

	ш			
	11			ï
				3
				1
	T			
				-
		11		1
and hand being been seen -		-	-	

Surface with 2-D array of unit cells each comprising unique coupled resonator concept

Inventors:

Shulabh Gupta Ahmed Ashoor Leandro Rufail

Development Stage:

Prototype Validation

Protection Status:

US application 18/246,637 CA application 3,196,718 (filed Sept. 24, 2021)

Publication

Emara et al., *IEEE Access, vol. 11, pp. 129552-129565* DOI:<u>10.1109/ACCESS.2023.333</u> <u>3869</u>

Seeking:

Development Partners Licensees

Contact:

Shoma Sinha, PhD, PEng, MBA Assistant Director, Innovation and Partnerships Shoma.Sinha@carleton.ca

> Carleton University, Ottawa, Canada

Metamaterial Smart Reflector

Background

To support the increased demand in data capacity for 5G and beyond wireless networks, current efforts are focused on migrating towards higher frequency bands, including millimeter-waves (typically 24 GHz onwards). Near-directive 5G communications can exploit the paradigm shifting concept of engineering the radio environment to consciously manipulate and distribute the EM power to desired destinations. To this end, Carleton's **Metamaterial Smart Reflector** can be installed in strategic areas of a given radio environment (e.g., ceilings, floors and other objects) and, in cooperation with fixed antenna sources and receivers, guide the EM power along preferred directions.

Description of the Invention

Carleton researchers have developed and tested a novel metasurface that provides unprecedented control of the reflection characteristics of the surface. The architecture consists of a 2D array of unit cells each comprising electromagnetically coupled resonators. This novel unit cell configuration enables independent control of reflection phase and magnitude at the specified frequency, resulting in a smart software programmable reflector system scalable to various frequency bands.

Key Benefits

- Real-time configurable and independent control of magnitude and phase at desired frequency
- Dynamic real-time control row-by-row or a pixel-by-pixel
- Scalable Architecture ideal for sub-6 GHz Microwave Bands, X-Band, mm-Wave Bands
- Integrated metasurface controller to wireless communicate with a central control unit located elsewhere; capability to add AI/ML based software controls to respond to changes in the radio environment
- Superior coverage and ultra high speed can be gained in communications applications

Applications

- Communications: Radio environment engineering for 5G short-range communication in indoor or dense urban areas; phased-array solutions for point-to-point links, satellite communication, tracking, wireless backhaul
- Defense: Electromagnetic camouflaging and radar spoofing