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Abstract

Arithmetic ability is a fundamental skill within our society. In the current research

proposal I address the phenomenon of the solution of basic arithmetic problems

in adults. First, I review current models of arithmetic problem solution and

critically evaluate them based on empirical research. Then, I introduce a new

model – the Hybrid model of arithmetic problem solution. Finally, I outline the first

step and future directions of a research plan designed to evaluate the Hybrid

model. Implications of this research to the area of arithmetic cognition, and to

cognitive science, are discussed.
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The Hybrid Model of Arithmetic Problem Solution:

The Whole is more than the Sum of its Parts

Solve 5 + 6. How did you do it? What representations did you make use

of? What solution algorithm did you use? Skill in basic arithmetic is very

important in our daily lives. We use arithmetic to figure out if we can afford to buy

the drink and the cookie, to decide our portion of the bill, and in many other daily

activities. How people solve arithmetic problems is an interesting question for

cognitive science because our ability (or inability) in arithmetic points to the

limitations of the human mind (Anderson, 1998). Unlike visual processing tasks,

which have been elusive to artificial intelligence, arithmetic is difficult for us but

easy for computers. Thus, research in how people solve arithmetic problems has

the potential to illuminate how the mind works and the nature of cognition.  In the

current proposal I critically evaluate current models, on the basis of empirical

findings. I then propose a new model – the Hybrid model - that is consistent with

empirical findings. Finally, I outline the first step in a research plan designed to

evaluate the Hybrid model.

Many models have been proposed for arithmetic problem solution. The

most notable models of adult performance are MATHNET (McCloskey &

Lindemann, 1992), the Triple-code model (Dehaene, 1992; Dehaene & Cohen,

1995), and the Network interference model (Campbell, 1995). MATHNET and

the Triple-code model are similar at the level of problem solution, though both

model a broader range of arithmetic tasks than simply problem solution. Within

these models the problem is encoded from the presentation format into a single

mental representation format, which is used to calculate the answer. The two
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models differ in terms of what the representational format is. MATHNET posits

that abstract-semantic (i.e., magnitude) representations are used to access and

store problems. In contrast, the Triple-code model posits that phonological

representations are used. The only calculation mechanism used for single-digit

problem solution within the two models is direct retrieval of the answer from

memory. Once retrieved, the answer is then converted from the mental

representation to the appropriate output format. 

There are two serious problems with MATHNET and the Triple-code

model. First, the only solution method within the two models is direct memory

retrieval. This is a serious shortcoming because a wealth of evidence shows that

adults use a variety of procedures (non-retrieval solution methods) including:

transformation (e.g., 5 + 6 = [5 + 5 = 10] + 1 = 11), where a known problem is

used to aid solution of the given problem, and counting-based strategies (e.g., 5

+ 6 = 6, 7, 8, 9, 10, 11), which include counting by ones, twos, and so on

(Campbell & Timm, 2000; Campbell & Xue, 2001; Geary, Frensch, & Wiley,

1993; Geary & Wiley, 1991, Hecht, 1999; LeFevre, Sadesky, & Bisanz, 1996;

LeFevre, Bisanz, et al., 1996). Campbell and Xue (2001) found that procedures

accounted for 12 – 36 % of reported solution methods for single-digit addition

problems, depending on the size of the operands.  These results are in line with

those of many other studies. Thus, any complete model of the solution of

arithmetic problems in adults must include multiple solution methods.

Second, the stages of encoding and calculation in MATHNET and the

Triple-code model are additive, because regardless of presentation format all

calculations are performed on the same mental representation. One important
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implication of this is that presentation format should not influence calculation.

Campbell (1994, 1999; Campbell & Clark, 1992) has found that format does

influence calculation stages by showing that the problem-size effect, a

calculation effect wherein larger problems take longer to solve than smaller

problems, is greater for problems presented in word format. Thus, models that

maintain that presentation format cannot affect calculation are unable to account

for current data.

In the Network interference model (Campbell, 1995) multiple internal

codes are posited, including at least magnitude codes, visual codes (i.e., digits),

and verbal codes. Magnitude codes comprise the semantic aspect of numbers.

In the model, larger magnitudes become increasingly less discriminable. Visual

codes capture the visual features of the number, whereas verbal codes capture

the sound of the number names.  The encoding and calculation stages are

interactive in the Network interference model, thus it is able to account for the

finding that large problems in word format take longer to solve. The model,

however, does not have any non-retrieval solution methods. As a result, it cannot

account for the effects of format on solution methods. Thus, the Network

interference model is also incapable of accounting for the non-retrieval data.

Indeed, no model of adult problem solution has a role for procedure use.

Thus, researchers interested in interpreting their data on solution methods have

turned to the Adaptive strategy choice model (ASCM), a model of children’s

problem solution (Siegler & Shipley, 1995).  In ASCM, associations are formed

between problems and answers based on experience. These associations may

be strong – the problem may be associated with a single answer, or they may be
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weak – the problem may be associated with multiple answers. Given a problem

to solve, a choice is made as to which strategy to use. The decision is based on

the speed and accuracy of the available strategies on previous experiences with

the specific problem presented (e.g., 5 + 6), problems that share a common

feature (e.g., 5 as an operand), and for arithmetic problems in general. A novelty

index is included that functions to develop new strategies by boosting the speed

and accuracy scores of novel strategies. 

In ASCM two strategy-choice pathways exist: one for procedures and one

for retrieval. If a procedure is chosen, the procedure is implemented and the

resulting answer is produced. If retrieval is chosen, a retrieval attempt is made.

The success of the attempt is determined by the strength of the association

between the problem and an answer. The stronger the association, the more

successful a retrieval attempt will be. Thus, retrieval is often chosen for problems

with strong associations because it is efficient. Unlike procedural answers,

however, confidence in the retrieved answer must exceed a criterion before it is

produced. If confidence in the correctness of the answer does not exceed the

criterion, another attempt to retrieve an answer is made. If still unsuccessful at

retrieving an answer with sufficient confidence after a number of trials, a

procedure is implemented.

The ASCM model is useful because it does incorporate multiple solution

methods. Another advantage of the model is the many ways individual

differences arise within it. Empirical research has found a vast range of individual

differences in arithmetic in terms of skill, solution methods, and confidence.

Within ASCM individual differences can be accounted for by considering the
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strength of problem-answer associations, the relative speed and efficacy of

strategies, and the confidence criterion. The model’s shortcomings are that it

does not make explicit the representations used to store and access arithmetic

facts and that it is not equipped to explain the robust effects of presentation

format.

The lack of a complete model hurts the field of arithmetic cognition.

Although the models described can account for many aspects of arithmetic

cognition, no one model is able to account for a full range of data.  Models are

important as they provide a framework for interpreting results and drive empirical

work by facilitating predictions. Therefore, a comprehensive model of arithmetic

cognition is crucial because it will allow researchers to integrate and unify the

wealth of empirical results pouring in form this relatively new field. Thus, the goal

of the proposed research is to develop and empirically test a new model of

arithmetic problem solution in adults – the Hybrid model. 

The Hybrid model of adult problem solution

Instead of throwing the baby out with the bathwater, I propose taking the

most successful elements of previous models and combining them to achieve an

improved and more complete model of problem solution. The proposed Hybrid

model uses ASCM as a starting point because it has roles for both for procedure

use and individual differences. The notion of multiple representational forms,

visual and verbal, is incorporated from the Network interference model to

account for format effects. The Hybrid model differs from ASCM in a number of

ways. First, the novelty index is dropped because novelty does not seem to

influence the strategy choices of adults and the need to develop new arithmetic
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solution procedures is not a common feature in adults’ performance. Second, the

procedures used by adults vary from those used by children, thus the Hybrid

model will make use of common adult procedures including transformation as

well as counting based procedures. Third, the Hybrid model makes explicit the

representations used to store and access arithmetic facts, allowing format to

influence the relative speed and accuracy of different strategies and thus,

strategy choice. Along with other features of the Hybrid model, these adaptations

of ASCM are expected to result in an improved model of arithmetic problem

solution that is greater than making use of the parts in isolation, as is currently

being done by researchers. For example, Campbell and Timm (2000) use the

Network interference model to explain the effects of interference on retrieval of

addition problems, but use ASCM to explain the effects on procedure use. 

A graphical description of the Hybrid model is given in Figure 1. Given a

presented problem to solve, the problem is encoded into a mental representation

(a visual or verbal representation, depending on the presentation format, with a

representation of the associated magnitude). This mental representation may

then, optionally, be transcoded into a preferred representational format, which is

expected to vary across individuals and tasks (Noël & Seron, 1993).  This option

is included based on self-reports, although evidence shows that all individuals do

not simply transcode all of the time with no other effect of presentation format

(Campbell, 1999). In the Hybrid model, a strategy is chosen based its previous

speed and accuracy: (1) overall (i.e., for solving arithmetic problems in general);

(2) for a specific problem (e.g., for solving 6 x 5); (3) for a class of problems (e.g.,

for solving problems with five as an operand, or for solving multiplication
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problems); and (4) for problems of a specific representational type (i.e., for

problems represented visually or verbally). The strategy choices include direct

retrieval from memory, transformation (using another known fact to solve a given

problem), and counting, as these are the most common strategies reported by

adults. 

The Hybrid model, like ASCM, has two strategy-choice pathways. If a

procedure is chosen, it is implemented and the answer is produced. For

transformation, implementation consists of retrieving the answer to a related

problem, one that is strongly associated with a single answer. This is generally a

tie problem in addition or multiplication (a problem where both operands are the

same, e.g. 4 + 4), a fives problem in multiplication (e.g., 5 x 4), or a problem

where the operands sum to 10 in addition (e.g., 6 + 4). Then, an addition or

subtraction is made to the answer of this problem to arrive at the answer to the

presented problem. For 6 + 5, likely transformations include 5 + 5 + 1, 6 + 6 – 1,

and 6 + 4 + 1.  For counting in addition, the larger operand is selected and

incremented by one the number of times of the smaller operand (6 + 5 = 6, 7, 8,

9, 10, 11). In multiplication, counting is done in increments of one of the

operands (e.g., 6 x 5 = 5, 10, 15, 20, 25, 30). The operand chosen to increment

by is made on the basis of experience. Two and five are common choices, likely

because counting by twos and fives is part of the elementary mathematics

curriculum. 

It should become apparent that the speed and accuracy in implementing a

transformation or counting based procedure are affected by the presented

problem. For example, 9 + 8 = 9, 10, 11, 12, 13, 14, 15, 16, 17 would take a long
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time to count because of the number of increments required. Counting also

requires keeping track of the number of increments. When solutions require a

large number of increments, errors are more likely to be made. Counting is a

slow and error prone method for the solution of problems like 9 + 8 and thus,

another strategy choice would likely be made. Consider the use of a

transformation in the case of 9 + 8. Possibilities include 9 + 8 = [10 + 8 = 18] –1

= 17 or 9 + 8 = [9 + 9 = 18] –1 = 17. Both options can be executed rather quickly,

in relation to counting, assuming that the related facts are strongly associated.

Also, the transformations require fewer steps and, thus, fewer chances to make

an error. Direct retrieval of the answer from memory would, of course, be the

fastest option if the problem were strongly associated with an answer. Hence, for

a given problem it is easy to see how the features of the problem will logically

affect the speed and efficacy of any given strategy.

How does format affect problem solution? Campbell (1994) found that

solution times were 30 % slower for problems presented as words than for

problems presented as digits. Problem-answer associations are weaker for less

familiar formats (including words). Hence, representational format influences the

relative speed and efficacy of strategies. The weaker associations would be

expected to lead to a greater use of procedures, and slower retrieval times, due

to an increased number of attempts. Moreover, the effect of format is expected

to be greater for larger problems, for which associations are weaker to start with.

The problem-size effect has been found to be greater for problems presented as

words than for problems presented as digits (Campbell, 1994, 1999; Campbell &

Clark, 1992). In the proposed research, I will use the Hybrid model as a
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framework for interpreting results of adult problem solution and to test

predictions based on the model. 

The primary goal of this first study is to test the predictions that

presentation format will affect problem solution in two ways. First, that word

format will increase procedure use compared to digit format. And second, that

word format will increase solution times compared to digit format when trials on

which participants reported retrieval are considered alone. These effects are

predicted to be greater for large problems than small problems. A secondary

goal is to explore whether some individuals do just transcode unfamiliar formats

into a preferred format. To this end, participants will solve arithmetic problems

and their response times will be recorded along with their reported solution

methods. Participants will complete a large number of trials in order to allow

examination of response time distributions.

The proposed research is unique in that it combines the following

elements: word- and digit-format problems, addition and multiplication problems,

trial-by-trial self-reports, and large numbers of trials. Previous studies have

looked at the effect of format, but examining effects across operations and

collecting participants’ self-reports will allow me to test the Hybrid model and

determine if the findings generalize across operations. Without self-reports I

would be unable to test the predictions generated by the Hybrid model, that

procedure use increases and that response times for retrieval trials increase for

problems in word format, because I would not have a measure of procedure use

or be able to separate procedure trials from retrieval trials. The large number of

trials collected will allow me to make use of distributional analyses of response
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times, which can be used to confirm the overall pattern of each participants’ self-

reports, to test more specific hypotheses including examination of the

transcoding option, and to and refine the model (Penner-Wilger, Leth-Steensen,

& LeFevre, 2002).

Method

Participants

Sixty Carleton University students will be recruited to participate for course

credit or payment. Participants will be required to have normal or corrected-to-

normal vision.  

Apparatus, Stimuli, and Design

A 2 (operation: addition, multiplication) x 2 (format: digits, words) x 2

(problem size: small, large) repeated measures design will be used. Participants

will solve single-digit addition and multiplication problems. Problem operands will

appear as Arabic digits or as lower-case English words, displayed horizontally

using white characters against a dark background. Small problems will be

defined as problems with operands whose product is less than or equal to 25;

large problems will be defined as those whose product is greater than 25. The

two operands will be separated by the operation sign (+ or x), with three spaces

on each side of the operation sign for digit format, and one space on each side

for word format. Therefore, digit problems will occupy eight character spaces and

the length of word problems will range from 8 to 13 spaces.

Participants will receive two sessions (one addition, one multiplication,

with order randomized across participants) of eight blocks of 72 trials with format

(i.e., Arabic digits or lower-case English words) alternating across trials. There
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are 36 possible addition combinations involving the operands 2 through 9 when

commuted pairs (e.g., 5 + 8 and 8 + 5) are counted as one problem.  Within

each block, participants will receive all 36 problems once in word format and

once in digit format. Word format will be used for odd-numbered trials and digit

format for even-numbered trials.  The set of 36 problems includes 8 "ties" (e.g., 5

+ 5) and 28 "non-ties".  Approximately half of the non-ties will be selected

randomly to be tested in the first block with the smaller operand on the left. The

operand order of non-tie problems will then be alternated across the blocks for

each operation.  Problem order in each block will be pseudo-random with the

constraint that word and digit versions of the same problem be separated by at

least 18 trials.

Procedure

Testing will occur in a quiet room with an experimenter present and will

require approximately 45 minutes per session for a total of two sessions. The

problem solution task will be preceded by a 20-trial naming task that alternates

Arabic digits and English numbers words for naming. This will allow participants

to find a comfortable viewing distance, accustom them to rapid responding, and

permit adjustments to the sensitivity of the voiced-activated relay. For the

problem solution task, participants will be asked to respond accurately and

quickly, but told that occasional errors are normal. The experimenter will press a

key to initiate each block. Prior to the first block of trials the following instructions

will appear on the monitor and be read out loud by the experimenter: "After each

problem please indicate how you solved the problem by choosing from among

the following strategies: Transform, Count, Remember, Other. Say
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TRANSFORM if you used knowledge of a related problem. Say COUNT if you

used a strategy based on counting. Say REMEMBER if the answer seemed to

come to you without any intermediate steps, inferences, or calculations. Choose

OTHER if you used some other strategy or are uncertain.” For reference during

arithmetic trials, participants will also receive a sheet of strategy descriptions as

follows: 

Transform: You solve the problem by referring to a related problem in the

same or another operation.  For example, you might solve 17-9=? by

remembering that 17 - 10 = 7 so 17 - 9 must equal 8.   

Count: You solve the problem by counting a certain number of times to

get the answer. 

Remember:  You solve the problem by just remembering or knowing the

answer directly from memory without any intervening steps.

Other: You may solve the problem by a strategy unlisted here, or you may

be uncertain how you solved the problem. 

Prior to each arithmetic trial, a fixation dot will appear and flash twice over

a 1 s interval at the center of the screen. The problem will appear (synchronized

with the monitor’s raster scan) on what would have been the third flash with the

operation sign (+) at the fixation point. Timing will begin when the problem

appears and end when the sound-activated relay is triggered. Triggering the

relay will cause the problem to disappear immediately. This will allow the

experimenter to mark response times spoiled because the microphone failed to

detect the onset of the response. Immediately after the response, the prompt

“Strategy Choice” will appear at the center of the screen with the words
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Transform, Count, Remember, and Other centered immediately below. The four

words will always appear in the same order separated by six spaces. The

experimenter will record the strategy, reported verbally by the participant, by

pressing one of four buttons on the computer keyboard. Once the strategy is

recorded, and the experimenter has entered the stated arithmetic answer, the

screen will be cleared and display the fixation dot for the next trial. No feedback

about speed or accuracy will be provided during the experiment.

Expected Results

A 2 (operation: addition, multiplication) x 2 (format: digits, words) x 2

(problem size: small, large) repeated measures analysis of variance (ANOVA)

will be performed for each of the dependent variables: response times, error

rates, and reported solution methods. Also, response time distributions for each

treatment combination will be examined using the ex-Gaussian distributional

model. Expected patterns of results are outlined.

Response times

Response times are expected to show main effects of all independent

variables. Participants are expected to solve multiplication problems more slowly

than addition problems, consistent with previous research (Campbell & Xue,

2001). Using the Hybrid model, this finding would be expected because stronger

problem-answer associations are formed for addition as a result of greater

experience with addition. Thus, problem solution is expected to be slower for

multiplication because the weaker associations lead to multiple retrieval attempts

and/or greater use of procedures.
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Participants are expected to solve problems in word format more slowly

than problems in digit format, again consistent with previous research (Campbell,

1999). Using the Hybrid model, this finding would be expected because stronger

problem-answer associations are formed for digit format as a result of greater

experience with digit format. In comparison, the less familiar word format will

lead to weaker associations. Thus, problem solution is expected to be slower for

word format because the weaker associations lead to multiple retrieval attempts

and/or greater use of procedures.

Participants are expected to solve large problems more slowly than small

problems, showing the robust problem-size effect. Using the Hybrid model, this

finding would be expected because stronger problem-answer associations are

formed for smaller problems as a result of greater experience with small

problems. Thus, problem solution is expected to be slower for large problems

because the weaker associations lead to multiple retrieval attempts and/or

greater use of procedures.

In terms of two-way interactions, as format is the independent variable of

most interest in this experiment, predictions will be made for the Operation x

Format interaction and the Format x Problem size interaction. Participants are

expected to show a greater effect of format in multiplication than in addition

because the weaker problem-answer associations in multiplication are expected

to be more vulnerable to the unfamiliar word format. A similar outcome is

expected for large problems such that large problems are more affected by the

unfamiliar word format. Thus, participants should be much slower to solve

multiplication problems and large problems in word format due to multiple
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retrieval attempts and/or greater use of procedures. The expected pattern of

results for the Format x Problem size interaction is shown in Figure 2. 

The Hybrid model predicts that operation, format, and problem size affect

the strength of associations and as a result, solution times. This effect on

solution times may occur through increased number of retrieval attempts, a

greater use of procedures, or both. To determine where the effects are

happening, analysis of procedure usage will be done. As well, the trials on which

retrieval was reported will be analyzed separately in a 2 (operation: addition,

multiplication) x 2 (format: digits, words) x 2 (problem size: small, large) repeated

measures ANOVA. This will allow use to determine if retrieval times are indeed

slower for multiplication, word format, and large problems as well as

combinations such as multiplication problems in word format and large problems

in word format. Slower response times would support the hypothesis that more

retrieval attempts are needed to arrive at an answer that exceeds the confidence

criterion. I predict that increases in retrieval response times will be found for

these categories.

Error rates

Error rates are expected to be low and thus, will not be discussed further

here.

Solution methods

Solution methods are expected to show main effects of all independent

variables. Participants are expected to use procedures more often with addition

problems than with multiplication problems, consistent with previous research

(Campbell & Xue, 2001). This prediction may seem counterintuitive, as I have
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already posited that stronger problem-answer associations are formed for

addition as a result of greater experience with addition. In North America,

however, multiplication problems are generally learned by drilling and rote

memory leading to greater reliance on retrieval (in contrast to addition). Thus,

greater use of procedures is expected in addition.

Participants are expected to use more procedures for problems in word

format than problems in digit format. Using the Hybrid model, this finding would

be expected because stronger problem-answer associations are formed for digit

format as a result of greater experience with digit format. In comparison, the less

familiar word format will lead to weaker associations. Thus, word format is

expected to lead to greater use of procedures.

Participants are expected to use more procedures to solve large problems

than small problems, consistent with previous findings (LeFevre, Sadesky, &

Bisanz, 1996). Using the Hybrid model, this finding would be expected because

stronger problem-answer associations are formed for smaller problems as a

result of greater experience with small problems. Thus, the weaker associations

are expected to lead to greater use of procedures.

In terms of two-way interactions, it is unclear whether participants will

show a greater effect of format in multiplication or in addition. The weaker

problem-answer associations in multiplication may be more vulnerable to the

unfamiliar word format and result in an increase in procedures; however, this

increase is not expected to exceed the levels of procedure use in addition.

Solution of large problems is expected to be more affected by the unfamiliar

word format. Thus, participants should use more procedures to solve large
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problems in word format. The expected pattern of results for the Format x

Problem size interaction is shown in Figure 3. 

Examining participant’s self reports will allow me to determine if strategy

choice is affected by operation, format or problem size. If so, this would be

strong evidence in support of the Hybrid model. Indeed, the finding that format

affects solution method would not be explainable within any other current model.

Discussion

In summary, the results of most interest are the affects of format on: (1)

the response times for retrieval trials; and (2) the amount and type of procedure

use. Despite the prediction that both response times and procedure use will be

affected, this need not happen. So long as either pathway is affected, retrieval or

procedural, the findings will still be consistent with the Hybrid model. The model

would allow for both pathways to be affected but does not necessitate that this is

so.  

If the overall increase in response times for problems in word versus digit

format is not the result of an increased use in procedures or an increase in time

to retrieve, two options remain. The first alternative is that participants may

simply be using the optional recoding for problems presented in word format and

then operating on the same representation regardless of format, similar to the

position taken in MATHNET and the Triple-code model.  By looking at the

shapes of the response time distributions for each participant in each condition

this possibility of simply transcoding can be evaluated. Although the model

supports this possibility, it is not expected to be the case that all participants will

simply recode for all problems. Thus, although it would not be inconsistent with
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the model, the finding that recoding is the effect of interest would render the

model unparsimonious and unnecessary. The second alternative is that

participants may simply take longer to implement procedures for problems

presented in word format. This result could be explained within the Hybrid model

such that repeated retrieval attempts fail and a procedure is implemented. The

procedure would be reported but the solution time would reflect both the time to

implement the procedure along with the time spent attempting retrieval

beforehand.

Conclusion

So how do people solve arithmetic problems? If the findings of the

proposed research support the Hybrid model, then we will be closer to answering

this important question. The Hybrid model has the potential to provide a

framework for the study of arithmetic cognition with which to interpret new and

existing data, and to spark new predictions. Further, such a model would have

the power to unite various theories/perspectives in the field; enabling

researchers to further advance our understanding of arithmetic cognition. Thus, if

supported, the Hybrid model is expected to be influential both in the field of

arithmetic cognition and in the broader goals of cognitive science. As arithmetic

performance makes use of more general cognitive abilities, understanding how

people solve arithmetic problems should inform other cognitive domains.

Components of our arithmetic ability may also be domain specific, however, and

an understanding of what makes arithmetic difficult for humans compared to

computers would provide valuable insight into our cognitive capacity.

Future directions include implementation of the Hybrid model. This
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process will include many challenges including: the need for more explicit

descriptions of the representations, determining how representations are

connected to one another, and more detailed solution algorithms. The issue of

representations is central to cognitive science; information on the

representations used to store and access arithmetic facts is expected to be

valuable to other areas of cognition. Also, the Hybrid model includes many

possible ways in which individual differences may arise. Further investigation of

these possibilities will lead to a greater understanding of how we are different

from one another in our arithmetic abilities. These insights are expected to be of

value to researchers in other areas of cognitive science, as well, because many

areas of cognition are embracing the idea that individual cognitive systems do

not function in identical ways. Therefore, the design and testing of the Hybrid

model is a worthy endeavor, one that should be undertaken.
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Figure 1. The Hybrid model of arithmetic problem solution.
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Figure 2. Response times for retrieval trials as a function of problem size and presentation 
format
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Figure 3.  Percent procedure use as a function of problem size and presentation format
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