitude akin to that seen in both the Dehaene and Campbell models. The hybrid

representation allows movement between the magnitude and abstract components with

the abstract component connecting up to other cognitive domains. Facts are

represented as a concatenation of the three number representations - operands and

answer. 

The network was trained on facts (e.g., 2 x 4 = 8) and then given a fact to solve

(e.g., 2 x 4 =).The network then generated the answer via its completion property. The

problem-size effect arises from the magnitude component with answers to larger

problems being less discriminable than answers to smaller problems. Errors in the

network were similar to human errors in that they were close to the correct answer and

associated, and in that non-product answers were rare. Anderson's findings led him to

posit a human multiplication algorithm: the answer to a multiplication product is a

product (i.e., familiar) and about the right size. Thus, he concluded that arithmetic fact

retrieval is a process that combines memory with estimation.

Representations

So, given the models outlined in the previous section what can we conclude

about the form of mental representations of arithmetic facts? First, are mental

representations of arithmetic facts necessarily phonological? This question is one of the

most controversial questions regarding representation of arithmetic facts. Dehaene

posits that arithmetic facts are stored and accessed solely using phonological

representations regardless of the external format the problem is presented in. Thus, a

problem presented in Arabic format must first be translated to a phonological



Arithmetic Facts 11

representation, which is then used to access the stored fact. The stored fact, also a

phonological representation, can then be transformed to the appropriate external

response code. 

The position that arithmetic facts are represented phonologically is based on

evidence including the finding that bilinguals solve arithmetic facts faster in the

language they were acquired in and that multiplication impairment is often associated

with language disorders (Butterworth, 1999; Dehaene, 1997; Whalen, McCloskey,

Lindemann & Bouton, 2002). The evidence, however, is not entirely convincing in that

differences in bilingual solution times may reflect comprehension and production

differences across the two languages. Moreover, intact calculation is found in cases of

severe aphasia and impaired calculation is found in cases with intact language abilities

(Butterworth, 1999; Whalen, McCloskey, Lindemann & Bouton, 2002). 

Whalen et al. (2002) further evaluated the position that facts are accessed and

retrieved using phonological representations. Patients KSR and JM, who suffered

cerebro-vascular accidents that left their ability to comprehend and produce spoken

language severely impaired, performed experimental tasks designed to test the

hypotheses. Both KSR and JM were able to produce and comprehend Arabic numerals

and perform calculations on them. They were both severely impaired in producing and

comprehending spoken numerals. To test whether facts are accessed using a

phonological representation, simple arithmetic facts in Arabic numerals were presented

(e.g., 2 + 6 = ). The task was to say the problem aloud and then write the answer. KSR

and JM were both impaired in their ability to correctly state the problem (12 % and 50 %

accuracy respectively), however both were successful at writing the correct answer to
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the displayed problem (98 % and 91 % accuracy respectively). The results show that

arithmetic facts were not accessed using the phonological representation. To test

whether facts were retrieved in phonological representations, simple arithmetic facts

were again presented in Arabic numerals, but the task now was to say the problem

aloud, say the answer aloud, and finally to write the answer. The spoken and written

answers were compared. KSR and JM were both impaired in their ability to correctly

state the answer (35 % and 73 % accuracy respectively), however both were successful

at writing the correct answer to the displayed problem (99 % for KSR, JM's value not

given). The results show that arithmetic facts were not retrieved in phonological

representations. Whalen et al. concluded that “arithmetic facts are neither stored nor

retrieved exclusively in phonological form” (p. 516). If we conclude that arithmetic facts

need not be represented phonologically other controversies remain.

Are arithmetic facts accessed and stored in a single representational code –

whatever form it might be – or in multiple codes? This question constitutes another

major controversy. Taking up the single code position are both McCloskey and

Dehaene. McCloskey posits that the code is an abstract number-semantic code, in

contrast to Dehaene's position of a phonological code. The single-code position

requires that, regardless of the external format presented, the problem is transcoded

into the internal representational code that is used to access and store facts. Taking up

the multiple code position are both Campbell and Anderson. Campbell posits interacting

verbal, visual (Arabic), and magnitude representations. Anderson's position seems less

explicit than Campbell's. As movement occurs between the two components of his

hybrid representation (symbolic and sensory), I have chosen to place it in the multiple
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code camp. The multiple code position “implies representational redundancy” (p. 293,

Whetstone, 1998). Facts may be stored and accessed using different non-matching

codes but solution times will be faster when the codes match (Whetstone, 1998).

Whetstone (1998) investigated the single versus multiple code positions,

looking at transfer of training. The single code models predict complete transfer of

training across Arabic, written, and spoken word formats. That is, with the exception of

differences in encoding times across format types, response times and error rates

should be the same regardless of whether the training format matches the testing

format. The multiple code models predict partial transfer of training across formats.

That is, response times, and possibly errors, should be greater when the training format

does not match the testing format.  Patient MC suffered selectively impaired

multiplication fact retrieval following removal of a brain tumor. Three subsets of

multiplication facts were created and MC relearned one subset of multiplication facts in

each of the three different formats (Arabic numerals, written, and spoken words) to a

level of 97 % accuracy. Each fact was learned in only one format. Testing of each fact

was then done in each of the three different formats. Accuracy in testing was 97 % for

both cases when training and testing conditions matched and did not match. The

findings were consistent with the single code models and not inconsistent with multiple

code models. Response times did show an effect of whether training and testing

formats matched. Response times were indeed longer when the testing and training

formats did not match. Thus, the response time data showed evidence for the multiple

code models; “simple multiplication can be affected by the format in which problems are

trained and tested” (p. 306, Whetstone, 1998).
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If arithmetic facts are accessed and stored in multiple representational codes,

then specifically which codes are they represented in? Campbell's (1995) model posits

a role for magnitude codes along with physical codes (visual and verbal), and Anderson

posits magnitude codes and an arbitrary symbolic component, which corresponds to

number name but could be an Arabic numeral, verbal, or written word code. Which

codes are internal representations fundamental to access and storage of facts and

which are simply used as external codes? Empirical work is needed to determine the

correct number and forms of internal representations of arithmetic facts. In Anderson's

model, the magnitude component is responsible for the production of all major effects.

Campbell, McCloskey, and Dehaene all posit a role for magnitude, though Dehaene

does not view it as being used for fact retrieval, and all agree on how it should be

represented. The representation of magnitude, as it occurs in all presented models, is

biologically plausible (Anderson, 1998). Magnitude representations are activated when

necessary for a task and even when not obviously so (McCloskey & Macaruso, 1995).

Moreover, magnitude representations contain the semantic information about numbers

and number facts and thus seem central to numerical cognition. 

Both Butterworth (1999) and Dehaene (1997) posit an innate ability to make

use of magnitude information that surfaces in newborn children and even in other

animal species. This ability to discriminate between small numbers of objects (up to

about four) is posited to provide the basis for more abstract representations of number

and number facts. According to this evidence it seems reasonable that magnitude

representations are central to our numerical abilities. Polk et al. (2001) provide

evidence from a brain-damaged individual that the innate abilities proposed by
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Butterworth and Dehaene are only one component of magnitude information and

propose a dissociation between magnitude information and symbolic knowledge. As

well, studies like that of Whetstone (1998) and studies with normal populations are

outlining what additional representations are necessary. Both computational modeling

and further experimentation should illuminate the representations used in fact storage

and retrieval. 

Another issue involves the organization of fact representations in memory. Are

operations interconnected? Errors to facts are often made that are correct for other

operations (e.g., 4 + 2 = 8) suggesting that they may be (Campbell, 1995).

Neuropsychological evidence from brain-damage patients provides evidence for the

opposite position, as single operations may be selectively impaired (Whetstone, 1998).

Mauro and LeFevre (2003) argue that division facts are mediated by multiplication facts

for some individuals, and similar arguments have been made for subtraction. This may

also reflect the lack of representations for division and subtraction facts. 

Solution methods

Do adults retrieve the answers to all simple facts from memory? Many of the

models outlined either make this assumption, or restrict the model to only this method

of solution. Ashcraft's (1997) model does has a poorly defined non-retrieval route that

allows the answer to be counted, but this route is not implicated in adults' solutions.

Siegler and Shipley's (1995) model has a large role for procedural solutions, again

primarily in children.  The ASCM model has been adapted as a model of adult solution

by researchers who posit that adults use procedural strategies, in concert with retrieval,

yet lack an agreeable model of adult performance. 
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Adults have been found to use a variety of methods in the solution of basic

arithmetic facts (Campbell & Timm, 2000; Campbell & Xue, 2001; Geary, Frensch, &

Wiley, 1993; Geary & Wiley, 1991; Hecht, 1999; LeFevre, Sadesky, & Bisanz, 1996;

LeFevre, Bisanz, et al., 1996). Self-reports of solution methods have provided the bulk

of evidence for use of procedural strategies, however, objective sources of converging

evidence support the position (Penner-Wilger, 2003; Penner-Wilger, Leth-Steensen, &

LeFevre, 2002). Adults report use of a variety of procedures including: counting based

procedures (e.g., 3 + 4 = 3, 4, 5, 6, 7), use of derived facts, where another known fact is

used to aid solution (e.g., 3 + 4 = [3 + 3 = 6] + 1 = 7), and repeated addition (e.g., 3 x 4

= 3 + 3 + 3 + 3 =12). Procedure use increases with problem size. Campbell and Xue

(2001) found that procedure use rose from 12 % for small addition problems to 36 % for

large problems, and these findings are consistent with others in the literature.

Researchers have found it useful to classify individual participants into three distinct

groups: frequent procedure users, occasional procedure users, and retrievers (LeFevre

et al., 2003; Penner-Wilger, 2003). Separate patterns of performance can be seen

across groups in terms of the problem-size effect and other phenomena.

Neuropsychological research has determined a double-dissociation between retrieval of

facts and use of procedural strategies based on studies of brain-damaged patients

(Butterworth,1999; Dehaene, 1997). The incorrect assumption that adults retrieve the

solution to all basic arithmetic facts is problematic for the Campbell (1995), McCloskey

et al. (1985), and Anderson (1998) models, and the restricted variety and use of

procedures is problematic for Ashcraft's (1997) model.  Currently, no sufficient model of

adults' solution of arithmetic facts exists. A sufficient model would need to both include
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explicit representational codes supported by empirical evidence and acknowledge and

provide mechanisms for the variety and proportion of procedure use found in empirical

studies of adult performance.

The problem-size effect results from both representations and solution

methods. The magnitude representation plays a role via the decreasing discriminablilty

of answers to larger problems. Solution methods also play a role as procedures

including counting, repeated addition, and decomposition take longer to implement for

large problems then small problems. LeFevre et al. (1996) found that the problem-size

effect was reduced but not removed when procedure trials were omitted from the

analysis. Penner-Wilger et al. (2003) also found a role for both magnitude

representations and procedure use in the explanation of the problem-size effect.

Presentation format (Arabic numerals versus written words) has recently been

found to affect the percentage of and choice of procedures used (Campbell & Timm,

2000). Campbell, Parker, and Doetzel (in press) examined the effects of presentation

format on the solution of single-digit addition and multiplication facts. Participants were

presented facts in either Arabic digits (e.g., 3 + 4 =) or written words (three + four =)

and gave the response verbally. Participants then stated the solution method used from

the following list: Transform, Count, Remember, and Other. Remember corresponds to

retrieval and transform corresponds to the use of a derived fact. Campbell et al. found

that participants used procedures more often for facts presented in word format than in

Arabic digit format (45 % versus 29 % procedure use respectively). Moreover, this

difference was due to an increase in counting rather than transformations. This is

surprising because generally an increase in procedure use is fueled by an increase in
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transformations (derived facts). Campbell et al. explain this result by positing that the

word format interrupts retrieval, both for the presented fact and for derived facts, thus

participants are forced to use well known but less efficient counting procedures. The

results of this research provide further support for a multiple code model and show that

processing is also affected at the level of solution method.

Individual differences

Numerical cognition is an area “rife with individual differences”(Penner-Wilger, 2002).

Large differences in proficiency are found even at the level of basic facts in adults

(LeFevre, Sadesky & Bisanz, 1996; LeFevre, Bisanz et al., 1996). Within the described

models, individual differences in proficiency are explained primarily in terms of

representational strength. Within Ashcraft's Network Retrieval model (1997),

representational strength influences whether retrieval is successful or the answer is

calculated using a counting procedure. Campbell states that within his network

interference model “adjustments, for example, in the efficiency of inhibition or in the

relative contribution of physical and magnitude codes to retrieval represent a means for

modeling individual differences”(p. 157, Campbell, 1995). Within the ASCM model

(Siegler & Shipley, 1995) individual cognitive styles have been modeled based on

empirical findings that participants can be divided into good students, not-so-good

students, and perfectionists (Siegler, 1988). Good students have strong (peaked)

association between facts and answers, they use retrieval and perform quickly and

accurately. Not-so-good students have weak (flat) associations between facts and

answers, they use a mix of retrieval and other procedures. Not-so-good students set a

low confidence criterion, thus they are more likely to state an incorrect answer.
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Perfectionists have strong (peaked) associations yet use a great deal of procedures.

Their performance is fairly fast and very accurate. The difference between good

students and perfectionists is the confidence criterion they set; the criterion is higher in

perfectionist students leading them to use procedures more often. In the ASCM model

these differences are modeled by controlling the distribution of associations between

facts and answers and the confidence criterion.

In the described models, individual differences are explored at the level of

strength of associations between facts and answers, and differences in solution

strategies. It is important to note that though termed individual differences in the

literature these are best viewed as group differences. But what about the possibility of

differences, not just in the strength of the representations, but in the form of the

representations themselves across individuals? Noel and Seron (1993) posit the

preferred entry code hypothesis, which states that certain representations may be more

suitable to certain tasks (in agreement with the Triple-code model) and, moreover, that

individuals may prefer certain representations for idiosyncratic reasons. The possibility

of individuals using different representations has not been taken very seriously in the

numerical cognition literature. If correct, however, researchers  would be required to

analyze  data at the individual rather than group level. The possibility of individual

differences at the level of representational form is an interesting question for further

investigation.

Conclusion

The issue of mental representation is controversial and hotly debated in

numerical cognition, as well as in other areas of cognitive science. The current paper
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suggests that representations used to access and store arithmetic facts are not solely

phonologically based. Instead, representations of multiple codes are used in fact

solution including a core magnitude component along with some or all of the following

codes: phonological, Arabic/visual, and written word codes.

Adults use a variety of solution strategies for solving basic arithmetic facts.

Though controversial in the recent past, this finding is gaining acceptance within

numerical cognition. Current models of numerical cognition are incomplete, in that no

model  has both explicit in it a group of representations (as described above), as well as

mechanisms that allow for the pattern of strategy use found in adult performance.

Future models will have to meet these criteria.

All models have mechanisms to account for individual differences seen in

arithmetic proficiency and some have mechanisms for describing individual differences

in solution methods. The preferred entry hypothesis suggests that at least some of

these effects may be at the level of representational form. If correct, the hypothesis has

huge implications for the area of numerical cognition.
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