
Development of Kinematic and Dynamic Models for the 
Argo J5 Rover 

 
 

by 
 

Erin J. E. Austen 
 
 
 
 

A thesis submitted to the Faculty of Graduate and Postdoctoral 
Affairs in partial fulfillment of the requirements for the degree of 

 
Master of Applied Science 

 
in 
 

Aerospace Engineering 
 
 

Department of Mechanical and Aerospace Engineering 
 

Carleton University 
Ottawa, Ontario 

 
 
 
 

© 2019 

Erin J.E. Austen  
 



 ii 

Abstract 

 

Planetary exploration rovers are the most efficient means of off-world surface 

exploration. As mobile laboratories, they are used to perform various experiments and 

gather data semi-autonomously from remote extraterrestrial environments, both for 

planetary science and assessing conditions in preparation for human exploration. To 

accomplish the mission and access sites of scientific interest, the rover must be able to 

traverse various types of unstructured terrain without becoming embedded or succumbing 

to other hazards. Modelling of the rover is essential to understand how the rover interacts 

with its environment and how to select the best path. This thesis presents the 

development of three-dimensional kinematic and dynamic models, using MATLAB and 

SimMechanics, describing the Argo J5 four-wheel rover, in response to terrain elevation 

inputs and slip. The kinematic models describe the pose and velocity of the rover using 

the Denavit-Hartenberg convention, while the SimMechanics dynamic model is 

combined with a terramechanics model to develop accelerations and obtain the forces and 

torques, based on terrain properties. The kinematic analyses were performed for 

simulated traverses including cases of flat, inclined, side slope, and sinusoidal terrain, 

with varying amounts of slip in the velocity analysis. The results showed good agreement 

with expected trends and values for the joint displacements and rates, with the largest 

percent deviation for the distance travelled being approximately 0.4 %. The results of the 

combined dynamic and terramechanics model, incorporating slip, are limited to the 

conceptual development of the model due to time constraints, and are thus inconclusive at 

this time.  



 iii 

Dedication 

 

 

“Remember to look up at the stars and not down at your feet. Try to make sense of what 

you see and wonder about what makes the universe exist. Be curious. And however 

difficult life may seem, there is always something you can do and succeed at.  

It matters that you don't just give up.” 

Dr. Stephen Hawking 

  



 iv 

Acknowledgements 

 

Foremost, the author would like to thank her primary supervisor Dr. M. J. D. 

Hayes for his valued guidance, advice, and overall support throughout the progression of 

this project, along with Dr. M. Faragalli for special advising. Special thanks are also due 

to Mission Control Space Services for providing a rover to model and their input 

regarding the Argo J5 rover. The author also wishes to express her deep gratitude to Dr. 

R. Irani for the use of his terramechanics model and for his coaching on the use of 

SimMechanics, and for his overall patience. 

 

 Additional thanks go to the author’s friends and support group:  her Grad School 

Survival Crew, fellow Shieldmaidens and kickboxing partners, A. Pant, G. Ng, J. Hunter, 

M. Magnus, and S. Milton, for their unwavering belief in the author’s capacity to 

achieve, while struggling through difficult times. Special thanks are due to G. Ng for 

allowing the author to bounce ideas off him. 

 

 Finally, the author would like to thank her sister, parents, and four-legged family 

members for always having her back and providing encouragement to reignite her 

passion when it was needed the most. 

 

 

  



 v 

Table of Contents 

 

Abstract .............................................................................................................................. ii 

Dedication ......................................................................................................................... iii 

Acknowledgements .......................................................................................................... iv 

List of Figures ................................................................................................................... ix 

List of Tables .................................................................................................................. xiii 

Nomenclature ................................................................................................................. xiv 

Statement of Original Contributions ........................................................................... xix 

Chapter  1: Introduction .................................................................................................. 1 

1.1 Martian Environment ...................................................................................................... 2 

1.1.1 Obstacles ................................................................................................................ 4 

1.1.2 Terrain Types ......................................................................................................... 7 

1.2 Planetary Exploration Rovers ....................................................................................... 11 

1.2.1 Rover Configurations ........................................................................................... 11 

1.2.2 Argo J5 Rover ...................................................................................................... 13 

1.3 Thesis Objectives and Outline ...................................................................................... 15 

Chapter  2: Literature Review ....................................................................................... 18 

2.1 Terramechanics and Wheel-Soil Interaction Models ................................................... 19 

2.1.1 Empirical Methods ............................................................................................... 21 

2.1.2 Analytical Methods .............................................................................................. 21 

2.1.3 Semi-empirical Methods ...................................................................................... 25 

2.2 Rover Vehicle Modeling .............................................................................................. 31 

2.2.1 Kinematic Modeling ............................................................................................ 32 

2.2.2 Dynamic Modeling .............................................................................................. 36 



 vi 

2.3 Slippage Estimation ...................................................................................................... 42 

2.4 Performance Metrics .................................................................................................... 43 

Chapter  3: Denavit-Hartenberg Methodology ............................................................ 45 

3.1 Introduction to the Devanit-Hartenberg Convention .................................................... 46 

3.2 D-H Procedure and Definition of Parameters ............................................................... 49 

3.3 Homogeneous Transformation Matrices ...................................................................... 52 

Chapter  4: Kinematic Analysis ..................................................................................... 55 

4.1 Planar Kinematic Analysis – A Geometric Approach .................................................. 55 

4.1.1 Theoretical Formulation ...................................................................................... 56 

4.1.2 Method of Solution .............................................................................................. 63 

4.1.3 Results .................................................................................................................. 66 

4.2 Three-dimensional Position Kinematics (D-H Approach) ........................................... 72 

4.2.1 Theoretical Formulation ...................................................................................... 72 

4.2.2 Method of Solution .............................................................................................. 90 

4.2.3 Results .................................................................................................................. 94 

4.3 Three-dimensional Velocity Kinematics (D-H Approach) ......................................... 105 

4.3.1 Theoretical Formulation .................................................................................... 105 

4.3.2 Method of Solution ............................................................................................ 114 

4.3.3 Results ................................................................................................................ 119 

4.4 General Comments ..................................................................................................... 141 

Chapter  5: Dynamic Analysis ..................................................................................... 144 

5.1 Dynamic Model Development.................................................................................... 146 

5.2 Terramechanics Model ............................................................................................... 151 

5.3 Combined Dynamic and Terramechanics Model ....................................................... 156 

5.4 Terramechanics Model Modifications ........................................................................ 164 



 vii 

5.4.1 Preliminary Test Results for the Argo J5 Rover ................................................ 170 

Chapter  6: Conclusions and Future Work ................................................................ 178 

6.1 Objective 1.................................................................................................................. 178 

6.2 Objective 2.................................................................................................................. 180 

6.3 Objective 3.................................................................................................................. 182 

6.4 General Comments ..................................................................................................... 183 

6.5 Recommendations for Future Work ........................................................................... 184 

References ...................................................................................................................... 186 

Appendices ..................................................................................................................... 197 

Appendix A - Argo J5 Data and Specifications....................................................................... 198 

A.1 Argo J5 Rover Data Summary ........................................................................... 198 

A.2 Rover Specification Data Sheet ......................................................................... 200 

A.3 Rover Drawing ................................................................................................... 201 

Appendix B - 2D Kinematic Analysis Data ............................................................................ 202 

B.1 Rover Data & Analysis Setup ............................................................................ 202 

B.2 MATLAB Script: Planar Position Kinematics for J5 Rover 

(J5_KinematicModel_1.m) ................................................................................................. 205 

B.3 MATLAB Function File: Planar Kinematic Equation Set for J5 Rover 

(geomJ5_nosusp.m) ............................................................................................................ 209 

B.4 MATLAB Function File: Nonlinear multi-variate Newton-Raphson solver 

(NR_nlm_J5.m) ................................................................................................................... 211 

B.5 MATLAB Script: Jacobian function file for use in nonlinear, multivariate, 

Newton-Raphson function (Jacob9.m) ................................................................................ 212 

B.6 Further Results for J5 Rover .............................................................................. 214 

B.7 Rover Data & Analysis Setup (from original paper) ......................................... 219 



 viii 

B.8 MATLAB Script: Planar Kinematic Equation Set for Rocky 7 Rover 

(geom6W.m) ....................................................................................................................... 222 

B.9 MATLAB Script: Jacobian function file for use in nonlinear, multivariate, 

Newton-Raphson function for the Rocky 7 rover (Jacob15.m) .......................................... 224 

B.10 Further Results for Rocky 7 Rover .................................................................... 226 

Appendix C - 3D Kinematic Analysis Data ............................................................................ 230 

C.1 D-H Tables ......................................................................................................... 230 

C.2 MATLAB Script File:  3D Position Kinematic Model 

(J5_3DPositionKinematics.m) ............................................................................................ 233 

C.3 MATLAB Function File:  3D Position Equation Set for Solution (J5posKin3.m)

 239 

C.4 MATLAB Script File:  3D Velocity Kinematic Model 

(J5_3DVelocityKinematics_v1.m) ...................................................................................... 244 

C.5 MATLAB Function File:  3D Velocity Equation Set for Solution (J5veloKin.m)

 257 

C.6 Additional Results – 3D Position Kinematic Analysis ...................................... 270 

C.7 Additional Results – 3D Velocity Kinematic Analysis ..................................... 272 

C.8 Additional Results – 3D Velocity Kinematic Analysis ..................................... 332 

C.9 Sample Terrain Maps ......................................................................................... 336 

Appendix D - Dynamic Analysis and Data ............................................................................. 341 

D.1 La Grange Formulation ...................................................................................... 342 

D.2 Additional Terramechanics Runs and Simulation Results ................................. 348 

 

  



 ix 

List of Figures 

 

Figure 1.1: Testbed wheel beginning to sink and embed [15]. ........................................... 6 

Figure 1.2: Spirit’s embedded wheel (courtesy NASA/JPL). ............................................. 7 

Figure 1.3:  Curiosity wheel damage (courtesy NASA/JPL). ............................................. 9 

Figure 1.4: Rocker-bogie configuration for the Curiosity rover (courtesy NASA/JPL) 

[25]. ................................................................................................................................... 12 

Figure 1.5: Argo J5 rover [24]. ......................................................................................... 13 

Figure 3.1: Representing a four-wheel rover (a) as a kinematic chain (b). ...................... 48 

Figure 3.2: Reference frame assignment and D-H parameter definition [64]. ................. 51 

Figure 4.1: Simplified right-side profile of the Argo J5 rover with highlighted joints and 

contact points. ................................................................................................................... 57 

Figure 4.2: Right-side profile with labelled pivot points and rigid distances between pivot 

points. ................................................................................................................................ 58 

Figure 4.3: Right-side profile of rover with sloping terrain.............................................. 60 

Figure 4.4: Planar position kinematic model code architecture. ....................................... 65 

Figure 4.5: Planar inclined pose for a slope of 26.57o. ..................................................... 68 

Figure 4.6: Pivot point traces for inclined terrain with slope of 26.57o. ........................... 68 

Figure 4.7: Planar pose for a sinusoidal terrain. ............................................................... 70 

Figure 4.8: Pivot point traces for sinusoidal terrain. ......................................................... 70 

Figure 4.9: Side and rear views of the J5 rover (figure supplied by MCSS). ................... 73 

Figure 4.10: Top view of J5 with labelled joints. ............................................................. 74 

Figure 4.11: J5 joints and assigned coordinate frames. .................................................... 77 

https://d.docs.live.net/fe549d4753c08347/Documents/Thesis/New/Eausten_Thesis_Master_FinalRevs_Sept10.docx#_Toc19310624
https://d.docs.live.net/fe549d4753c08347/Documents/Thesis/New/Eausten_Thesis_Master_FinalRevs_Sept10.docx#_Toc19310629
https://d.docs.live.net/fe549d4753c08347/Documents/Thesis/New/Eausten_Thesis_Master_FinalRevs_Sept10.docx#_Toc19310630
https://d.docs.live.net/fe549d4753c08347/Documents/Thesis/New/Eausten_Thesis_Master_FinalRevs_Sept10.docx#_Toc19310631


 x 

Figure 4.12: Right front wheel contact diagrams (view looking in the axle’s negative z-

direction). .......................................................................................................................... 86 

Figure 4.13: Right rear wheel contact diagrams (view looking in the axle’s negative z-

direction). .......................................................................................................................... 86 

Figure 4.14: Left front wheel contact diagrams (view looking in the axle’s positive z-

direction). .......................................................................................................................... 87 

Figure 4.15: Left rear wheel contact diagrams (view looking in the axle’s positive z-

direction). .......................................................................................................................... 87 

Figure 4.16: 3D position kinematics algorithm. ............................................................... 91 

Figure 4.17: Flat terrain digital elevation map. ................................................................. 94 

Figure 4.18: Walking beam pitch vs distance travelled (flat terrain). .............................. 95 

Figure 4.19: Chassis orientation angles with respect to distance travelled (flat terrain). . 96 

Figure 4.20: Uphill 10o inclined terrain digital elevation map. ........................................ 97 

Figure 4.21: Walking beam pitch vs distance travelled (10⁰ incline). .............................. 98 

Figure 4.22: Chassis orientation angles with respect to distance travelled (10⁰ incline). . 98 

Figure 4.23: Side slope 10o terrain digital elevation map. .............................................. 100 

Figure 4.24: Walking beam pitch vs distance travelled (side slope 10⁰). ....................... 101 

Figure 4.25: Chassis orientation angles with respect to distance travelled (side slope 10⁰).

......................................................................................................................................... 101 

Figure 4.26: Sinusoidal terrain digital elevation map. .................................................... 102 

Figure 4.27: Walking beam pitch vs distance travelled (sinusoidal terrain). .................. 103 

Figure 4.28: Chassis orientation angles with respect to distance travelled (sinusoidal 

terrain). ............................................................................................................................ 103 



 xi 

Figure 4.29: Interaction of rotational and translational velocities for wheels with no slip.

......................................................................................................................................... 112 

Figure 4.30:  Interaction of rotational and translational velocities for wheels with slip. 113 

Figure 4.31: Three-dimensional inverse velocity kinematic code architecture. ............. 116 

Figure 4.32: Walking beam pitch rates vs. time for a slip of 0.1. ................................... 120 

Figure 4.33: Rover velocity components over simulated traverse. ................................. 121 

Figure 4.34: Traversed distance in the world x-direction vs simulation time, for different 

slip values (flat terrain). .................................................................................................. 122 

Figure 4.35: Walking beam pitch rates vs. time, for a slip of 0.1 (inclined terrain). ...... 123 

Figure 4.36: Rover velocity components over simulated traverse (inclined terrain). ..... 124 

Figure 4.37: Traversed distance in the world x-direction vs simulation time, for different 

slip values (inclined terrain)............................................................................................ 125 

Figure 4.38: Displacement in the world z-direction vs simulation time, for different slip 

values (inclined terrain). ................................................................................................. 126 

Figure 4.39: Walking beam pitch rates vs. time for a slip of 0.1 (side slope terrain). .... 127 

Figure 4.40: Rover velocity components over simulated traverse (side slope terrain). .. 127 

Figure 4.41: Traversed distance in the world x-direction vs simulation time, for different 

slip values (side slope terrain)......................................................................................... 129 

Figure 4.42: Walking beam pitch rates vs. time for a slip of 0.1 (sinusoidal terrain). ... 130 

Figure 4.43: Rover velocity components over simulated traverse (sinusoidal terrain). . 130 

Figure 4.44: Traversed distance in the world x-direction vs simulation time, for different 

slip values (sinusoidal terrain). ....................................................................................... 132 

https://d.docs.live.net/fe549d4753c08347/Documents/Thesis/New/Eausten_Thesis_Master_FinalRevs_Sept10.docx#_Toc19310651


 xii 

Figure 4.45: Displacement in the world z-direction vs simulation time, for different slip 

values (sinusoidal terrain). .............................................................................................. 132 

Figure 5.1: Isometric and orthographic projection of the J5 rover CAD model (isometric 

(a), top (b), rear (c), and right (d)). ................................................................................. 148 

Figure 5.2: SimMechanics dynamic model of the J5 rover. ........................................... 149 

Figure 5.3: Terramechanics model representation of typical forces on the wheel [29, 37, 

38]. .................................................................................................................................. 151 

Figure 5.4: SimMechanics dynamic model combined with terramechanics model. ...... 157 

Figure 5.5: Close-up view of the added terramechanics-related blocks. ........................ 158 

Figure 5.6: Initialisation block subsystem. ..................................................................... 159 

Figure 5.7: Wheel sinkage calculation subsystem. ......................................................... 161 

Figure 5.8: Modified terramechanics model. .................................................................. 165 

Figure 5.9: Modified single wheel terramechanics testbed model code architecture. .... 167 

Figure 5.10: Single wheel terramechanics model for Argo J5 at 0.05 slip (flat terrain). 171 

Figure 5.11: Single wheel terramechanics model for Argo J5 at 0.25 slip (flat terrain). 171 

Figure 5.12: Modified single wheel terramechanics model for Argo J5 at 0.05 slip 

(sinusoidal terrain). ......................................................................................................... 173 

Figure 5.13: Modified single wheel terramechanics model for Argo J5 at 0.25 slip 

(sinusoidal terrain). ......................................................................................................... 174 

Figure 5.14: Dynamic phase of modified single wheel terramechanics model for Argo J5 

at 0.25 slip (sinusoidal terrain), extended to 100 seconds. ............................................. 175 

Figure 5.15: Drawbar pull vs slip. .................................................................................. 176 

  

https://d.docs.live.net/fe549d4753c08347/Documents/Thesis/New/Eausten_Thesis_Master_FinalRevs_Sept10.docx#_Toc19310669
https://d.docs.live.net/fe549d4753c08347/Documents/Thesis/New/Eausten_Thesis_Master_FinalRevs_Sept10.docx#_Toc19310672


 xiii 

List of Tables 

 

Table 3.1: Sample D-H parameter table. .......................................................................... 52 

Table 4.1: D-H parameters for the kinematic chain – world origin frame to right front 

wheel. ................................................................................................................................ 83 

Table 4.2: Results of rover velocities and deviation with respect to the flat case.1,2 ...... 135 

Table 4.3: Results of axle velocities and deviation with respect to the flat case.3,4 ........ 137 

Table 4.4: Results of distance travelled and deviation with respect to the flat case.5,6 .. 140 

Table 5.1: Terramechanics output parameters for various slip values for the Argo J5 rover 

(flat terrain). .................................................................................................................... 172 

Table 5.2: Modified terramechanics output parameters for various slip values for the 

Argo J5 rover (sinusoidal terrain). .................................................................................. 176 

  



 xiv 

Nomenclature 

 

English Symbols 

 𝑎𝑖  link length (m) 

 𝑎𝑤𝑏  length of walking beam (m) 

 𝑏  wheel (tread) width (m) 

 𝑐  cohesion (Pa) 

 𝑑𝑖  link offset (m) 

 𝑑𝑐𝑤𝑏  lateral distance from c of g to walking beam joint (m) 

 𝐷(𝑞)  inertia matrix 

 𝐹𝑍  vertical force from terrain (N) 

 𝑔  gravitational constant (m/s2) 

 𝐺(𝑞)  gravity vector 

 ℎ𝑐𝑔  height of rover c of g from ground (m)  

 𝐽  Jacobian 

𝐽𝑣  translational velocity Jacobian 

𝐽𝜔  rotational velocity Jacobian 

𝑗(𝜃)  soil deformation (m) 

 𝐾𝑗  kinetic energy (J) 

 𝑘  Bekker coefficient of proportionality (N/mn-2) 



 xv 

 𝑘𝑐  cohesive modulus of sinkage (N/mn+1) 

 𝑘𝜑  frictional modulus of sinkage (N/mn+2) 

 𝐾  shear modulus (m) 

 𝐿  LaGrangian 

 𝑀(𝑞)  Mass matrix 

 𝑚  mass (kg) 

 𝑛  sinkage exponent 

 𝑃𝑗  potential energy (J) 

 𝑝(𝑧)  pressure as a function of sinkage 

 𝑞  joint variable positions 

 𝑞̇  joint variable rates 

 𝑟  wheel radius (m) 

 𝑅  rotation matrix 

 𝑇  homogeneous transformation matrix 

 ∆𝑡  time step or interval (sec) 

 𝑉⃗   velocity vector of the end effector 

 𝑣𝑥  horizontal translational velocity (m/s) 

 𝑣𝑡  tangential velocity (m/s) 

 𝑉𝑥(𝑞, 𝑞̇) Coriolis and centrifugal velocities 

  



 xvi 

  

  

𝑋  coordinate in the x-direction (m)  

𝑋𝑡𝑟𝑎𝑛𝑠 translational distance travelled in x direction (m) 

𝑋̈  acceleration column vector 

 𝑌  coordinate in the y-direction (m) 

𝑌𝑡𝑟𝑎𝑛𝑠   translational distance travelled in y direction (m) 

 𝑍  coordinate in the z-direction (m) 

𝑍𝑡𝑟𝑎𝑛𝑠  translational distance travelled in z direction (m) 

 𝑧𝑗  vertical component or displacement (m)  

𝑧  sinkage (m) 

 

Greek Symbols 

 𝛼  link twist (radians) 

 𝛽  ½ angle of walking beams (radians) 

𝛾  slope 

𝛿  slope value, also rotation of wheel contact point, ie. δrf   

for right, front wheel 

 𝜂  ratio of track depth to sinkage 

 𝜂𝑧  track depth (m) 



 xvii 

Λ  logical operator for joint type 

𝜑𝑝𝑖𝑡𝑐ℎ   pitch of chassis, overall rover (radians) 

𝜑𝑟𝑜𝑙𝑙   roll of chassis, overall rover (radians) 

𝜑𝑦𝑎𝑤   yaw of chassis, overall rover (radians) 

𝜎(𝜃)  normal stress at contact point (Pa) 

𝜏  torque (Nm) 

𝜏(𝜃)  shear stress at contact point (Pa) 

 𝜃  joint angle (radians) 

 𝜃𝑐ℎ𝑎𝑠   chassis pitch, also  ϕpitch (radians)  

 𝜃𝑤𝑏𝑙   left walking beam pitch (radians) 

 𝜃𝑤𝑏𝑟   right walking beam pitch (radians) 

𝜃𝑓  wheel sinkage entry angle (radians) 

𝜃𝑚  location of mean normal stress (radians) 

𝜃𝑟  wheel sinkage exit angle (radians) 

𝜔  angular velocity of wheel (radians/sec) 

 

Non-dimensional Parameters 

 𝑖  slip, defined as 𝑖 = 1 −
𝑣𝑥

𝜔𝑟
     

  



 xviii 

  

Definitions/Abbreviations 

 CAD  Computer aided design 

CoG  Centre of Gravity (also C of G) 

D-H  Denavit-Hartenberg 

DoF  Degrees of Freedom 

DP  Drawbar Pull 

 MCSS Mission Control Space Services 

 

Pose:  the position and orientation of a rigid body. 

Prismatic joint:  a single degree of freedom joint that describes linear 

translation between two bodies. 

Revolute joint:  a single degree of freedom joint that describes 

rotational motion between two bodies. 

 

 

  



 xix 

 

Statement of Original Contributions 

 

The key contributions of the research shown in this thesis are: 

 

1. A three-dimensional kinematic model of the Argo J5 rover. 

 

2. A conceptual three-dimensional dynamic model combined with a wheel-soil 

interaction model (terramechanics) for the Argo J5 rover. 



1 

 

Chapter  1: Introduction 

 

 This thesis is an investigation of the issue of traversability facing exo-planet 

rovers and the means and methods available to address it.  For a particular rover, the 

Argo J5, a number of approaches were attempted in pursuit of developing kinematic and 

dynamic models to assist in path planning, but also to assess the capabilities and 

limitations of this particular rover under varying terrain conditions.  The need for the 

work presented herein is revealed in the greater context of extraterrestrial exploration. 

 

In humanity’s ongoing quest to reach out into space, planetary exploration rovers 

remain the most efficient and feasible means of exploring the surface of other bodies in 

our solar system. Satellites, while they have the potential to cost less, are limited mainly 

to mapping and imaging missions, like the Odyssey Orbiter mission [1]. Although highly 

useful in obtaining planet-wide data, they are limited to the resolution of their payload 

and cannot perform in-situ measurements. Landers such as the Phoenix Mars Lander [2], 

and more recently InSight [3], are also valuable tools of surface exploration and in-situ 

data collection but are limited to the location in which they land and their physical reach. 

Although the eventual goal is to place humans on Mars and other bodies in our solar 

system, it’s more expensive to send humans into space, as it requires more fuel and 

infrastructure. In addition, the risk to human lives is much greater. Planetary rovers have 

the capability to travel between multiple sites of scientific interest without the limitations 

of the human body and can go where humans can’t easily access while carrying various 

scientific payloads and instrumentation. Subsequently, rovers can improve the chances of 



2 

 

success for the preparation and execution of a human mission.  However, it should be 

noted that drones are an increasing opportunity as there are plans to send one to Mars [4] 

and NASA has recently announced a return to Saturn’s moon, Titan [5], with the 

Dragonfly mission to take samples and measurements of both surface and atmosphere. 

 

 Planetary rovers are the most popular means of surface exploration, contingent 

upon them being able to operate in remote and challenging environments.  If 

traversability or mobility is limited, a rover can be prevented from achieving its goal and 

possibly realizing a mission critical failure. In order to get a sense of the complexity and  

importance of traversability of planetary rovers, we need to examine the challenging 

conditions they may face. 

 

 

1.1 Martian Environment 

 

 One of the fundamental questions driving human exploration of space is to 

determine whether life is unique to Earth.  Naturally, we look to our closest neighbours in 

our solar system for new insights: our Moon, Venus, Mars, Galilean moons, etc.  Venus 

and Mars are both terrestrial (rocky) inner planets, however Venus is too hot and volatile 

to easily land a rover, with previous Russian landers lasting no more than two hours [6]. 

Mars is also relatively close, as the fourth planet from the Sun, and has potential not just 

for water and the building blocks of life, but as a place to establish a human colony.  

Smaller than Earth, with roughly 10% of Earth’s mass and 37.5% of Earth’s gravity, 



3 

 

Mars is the most similar planet to Earth since it has an atmosphere (albeit significantly 

thinner), a Martian day (sol) comparable to Earth at 24 hours and 37 min, and has similar 

weather phenomena such as dust storms, and seasons due to its axial tilt of 25.2o [7, 8].  

Martian temperatures are known to vary between daytime highs and lows by about 70oC 

in winter and 100oC in summer (on average) dependent upon location.  Planetary 

observations have provided surface evidence of the existence of water by water-cut 

channels, along with water beneath the polar ice deposits and glaciers. These 

observations were recently corroborated by Orosei et al’s analysis of radar profiles from 

the Mars Express spacecraft [9]. 

 

However, for all the similarities between Earth and Mars and its relative 

accessibility, it remains a challenging destination. Humans are unable to survive on Mars 

without significant infrastructure and environmental suits due to conditions on the 

surface, making a manned mission both high risk and expensive.  In preparation for 

sending humans to Mars, there have been many observation and planetary exploration 

missions to gather and analyze planetary data. In addition to being safer and cheaper than 

sending humans, rovers are able to traverse much of the Martian terrain to investigate 

various scientific sites of interest and carry a suite of instruments. A significant challenge 

of operating rovers on the Mars is that due to the vast distances between Earth and Mars 

(which is variable depending on their orbital relationship), there is a significant time 

delay or latency period between signals transmitted and received.  On average, it takes a 

transmission around 13 min to reach Mars, thus a roundtrip delay of 26 min [10, 11]. The 

orbiter itself typically communicates with the rover for approximately 8 min at a time, 



4 

 

per sol. This time delay makes remote operation by direct control unfeasible, requiring all 

planetary rovers to be semi-autonomous, which also enables more time to be dedicated to 

rover operations such as driving to new targets or performing its mission.  Mars has 

received the most probes, from the Mariner satellites as the first to orbit and NASA’s 

Viking mission with the first successful landers [12]. Sojourner was the first rover 

successfully landed, followed by MERs Spirit and Opportunity, and with Curiosity 

currently in operation. The European Space Agency’s Rosalind rover (formerly ExoMars 

2020) and NASA’s Mars 2020 rover are scheduled for launch in the near future. 

 

 Operating a planetary rover in a widely varying terrain on a remote world has its 

challenges. To be successful in its mission and access the various scientific regions of 

interest, it is highly important to examine the rover, its traverse, and its ability to deal 

with obstacles.  

 

1.1.1 Obstacles 

 One of the more obvious challenges for a rover in traversing from point A to point 

B, is that the shortest path generated is not always the best or has the shortest excursion 

time or is safest. Often, there are obstacles in the way that either cannot be overcome, or 

should not be attempted, such as Olympus Mons or the highly rippled dunes of recurring 

slope lineae (RSL), that are seasonal and have very steep slopes.  These are called 

geometric obstacles which, as the name implies, are hazards that have significant volume 

based on geometry, such as large boulders or crevasses. Such hazards can sometimes be 

viewed from orbital imagery, but definitely through the rovers own visual sensors. As 



5 

 

such, most vision systems are quick to focus on geometric obstacles of the terrain and 

spend most of their effort on avoiding them or minimising contact with them. These 

features are commonly included in path planning algorithms [10].  

 

 However, there are other obstacles and challenges that are not as easily observed. 

These become classified as non-geometric hazards that do not depend on their 

dimensions. With regards to rover mobility, non-goemetric hazards are some of the major 

challenges facing a rover, slip in particular. Slip is the condition where the wheel turns 

but does not progress as much in the forward direction due to loss of traction. As such, 

slip is harder to analyse from an overall satellite map, and thus requires additional 

analysis to plan traverse. Slip has been a major challenge to the current and previous 

rovers, with it severely limiting progress and even leading to mission critical events. Slip-

sinkage effect:  wherein, on deformable terrain, as slip increases for a wheel, the 

lessening of forward motion and increasing wheel spinning excavates the ground around 

it [13]. An example of the slip-sinkage effect is shown in Figure 1.1, where the wheel 

ends up excavating the terrain surrounding it and subsequently the wheel sinks and starts 

to embed, making it very difficult to extract. 

 

 

 

 

 

 



6 

 

 

 

Figure 1.1: Testbed wheel beginning to sink and embed [15]. 

 

If the sinkage becomes significant enough to have embedding, the rover mission could 

fail. Spirit experienced significant slip-sinkage and embedding, which was made worse 

when one of its wheels failed and ended up being dragged.  This failure ultimately 

terminated the mission when it became embedded and couldn’t be extricated [15]. Figure 

1.2 shows a picture taken by Spirit of its embedded wheel. 

 



7 

 

 

Figure 1.2: Spirit’s embedded wheel (courtesy NASA/JPL). 

 

1.1.2 Terrain Types 

In order to reach science targets and gather data, the planetary rover must be 

capable of traversing the Martian terrain.  Mars is a rocky body, with mountainous and 

heavily cratered terrain in the southern hemisphere and large, comparatively smooth 

plains comprised of basaltic lava flows and sedimentary deposits [16]. Additionally, the 

Martian surface has many dunes as a result of the wind which is one of the dominant 

forces shaping the surface [16]. From both satellite and rover data, the terrain can vary 

from hard bedrock to softer sands. These variations in terrain and the larger features all 

pose challenges which the rover must contend with. Thus, the traversability of the rover 

is a key concern for design.  The current and previous Mars rovers all feature a rocker-



8 

 

bogie suspension system which has proven advantageous in that it can negotiate obstacles 

1.5 times the wheel diameter [17, 18].  

 

Bedrock 

Due to the firmness or hardness of bedrock, this type of terrain has the least 

amount of wheel sinkage [19]. Although this might make bedrock seem like the best 

surface for driving on, it is often sharp and thus results in more wear on the tires/rover 

wheels. Indeed, the MSL Curiosity rover opted during sol 463 to drive on some available 

bedrock to minimize wheel sinkage and obtain better traction, only to damage its wheel 

tread and significantly increase the wear/damage to the wheels as seen in Figure 1.3. In 

addition, smooth bedrock can be hard to gain traction on and thus result in higher  

amounts of slip as noted by Heverly et al [20] from the Scarecrow data and, with more 

texture, the tractive performance improves as the wheel grousers gain purchase on the 

terrain. 

 



9 

 

 

Figure 1.3:  Curiosity wheel damage (courtesy NASA/JPL). 

 

Cohesive Sand 

Mars is also covered by a lot of sandy terrain. Sand can be further separated by its 

cohesion value, which is the degree that the individual particles or grains of sand stick 

together and provide a firmer surface. Cohesive soil or sand is composed of finer grain 

particles that want to adhere or stick to each other, even more so when wet. They have a 

high clay content and do not easily crumble. Such terrain is fairly easy for the rover to 

traverse, even uphill, as the transition from low to high slip is more continuous [20]. The 

adhesion between the terrain particles means that terrain deformation, and by extension 

sinkage of the wheels, is typically minimal for cohesive sand [20]. However, it should be 



10 

 

noted that this terrain type experiences the most variability due to its reliance upon other 

environmental factors, such as moisture content. 

 

Cohesionless Sand 

The other broad classification of terrain is cohesionless sand. As the name 

implies, cohesionless sand particles do not adhere to each other or pack together. As 

noted by Heverly [20], with the analog Scarecrow tests, this terrain poses a significant 

challenge to the rover and its ability to make forward progress. Due to the lack of 

cohesion, as slip increases, the wheels experience more sinkage since the sand gives way 

and is excavated from beneath the wheels. The resulting sinkage significantly impedes 

the forward progress of the rover and can result in embedding which can take weeks to 

extricate the rover [20]. It should also be noted that the slopes able to be traversed on 

cohesionless sand are significantly lower, and the transition to high slip occurs at a lower 

slope [20] such as 75% slip occurring at a slope of 16⁰ for the Scarecrow, vs 30% slip at 

28⁰ slope. 

 

Duricrust 

Another terrain of note is duricrust, as while it may appear firm on the surface, it 

tends to have more porous and softer material underneath [21]. Duricrust forms via 

accumulation due to the presence of groundwater [21] and is of interest to planetary 

scientists looking for evidence of water (and life) on Mars.  This particular type of terrain 

is challenging as it is not necessarily obvious and the hard-upper shell can be broken by 

the wheel, allowing the wheel to sink and embed. 



11 

 

 

1.2 Planetary Exploration Rovers 

 

  The work presented in this thesis is focused on planetary exploration rovers since 

they are currently the best means (including costs) of investigating the surfaces of remote 

worlds. For rover surface exploration, wheeled locomotion is favoured since wheels are 

simple, cost efficient (longer design life), and shown to be effective in negotiating 

smaller obstacles less than half the wheel diameter [22]. Since rovers are mobile science 

platforms/laboratories, it is desired that they be fairly resilient, steady, sturdy platforms 

upon reaching their target location in addition to traversing the challenging and varied 

terrain to reach their specific target. As such, to help select a path, it is needed to know 

the pose of the rover as it travels that potential path. Four rovers have been sent to Mars, 

with only Curiosity remaining operational as the MER Opportunity ended its mission 

June 2018 after a planet-wide dust storm [23].  To help extend the rover mission life, it is 

important to get an understanding of how the rover reacts to various terrains and use that 

information to evaluate the path. Finally, with the return to the Moon, more rover 

missions are expected to aid human exploration of the Moon as well. 

 

1.2.1 Rover Configurations 

Planetary exploration rovers are generally relatively small vehicles, with Spirit 

and Opportunity having a mass of 174 kg [24], and Curiosity being the largest at 899 kg 

[25]. All rovers that have been sent have been of a six-wheel configuration, as are the two 

near future rover missions. Additionally, these rovers all favoured what’s commonly  



12 

 

referred to as a rocker-bogie suspension. The common six-wheel configuration is shown 

below in Figure 1.4 for the Curiosity rover. 

 

 
 

 

Figure 1.4: Rocker-bogie configuration for the Curiosity rover (courtesy NASA/JPL) [25]. 

 

Examining Figure 1.4, one can see that two of the wheels are connected via a smaller link 

called the rocker [25]. The rocker connects to the larger link that is connected directly to 

the chassis which is call the bogie. Between the two sides of the rover there is a 

differential to help average out the motion of the chassis [25]. The advantage of using a 

rocker-bogie design with Ackermann steering is that it increases the capability of the 



13 

 

rover to negotiate obstacles while minimising the chances of the wheels losing contact 

with the terrain [25]. 

 

 These rovers are well documented and make up the majority of published 

research. However, the rover in question for axe investigation is a different configuration. 

 

1.2.2 Argo J5 Rover 

For the work presented in this thesis, the vehicle in question is the Argo J5 rover, 

depicted in Figure 1.5. It is the candidate vehicle selected by Mission Control Space 

Services (Ottawa). 

 

Figure 1.5: Argo J5 rover [24]. 

 

The J5 is a large platform vehicle, roughly in size of an all-terrain vehicle (ATV) and is 

thus capable of holding a significant payload. It has been tested with regards to terrestrial 



14 

 

applications in fire-fighting and amphibious scenarios [26]. Compared with the more 

traditional rover configuration, it is immediately obvious that the J5 rover does not have 

Ackermann steering, as it only possesses four wheels. The J5 operates via skid steering, 

meaning that a separate motor drives each side, with the wheels on one side being 

connected via a belt drive. Turning with skid steering, involves one side’s wheels turning 

more slowly or opposite to the other side. Examining Figure 1.5, one can see that the 

rover can be considered to have three main components, the chassis and two walking 

beams of which each has two wheels. 

 

 In addition to differences in the number of wheels and the absence of a rocker-

bogie system, the J5 has a unique rear suspension system connecting the walking beams 

to the centre rear of the chassis. The rear suspension acts to average the pitch of each 

walking beam, in order to try and keep the chassis level with respect to the terrain. Since 

the rear suspension connection to the walking beam is aft of the joint between the 

walking beam and the chassis, a pitch upwards of the left walking beam would push the 

left suspension rod aft, causing the back beam to rotate and push the right suspension rod 

forward. The result of the overall motion attempts to compensate for the left walking 

beam upward pitch by forcing the right walking beam to pitch downward. Finally, the J5 

has the option of two different tires, rubber and metal. For the purposes of the work 

presented here, it is assumed to have the metal tires intended for planetary exploration.  

 

 



15 

 

1.3 Thesis Objectives and Outline 

 

 The overall goal of this thesis is to develop a process for assessing the 

traversability of a planetary rover for a given path, based on the terrain data from 

previous drives and other data from visual terrain maps. Specifically, to create models 

that can take in terrain data, in the form of digital elevation maps (from scans of the 

surface), to analyse the traverse of a rover along a selected path. This work involves 

developing a dynamic model to first characterise the reaction of the rover as it drives over 

terrain and then modifying it to interface with a wheel-soil interaction model including 

slip, to simulate potential soft terrain conditions. Empirical slip-slope data obtained from 

previous drives could be used as an input. In the context of this work, it is assumed that 

the slip data has already been incorporated in the terrain map. Eventually, the goal of this 

process is to use the model data to develop metrics to characterise the traversability of the 

vehicle for the specified terrain. 

 

The following specific objectives have been identified for this work: 

 

Research Objective 1: produce a model to determine the pose of the rover in response to 

terrain geometry (ie. slopes & bumps, etc). 

The determination of pose will be accomplished through an inverse position kinematics 

model of the J5 rover. Terrain is input as the x, y, z coordinates of the respective path for 

each wheel.  This type of data can realistically be pulled from digital elevation maps from 

satellite data. With the analysis, it is possible to use the pose of the rover to get a sense of 



16 

 

its stability at that point in time on the map. The creation of a position kinematics model 

is also useful as it serves as the foundation for velocity analysis and, by extension, the 

dynamic analysis of the rover. There is currently no publicly available model for the 

Argo J5 rover. 

 

Research Objective 2: produce a three-dimensional velocity kinematics model 

incorporating predicted slip to accurately determine the progression of the rover on the 

terrain. 

A three-dimensional inverse velocity kinematic analysis will be accomplished by 

extending the inverse position kinematics. It is assumed for the velocity portion that the 

terrain map path was first processed through terrain classification software, such as 

Mission Control Space Services’ Autonomous Soil Assessment System (ASAS).  The 

slopes measured from the digital elevation map were then used along with the terrain 

type, to determine slip values from the appropriate slip-slope curve obtained from 

experimental drives of the J5 rover. These slip values have been assumed and are 

included in the terrain maps used. The resulting inverse velocity kinematics model with 

slip incorporated enables the time of the traverse to be determined as a potential 

evaluation criterion. 

 

 

 



17 

 

Research Objective 3: produce a dynamic model, incorporating slip and terrain 

geometry as inputs, allowing for other traversability metrics, such as torques and 

drawbar pull, to be determined. 

The three-dimensional dynamic model is included, as it is only at this level that the full 

effect of the rover wheels’ interaction with the terrain can be determined. Since dynamics 

includes forces, the model is paired with a previously established terramechanics model 

to obtain the resulting forces acting on each wheel. The terrain elevation and slip 

experienced by each wheel are (again) inputs to the dynamic model from the digital 

terrain map. 

 

 This work is organised as follows: Following the introductory chapter, a review of 

traversability related studies and modeling is presented in the Literature Review of 

Chapter 2. Chapter 3 introduces the governing analysis methodology that is the Denavit-

Hartenberg convention. The bulk of the analysis follows in Chapters 4 and 5, with 

Chapter 4 detailing all aspects of the kinematic analyses, leaving the dynamic analysis to 

be covered in Chapter 5. Both of these chapters begin with the theoretical formulation 

and application, and then finish with a display of representative results and discussion. 

Finally, this document concludes with Chapter 6 which summarises the overall results, 

along with comments and recommendations for future work. Appendices pertinent to 

each section of analysis are included at the back, containing full formulation, MATLAB 

scripts, and other results. 

 

  



18 

 

Chapter  2: Literature Review 

 

 The extreme challenges of exploring relatively unknown and uncontrolled 

environments posed by planetary exploration, means that it is essential to have designed 

as robust a vehicle as possible to maximise the probability of success. It is crucial to be 

able to model and understand the vehicle to get a sense of how it will perform and 

whether it has any specific limitations prior to its implementation. Furthermore, as 

unexpected challenges arise during the mission, having a reliable model aids in 

generating strategies likely to mitigate their outcomes. Successful mitigation has allowed 

several rovers to outlive their designed mission life [14, 16].  Large quantities of research 

and analysis have been published in various areas of rover science and development 

underscoring its popularity.  Over the years these analyses allowed for expansion of the 

capabilities of rovers. As mentioned in Chapter 1, more rover missions are forthcoming 

with the ESA’s Rosalind rover and NASA’s Mars 2020, along with a return to the Moon, 

making ongoing rover research relevant. 

 

 Although there are many published research papers relating to planetary 

exploration rovers, this literature review will be focused on the following specific areas  

only: terramechanics and wheel-soil interaction models, rover vehicle modeling, slippage 

estimation, and performance metrics.   



19 

 

 

2.1  Terramechanics and Wheel-Soil Interaction Models 

 

 One of the most prevalent and oldest methods of studying the interaction between 

a vehicle and the terrain characteristics is terramechanics. First theorised by Bekker in the 

1960’s [27], the term was popularized by Wong’s work in the 1980’s [28].  Bekker and 

Wong are often referred to throughout much of the literature and are seen as the founders 

of Terramechanics. As defined by Wong, terramechanics is the “study of the overall 

performance for the machine in relation to its operational environment – the terrain [is 

typically considered to consist of] two main branches: terrain-vehicle mechanics and 

terrain-implement mechanics” [28]. Regarding the traversability or ability to traverse the 

terrain, planetary rovers are more concerned with their respective tractive performance 

while negotiating the unstructured terrain and its obstacles, which is the domain of 

terrain-vehicle mechanics [28]. Terramechanics as a discipline has since expanded to 

become its own in-depth field.  Although the field is broad, this section tries to focus on 

research pertaining to planetary rovers and suitable non-Earth terrains. 

 

 In the field of terramechanics, Wong’s expansion on Bekker’s initial work has 

many of the content and equations referred to as the Bekker-Wong terramechanics. 

Wong’s work was consolidated into two textbooks, Terramechanics and Off-road 

Vehicle Engineering: Terrain Behavior, Off-road Vehicle Performance and Design [29] 

and Theory of Ground Vehicles [30], and they are frequently viewed as essential texts on 

the subject. The content includes what are considered the basic equations of 



20 

 

terramechanics. Classical terramechanics uses characteristics and properties of the terrain 

to determine the stresses, and subsequently forces, imparted to the vehicle. The equations 

are semi-empirical, requiring knowledge of certain terrain properties determined through 

extensive in-situ lab testing. One technique is the bevameter technique which is 

comprised of two tests [29]. The plate penetration test allows the pressure-sinkage 

relationship to be obtained for a contact area the size of the plate, along with the motion 

resistance of the terrain. The shear test enables values related to traction, such as tractive-

effort slip, to be computed using shear strength and displacement relationships. Such tests 

are not yet feasible on planets and moons, since limited exploration has occurred. One of 

the main outputs from terramechanics is the force in the longitudinal direction:  drawbar 

pull. Drawbar pull is the force corresponding to the ability to overcome the motion 

resistance imparted by the terrain [29, 31]. Sinkage is the other important result from 

terramechanics analysis and is essential for understanding the effects of deformable 

terrain, which can significantly impact the rover’s progress [13, 15, 19]. 

 

 Classic terramechanics has since given rise to other methods, which can be 

categorised as empirical, analytical, or semi-empirical. Within each of these categories, 

the analyses have sometimes been modified for better accuracy. One such example is the 

Wong-Reece equation, which resulted from Reece’s modifications to Wong’s work on 

the pressure-sinkage relationship, as detailed by Ding et al [31].  Taheri et al [32] provide 

a good summary and comparison of other terramechanic models beyond those discussed 

herein.  

 



21 

 

2.1.1 Empirical Methods 

 Empirical models are those based on correlations determined from experimental 

data. Consequently, these relationships are more simplistic in nature and can only be 

applied to situations that match the conditions/environment in which the experiment was 

conducted. Hence, extrapolation to different terrains is not possible, nor are the models 

scalable [32]. As noted by Taheri et al [32], these models are more useful for a simple 

scenario such as determining a broad-based go or no-go. One example could be outfitting 

a rover with rotary encoders or using the visual odometry to determine the slip  

experienced while driving over known terrain types and slopes, such as those at a 

MarsYard, and producing slip-slope curves particular to the rover model, wheel design, 

and terrain type. Results from empirical methods can also be used as a measure to 

improve wheel design. 

 

It should also be noted that, although Reece updated the pressure sinkage 

relationship as their major contribution to classical terramechanics, the relationship is 

focussed on longitudinal as opposed to lateral slip effects on sinkage as noted by Ding et 

al [31].   

 

2.1.2 Analytical Methods 

Due to the limited flexibility of purely empirical methods and the desire for 

improved accuracy, advancements in computing have allowed for the development of 

various analytical methods of modeling the wheel-soil interaction. Analytical or physics-

based methods are ones that involve applying the appropriate principles of physics to the 



22 

 

system. The system in these cases refers to a discretized set of elements for both the 

terrain and vehicle, with interactions occurring between elements. As such, the system 

quickly becomes more complex with the additional components. With high complexity, 

the presence of discretized elements in the system requires the use of more powerful 

analytical methods to solve. From the overview provided by Taheri et al [32], it is noted 

that these methods have the potential to be more accurate and reflective of actual 

processes, particularly for highly deformable terrains, but they come at a cost of greater 

computation time. Such advancements also present the possibility of real-time capability 

given the right set of conditions (ie. particle/element size not too small, etc). as indicated 

by a surge in publications over the last decade. The main analytical techniques are 

Discrete Element Method (DEM) and Finite Element Method (FEM). 

 

Discrete element method or DEM centres around modeling the soil as a system of 

spherical, discrete elements or particles [32]. The mechanical interactions between 

individual particles and those adjacent to them are included, with normal and tangential 

stiffness and damping applied to each force element, along with friction force in the 

tangential direction. For most DEM models, Coulomb damping is applied. In 2014, Smith 

et al [33] conducted a comparison between DEM and traditional and dynamic Bekker 

terramechanics modeling. They examined the three methods for a single wheel testbed, 

that could be applied to a rover-like small vehicle, at steady-state conditions. Upon 

examination of the predicted performance, the dynamic method was determined to be 

more realistic than traditional Bekker since it can not only accommodate multibody 

dynamics, but also simulate that with more complex soils.  Furthermore, the results 



23 

 

supported that DEM is capable of being more realistic because it can model the 

movement of soil from the interaction along with the deformation that occurs. The 

discretized nature of the particles allows for modeling non-homogeneous soil 

characteristics. More realistic particle shapes can also be used in the model to increase 

the overall accuracy, however the associated increase in computational time is something 

that must be evaluated. 

 

Most of the published literature only applies DEM to a single wheel test bed, 

rather than a full body dynamic simulation of a rover. Johnson et al [34] built upon 

previous work of single wheel DEM simulations for the Mars Exploration Rovers 

(MERs), specifically examining the accuracy of DEM simulations with regards to wheel 

mobility performance predictions. A DEM software called Coupi 3D DEM was used to 

perform various simulations for the single wheel, which were then compared to 

experimental results. With higher confidence in the low slip regime, the parameters of the 

DEM simulation were tuned accordingly, prior to generating predictions for the higher 

slip regimes. More realistic particle shapes were used, including trisphere, ellipsoid, and 

poly-ellipsoid (as opposed to spherical), so interlocking effect could occur as they would 

in nature. The DEM simulations were found to be most accurate for regions of high slip  

(slip, i = 0.7, 0.9, 0.99).   

 

Johnson et al also published a comparison between classic terramechanics and 

DEM analyses for the MER wheels [35]. Again, the DEM simulations were performed 

using Coupi 3D DEM for a single wheel, over the entire slip range from 0 to 1.  The 



24 

 

performance metrics used for comparison were drawbar pull and wheel sinkage. Due to 

the limitations of the single wheel testbed, the wheel tests were only performed up to a 

slip of 0.7. The results obtained show that classical terramechanics does indeed break 

down for high slip (i > 0.6) conditions. Johnson et al explain the limitation to be due to 

the presence of a tailings pile of regolith which contributes to a higher sinkage and is not 

accounted for in the classic terramechanics equations. The authors recommend a series of 

lookup tables based on good agreement of DEM simulations for scenarios of high slip.  

 

Compared to empirical methods, the DEM is more realistic and accurate with 

nature since the discretized elements and characteristics of the analysis mean that 

empirical equations are unnecessary to complete the wheel simulations [33]. However, as 

mentioned previously, the detailed nodes significantly increase the computing 

process/computing time. As such, in the tuning stage there is no efficient way to tune the 

model and get it to match the experimental results other than via curve fitting. 

 

Finite element method or FEM assumes a continuum rather than a discretized 

surface, and the continuum is comprised of a finite number of elements [29]. Due to the 

use of the continuum assumption, continuum mechanics are able to be applied. Unlike the 

spherical and semi-spherical elements used in DEM, the elements of FEM are angular, 

with quadrilateral and triangular shell elements. For 3D FEM, the computing cost is 

much higher than that of 2D, but less than that of DEM. However, for accuracy, 

compared to terramechanics, a more reasonable computing time is gained, although FEM  



25 

 

has certain limitations. Some of these limitations include that it cannot replicate large and 

discontinuous soil deformation, along with soil flow. According to Taheri et al. [32],  

some of these limitations are due to FEM being ill-equipped to handle singular boundary 

conditions.  

 

Recently, there has been an increase in research interest for combining certain 

aspects of FEM and DEM analytical methods to try and get the best of both techniques 

and provide a higher degree of accuracy without exponentially increasing the 

computation time. Increased computation time essentially removes the possibility of real-

time force and sinkage prediction for path planning. In 2016, Nishiyama et al [36] 

combined FEM and DEM models for a 2D analysis of the wheel-soil interaction for the 

wheel of a planetary rover. FEM was used for the more rigid (although elastic) body that 

was the wheel, whereas DEM was only applied to the top layer of the soil due to it 

experiencing the most deformation. Simulations analysing tractive performance were 

computed for flat terrain, including slip, and were then compared to experimental results 

from the single wheel test bed. Good agreement was found between the results,  

suggesting that pairing FEM with DEM is beneficial for controlling the additional 

computing time. 

 

2.1.3 Semi-empirical Methods 

Although there are advantages and disadvantages to empirical and analytical 

techniques, the majority of the published literature utilises semi-empirical models which 

are founded on a modified version of the Bekker-Wong equations. Semi-empirical 



26 

 

techniques combine experimental results and correction factors with the formulations of 

terramechanics equations and certain aspects of analytical methods [32].  Applications of 

these semi-empirical methods are popular in literature as they provide a suitable degree 

of accuracy without costing too much in computation time.  These methods also allow for 

some extrapolation unlike pure empirical models. Many of the software packages fall into 

the semi-empirical category, such as AS2TM and SCM [32]. 

 

One of the issues with the traditional Bekker-Wong terramechanics models is that 

they do not account for dynamic effects in the wheel-soil interactions. In 2010 and 2011, 

Irani et al attempted to address this issue for smooth wheels [37] and for the dynamic 

effects of grousers on rigid wheels [38]. Previous single wheel testbed results were 

showing repeating ridge tracks, which are not accounted for in traditional Bekker-Wong. 

The modeling of this effect was accomplished by modifying the pressure-sinkage 

relationship to include use of a manually tuned sinusoidal function [37] and through the 

generation and addition of new empirical dimensionless coefficients in the sinusoidal 

function [38]. Both models were compared with experimental test data for a single wheel 

testbed and loose sandy soil, using the usual metrics of normal force, sinkage and 

drawbar pull, and were found to predict the oscillations observed. This work was further 

expanded by Irani et al with a third publication in 2012 [39]. The model also included 

modifications to the Reece-Wong pressure sinkage relationship. Once again, fluctuations 

in drawbar pull seen in previous experiments were predicted by the model, but in this 

study for a range of slip values and normal loads. The results showed good agreement 

with the experimental results, also revealing that increases in slip and normal loads 



27 

 

correlated with an increase in the amplitude of the added term, with a similar relationship 

demonstrated for sinkage. 

 

Ghottbi et al [40] published a sensitivity analysis for mobile robots in 

unstructured environments in 2016. The sensitivity analysis was computed for both the 

Bekker and the Wong-Reece methods for a single wheel to try and ascertain which 

models were more sensitive to certain parameters/conditions. Regarding soil parameters 

such as cohesion and internal angle of friction, the Wong-Reece was more sensitive, in 

particular for position and velocity analyses. The authors also found that larger wheels, 

both radially and widthwise, were less sensitive to the terrain and experienced lower 

magnitudes of stress. Knowing the sensitivity of the model being used can help in both 

using the model to optimise a design and overall to interpret the accuracy of the results. 

 

One of the semi-empirical tire-soil interaction models that has been popular, is the 

AESCO Soft Soil Tire Model or AS2TM [32].  The AS2TM model is built for use in 

MATLAB and Simulink, modeling a solitary point of contact, for both steady state and 

dynamic conditions with real-time capability. Since the model was built as an add-on for 

Simulink, it is typically paired with a multibody dynamics simulation to analyse traction 

and mobility. The model is built upon the classic Bekker formulation while it also 

incorporates an improvement for lateral shear. It can also be made to incorporate different 

terrains and flexible or rigid tires at the discretion of the user, using the Bekker and 

Coulomb values. AS2TM does have a drawback in that it cannot compute the bulldozing 



28 

 

force. However, it can account for other parameters such as rolling resistance, soil 

compaction, slip-sinkage, and multipass effect. 

 

Another prevalent semi-empirical model is the Soil Contact Model (SCM) [32]. 

The SCM model is also based on the Bekker equations; however, it is a 3D model where 

the tire is modeled as a solid object and the solid is represented by a set of discretized 

columns. 

 

Perhaps one of the most well-known applications of semi-empirical 

terramechanics in the field of planetary exploration rovers is the ARTEMIS system 

employed on both MERs and Curiosity [13, 19, 20, 41].  In 2011, Iagnemma et al [41] 

published their results on the terramechanic modeling included in ARTEMIS. ARTEMIS 

is an Adams-based dynamic simulation of the rover paired with a modified Bekker-Wong 

terramechanics approach that was optimised using a least-squares optimisation equation. 

Their paper details not only the development of ARTEMIS, but also the application of it 

to simulate Opportunity’s drive to the Endeavour Crater, along with Spirit popping a 

wheelie and an embedding scenario. The results of these simulations were validated with 

real data. The authors also demonstrate that ARTEMIS could be used for estimating 

terrain parameters for the dry sand case. The results were accurate to within +/- 10% for 

most parameters. The only parameter for which it was not very accurate was for  

determining the cohesion value, which they expected due to the nature of dry sand having 

poor cohesion. 



29 

 

 

Most common in the application of semi-empirical terramechanics equations, 

focus is given to the parameters as they might affect the longitudinal progress and 

stability criteria of the rover, which can be seen in the some of the literature presented 

herein. In 2007 Ishigami et al [42] investigated the effects of terramechanics on the 

steering maneuvers of a four-wheel planetary rover on lunar regolith simulant. Using the 

terramechanics equations, Ishigami et al focused on the lateral components, including 

side force and bulldozing resistance, which logically have an impact on the wheel during 

steering maneuvers. They subsequently developed a model to predict and analyse the 

steering maneuvers for a given rover. The model was first validated using a single wheel 

test bed, prior to combining with a multibody dynamic model. The combined multibody 

dynamic model was evaluated for different slip cases and experimentally validated using 

a four-wheeled rover test bed. Comparison with the more common kinematic steering 

models showed improvements in accuracy predictions. 

 

A commentary on various semi-empirical terramechanics models was compiled in 

2012 by Chhaniyara et al [43], for inclusion in their review on terrain trafficability 

analysis. Although their review was more focused on the terrain classification side of the 

analysis, as opposed to trafficability, they identify that some degree of testing to obtain 

some parameters is unavoidable due to the nature of the models. Furthermore, they 

demonstrate that by using terrain classification and obtaining the slip and sinkage, some 

of the terrain interaction parameters are obtainable. 

 



30 

 

In 2010, Ding et al [31] released the results of their investigation into the slip-

sinkage relationship from the Wong-Reece terramechanics model. The experiment was 

conducted for three different sized rover wheels on a single wheel testbed, which were 

varied for different slip ratios and lug heights to observer the effects. From the 

experiment, the authors were able to use the results and improve the existing Wong-

Reece model by calculating sinkage based on vertical load and slip ratio, in addition to 

changing the sinkage exponent to a variable dependent upon the slip ratio. By doing so, 

the slip-sinkage takes into account more of the actual contributing factors, whereas the 

traditional Bekker method is limited to computing static sinkage and the Wong-Reece 

only accounts for longitudinal slip-sinkage. Slip-sinkage is a critical failure mode that 

must be understood for mission success. 

 

Ding et al’s work on sinkage continued, with another paper published in 2017 

[44] focusing on modeling sinkage using terramechanics as a basis, and also to determine 

the moment of in-situ steering wheels. Again, they looked at cases of deformable terrain. 

Unlike their previous paper, this study focused more on a steering-sinkage relationship.  

The collected data, along with the terramechanics formulation, allowed for the sinkage 

relationship to be further improved.  

 

Continuing with the problem of exploring unspecified terrains, Gallina et al [45], 

focused on the problem of lack of knowledge of terrain parameters required by soft soil 

contact models. They conducted their investigation using a multibody dynamics model 

paired with the SCM model mentioned above. Their results indicate that the Bayesian 



31 

 

approach was the best way to manage the uncertainties in these parameters; however, 

their results illustrate the limitation of pure models for such unknown and unstructured 

environments. 

 

 

2.2 Rover Vehicle Modeling 

 

 The other side of the problem is the modeling of the rover vehicle itself in such a 

way that the terrain data can be incorporated, and the response of the rover can be 

determined. Terramechanics and wheel-soil interaction models can provide force inputs 

and terrain deformation (sinkage); however, depending on the rover size and 

configuration, the effects can differ significantly. In addition, the geometry of the terrain 

itself, will also have an effect on the rover’s pose and stability. Vehicle modeling is 

generally classified as one of two model types – kinematics or dynamics. Kinematics 

describes the position and velocity of the vehicle, whereas dynamics focuses on the 

forces and accelerations present and can be manipulated for torques. Depending on the 

search parameters, vehicle kinematics often brings up material regarding position and 

heading (steering) of the vehicle with the application of path planning and following. 

Most models in existence are multibody dynamic models from multibody physics 

software. Consequently, many of these models require specific physics-based software 

platforms, such as ADAMS, to operate.  

 

 



32 

 

 

2.2.1 Kinematic Modeling 

 A paper by Tarokh and McDermott et al [46] published in 1999, was found to use 

a 3D kinematic approach with the D-H convention for a Mars rover. In their paper they 

apply the D-H convention to a small 6-wheel rover, the Rocky 7, which is closer to the 

size of Soujourner than Curiosity. Their method begins by assigning frames starting from 

the centre of mass and working outwards to each of the wheel contact points. From the 

frame assignments and corresponding parameters, the authors were able to get a full set 

of equations describing the forward and inverse kinematics. Additionally, for the velocity 

portion of the analysis, they computed specific wheel Jacobians as they found it provided 

a more accurate depiction of wheel roll and slip. For this paper, only the method was 

described and there was no experimental data presented for comparison with the results. 

Due to the nature of the methodology, with each contact point being treated like an end 

effector, the authors mention that their model should be applicable to traversing rough or 

uneven terrain. 

 

 Later in 2004, Chakraborty and Ghosal [47], developed a kinematic analysis for a 

three wheeled robot on uneven terrain. Although similar to Tarokh, Chakraborty and 

Ghosal chose a slightly different application of frames in their model, beginning from the 

contact point of each wheel and working up through the joints to meet at the common end 

effector, which was the chassis in this case. Rather than using the D-H convention and 

obtaining the corresponding parameters and transform matrices, the corresponding 

translations and rotations were covered using Euler angles and rotation matrices coupled 



33 

 

with rotations. In addition, the authors chose to model their wheels as tori, rather than 

thin disks, to capture the location of the assumed single point of contact. Even though slip 

was not included in the model as an input or as a predicted output, they used the tori 

wheels to generate another set of constraint equations for which the system could only be 

solved if its joints were able to find positions that removed slip from the scenario. 

Numerical solvers were employed to solve the set of ODEs. 

 

 In 2005, Tarokh and McDermott [48] published paper expanding their previous 

kinematic model into a more generalised kinematic analysis. As in their previous study, 

the analysis was again applied to the Rocky 7 rover following the same D-H approach, 

although using more specifically described wheels as end effectors. Similarly, the wheel 

Jacobians were kept and enabled full motion of the wheel. However, in this paper, more 

results are shown from actual simulations of the rover over given terrains. The terrains 

are given as a function or an elevation map, with a single contact per wheel and no 

sinkage or penetration of the terrain is assumed. The outputs of the simulations include 

pitch and roll of the rover, along with elevation and joint angles. Tarokh and 

McDermott’s simulations were able to achieve good results for a variety of different 

paths (ie. straight and serpentine), even with the addition of noise. However due to the 

nature of the kinematic model, no different terrain types were tested. 

 

 Shortly afterwards, McDermott and Tarokh followed up with another paper [49] 

further generalising their approach and establishing an overall guide to the general 

approach to kinematic modeling of a rover. Although this work was applied again to the 



34 

 

6-wheel Rocky 7 rover, they applied differential kinematics to obtain the motion of the 

wheels and likewise wheel Jacobians. The modeling of Rocky 7 was considered 

successful as it was able to travel over the simulated terrain; however, this model is still 

somewhat limited in its application as, although it can calculate slip, it does not account 

for soft or deformable terrain effects. Thus, sinkage and embedding effects cannot be 

observed. It is also limited in that the terrain input is comprised of multiple discontinuous 

terrain contact points. 

 

 Building on the work of Chakraborty and Ghosal, in 2009 Auchter et al [50] 

produced a kinematic solution for a simple three-wheel rover on uneven terrain, and then 

applied it to test a passive vehicle camber (PVC) component. As such, their model also 

uses a torus to model the wheels, allowing for lateral tilt, and follows the idea of the 

parallel manipulator with multiple kinematic chains leading to a single end-effector. 

However, in their study, the inputs to the joints are considered known and the position 

and velocity of the platform are the outputs. Their model includes equations describing 

the wheel contact and are used to constrain the wheels to roll only, with no slip. When 

applied to the rover with PVC components, the program monitors the constraint 

equations for violation indicating there is slip occurring. The results of their study show 

that their design does reduce slip. It should be noted that the rover modeled, although 

using a more complicated wheel model, does not have complex linkages taken into effect. 

 

 In 2010, Parakh et al [51], published a different approach to kinematic modeling 

of a six-wheel rover. In their approach, the rover is modeled in planar form with each 



35 

 

joint locus given a set of coordinates and equations to describe the rigid Euclidean 

distances between the joint loci. This method is further detailed in Chapter 4 as part of a 

“working up” investigation to obtain an idea of how pose would change with respect to 

the terrain. However, it should be noted that the rover joint loci only give location in x 

and y since the model is planar.  

 

 In 2012, Tarokh et al [52] published further work on kinematic modeling of high 

mobility rovers, with their paper presenting a systematic approach to a general kinematic 

analysis that could be applied to any rover over uneven terrain and used to aid in 

parametric design studies. Expanding beyond their previous formulations, they produced 

an extended D-H table for easier formulation and highlighted their algorithm which takes 

the table and directly applies it to create the kinematic model. In their paper, the method 

and corresponding algorithm is applied to a very complicated, small, multi-tasking rover 

with individual leg actuators and hence capable of different angles and configurations. 

Different terrain topologies were used as inputs, with zero slip assumed and all wheels in 

contact with the ground at all times. The results presented show the model was able to 

follow the desired trajectory with minimal errors.  

 

 Another investigation examining 3D kinematics for wheeled mobile robots was 

published in 2014 by Seegmiller and Kelly [53]. Although they focused on a three-

dimensional approach for their simple rover, they also acknowledge the larger number of 

2D kinematic models due to their relative ease in derivation and the consequently cheaper 

computational costs and higher computational speeds. Often a 2D approach is acceptable 



36 

 

due to the slow speeds of the rovers themselves, however for uneven terrains, the 3D 

analysis is required. Seegmiller and Kelly used more of a velocity propagation approach 

as opposed to D-H convention and transform matrices which are not inefficient given the 

relative simplicity of their rover. Like all the kinematic models presented so far, a single 

point of contact was assumed for each wheel. Slip prediction for the rover body was one  

of the outputs included and their results, when applied, were found to have a significant 

improvement on the odometry of the rover. 

 

2.2.2 Dynamic Modeling 

 The more common form of modeling used for planetary exploration rovers is 

dynamic modeling. Various software platforms and packages exist which make the 

modelling work a lot simpler than generating the dynamic equations using a technique 

like La Grange formulation. Most of the modeling literature (even some of 

terramechanics) relates to dynamic modeling as opposed to kinematic modeling.  

 

 One of the more frequent multibody dynamic softwares mentioned in the 

literature is the ARTEMIS software for dynamic modeling paired with terramechanics. In 

2011, Trease et al [13], published details on ARTEMIS and its implementation. 

ARTEMIS stands for Adams-based Rover TErramechanics and Mobility Interaction 

Simulator. As the acronym implies, ARTEMIS is a multibody dynamics software based 

on the Adams multibody platform. Adams/View is a very expensive software package, 

with a steep learning curve, requiring users to undertake specific training. With 

ARTEMIS, the published studies don’t go into kinematics as, with multibody dynamics, 



37 

 

it’s easier to stick with dynamics and that is what most operators are more concerned 

about, with particular regards to forces, torques, and slip, etc. From the basic 

Adams/View dynamic model of the rover, it was then paired with subroutines analysing 

the terramechanics based off of the semi-empirical Bekker-Wong equations. The main 

input to ARTEMIS is a generated terrain path obtained from digital elevation maps. 

When applied to previous drives by both Spirit and Opportunity, ARTEMIS was able to 

successfully replicate the drives including other aspects of each scenario, such as the 

embedding experienced by both rovers. By successfully recreating the embedding, 

ARTEMIS enabled further analysis along with how to extricate Opportunity from its 

embedding. Such analysis included successful modeling of the slip-sinkage effect with 

ARTEMIS being able to reproduce the high wheel slip leading the increased excavation 

of soil and the resulting downward displacement or sinkage of the wheel. At the time of 

this publication, ARTEMIS did not address deformable, changing terrain, continuous 

contact with multiple wheels, and rolling resistance. From one publication alone, it can be 

seen why ARTEMIS has persisted in its popularity and also how, for non-NASA rovers, 

it means trying to find other solutions that aren’t too expensive. 

 

 Another dynamic analysis software for rovers was developed a couple years 

later by Srividhya et al [54] called Software for Modelling and Analysis of Rover on 

Terrain or SMART. Similar to ARTEMIS, it uses Adams/View as its foundation wherein 

the rover itself is modeled from an imported CAD model. Simplified terramechanics 

equations are applied using the Adams/Solver component and uneven terrains are 

generated using Adams Road Definition files generated in MATLAB, including the 



38 

 

properties of the terrain. Macros are generated for easier user inputs, and they apply this 

software to a simple four-wheel rover with no suspension or differential. The model 

assumes that the peak normal stress occurs at the midpoint of the wheel, thereby making 

the location of the peak stress independent of the wheel slip. Running the model, the user 

obtains slip, sinkage, drawbar pull, and drive torque, with slip being obtained from 

drawbar pull and resistances. They were able to model slopes and associated motion 

resistances, obstacle negotiation and steering, with simulations performed over flat 

terrains both smooth and uneven. At the time of publication, the simulation results had 

yet to be verified. 

 

An additional example of dynamic model paired with a wheel soil interaction 

model is the Rover Chassis Analysis and Simulation Tool (RCAST). An overview of the 

RCAST is given by Bauer et al [55] with respect to its development and then application 

to a 6-wheel rocker-bogie rover. RCAST examines both the terrain and the dynamics of 

the rover for mobility, allowing the user to designate the terrain case, soil type, and 

obstacles. The terramechanics aspect of the analysis is based off of the AESCO soft tire 

model (AS2TM) and employs the usual linear Coulomb friction for the tractive force. 

RCAST was successfully validated for a single wheel negotiating a step obstacle, where 

the friction coefficient was observed to agree strongly between the simulation and 

experimental. Later testing was completed for five different wheels of same size, but the 

number of grousers was varied, and tested over a range of slopes. The results for drawbar 

pull demonstrated the expected effect where increasing the number of grousers improves 

drawbar pull by increasing wheel traction.  



39 

 

 

 Some dynamic models have combined more than just dynamics with a wheel-

soil interaction model. ROSTDyn is a rover simulation based on terramechanics and 

dynamics, with the multibody software, Vortex Physics Engine, providing the dynamics 

model. The simplified terramechanics model is based off of the work by Iagnemma et al 

[41] and Li et al [56], with three main equations to obtain the normal force, drawbar pull, 

and the resistance torque. The physical model of the terrain utilises DEM. In Li et al’s 

overview [56] of ROSTDyn, the platform is applied to a 6-wheel rover which is then 

simulated to drive over different inclined slopes. Due to ROSTDyn using a simplified 

terramechanics model over Vortex’s built-in contact model, real-time simulation speed 

was possible for lower display frequency. The simulation yielding results for slopes from 

4 -18o were compared with the experimental data from driving the rover over the same 

slopes. The results were found to show good agreement with each other, with both 

exhibiting a decrease in the normal force and increase in the total drawbar pull, in 

conjunction with an increase in slippage, for the increasing slope. However, ROSTDyn is 

somewhat limited in that it does require a preliminary soil test to obtain the necessary soil 

parameters for terramechanics. 

 

 In 2013 Reina et al [57], examined both kinematic and dynamic modeling 

(combined) techniques in applying a simplified set to evaluate the performance of rovers 

with rocker-bogie suspension systems with respect to locomotion. Specifically, to 

investigate a particular design of rocker-bogie suspension that enables the wheel camber 

to change and adapt to the terrain. Simulations with inputs of terrain inclination angle, 



40 

 

wheel elevation, rover geometry, pose, and speed, were completed and then subsequently 

validated experimentally. Outputs obtained included: drive motor torque, wheel load ratio 

where increased load corresponds to increased traction ability, and the friction coefficient 

wherein a decrease in value indicates a better climbing ability. For the inverse kinematics 

it is unclear, but does not appear to use coordinate frame transformation methods 

differing from D-H.  Additionally, it appears that the dynamics were limited to a simple 

quasi-static force analysis, with the application of forces being lumped at the centre of 

mass and certain contributions appearing to have been neglected. Finally, this model is 

limited in that only firm terrain was investigated. 

 

 Returning to ARTEMIS, Zhou et al [19] published a selection of simulations on 

the Mars rover traverses in 2014. In comparison to the initial publication by Trease et al 

[13], these simulations were not only done for a single wheel, but also the full vehicle. 

Traverses for both bedrock and deformable soil were performed. Validation was 

accomplished through single wheel tests and drives with Scarecrow (Earth analogue of 

Curiosity) at the MarsYard. At the time of publication, ARTEMIS was capable of 

calculating longitudinal wheel slip, wheel sinkage, normal stress, drawbar pull, 

longitudinal and lateral shear stress, lateral force, and grouser forces. For the full vehicle 

test, slip was manually determined which then allowed the sinkage to be indirectly based 

on slip-sinkage relationship. The updates to ARTEMIS were demonstrated in successful 

replication of MER and Curiosity drives, which also included demonstrating the ability to 

simulate both blind drives and those run through autonav. Having both single wheel tests 

and full vehicle tests allowed for further tuning of parameters. Good agreement was 



41 

 

already observed, with the rover’s being able to climb slopes up to 20o before achieving 

90% slip, which was expected. It should be noted that ARTEMIS is still limited by its use 

of classical terrramechanics and is therefore less reliable when it comes to simulating 

regions of high slip such as rippled dunes which rover operators currently try to avoid. 

The development of ARTEMIS with regards to Curiosity was further examined by 

Senatore et al [58] for modeling and validation. Validation performed with both single 

wheel tests and full vehicle tests of Scarecrow, this time on the unprepared terrain of 

Dumont Dunes. Simulations were found to predict mobility characteristics, such as 

drawbar pull, to good agreement with the experimental data. 

 

 In 2009, Schafer et al presents a multibody simulation incorporating both soft 

and uneven terrain for the ExoMars rover prototype [59]. The multibody system 

dynamics were modeled using SimPack and incorporated two different wheel-soil contact 

models, depending on the terrain type. For harder terrains such as bedrock, a PCM 

contact model is used which looks at all possible contacts through collision detection 

with the hard rocks and populates appropriate elements with the contact forces and 

torques. Softer, deformable terrains utilise the SCM contact model, which as mentioned 

previously utilises DEM for the soil. Simulations were run for each uneven terrain for 

two different wheel geometries and the results were compared with those obtained from 

running a breadboard chassis in a sandbox of the same simulant. Good agreement was 

found for the mobility characteristics obtained for drawbar pull, wheel torque, etc along 

with successful modeling of the multi-pass and bulldozing effects, however further work 



42 

 

would be needed to confirm validation for other simulant types and conditions (ie high 

slip, slope). 

 

 

2.3 Slippage Estimation 

 

 One of the more important non-geometric hazards imparted by the terrain is slip. 

Slip can drastically affect a rover’s progress and as specifically noted by Chakraborty et 

al [47], slippage can be a significant wastage of an already limited supply of power. In 

addition to power wastage, the lack of forward progress caused by slippage also can 

severely impact the rover’s ability to self-localise and lead to further errors with path 

planning/execution [50]. Within the research around rover mobility, there are also 

research groups focused more on mitigation through better design of wheels, suspension, 

and control strategies. Indeed, Seegmiller et al [53] notes that even in the area of 

incorporating slip with rover vehicle modeling, most kinematic models and published 

rover vehicle models compute slip as it occurs for use as a usable output, and it can then 

be incorporated into a feedback control scheme for path following. However, even with 

such a scheme, there is still the possibility of a collision occurring before the feedback 

controller has time to react.  

 

  Gonzalez et al published an overview of current work in slippage 

estimation and compensation in 2017 [60]. Limitations of different techniques are also 

included. From their investigation, it was observed that most of the published work in slip 



43 

 

is in the practical detection using visual odometry to provide an estimate. Furthermore, 

they note that little published work exists for slip compensation for slope traversals, along 

with the overall area of lateral or side slip. Lateral slip would be produced more by  

steering maneuvers (and corresponding forces) and is often neglected in the literature as 

it was assumed to be minimal for most test conditions. Side slopes would likely exhibit 

lateral slip but require further investigation to quantify the effect.  Helmick et al [61], 

employed the Tarokh model for the Rocky 7 rover and, from the predicted slip, applied a 

control loop to keep the rover on a given path. 

 

 

2.4 Performance Metrics 

 

 From many of the papers previously presented, in particular rover vehicle 

modeling, common mobility metrics include drawbar pull, wheel torque, slip, and 

sinkage. Many of these have been employed since before Wong’s work on 

terramechanics, and in his textbooks gives drawbar pull or the drawbar pull coefficient or 

efficiency as acceptable methods of comparing data [29, 30]. The drawbar pull 

coefficient is simply the ratio of the drawbar pull to the vehicle weight and allows for 

better comparison across different rovers. Similarly, the efficiency compares the drawbar 

power potential to that expected of the vehicle. 

 

 Other metrics were investigated in 2010, by Thueer and Siegwart [62], in an 

attempt to standardise rover mobility characteristics for cross-vehicle comparison. 



44 

 

Although certain characteristics are computed in many of the published investigations, 

they are particular to the conditions of that investigation, thus little has been done in the 

area of mobile robotics to create a standard. Using a static model, Thueer and Siegwart 

suggest the metrics should be minimum friction and torque requirements. The minimum 

friction requirement allows ideal torques to be obtained and knowing this value can also 

be useful in reduction of slip. Unsurprisingly, absolute accumulated slip is another 

suggested metric, due to its non-dimensionality, however the authors acknowledge that it 

is more effective in simulations. The final suggested metric is velocity constraint 

violation which as the name suggests measures the deviation from the ideal or 

commanded velocity, compares it to the kinematic constraints, and computes the risk of 

violation. These standardised metrics were first computed for simulations of three 

different locomotion approaches and then compared with the experimental data. Overall, 

good correlation was observed between the simulated/predicted values and the 

measurements obtained from the physical experiment.  

 

  



45 

 

Chapter  3: Denavit-Hartenberg Methodology 

 

To analyse the kinematics and dynamics of a robot, the robot must first be 

discretized into the corresponding kinematic pathways or chains. The kinematic chain 

describes the rigid components (links) and the joints connecting them, which generates a 

motion of the end effector within the boundaries of the workspace [63]. These kinematic 

chains can be used to construct mathematical models which describe the motion of the 

system as constrained by the joints and the lengths of the links they connect. There are 

different classifications of kinematic chains:  open and closed are one such classification. 

Open kinematic chains have a series of connected links with a relatively independent end 

effector. Closed kinematic chains have a series of connected links in one or more loops 

with no open attachment point, similar to a four-bar linkage.  

 

Using the kinematic chain, there are different methods to derive the mathematical 

equations, employing a geometric approach (one such approach will be illustrated in 

Section 4.1) or by attaching reference frames and applying rotations and translations to 

describe how the end of one link moves relative to the previous one. While a more purely 

geometric approach can be quite elegant and fairly practical in a planar case, once the 

kinematic chain reaches a larger number of degrees of freedom, or has a parallel chain, a 

more streamlined and standardised approach is desirable for most cases. One of the more 

popular methods is the Denavit-Hartenberg convention. In this work, the Denavit-

Hartenberg convention is used to derive transformation matrices to determine the motion 



46 

 

of an end effector (output link) with respect to a reference link or relatively fixed 

coordinate system. 

 

 

3.1  Introduction to the Devanit-Hartenberg Convention 

 

As mentioned, to effectively operate robots it is imperative that one understands 

how the motion of the robot is constrained by the joints, limiting the configurations it can 

enter. Particularly, the description of, or ability to predict, the pose of the robot with 

certainty and with respect to a reference coordinate system is necessary for effective use 

and placement of the end effector in the reference system.  

 

The Denavit-Hartenberg (D-H) convention is one such method of obtaining a 

description of a system by attaching reference frames to the joints of the kinematic chain, 

following a particular procedure. The result allows for four parameters to be determined 

which fully describe the displacement of the system [64, 65]. Although this method was 

first introduced in 1955 [66], the standardised procedure is fairly easy to apply and has 

become (and remains) a popular method of analysis for kinematic chains.  This 

convention allows for a standard set of equations for different serial manipulators and the 

results can be left in a matrix form which many operators prefer. The resulting set of 

vector-matrix equations enable the kinematics of the manipulator to be fully described in 

3D space. These 3D kinematic equations not only describe the pose of the end effector 

(the forward kinematics) given the input values but allow for the various configurations 



47 

 

to be determined (the inverse kinematics), which is helpful in terms of workspace 

constraints. The end effector is used to describe the end of the kinematic chain and, for 

manipulators, would be the location of the tool at the end of the robotic arm [64, 65]. 

Furthermore, these equations can be used to solve two different types of problems, either 

the forward or inverse kinematics. If the active joint values are specified, the forward 

kinematics problem determines the position and orientation (pose) of the end effector. 

Conversely, if one knows the desired pose of the end effector, the inverse kinematics 

problem can be solved to obtain the required, active joint values [64, 65]. In addition, this 

set of equations can be further manipulated to produce equations for velocity and 

acceleration analysis in 3D, which is the focus of Chapters 4 and 5. An acceleration 

analysis is necessary for modeling the dynamics of the system using the LaGrange 

method. 

 

Typically for serial manipulators, the inverse kinematics problem is the more 

difficult to solve as there can be more than one solution or configuration to produce a 

specific end effector pose.  

  



48 

 

 

 
Figure 3.1: Representing a four-wheel rover (a) as a kinematic chain (b). 

 
 

Given the effectiveness of the approach, the Denavit-Hartenberg convention was 

selected to be applied to the J5 rover as described in Chapter 1, since the rover could be 

visualised and analysed as a set of parallel kinematic chains. Figure 3.1 illustrates this 

process, with 3.1(a) depicting a simplified drawing of a rover and 3.1(b) representing the 

resulting kinematic chain for analysis. It can be seen that the rover is more akin to a 

parallel manipulator, with each of the four wheels’ ground contact points being 

equivalent to an end effector.  Although a 2D geometric approach was used initially (as 

detailed in Section 4.2), a 3D approach was deemed necessary with the eventual goal of 

describing the rover’s pose with respect to an inertial world frame attached to a terrain 

map.  With four end effectors and three dimensions, the problem becomes more complex 

than typical, wrist-partitioned, serial manipulators, which are well documented and for 

which many of the equation sets already exist [64, 65]. However as noted in the literature 

survey (Chapter 2), most rover kinematics and dynamics are not investigated using this 

method and tend to use expensive multibody software to analyze them. The Denavit-



49 

 

Hartenberg method is not limited to a specific software; it only requires an initial setup 

based on the original D-H convention outlined below. 

 

It should be noted that there are many variants of the original D-H method, such 

as the modified D-H method found in [65]. Each incorporates the same four parameters 

to describe the system with only slight differences in procedure and notation [64], 

resulting in a slightly different form of equations and transformation matrices.  The 

method with mixed indices [65] is well-suited to velocity and acceleration propagation 

outward from the base to the end effector, and to force and torque propagation from the 

end effector back to the base. 

 

 

3.2 D-H Procedure and Definition of Parameters 

 

As noted, the original D-H convention [66] was selected for use in this work. 

Again, it is worth noting the underlying assumptions of this application. The original D-H 

method (referred to hereafter as D-H) was applied to each of the kinematic chains of the 

rover. Each kinematic chain was assumed to be a series of links beginning from a 

designated base reference frame, connected by joints with reference frames, to the final 

reference frame of the end effector:  the wheel-ground contact point. An important 

assumption made is that the links are assumed to be rigid bodies and thereby experience 

no deformation [64, 65]. Additionally, each joint in the analysis possesses one degree of 

freedom [64, 65]. Each kinematic pair is one of two types of joints: revolute or prismatic. 



50 

 

For example, a more complicated joint such as a spherical joint, would be broken down 

and represented as three revolute joints with mutually orthogonal axes [65]. Revolute 

joints rotate about a single axis, like a hinge, whereas prismatic joints translate in a single 

direction, like a telescopic pole.  

 

The first and most important step in applying the D-H convention is the 

assignment of the joint reference frames, from which the parameters are defined [64]. A 

sketch of the system of links is required. Start by identifying all the joint axes and 

labelling them as the z axis [64]. For prismatic joints, the z axis is in the direction of 

translation, whereas the joint axis for revolute joints is the axis of rotation. Figure 3.2 

illustrates the assignments for three sequential, revolute joints. 

 

It is to be seen that for the original D-H method, that there is an offset between the 

reference frame labelled with subscript 𝑖 and the joint on which it is, which the joint is 

labelled 𝑖 + 1 [64]. Looking at joint axes 𝑖 and 𝑖 + 1, identify the common perpendicular 

between the two axes and at the intersection of the 𝑖 + 1 joint, is the location of the origin 

for that reference frame, or often noted as Oi. As such, the 𝑧𝑖 axis will be along the joint 

axis for joint 𝑖 + 1. Next, the direction of the 𝑥𝑖 axis is assigned so it points along the 

common normal between the joint axes, and if the joint axes are parallel, then the 𝑥𝑖 can 

remain aligned with the previous x axis. Its axis is a line at infinity, perpendicular to the 

direction of the p-pair. Finally, the 𝑦𝑖 axis is selected to complete a right-hand coordinate 

system. 

 



51 

 

 

Figure 3.2: Reference frame assignment and D-H parameter definition [64]. 

 

Following the correct assignment of reference frames, the four D-H parameters 

can be determined as follows, see Figure 3.2. The first parameter is the link offset, 𝑑𝑖, 

which refers to the measured distance along the 𝑧𝑖−1 axis from 𝑥𝑖−1 to 𝑥𝑖. For prismatic 

joints, the link offset becomes the joint variable [64]. The next parameter is the joint 

angle, which is the variable 𝜃𝑖. The joint angle is measured about the axis of rotation, 

𝑧𝑖−1, and is measured from 𝑥𝑖−1 to 𝑥𝑖. The remaining two parameters are constant values 

for the given link. The link twist, denoted by 𝛼𝑖, describes the twist angle between the 

two joints, measured about the 𝑥𝑖 axis from 𝑧𝑖−1 to 𝑧𝑖. Finally, the link length 𝑎𝑖, is the 

distance between the two joints (between 𝑧𝑖−1 and 𝑧𝑖) measured along the 𝑥𝑖 axis. The 

four parameters for each joint are collected in a table. Table 3.1 lists the D-H parameters 



52 

 

for each kinematic chain and is shown below with D-H parameters as illustrated in Figure 

3.2. It should be noted that the additional column for coordinate frame is added to permit 

a sketch of the reference frame for ease in orientation. In addition, the joint column 

differs from the first coordinate frame column due to the notation of the reference frames 

in the original D-H method, wherein the integer (label) is offset by 1. The set of 

completed D-H tables with values for the J5 rover are provided in Appendix C. 

 

Table 3.1: Sample D-H parameter table. 

Joint Coordinate 

Frame 

ϴi [deg] di [m] ai [m] αi [deg] 

𝑖 − 1  𝑖 − 1 𝜃𝑖−1 𝑑𝑖 𝑎𝑖−1 𝛼𝑖−1 

𝑖  𝑖 𝜃𝑖 0 𝑎𝑖 𝛼𝑖 

 

 

 

3.3 Homogeneous Transformation Matrices 

 

Once the four D-H parameters have been determined, the next step in obtaining 

the kinematic relationships between the reference frames, and thereby joints, is obtaining 

the transformation matrix, T that maps point coordinates in frame 𝑖 to those in frame 𝑖 −

1. In order to describe the end effector with respect to the base frame, a transformation 

must be sequentially concatenated from the end effector back to the base frame. One of 



53 

 

the main benefits of using the D-H convention, is that rather than having to apply 

individual rotations and translations to get from one reference frame to another, the setup 

and determination of D-H parameters allows for the transformation to be defined by a 

single homogeneous transformation matrix as in Equation 3.1.  

 

𝑇𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖  𝑐𝛼𝑖 𝑠𝜃𝑖  𝑠𝛼𝑖 𝑎𝑖 𝑐𝜃𝑖

𝑠𝜃𝑖 𝑐𝜃𝑖  𝑐𝛼𝑖 −𝑐𝜃𝑖  𝑠𝛼𝑖 𝑎𝑖 𝑠𝜃𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

]   (3.1) 

 

From Equation 3.1, it can be observed that once the D-H parameters have been 

determined, the transformation is obtained by simply populating the matrix with the 

appropriate values from the table. Note that “c” and “s” are shorthand notation for cosine 

and sine, respectively. It should be noted that a transformation matrix will need to be 

defined for each of the individual links and will contain a single joint variable (either d 

for prismatic joint or ϴ for revolute) [64, 65]. For a kinematic chain comprised of n links, 

the end effector can be described in the base reference frame by applying a series of n 

transformations. Again, due to the nature of the convention, once the D-H parameters are 

all known, one can easily obtain the overall transformation matrix by multiplying the 

transformation matrices for each of the links as in Equation 3.2. 

 

𝑇𝑛
0 = 𝑇1

0𝑇2
1 …𝑇𝑛

𝑛−1       (3.2)  

 



54 

 

With the overall transformation matrix determined, one can either solve the forward or 

inverse kinematics problem as desired, depending upon the selected scenario or what 

information is known. The exact application of the original D-H convention for the work 

presented is further discussed in Chapter 4 for the kinematics along with the presentation 

of the dynamic model in Chapter 5.  

 

  



55 

 

Chapter  4: Kinematic Analysis 

 

To understand how the terrain will interact with the rover, it is necessary to first 

analyse the kinematics of the rover. The kinematic analysis not only determines the pose 

of the rover based on the shape of the terrain but is then expanded to provide insight into 

the motion of the rover as it traverses the selected path. Once the analysis includes the 

velocity of the rover and its respective components, terrain effects such as slip can be 

introduced for examination. As mentioned in Chapter 3, the analysis centres around the 

use of D-H parameters to obtain the relative displacements between two joints 

representative of any motion applied. In this chapter, a brief investigation into using a  

geometric planar approach is presented, prior to the full three-dimensional kinematics 

analyses for both position and velocity. 

 

 

4.1  Planar Kinematic Analysis – A Geometric Approach 

 

 During the initial stages of the investigation, a velocity based kinematic approach 

by Parakh et al [51] was found to be of value.  The method employs a planar approach 

and had been applied to a six-wheel rover with a rocker-bogie linkage system, namely the 

Rocky 7. The rocker-bogie system is what has typically been employed on planetary 

exploration rovers, due to its ability to navigate obstacles that the wheels alone could not 

handle as well [18, 25].  The basis of the model presented by Parakh et al. is focussed on 

the concept of rigid links and the coordinates of the ends of each link. To confirm the 



56 

 

correct application of the model, the method was first applied to reproduce the results of 

their six-wheel rover.  Sample results are presented in Appendix B. 

 

4.1.1 Theoretical Formulation 

 This method focusses on the side of the rover and the pose of the links in the 

rocker-bogie suspension system with respect to the wheels and the shape of the terrain. 

As such, it is a planar method, and centres around the rigid body assumption, with x and  

y coordinates assigned to each of the pivot points, or joints of the system, in addition to 

the wheel ground contact points.  

 

Assumption 1: The rover is a rigid body and any parameters such as link lengths and 

relative joint locations can be considered rigid and therefore constant.  

In addition, certain distances, such as the distance between the front and rear wheel 

centres, are constant. 

 

To begin development of the model, the rover must be projected into a simplified version 

of its side view. Figure 4.1 shows the simplified geometry of the right side of the Argo J5 

rover analysed.  



57 

 

 

Figure 4.1: Simplified right-side profile of the Argo J5 rover with highlighted joints and contact 

points. 

 

Figure 4.1 only includes the rigid links and wheels, with the broken line representing the 

outline of the chassis for clarity. Line FG is the side rod of the back suspension, with 

point F being the location of the back suspension in the walking beam. Point E is the 

revolute joint between the chassis and the walking beam. Each end or joint of every  

linkage is highlighted and labelled. These points are then assigned a pair of coordinates 

(x,y) to locate them in the plane. 

 

Once all coordinates have been allocated, it can be observed from Figure 4.1 that 

the linkages provide rigid distances connecting some of these points. Furthermore, due to 

 the geometry of the rocker-bogie suspension system, there are also rigid distances 

between other pivot points. Figure 4.2 depicts these other set distances with a broken line. 

y 

x 

Direction of Motion 



58 

 

 

 

Figure 4.2: Right-side profile with labelled pivot points and rigid distances between pivot points. 

 

Using the x,y coordinate pairs of each point, equations can be developed to determine 

each of the distances or rigid lengths between various coordinate pairs. The distances can 

easily be determined in this grid system, using the Euclidean distance between two points  

or Pythagorean theorem with each rigid length as the hypotenuse. Applying this method 

to the J5 rover, yields the following set of equations: 



59 

 

 

(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 = 𝑟𝐴𝐵
2  

(𝑥𝐶 − 𝑥𝐷)2 + (𝑦𝐶 − 𝑦𝐷)2 = 𝑟𝐶𝐷
2  

(𝑥𝐴 − 𝑥𝐶)2 + (𝑦𝐴 − 𝑦𝐶)2 = 𝑟𝐴𝐶
2  

  (𝑥𝐴 − 𝑥𝐸)2 + (𝑦𝐴 − 𝑦𝐸)2 = 𝑟𝐴𝐸
2    (4.1) 

(𝑥𝐶 − 𝑥𝐸)2 + (𝑦𝐶 − 𝑦𝐸)2 = 𝑟𝐶𝐸
2  

(𝑥𝐶 − 𝑥𝐹)2 + (𝑦𝐶 − 𝑦𝐹)2 = 𝑟𝐶𝐹
2  

(𝑥𝐸 − 𝑥𝐹)2 + (𝑦𝐸 − 𝑦𝐹)2 = 𝑟𝐸𝐹
2  

(𝑥𝐹 − 𝑥𝐺)2 + (𝑦𝐹 − 𝑦𝐺)2 = 𝑟𝐹𝐺
2  

(𝑥𝐴 − 𝑥𝐹)2 + (𝑦𝐴 − 𝑦𝐹)2 = 𝑟𝐴𝐹
2  

 

 

When reviewing the equation set it becomes apparent that for seven points or coordinate 

pairs (fourteen unknowns), there are only nine equations. To obtain enough equations to 

yield a unique solution, the wheel-ground contact points are analysed to produce more 

relations.  

 

Assumption 2: Each wheel has a single point of contact with the ground and all wheels 

remain in contact with the terrain throughout the traverse.  

For the planar model, the rover is constrained to follow the terrain and cannot “pop a 

wheelie”. This constraint also means that the coordinates of the wheel’s contact point 

must match the value of the terrain, more specifically that the y-coordinate of the contact 

point will match or be identical to the y-value of the terrain function.  



60 

 

 

Thus, the following additional two equations (4.2) are produced: 

 

  𝑦𝐵 − 𝑓(𝑥𝐵) = 0 

𝑦𝐷 − 𝑓(𝑥𝐷) = 0    (4.2) 

 

Furthermore, the wheel ground contact points can be analysed with respect to the slope of 

the terrain it is on, as depicted in Figure 4.3. 

 

 

Figure 4.3: Right-side profile of rover with sloping terrain. 

 

For each wheel another equation can be produced to describe the relation between the 

wheel axle and wheel-ground contact point coordinate values based on the effect of the 



61 

 

slope of the terrain. Using the geometry shown in Figure 4.3, the following equations 

were developed for each wheel: 

 

  𝑚2(𝑦𝐴 − 𝑦𝐵) + (𝑥𝐴 − 𝑥𝐵) = 0 

𝑚4(𝑦𝐶 − 𝑦𝐷) + (𝑥𝐶 − 𝑥𝐷) = 0   (4.3) 

 

At this point, there are now 13 equations and 14 unknowns. In order to make the system 

solvable, one coordinate point is selected as an input that is specified and used to displace  

the rover. For this model, it was chosen to use the x variable of the back-right wheel as 

the input value. Using the x variable as an input yields Equation Set 4.4: 

 

(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 − 𝑟𝐴𝐵
2 = 0 

(𝑥𝐶 − 𝑥𝐷)2 + (𝑦𝐶 − 𝑦𝐷)2 − 𝑟𝐶𝐷
2 = 0 

(𝑥𝐴 − 𝑥𝐶)2 + (𝑦𝐴 − 𝑦𝐶)2 − 𝑟𝐴𝐶
2 = 0 

(𝑥𝐴 − 𝑥𝐸)2 + (𝑦𝐴 − 𝑦𝐸)2 − 𝑟𝐴𝐸
2 = 0 

(𝑥𝐶 − 𝑥𝐸)2 + (𝑦𝐶 − 𝑦𝐸)2 − 𝑟𝐶𝐸
2 = 0 

(𝑥𝐶 − 𝑥𝐹)2 + (𝑦𝐶 − 𝑦𝐹)2 − 𝑟𝐶𝐹
2 = 0 

      (𝑥𝐸 − 𝑥𝐹)2 + (𝑦𝐸 − 𝑦𝐹)2 − 𝑟𝐸𝐹
2 = 0   (4.4) 

(𝑥𝐹 − 𝑥𝐺)2 + (𝑦𝐹 − 𝑦𝐺)2 − 𝑟𝐹𝐺
2 = 0 

(𝑥𝐴 − 𝑥𝐹)2 + (𝑦𝐴 − 𝑦𝐹)2 − 𝑟𝐴𝐹
2 = 0 

𝑦𝐵 − 𝑓(𝑥𝐵) = 0 



62 

 

𝑦𝐷 − 𝑓(𝑥𝐷) = 0 

𝑚2(𝑦𝐴 − 𝑦𝐵) + (𝑥𝐴 − 𝑥𝐵) = 0 

𝑚4(𝑦𝐶 − 𝑦𝐷) + (𝑥𝐶 − 𝑥𝐷) = 0 

 

A few other important assumptions were made in the development of the planar model.  

 

Assumption 3: Distances between the different points of interest are correct and 

accurate, with lengths or distances not belonging to an actual link accurately determined 

from the observed geometry.  

Access was not provided to the actual CAD model and dimensions were hard to 

accurately measure from the physical rover. However, measurements were taken as a 

rough approximation and these particular distances were measured from a scaled drawing 

(ref. Figure 4.9 and Appendix A). 

 

Assumption 4: The left and right sides of the rover experience identical terrain geometry, 

and subsequently the same motion and displacement.  

Due to the planar nature of the model, the right and the left side are assumed to 

experience the same displacements due to the same terrain inputs. This situation could 

have been avoided with an expression for the chassis pitch based on the pitch of the two 

walking beams; however, it was not used for this model similar to the original paper by 

Parakh et al [51]. Treating the left and right separately would also have entailed 

determination of rover roll and yaw angles which exist in three-dimensions, beyond the 

scope of the planar kinematic analysis. 



63 

 

 

4.1.2 Method of Solution 

 From Equation Set 4.4 in the previous Section (4.1.1), it becomes apparent that 

the solution will be the set of the coordinates for each point, since the links and distances 

are by the model’s definition rigid and therefore constant and have also been calculated. 

Since the first objective is to pre-determine the pose of the rover with respect to a set 

terrain path, the terrain function must be known and supplied as the input variable of the 

model. With a total of thirteen equations, an equation solver is needed to efficiently 

converge at a solution. Due to the nonlinearity of the equations, a nonlinear multivariate 

solver was required. The selection of the x coordinate of the rear right wheel axle as an 

input resulted in a system of thirteen equations and thirteen unknowns, a determinate 

system, which means a square Jacobian can be obtained, opening up the selection of 

solvers. Due to its ability to converge fairly quickly and reliably for a set on nonlinear, 

multivariate equations, the nonlinear multivariate Newton-Raphson method was selected. 

The author wrote a non-linear, multi-variate, Newton-Raphson solver (included in 

Appendix B) in order to solve the set of position equations. The nonlinear multivariate 

Newton-Raphson method can be summarised by Equation 4.5, where Jf
-1 is the inverse of  

the Jacobian, x is an array of the variables to be solved for, and f(x) is the function 

evaluated at x. 

 

𝑭 = 𝒙 − 𝑱𝒇
−𝟏 𝒇(𝒙)     (4.5) 

 



64 

 

A separate function file was written to perform the nonlinear multivariate Newton 

Raphson solution and the function file can be viewed in Appendix B, along with the rest 

of the code and analysis. 

  



65 

 

  

Fi
gu

re
 4

.4
: P

la
na

r 
po

si
tio

n 
ki

ne
m

at
ic

 m
od

el
 c

od
e 

ar
ch

ite
ct

ur
e.

 



66 

 

MATLAB was chosen largely because of its compatibility with other programs 

and its ability to be easily translated to other programming languages. The algorithm 

shown in Figure 4.4 was implemented in MATLAB, with complete script files included 

in Appendix B. The algorithm takes an initial guess input by the user, along with rover 

parameters and the terrain function, uses the set of equations that describe the geometry 

of the rover, and solves them numerically using the nonlinear multivariate Newton-

Raphson function file. The nonlinear multivariate Newton-Raphson function also requires 

that the particular Jacobian for that rover’s equation set be manually determined in order 

to generate a separate function file to be called by the Newton-Raphson function. The 

Jacobian function file can also be found in Appendix B. Once the nonlinear multivariate 

Newton-Raphson solver converges to a solution for the given interval, the solution is then 

plotted to show the rover’s current position.  They are also stored to later show the 

overall progression plot of the coordinates over the full time of the traverse. It should also 

be noted that the while loop containing the solver is governed by time, with solutions 

being produced for a given interval. The rover is forced forward by the x coordinate of 

the right rear wheel based on the time interval, ∆t, and the commanded velocity of the 

rover. A time step (∆t) of 1 second was used. 

 

4.1.3 Results 

 Prior to deriving the equations and writing the scripts for the J5 rover, it should be 

noted that the process was first applied to the same Rocky 7 rover used by the original 

authors, to ensure that the application was correct, and their results could be replicated. 



67 

 

The results compared well with those of the original authors.  A selection of those results, 

along with the algorithm/code developed, are included in Appendix B.  

 

 A selection of representative cases was chosen to demonstrate the 

functionality/capabilities of the method. Others are included in Appendix B. It should be 

noted that more cases can be generated on request, however it does not achieve the 

overall goal of this work and is inefficient.  It should also be noted that due to the planar 

aspect of the method, the back suspension had to be removed to avoid introducing the 

necessary complications of a third dimension, rendering the equation set unsolvable. 

 

  



68 

 

 

Figure 4.5: Planar inclined pose for a slope of 26.57o. 

 

 

Figure 4.6: Pivot point traces for inclined terrain with slope of 26.57o. 



69 

 

Figures 4.5 and 4.6 detail the results obtained for an inclined terrain, driving 

uphill.  For the uphill test case, the inclined slope is given by a terrain function of y=0.5x, 

or a slope of 26.57o. The planar pose in Figure 4.5 is generated for each time step and 

shows the rover conforming to follow the terrain as expected. Figure 4.6 details the 

movement of the pivot point loci (traces) for the rover as it travels along the terrain. As 

expected, each of the loci coordinates follows the shape of the terrain, generating lines 

with a slope of 0.5. Loci A and C represent the wheel axles, hence the rear wheel (C) 

appears connected to the front wheel (A) since eventually the rear wheel traces the path 

of the front. 



70 

 

 

Figure 4.7: Planar pose for a sinusoidal terrain. 

 

 

Figure 4.8: Pivot point traces for sinusoidal terrain. 



71 

 

 A more complicated terrain function is presented in Figures 4.7 and 4.8.  A 

sinusoidal function was chosen as it is more complex with its change in slope and would 

thus be closer to reality, where the terrain is not uniform. Once again, the pose was 

successfully determined for each time step, with the rover wheels in contact with the 

terrain. Also, as expected, the vehicle pivot point loci (traces) follow the terrain, each 

mapping out a sine function and the rear wheel following the path of the front. The 

specific terrain function used to generate these figures was y=0.12 sin (π x). It should also 

be noted that care must be given to choosing the terrain function, especially for sinusoidal 

functions, such that the peaks and valleys are not too narrow for the wheel dimensions, 

which would cause the rover displacement to not follow the terrain. 

 

 Overall, the planar method presented here can be used to estimate what the pose 

of the rover should be as it traverses a given a particular terrain function. However, it is 

rather limited in that only one side of the rover is examined, and it does not account well 

for non-smooth and rough terrains. Furthermore, the full three orientation angles of the 

chassis are not automatically generated and would require extra work to do so. The joint 

angles are of particular importance since they can be used in evaluating the stability of  

the current pose of the rover and whether the physical constraints of each joint have been 

violated. 

 

 



72 

 

4.2 Three-dimensional Position Kinematics (D-H Approach) 

 

As noted from the planar kinematic analysis in Section 4.1, a three-dimensional 

analysis is required to accurately describe the effects of rougher terrain on rover pose. 

With the need for an accurate description in three dimensions, the geometric method used 

in 4.1 becomes cumbersome.  The use of the Denavit-Hartenberg (D-H) convention 

described in Chapter 3 allows for determining the pose of the rover at any point in its 

traverse and to describe this pose in relation to the origin of its path in a world frame. As  

outlined in Chapter 3, applying the D-H convention allows for transformation matrices to 

be derived that relate the motion of the rover to the world frame. 

 

4.2.1 Theoretical Formulation 

To begin construction of a kinematic model, the particular vehicle must be 

examined and appropriately modelled. For a kinematic analysis, modeling specifically 

refers to focusing on the joints which form the kinematic pairs and the rigid lengths or 

links between these pairs. As introduced in Chapter 1, the rover of interest in this work is 

the J5.   

  



73 

 

 

  

Fi
gu

re
 4

.9
: S

id
e 

an
d 

re
ar

 v
ie

w
s o

f t
he

 J
5 

ro
ve

r 
(fi

gu
re

 su
pp

lie
d 

by
 M

C
SS

). 

 



74 

 

 

 
Fi

gu
re

 4
.1

0:
 T

op
 v

ie
w

 o
f J

5 
w

ith
 la

be
lle

d 
jo

in
ts

. 



75 

 

From Figures 4.9 and 4.10, it is observed that the rover has a readily identifiable set of 

linkages in the back suspension, consisting of two side rods and a back bar. The design of 

the rear suspension constrains the pitch of the chassis with respect to each walking beam, 

by virtue of the back bar on the chassis being connected to the side rods that interface 

with each walking beam. The effect is such that it serves to average the pitch of walking 

beams to obtain the pitch of the chassis and attempt to keep the chassis level. Aside from 

the obvious linkage suspension system, the rest of the rover can also be discretized into 

kinematic pairs or joints separated by rigid lengths. These other components include the 

chassis, walking beams, and the wheels.  

 

With the simplified sketch of Figure 4.10, the joints are easily identified. Starting 

outwards from J1, the centre of gravity (C of G), joints are labelled sequentially, with 

even numbered joints on the left side of the rover and odd numbered on the right. It can 

further be observed that from the chassis C of G, there are two kinematic paths that can 

be taken to reach each of the four wheels and their respective ground contact points, 

either directly through the walking beams (J7, J8) or through the back suspension (J2) to 

the walking beams (J5, J6). Each of the four wheel-ground contact points is analogous to 

the end effector of a manipulator, effectively meaning that this four-wheel rover is to be 

modelled as a parallel manipulator.  With the establishment of the joints or kinematic 

(pairs, the links of each kinematic chain are more easily visualised, and one can begin to 

assign coordinate frames to each joint, along with the end effector and fixed reference 

point.  

 



76 

 

Initially, the model included all the joints for the back suspension with a spherical 

joint (rotates in all 3 directions) connecting the side rods to their respective walking 

beams. To apply the D-H convention, each of these spherical joints was decomposed into 

three mutually orthogonal revolute joints. This decomposition made an already complex 

system even more complex, as each joint adds another row of D-H parameters and 

subsequently another transformation matrix to be concatenated in the set from rover C of 

G to ground. Early attempts at solving the sets of equations developed proved to yield no 

results and the decision was made to simplify the back-suspension system by relating the 

pitch of the chassis to the two walking beams. The simplification of the back-suspension 

and its associated joints simplifies the rover; however, the remaining system is still 

effectively a parallel manipulator. 

 

With the rover model simplified, the body can essentially be stripped away and 

represented purely by the individual joints and relative locations. By focusing solely on 

the joints, the coordinate frames are properly assigned following the rules of the D-H 

convention outlined in Chapter 3.  Figure 4.11 depicts the final version of the rover 

model which forms the foundation of this kinematic analysis. 

 

  



77 

 

  

Fi
gu

re
 4

.1
1:

 J
5 

jo
in

ts
 a

nd
 a

ss
ig

ne
d 

co
or

di
na

te
 fr

am
es

. 

 



78 

 

Examination of Figure 4.11 reveals more joints than present in the physical rover, 

particularly the three prismatic joints (indicated by cubes) followed by three revolute 

joints (cylinders). In order to describe the movement of the rover, or more specifically the 

pose of the rover with respect to its environment, two concurrent three degree of freedom 

joints were added to connect the rover to the world origin or reference frame. Although 

these are not physical joints on the actual rover, their inclusion allows the rover’s position 

to be tracked as it moves further from its starting position with the C of G above the 

world origin. Having these three degree of freedom joints is also advantageous as it 

means that by “actuating the joint” to get to each set of contact points on the terrain map, 

the model is closer to driving the rover over the terrain rather than moving the terrain 

under a fixed rover, like a velocity table. Similar to a spherical joint, a three degree of 

freedom joint must be broken down into a set of concurrent joints comprised of three 

prismatic components for translation and three revolute components for rotation. Each of 

the prismatic joints handles the rover heading in one of the three world directions, 

starting with the x-direction, followed by the y-direction and finally z. With the position 

of the rover’s centre of gravity as expressed in the world frame taken care of, the 

orientation must follow, hence the three revolute joints. These describe the overall yaw, 

pitch, and roll of the chassis about its centre of gravity. Following these joints, the centre 

of the chassis has been reached and two branches split off to describe the left and right 

sides of the rover. It should be noted that the lines connecting the joints are not drawn to 

scale and are more to represent how each joint is oriented with respect to the world 

reference frame and the order of connection.  The order, in turn, dictates the 

concatenation order of the individual transform matrices. Branching off from the centre 



79 

 

of gravity, the kinematic chain can proceed to the left or right side of the rover. Each 

walking beam can rotate or pitch up and down with respect to the world frame. Following 

the revolute joint of the walking beam, the kinematic chain branches again with one 

branch for the front wheel and its contact point, and the other for the rear. Hence, the 

rover can be modeled as a parallel manipulator with four distinct kinematic paths from 

the world reference frame to the respective wheel ground contact points. 

 

 With all the joints clearly identified as shown in Figure 4.11, the coordinate 

frames shown were assigned based on the rules outlined in Chapter 3. It can be seen that 

all joints have the z-axis aligned with their respective joint axis and that each coordinate 

system has its x-axis such that it is perpendicular to both its own z-axis and the z-axis of 

the joint preceding it. As such, the x-axis for each wheel axle is at an angle that aligns it 

with the link length between it and the walking beam pivot point. It is also important to 

note from Figure 4.11 that the left and right sides of the rover have z-axes pointing in 

opposite directions. This choice was made to avoid having to assign negative values to 

rigid distances between some of the links. Similarly, the x-axis of each walking beam 

joint is in the vertical, downwards or negative global z direction, to take advantage of 

bisecting the angle between each walking beam link length (shortest distance between  

the axles and the walking beam pivot point). This advantage will become more apparent 

as the parameters are discussed. 

 



80 

 

 At this stage in the formulation, it is beneficial to introduce the assumptions made 

in the three-dimensional position kinematic analysis and discuss the rationale behind 

them. 

 

Assumption 1: The rover is a rigid body and any parameters such as link lengths and 

joint displacements can be considered rigid and therefore constant.  

It is reasonable to assume that structural flexion does not need to be accounted for.  In 

addition, certain distances, such as the distance between the front and rear wheels, are 

assumed to be constant. 

 

Assumption 2: Dimensions of the rover are accurately determined from the drawing 

provided by the rover operators.  

Access was not provided to the actual CAD model and dimensions were hard to 

accurately measure from the physical rover. However, a drawing of the rover was 

provided and illustrated measurements of certain dimensions were taken from the 

drawing and scaled accordingly to obtain other dimensions used throughout the work 

presented here. The scale used was 15.8:1. The drawing provided is included in Appendix 

A, along with a list of dimensions and properties of the rover. These dimensions were  

also used in creating test terrains that would be guaranteed to line up with the wheel-

ground contact points. 



81 

 

 

Assumption 3: The rover’s centre of gravity is in alignment with the walking beam joints.  

From the rover diagram mentioned in assumption 2, the checkered circle symbolising the 

rover’s centre of gravity can be seen to be slightly off the geometric centre, where the 

joints connecting the chassis to each of the walking beams would be aligned. The 

relatively small distance (0.01524m) added unnecessary complexity to an already 

complex problem and did not significantly impact the D-H parameters governing the 

analysis. The location of the centre of gravity would have more impact in the dynamic 

analysis, which deals with forces (and by extension:  masses and accelerations) whereas 

kinematics is limited to position and motion. 

 

Assumption 4: The back-suspension can be replaced and modeled with a function 

relating the pitch of each walking beam to the overall pitch of the chassis.  

Upon initial derivation of the D-H parameters and consequent transform matrices, it was 

determined that modelling the back suspension added too much complexity and number 

of equations to an already overly constrained system. Such excessive complexity and the 

added number of constraints would be problematic for the software to accommodate. 

Based on conversation with the rover owner/operator, it was determined that the  

appropriate function would average the pitch of each walking beam to try and keep the 

chassis as level as possible. As such, the following equation was developed: 



82 

 

   𝜃𝑐ℎ𝑎𝑠 =
1

2
(𝜃𝑤𝑏𝑟 − 𝜃𝑤𝑏𝑙)     (4.6) 

 

Where ϴwbr and ϴwbl are the pitch of the right and left walking beams, respectively, with 

the chassis pitch represented by ϴchas. The negative sign occurs due to the different 

orientations of the z-axes for each walking beam joint which means that the same pitch 

will have different directions (signs) in their respective coordinate frames, as governed by 

the right-hand rule. 

 

Assumption 5: Each wheel has a single point of contact with the terrain and is located at 

the same position as the axle plus a radial distance to the wheel rim.  

Each wheel is considered to be more like a disk. Although depending on the type of tire, 

terrain, and terra-mechanic forces involved, the actual wheel-ground contact is more of a 

continuum than a single point, for a kinematic analysis.  The goal is the overall pose of 

the rover for the given terrain input and which could be used to determine whether the 

pose violates any constraints, or results in an unstable configuration. Thus, it was 

determined to be acceptable to proceed with the simplifying assumption of a single point 

of contact for each of the four wheels, meaning four input sets from information obtained 

from the terrain map. 

 

Assumption 6:  The wheel-ground contact point is modeled via Tarokh et-al [48] due to 

the relatively fixed relationship between the wheel axle and the rim-ground contact point.  

This assumption simplifies the mathematical formulation for the model. 



83 

 

 

Parameters 

 With these governing assumptions in mind, the model above with the coordinate 

frames indicated was used to obtain the four D-H parameters describing the 

transformation between each kinematic pair. These parameters where collected in tables, 

with Table 4.1 as an example. 

 

Table 4.1: D-H parameters for the kinematic chain – world origin frame to right front wheel. 

n θ [deg] α [deg] a [m] d [m] 
0 + 90 + 90 0 0 
1 - 90 - 90 0 X

trans
 

2 - 90 + 90 0 Y
trans

 

3 0 0 0 Z
trans

 + h
CoG

 

4 φ
yaw

 - 90 0 0 

5 φ
pitch

 + 90 + 90 0 0 

6 φ
roll

 + 90 0 0 

10 θ
wbr

 + β 0 a
wb

 d
cmwb

 

 

The complete set of D-H parameter tables can be viewed in Appendix C.  Note 

that there are extra rows, one between the world frame and the first joint, and also 

between the axle initial orientation and the orientation used in the contact transformation 

matrix. These additions do not describe actual joints but were necessary because an 

additional rotation was needed for proper alignment. As expected, the three prismatic 

joints (rows for n=1, 2, 3) have the joint variables representing the overall translation of 

the rover in the three global directions. The third joint, responsible for the global z 



84 

 

translation of the rover has the constant addition of the height of the rover’s C of G 

included, so as to distinguish movement in the global z direction from the influence of the 

terrain and not the height of the C of G. The subsequent three revolute joints have joint 

variables of theta which represent the overall yaw, pitch, and roll of the chassis. The yaw 

angle would be the heading or steering angle of the rover as it follows the chosen path. 

For the joint rotation of each walking beam, an additional variable β, is included. The 

angle β corresponds to half the angle between the two walking beam link lengths (awb). 

The walking beam link lengths are the shortest distance between the walking beam joint 

and the wheel axles. Finally, the last row describing the transformation from the walking 

beam joint coordinate frame to the wheel axle also has a joint offset parameter whereas 

the previous row (detailing the transformation from the C of G to the walking beam joint) 

does not. This joint offset occurs because the coordinate frame for the walking beam joint 

has to be effectively translated (although still attached to the joint) to ensure it did not 

violate any of the rules for establishing coordinate frames.  Its x-axis was not only 

perpendicular to its own z-axis and the z-axis of the joint before it, but also that it 

intersected the previous z-axis. This joint offset is the width or distance from the rover’s 

centre of gravity to the wheel-ground contact point (or end of axle) in the global Y 

direction. 

 

Equations 

The final step in the formulation of the kinematic model is the generation of 

transform matrices between the kinematic pairs or coordinate frames, which in turn 

produce the equations describing the motion of an output link relative to the selected 



85 

 

fixed reference frame. Chapter 3 introduced the homogeneous transform matrix and how 

D-H parameters fit. Returning to Table 4.1, and using the D-H parameters for row 2 

which describes the transform from coordinate frames 0 to 1 (or the properties for joint 

1), the homogeneous transformation matrix is  

 

𝑇1
0 = [

𝑐𝜃1 −𝑠𝜃1 𝑐𝛼1 𝑠𝜃1 𝑠𝛼1 𝑎1 𝑐𝜃1

𝑠𝜃1 𝑐𝜃1 𝑐𝛼1 −𝑐𝜃1 𝑠𝛼1 𝑎1 𝑠𝜃1

0 𝑠𝛼1 𝑐𝛼1 𝑑1

0 0 0 1

] 

 

= [

𝑐(−90) −𝑠(−90)𝑐(−90) 𝑠(−90)𝑠(−90) (0)𝑐(−90)

𝑠(−90) 𝑐(−90)𝑐(−90) −𝑐(−90)𝑠(−90) (0)𝑠(−90)

0 𝑠(−90) 𝑐(−90) 𝑋𝑡𝑟𝑎𝑛𝑠

0 0 0 1

]       (4.7) 

 

= [

0 0 1 0
−1 0 0 0
0 −1 0 𝑋𝑡𝑟𝑎𝑛𝑠

0 0 0 1

] 

 

The full set of homogeneous transformation matrices were produced using Maple but are 

not included herein. 

 

The paper with the closest approach to this work, Tarokh et al [48], noted that a 

better approach to the transformation matrix from the wheel axle to the contact point was 

by applying a simple rotation based on the terrain incline and translations of the contact 

joint based on that angle.  



86 

 

 

Figure 4.12: Right front wheel contact diagrams (view looking in the axle’s negative z-direction). 

 

 

 

Figure 4.13: Right rear wheel contact diagrams (view looking in the axle’s negative z-direction). 

 



87 

 

 

Figure 4.14: Left front wheel contact diagrams (view looking in the axle’s positive z-direction). 

 

 

 

Figure 4.15: Left rear wheel contact diagrams (view looking in the axle’s positive z-direction). 

 



88 

 

Figures 4.12 through 4.15 show the various wheels on a generic incline and its 

effect on the orientation of the coordinate frame at the contact point with respect to the 

axle’s coordinate frame. The angle of the incline causes the contact point to rotate about 

the axle’s z-axis by that same amount. This rotation results in the x and y location of the 

contact point shifting by a magnitude of the radius multiplied by the cosine or the sine of 

 the angle respectively. By inspection, it can be seen that the transformation matrix 

relating the contact point to the wheel axle for the right front wheel is given by Equation 

4.8. 

 

𝑇14
10 = [

𝑐𝛿𝑟𝑓 −𝑠𝛿𝑟𝑓 0 𝑟 𝑐𝛿𝑟𝑓

𝑠𝛿𝑟𝑓 𝑐𝛿𝑟𝑓 0 𝑟 𝛿𝑟𝑓

0 0 1 0
0 0 0 1

]    (4.8) 

 

Note that, in Equation 4.8, the notation on the transformation matrix, T, connects axle 

joint 10 with its wheel-ground contact point for that wheel, 14.  After attempting a purely 

D-H approach, it was decided to take advantage of this simplification and include it in the 

model presented here.  

 

Similarly, the overall transformation matrix describing the end effector of wheel-

ground contact point with respect to the world frame, is obtained by the concatenation of 

transformation matrices in Equation 4.9. 



89 

 

 

𝑇14
𝑊 = 𝑇0

𝑊𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇6

5𝑇10
6 𝑇10𝑎

10 𝑇14
10𝑎     (4.9) 

 

The order of multiplication follows the order of the joints, starting from the world frame 

and ending at the contact point. The concatenation of matrices for the remaining three 

kinematic chains (wheels) were also completed using Maple. It was decided to use Maple 

to obtain the overall transformation matrix for each kinematic chain because it is better 

built for symbolic computing.  

 

 Recalling the definition of the homogeneous transformation matrix, once the 

overall transformation matrix has been determined for each kinematic chain, equations 

expressing the pose of the end effector in the world reference can be extracted as follows: 

 

𝑋𝐶𝑖 = 𝑇𝐶𝑖
𝑊[1,4] 

𝑌𝐶𝑖 = 𝑇𝐶𝑖
𝑊[2,4] 

𝑍𝐶𝑖 = 𝑇𝐶𝑖
𝑊[3,4] 

  𝜑𝑋,𝐶𝑖 = tan−1 (
𝑇𝐶𝑖

𝑊[3,3]

𝑇𝐶𝑖
𝑊[3,1]

)    (4.10) 

𝜑𝑌,𝐶𝑖 = sin−1(−𝑇𝐶𝑖
𝑊[3,2]) 

𝜑𝑍,𝐶𝑖 = tan−1 (
𝑇𝐶𝑖

𝑊[2,2]

𝑇𝐶𝑖
𝑊[1,2]

) 

 



90 

 

A brief examination of the 4th and 6th equations of Equation Set 4.10, which have 

denominators, indicates that it is extremely unlikely for the denominators to become zero, 

given the physical reality of the driving scenario.  Once again taking advantage of the 

symbolic nature of the Maple environment, the resulting equations were obtained for 

direct implementation in the algorithm for solution. The final result was a set of a 

maximum of 24 equations to describe the pose of the end effector, with the added 

Equation 4.6 replacing the back suspension. From the D-H parameter tables it can be seen 

that there are 12 unknowns or joint variables for the system. Details of the algorithm, 

including solvers used, are presented in 4.2.2. 

 

4.2.2 Method of Solution 

 With the derivation of the basic position and orientation (pose) kinematic 

equations complete, the algorithm to solve the set of equations given the position of each  

contact point on the terrain map was developed next. Figure 4.16 details the final 

algorithm.  

 

 



91 

 

 

Figure 4.16: 3D position kinematics algorithm. 

 

Since one of the objectives of this work is to predict the rover behaviour prior to 

executing a particular path, the inputs are designed to be representative of the scenario. 

As such, the main input to the position kinematic analysis is a terrain path consisting of 

location in X and Y, with the elevation at each set of coordinates given by Z. 

Alternatively, a terrain function can be used instead of a terrain map of Z(X,Y), however 

to try and simulate reality, the elevation terrain map was implemented. The use of a 

terrain map also allows for more randomness to be included in the terrain than otherwise 

would be. Furthermore, this choice will prove advantageous later in the velocity analysis, 

as it allows the terrain map to be populated with estimates for regions of slip. The first 

step in the algorithm imports the specified terrain path map and extracts arrays of data for 

the different coordinate directions for each wheel-ground contact point. These extracted 

arrays will then be used as inputs for the position and orientation of the wheel-ground 

contact points. It is important to remember that these inputs must all be expressed using 

the world reference frame. 



92 

 

 

 A “while” loop is used to step through each set of points in the traverse, from 

beginning to end. With the inputs defined, the external function, J5posKin.m is called for 

solution. The J5posKin.m function can be thought of as the kinematic model or rover 

geometry/property file, since it not only contains the extracted kinematic equations but 

also the physical geometric properties of the particular rover. This function file could 

easily be swapped out for different rover models without much change to the overall 

algorithm, making the algorithm more versatile. It should be noted that for most 

numerical solvers, an initial guess of the solution is required. For simpler terrain test 

cases, the initial guess can be easily made to fit the actual solution, like that of flat land 

which can be expected to have a solution of 0 for the joint variables corresponding to the 

first location on its traversal path. A good initial guess gives the solver a better chance at 

achieving convergence. For each position iteration of the while loop, the corresponding 

solution of joint variables are stored for easy plotting of joint motion over the traverse.  

For example, the angular displacement of each walking beam over the course of the 

traverse is one such end output of the algorithm. The terrain path is also plotted over the 

terrain map to provide context and a means for comparison. 

 

 The 3D position kinematics algorithm was developed with the goal of being more 

software independent than other methods, including some of those highlighted in the 

literature presented in Chapter 2. Thus, the source scripts/code displayed in Appendix C, 

can easily be modified for other coding platforms and languages. The work presented 

here was written in MATLAB, which is relatively inexpensive compared to multibody 



93 

 

physics engines and other simulation software. MATLAB was also chosen for its ability 

to easily interface with other software applications and the familiarity of the author with 

its functions. The algorithm being relatively independent of the software utilized is 

advantageous since it means that users have more flexibility in the software they use and 

are not forced to invest in a software platform that can be costly in terms of both purchase 

and training costs. 

 

 Within MATLAB, many built-in functions are available for solving systems of 

equations and many of these have a choice of algorithms to use in their solution. This 

feature makes them more robust and increases the overall chance of convergence. After 

investigating some of the solvers applicable to nonlinear equations, the solver ‘fsolve’ 

was selected. Fsolve was chosen because it not only solves systems of nonlinear 

equations, but multivariate ones as well. More importantly, one of its potential solution 

methods is the Levenberg-Marquardt algorithm which can handle systems of equations 

where the Jacobian fails to be square. The kinematic equation set derived for the J5 rover 

has a maximum of 25 equations and 12 unknowns, making it an over-constrained system. 

Even reducing the equation set to the bare minimum still results in 13 equations for 12 

unknowns. As such, the Jacobian of this equation set will never be square, hence a solver 

that can employ a strategy to cope with the non-square Jacobian is required. To use 

fsolve, the equation set must be in the form of equations that equal zero as seen in the 

function file, J5posKin3.m, included in Appendix C. 

 

 



94 

 

4.2.3 Results 

 A selection of representative case studies is presented below. Once again, more 

cases can be generated upon request, with the representative cases demonstrating the 

capabilities of the method. It should be noted that using the full set of 25 equations with 

12 unknowns resulted in convergence issues, as the system is over-constrained. Adjusting 

settings on the solver did not result in convergence. However, due to the physical nature 

of the rover, the wheel-ground contact points remain fixed in their orientation relative to 

each other, with respect to yaw and roll. This relationship justified the removal of some 

of the orientation equations, which resulted in convergence being achieved.  

 

Case 1: Flat Terrain 

 

Figure 4.17: Flat terrain digital elevation map. 

 



95 

 

 The first test case was for flat terrain since it was the simplest scenario. Figure 

4.17 is the digital elevation map of the flat terrain and the inputted terrain path consisted  

of x, y, z coordinates for a straight path in the global x-direction, beginning with the 

chassis centred over the world origin (located at (0, 0, 0)).  

 

 

Figure 4.18: Walking beam pitch vs distance travelled (flat terrain). 

 



96 

 

 

 

Figure 4.19: Chassis orientation angles with respect to distance travelled (flat terrain). 

 

 Figures 4.18 and 4.19 depict the results of the simulated drives. The pitch of each 

walking beam is plotted over the course of the rover’s traverse in Figure 4.18. Examining 

Figure 4.18, one can observe the proper averaging of the walking beams due to the scale 

of the y-axis. Furthermore, the value of the y axis shows that, as expected for the flat 

terrain, the pitch of each walking beam is 0o. Similarly, from Figure 4.19, the yaw, pitch, 

and roll angles are all 0 for the flat terrain which is to be expected. The scale of the y-axis 

shows a bit of a varied response on the pitch; however, it is off magnitude 10-7 and is thus  

considered to be 0. In both 4.18 and 4.19, these fluctuations are due to the nature of the 

solver as it converges toward a solution. 

 



97 

 

Case 2: Uphill Sloped Terrain 

 

 

Figure 4.20: Uphill 10o inclined terrain digital elevation map. 

 

 

 The next test case was for moving up a sloped terrain. The slope of the terrain 

shown in Figure 4.20 and was assigned a slope value of 10o. The corresponding terrain 

path coordinates for each wheel driving in a straight line in the x-direction were 

generated in an Excel sheet and imported as the inputs. Subsequently, it was expected 

that the pitch of the walking beams and chassis would have the same value as the slope. 

 



98 

 

 

 

Figure 4.21: Walking beam pitch vs distance travelled (10⁰ incline). 

  

 

Figure 4.22: Chassis orientation angles with respect to distance travelled (10⁰ incline). 



99 

 

 

 Figures 4.21 and 4.22 detail the results for the simulated drive of a straight path 

on an inclined slope of 10o. It was found that for a longitudinal slope that although 

convergence was achieved, all pitch angles were computed and were off by half of what 

they should be. The apparent error was investigated through further review of the 

computer code, along with a complete reformulation of the overall transformation matrix 

by trying different order combinations for the first 6 joints. Note that the order of later 

joints in the sequence could not be altered as they are specified by the geometry of the 

rover. The application of the original D-H method in assigning coordinate frames and 

determining the associated parameters, was revisited multiple times to ensure correct 

formulation of the individual transformation matrices. Maple was used in the 

concatenation of all the transformation matrices to avoid the possibility of human error in 

matrix multiplication. The results of the investigation indicated that the various 

formulations all produced the same error. Therefore, due to the consistency of this 

offset/error, as also verified in a 15⁰ incline test case, a correction factor of 2 was applied 

to the pitches. It is important that this correction be applied at this point in the model 

because these pitch angles are used later as inputs to the velocity analysis. The resultant 

walking beam pitch angles over the traversed distance are shown in Figure 4.21 and, as 

expected, they remain constant like the slope of the terrain, each with a corrected value of 

10o. Furthermore, the walking beams continue to display the correct behaviour for an 

upward slope of 10o, which is negative with respect to the world frame. The right walking 

beam experiences a positive pitch and the left walking beam a negative pitch, based on 

their coordinate system definition. Thus, the walking beams average the pitch (including 



100 

 

the direction) to the correct value for the pitch of the chassis, which is depicted in Figure 

4.22, and has a value of -10o in the world frame. In addition, Figure 4.22 shows that the 

chassis only experiences a pitch angle in its traverse since a straight-line drive on a 

longitudinal incline would not encounter roll or yaw. 

 

 

Case 3: Side Slope Terrain 

 

Figure 4.23: Side slope 10o terrain digital elevation map. 

 

 Following the inclined uphill slope, the third test case was decided to be for 

driving along a side slope, given that it’s a likely scenario. Figure 4.23 depicts the terrain 

for a side slope of 10o. Once again, the rover is simulated for a straight path in the x- 

direction. For this case, it was expected that the chassis roll value would match that of the 

terrain, while pitch and yaw would have a value of 0. 



101 

 

 
 

Figure 4.24: Walking beam pitch vs distance travelled (side slope 10⁰). 

 

 
 

Figure 4.25: Chassis orientation angles with respect to distance travelled (side slope 10⁰). 

 

The results for the side slope terrain are depicted in Figures 4.24 and 4.25. As 

expected, the pitch of each walking beam is essentially 0, with the scale on Figure 4.24 



102 

 

again showing the apparent opposite rotation of each walking beam (due to the positive z 

axis of rotation for each walking beam being in opposite directions). Subsequently, the  

chassis pitch if the average with a value of 0o, and the yaw is also 0o, both as expected. 

The overall chassis roll is given as -10o, which indeed matches the slope of the terrain. 

 

Case 4: Sinusoidal Terrain  

 

Figure 4.26: Sinusoidal terrain digital elevation map. 

 

The final test case included in this thesis is for a slightly more complicated terrain 

to show the model’s potential. A sinusoidal curve was chosen, with the exact function as 

z=0.4sin(0.4x), and is depicted in Figure 4.26. The sine curve allows for a test of a 

changing slope, which should result in changing pitch angles, including the existence of 



103 

 

the inflection point. The rover is again driven in a straight line in the x-direction, so yaw 

and roll angles are expected to remain zero. 

 

 

Figure 4.27: Walking beam pitch vs distance travelled (sinusoidal terrain). 

 

 

Figure 4.28: Chassis orientation angles with respect to distance travelled (sinusoidal terrain). 



104 

 

 

 The results for the sinusoidal terrain are included as Figures 4.27 and 4.28. Figure 

4.27 displays the walking beam pitch angles over the traversed distance. Due to the 

nature of the pitch in this code, the correction factors noted in simple longitudinal slope 

tests were maintained. The rover begins the traverse at x=0 of the sine function and as 

such, starts on an inclined slope. The slope can be manually determined by taking the 

derivative of the function, providing a means to check the numbers being produced by the 

MATLAB code. As expected, for an uphill slope, the right walking beam experiences a 

positive pitch that is the slope, whereas the left walking beam is its mirror image, with its 

positive axis of rotation in the opposite direction. Following the curvature of the terrain, 

the walking beam pitches curve towards 0 where they meet, before changing direction 

and moving away from each other once more. Figure 4.28 shows the chassis angles of the 

rover as it moves over the terrain. Due to the nature of the terrain and the path selected, 

the chassis should only be experiencing a change in its pitch, with both yaw and roll 

angles stationary at zero. Examination of Figure 4.28 shows that these expectations are 

met, with the yaw and roll angles remaining at a constant zero value, and the pitch angle 

as the average of the walking beams, meaning that the pose matches the direction and 

magnitude of the left walking beam.  These results give confidence in the methods used 

to produce the code/kinematic position model, even with the correction factor. 

 

 

 

 



105 

 

4.3 Three-dimensional Velocity Kinematics (D-H Approach) 

 

 With the establishment of kinematic equations describing the position and 

orientation of the rover in the world reference frame, the method was expanded to include 

velocity analysis. Although being able to predict the pose of the rover as it interacts with 

the geometry of the terrain is crucial, having the capability to do a velocity analysis  

allows for the effect of non-geometric terrain characteristics, specifically slip, to be 

observed as well.  

 

4.3.1 Theoretical Formulation 

Since the previous 3D position kinematic model is the foundation for the 3D 

velocity analysis, all the previous model formulation presented in Section 4.2.1 still 

applies and is used here.  In addition to all previous assumptions used in establishing the 

three-dimensional position kinematic model, some further assumptions were required for 

the velocity analysis. 

 

Assumption 7: The wheels of the rover are constrained to have the same angular velocity 

for a given side (ie. right vs left).  

As mentioned in previous sections, the rover under analysis is one that is equipped with 

skid steering. The application of skid steering in the J5 rover means that each walking 

beam contains a motor to drive both wheels via a belt drive. More specifically, it is 

assumed that there is no stretch or slip in the belt drive mechanism. In addition, the left 



106 

 

and right sides may be given different angular velocities to complete various steering 

maneuvers. 

 

 

Assumption 8: The rover wheels cannot be individually actuated or steered.  

Building on the assumption of the rover as a rigid body with no deformation and constant 

distances between certain joints allows the angular velocity of the contact point to be 

simplified to one direction, provided the rover is moving in a straight line. 

 

Assumption 9: Lateral (or side-slip) is minimal and can be considered negligible, not 

impacting rover progression.  

This assumption allows for side slip to be left out of the analysis but could be added back 

in should actual rover tests play a significant role.  Similarly, steering angle rate slip was 

considered to be negligible due to the steering being skid steering as opposed to certain 

wheels having individual steering such as the Rocky 7 six-wheel rover analysed by 

Tarokh [48]. This consideration also means that the rover is assumed not to deviate 

laterally from its selected path and associated coordinates. 

 

Assumption 10: The speed of the rover is 0.10 m/s or 10 cm/s, in keeping with the speeds 

of other documented planetary exploration rovers (see Chapter 2).  

The selected speed is convenient as it allows the rover to travel slowly enough to 

maintain its assumed quasi-static status. Furthermore, this assumption enables the 

commanded angular velocity of the wheels to be calculated, in terms of no-slip. 



107 

 

Assumption 11: Slip is obtained as part of the digital elevation terrain map and path 

coordinates.  

Specifically, that the digital elevation map, which could be obtained from satellite 

imagery, was post-processed and analysed for slope and terrain type, allowing slip-slope 

curves obtained from experimental drives of the J5 rover to be applied for extracting the  

approximate slip values. These slip values are then used to populate the map and become 

an additional array in the path coordinates. 

 

In the velocity kinematics of serial manipulators, the velocity of the end effector 

is given by Equation 4.11, wherein the joint variable rates (𝑞̇) are multiplied by a matrix 

called the Jacobian, represented here by J. 

 

𝑉⃗ = 𝐽𝑞̇     (4.11) 

 

The vector, V, is comprised of three translational and three rotational velocities to fully 

describe the motion of the end effector, or in this case, the contact point in the world 

frame. The manipulator Jacobian relates the set of joint variable rates into these velocities 

of the wheel ground contact point. Due to the nature of the problem, with passive joints 

and considering information at the contact point to be known, the velocity analysis will 

be an inverse kinematics analysis with the joint values as the unknowns to be solved for. 

Hence, the manipulator Jacobian must be determined, along with developing expressions 

for the different components of the end effector velocity with respect to the world frame. 



108 

 

For the manipulator Jacobian, it is beneficial to recognise that it too, can be divided into a 

translational and angular/rotational part, as shown in Equation 4.12. 

 

𝐽 = [
𝐽𝑣
𝐽𝜔

]      (4.12) 

 

 Regardless of how many kinematic pairs or joints are in a chain, the Jacobian will 

always have six rows for three-dimensional analysis due to the column vector of the end 

effector velocity containing six components. The number of columns will vary, however, 

as they are dependent upon the number of joint variables. In doing so, the number of 

columns also provides insight into whether the system is under- or over-actuated, with 

greater than six columns indicating it is over-actuated and likely to be over-constrained in 

the full equation set. For the J5 rover used in this work, there are eight joints in each 

kinematic chain from the world reference frame to that of the wheel-ground contact point, 

as can be observed in Figure 4.11 in the previous section. Thus, for the J5 rover, the 

Jacobian for each kinematic chain has the size/form of 6 x 8. The upper three rows of the 

Jacobian contain components for linear velocity, thus forming the linear Jacobian. 

Likewise, the rotational Jacobian is formed from the bottom three rows.  

 

𝐽𝑣 =

[
 
 
 
 
𝜕𝑝𝑥

𝜕𝑞1

𝜕𝑝𝑥

𝜕𝑞2
⋯

𝜕𝑝𝑥

𝜕𝑞𝑛

𝜕𝑝𝑦

𝜕𝑞1

𝜕𝑝𝑦

𝜕𝑞2
…

𝜕𝑝𝑦

𝜕𝑞𝑛

𝜕𝑝𝑧

𝜕𝑞1

𝜕𝑝𝑧

𝜕𝑞2
⋯

𝜕𝑝𝑧

𝜕𝑞𝑛]
 
 
 
 

   (4.13) 



109 

 

 

 The translational velocity Jacobian is determined first, using the previously 

determined overall T matrix and extracting the fourth column elements for the position of 

the end effector in the world frame. Using these three elements, the partial derivatives for 

each are obtained with respect to each of the joint variables as shown in Equation 4.13. 

For the kinematic chain of world reference frame to right rear wheel contact point, the  

translational velocity Jacobian is too large to include in the text of this thesis. 

 

𝐽𝜔 = [Λ1ℎ0     Λ2ℎ1     …     Λ𝑛ℎ𝑛−1]    (4.14) 

 

Obtaining the rotational velocity Jacobian is rather different. The columns for this 

matrix are determined using Equation 4.14, with h being the third column of the 

homogeneous transform matrix, T, from the world reference frame to each of the series of 

joints. The variable Λ, is merely used as a logic statement based on the joint type and is 

zero for prismatic joints and one for revolute joints. Thus, if the column corresponds to a 

prismatic joint, the result will be a column of zeros which makes intuitive sense as 

prismatic joints do not have a rotational component. The rotational velocity Jacobian 

components for the revolute joints, having a Λ of 1, are generated by extracting the third 

column in the orientation portion of the T matrix. The T matrix used is based on the  

concatenation of T matrices from the world frame to the end effector of that joint. 

Equation 4.15 demonstrates this process for the pitch joint of the chassis. 

 



110 

 

𝑇5
𝑊 =

[
 
 
 
−𝑐𝜃𝑦𝑎𝑤𝑠𝜃𝑝𝑖𝑡𝑐ℎ −𝑠𝜃𝑦𝑎𝑤 𝑐𝜃𝑦𝑎𝑤𝑐𝜃𝑝𝑖𝑡𝑐ℎ 𝑋𝑡𝑟𝑎𝑛𝑠

−𝑠𝜃𝑦𝑎𝑤𝑠𝜃𝑝𝑖𝑡𝑐ℎ 𝑐𝜃𝑦𝑎𝑤 𝑠𝜃𝑦𝑎𝑤𝑐𝜃𝑝𝑖𝑡𝑐ℎ 𝑌𝑡𝑟𝑎𝑛𝑠

−𝑐𝜃𝑝𝑖𝑡𝑐ℎ 0 −𝑠𝜃𝑝𝑖𝑡𝑐ℎ 𝑍𝑡𝑟𝑎𝑛𝑠 + ℎ𝐶𝑜𝐺

0 0 0 1 ]
 
 
 
  (4.15) 

 

Therefore, rows four to six, column 5 of the rotational Jacobian are (𝑐𝜃𝑦𝑎𝑤𝑐𝜃𝑝𝑖𝑡𝑐ℎ), 

(𝑠𝜃𝑦𝑎𝑤𝑐𝜃𝑝𝑖𝑡𝑐ℎ), and (−𝑠𝜃𝑝𝑖𝑡𝑐ℎ). Full derivation of the matrix elements was completed in 

Maple. Reassembling the translational and rotational Jacobians yields the overall 

Jacobian as shown in Equation 4.16. 

 

𝐽 =

[
 
 
 
 
 
 
 
 
𝜕𝑝𝑥

𝜕𝑞1

𝜕𝑝𝑥

𝜕𝑞2

𝜕𝑝𝑥

𝜕𝑞3

𝜕𝑝𝑥

𝜕𝑞4

𝜕𝑝𝑥

𝜕𝑞5

𝜕𝑝𝑥

𝜕𝑞6

𝜕𝑝𝑥

𝜕𝑞7

𝜕𝑝𝑥

𝜕𝑞8

𝜕𝑝𝑦

𝜕𝑞1

𝜕𝑝𝑦

𝜕𝑞2

𝜕𝑝𝑦

𝜕𝑞3

𝜕𝑝𝑦

𝜕𝑞4

𝜕𝑝𝑦

𝜕𝑞5

𝜕𝑝𝑦

𝜕𝑞6

𝜕𝑝𝑦

𝜕𝑞7

𝜕𝑝𝑦

𝜕𝑞8

𝜕𝑝𝑧

𝜕𝑞1

𝜕𝑝𝑧

𝜕𝑞2

𝜕𝑝𝑧

𝜕𝑞3

𝜕𝑝𝑧

𝜕𝑞4

𝜕𝑝𝑧

𝜕𝑞5

𝜕𝑝𝑧

𝜕𝑞6

𝜕𝑝𝑧

𝜕𝑞7

𝜕𝑝𝑧

𝜕𝑞8

0 0 0 ℎ3,𝑥 ℎ4,𝑥 ℎ5,𝑥 ℎ6,𝑥 ℎ7,𝑥

0 0 0 ℎ3,𝑦 ℎ4,𝑦 ℎ5,𝑦 ℎ6,𝑦 ℎ7,𝑦

0 0 0 ℎ3,𝑧 ℎ4,𝑧 ℎ5,𝑧 ℎ6,𝑧 ℎ7,𝑧]
 
 
 
 
 
 
 
 

   (4.16) 

 

Examining the complete Jacobian one can see that each yields a set of six equations 

describing the motion of the end effector with respect to the world frame. 

 

 With the Jacobian obtained, the next part in the formulation is to generate 

expressions for the end effector velocity components in the world frame. However, since 

these involve the wheels, and more specifically, the wheel-ground contact point, one 

must first familiarise themselves with the definition of slip. As mentioned earlier in this 



111 

 

and previous chapters, one of the benefits to going beyond the three-dimensional position 

kinematics and performing a velocity analysis, is that it can allow for the prediction of the 

effect of slip which is a non-geometric hazard. Slip is guaranteed to occur in 

environments such as the Moon or Mars due to the nature of the regolith or terrain, which 

is essentially a hard surface covered by fine particles [30, 42]. Slip is usually defined as 

the difference in relative motion between the wheel axle and the ground/surface it is 

travelling on [13, 30]. Slip is often described by Equation 4.17 as a non-dimensional 

variable, 𝑖, such that 

 

𝑖 = 1 −
𝑣𝑥

𝜔𝑟
     (4.17) 

 

where 𝑣𝑥 is the wheel axle translational velocity (in the direction of motion), 𝜔 is the 

commanded angular velocity of the wheel, and r is the wheel radius. 

 

Typically, one associates slip with wheeled motion, but it should be noted that it 

can also affect legged robots as well. Usually, analysis of wheeled motion tries to adhere 

to what is referred to as the “no-slip” criteria, since it greatly simplifies the analysis. 

Wheeled motion is comprised of two parts:  rotational, which is typically caused by the 

motor and translational representing the forward motion of the vehicle. The two 

components are essential for the wheel to effectively progress along a surface. Figure  

4.29 depicts the two components of wheeled motion and consequent summation for the 

no-slip case.  



112 

 

 

Figure 4.29: Interaction of rotational and translational velocities for wheels with no slip. 

 

Examining Figure 4.29, it can be seen that the wheel has a rotation of ω, resulting 

in tangential velocity vectors along the wheel’s edge with magnitude, vt = ωr. Notice that 

for a clockwise rotation, the rover moves to the right, resulting in the displayed vectors.  

The top of the wheel has a vector, vt, in the positive right direction and the bottom, where 

the contact point would be for flat, horizontal terrain, has the same magnitude of vector, 

but in the opposite direction. The wheel also translates, and for the condition presented of 

no-slip, the translation of the centre of the wheel (axle) and by extension, the whole 

wheel, is a set of vectors in the positive right direction, with a magnitude of the angular 

velocity multiplied by the wheel radius (ωr). Summation of the vectors results in the 

contact point vectors cancelling each other out and having a velocity of zero in that 

particular instant.  The resultant zero velocity makes it behave like a fixed link for that 

movement which gives the no-slip condition. As expected for the no-slip condition, the 

center of the wheel advances by a velocity of ωr.  

 



113 

 

 

Figure 4.30:  Interaction of rotational and translational velocities for wheels with slip. 

 

 However, the no-slip condition rarely occurs. As depicted in Figure 4.30, when 

slip becomes involved, the translation of the wheel becomes significantly less until it 

approaches the case of 100% slip where the wheel spins in place and does not move. 

Such a case needs to be avoided, however even lower slip values can pose significant 

challenges as discussed in the Literature Review of Chapter 2.  When slip occurs, the 

wheel does not make as much progress and the magnitude of the translation vectors 

becomes less than ωr (rotational component). Therefore, the velocity at the contact point 

has a negative tangential component. From Equation 4.17 for slip, and the wheeled  

motion diagrams, an expression of the velocities for the wheel axle and the wheel-ground 

contact point can be determined as follows: 

 

 

 



114 

 

  𝑣𝑥,𝑎𝑥𝑙𝑒 = 𝜔𝑟(1 − 𝑖)      

𝑣𝑥,𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑣𝑥,𝑎𝑥𝑙𝑒 − 𝜔𝑟    (4.18) 

  𝑣𝑥,𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = −𝑖𝜔𝑟     

  

 

Equations 4.18 provide the expected results when the extreme boundaries of slip are 

applied (ie i = 0 vs i = 1). However, in keeping with the previous definition of the contact  

point to allow the inclusion of the terrain slope (𝛾), Equations 4.18 were further modified 

as follows. 

 

  𝑣𝑥,𝑎𝑥𝑙𝑒 = 𝜔𝑟(1 − 𝑖) cos 𝛾       

𝑣𝑧,𝑎𝑥𝑙𝑒 = 𝜔𝑟(1 − 𝑖) sin 𝛾     (4.19) 

  𝑣𝑥,𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = −𝑖𝜔𝑟 cos 𝛾    

  𝑣𝑧,𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = −𝑖𝜔𝑟 sin 𝛾    

 

These particular equations were then applied directly to produce expressions for 

the velocity of the end effector, which allows for the unknowns of this problem to be the 

joint variable rates as desired. 

 

4.3.2 Method of Solution 

 Following the derivation of the velocity kinematic equations, the algorithm to 

solve these equations for the joint displacement rates was generated. The code 



115 

 

architecture flow chart describing the main functions and how it works is depicted in 

Figure 4.31. 

  



116 

 

 

Fi
gu

re
 4

.3
1:

 T
hr

ee
-d

im
en

sio
na

l i
nv

er
se

 v
el

oc
ity

 k
in

em
at

ic
 c

od
e 

ar
ch

ite
ct

ur
e.

 

 



117 

 

 Due to the nature of both the forward and inverse velocity kinematics problem, 

wherein the Jacobian is not only derived using position kinematics as its foundation, but 

also contains joint displacements, the inverse position kinematic analysis is intrinsic to 

being able to solve velocity. Thus it can be noticed in the code architecture of Figure 

4.31, that some portions of code are very similar to that of the three-dimensional inverse 

position kinematics depicted in Figure 4.16, with minor adjustments that can be viewed 

in the MATLAB script file located in Appendix C. Identical to the position kinematics 

algorithm, the main input is a selected path on a digital elevation map, comprised of X, 

Y, Z coordinates for each wheel’s contact point, however, there is also an additional array 

of data to be extracted for each set of coordinates containing a slip estimate. Recall that 

the slip values were assumed to have been extracted based on analysing the terrain for 

type and slope, then reading the slip off of the respective curve. These values are 

imported from excel spread sheets for the demonstrative test cases and are stored in 

arrays within the workspace of MATLAB.  

 

 Although a while loop is used again to step the rover through its selected path, the 

condition of the loop for this inverse velocity script is now based on time. The reason for 

using time is that when slip occurs, the rover will not progress as far along the path and 

won’t coincide with the next set of coordinates on the map.  The use of a time step is also 

more realistic as the real-life rover won’t have a terrain map or path perfectly matched to 

rover’s full set of contact coordinates. As such, it is fairly straightforward to determine 

the next set of solutions for a given interval (or delta) of time. The time step allows for 

new coordinates to be determined via the velocities and interpolation, along with the 



118 

 

added benefit of keeping track of the overall time in traversing the selected path. After 

entering the while loop, the end effector pose and velocities are determined and then the 

inverse kinematics problem is solved for that time step. Once the joint displacements are 

known, the same solver, fsolve, is applied to the set of velocity equations to perform 

inverse velocity kinematics with an initial guess and the previously solved for joint 

displacements as inputs. The full set of velocity equations to be solved is contained in the 

function file, J5VeloKin.m, and is attached in Appendix C. The solver selected had to be 

fsolve again, due to the Jacobian not being square, as well as being able to handle non-

linear multivariate equations. Typically, in textbooks, when it comes to inverse velocity, 

the solution methods are presented as the geometric or algebraic solution where the 

inverse of the Jacobian matrix would be required. The non-square structure of this 

Jacobian makes resolution difficult plus, with computer programs such as MATLAB, it is 

easy to take advantage of numerical solution methods by using solvers, such as fsolve.  

 

 Once the inverse velocity kinematics has been solved, the variables are then 

updated before beginning the next time step. Interpolation steps are required due to the 

inclusion of slip in this analysis. The linear and angular velocities, along with slip and the 

time increment, are used to compute the new change in X, Y coordinates of each wheel 

axle. This change (delta) is then applied to the previous X, Y coordinates of the 

respective wheel contact point to obtain the new contact coordinates for each wheel in X 

and Y. From the terrain map, comparisons are made and then, if necessary, interpolation 

factors in X and Y are computed. Using these values and the terrain path data, the 

corresponding new Z values and slip are determined for the subsequent time step of the 



119 

 

loop.  Finally, more visualisations of the data can be produced based upon the additional 

data available. 

 

4.3.3 Results 

 Following the same case studies used in the 3D position kinematic analysis, a 

selection of results is presented for each, incorporating a range of slip values. The case 

studies presented were selected as being representative of the basic different terrain 

scenarios that could be encountered and thus the model needs to accommodate. Due to 

the 3D velocity analysis incorporating the solution of the position kinematic analysis, the 

full equation sets for the velocity Jacobians could be used with convergence achieved in 

the position analysis. With the rover speed of 0.1 m/s or a commanded angular wheel 

velocity of 0.333 rad/s, the simulation time was selected to be 75 seconds since the 

terrain and results did not change when compared with longer simulations. The time step 

used to generate the following results was 3 seconds, although other time steps could be 

used. 

 

 With regards to measuring accuracy, the position of the rover’s centre of gravity 

during the traverse is compared with manually calculated position increments (for the 

CoG) included in the terrain maps. Since experimental validation has not occurred at this 

time, there are no true values of velocity against which to compare the results of the 

model. Therefore, velocity results for different terrain cases can only be compared against 

the flat terrain case for the same slip value, or the commanded translational velocity of 

the rover (based on the commanded angular velocity of the wheel). It should be noted that 



120 

 

mathematical models and processes are intended to simulate reality, and do not exhibit 

inherent accuracy. Model and process accuracy depends upon experimental validation to 

provide the true values for comparison. 

 

 

 

Case 1: Flat Terrain 

 

 

Figure 4.32: Walking beam pitch rates vs. time for a slip of 0.1. 

 



121 

 

 

Figure 4.33: Rover velocity components over simulated traverse. 

 

Figures 4.32 and 4.33 detail a sample of the angular and translational velocities 

computed for the simplest case study of flat terrain. Building from the results of the 

position analysis, the resultant angles are included as an input to the velocity Jacobian. 

The velocity analysis converged quickly, with simulation run time under a minute for all 

cases of slip. The full set of results are included in Appendix C. From Figure 4.32, the 

walking beam pitch rates were observed for the simulation and were similar to rates for 

other values of slip on the flat terrain. As expected, the rates remain constant, with no 

change in commanded angular velocity or change in terrain. However, it was noticed that 

the pitch rates had a constant, non-zero value, which was not expected. This error 



122 

 

persisted consistently throughout all case simulations and even reformulating the 

Jacobian and resultant equation sets produced the same result. Thus, it is noted as a 

systematic error at this time.  The velocity components shown in Figure 4.33 are of 

constant value, as expected, and only the x-component has a magnitude which is 

expected as that is the rover’s direction of travel in the world frame. With increasing slip, 

the translation velocity of the rover decreases which is to be expected as the presence of 

slip limits the traction of the rover and the wheel does not travel as far forward. The 

longitudinal or x-component of translational velocity also is a bit larger in magnitude 

than the expected velocity (based on the no-slip case and commanded angular wheel 

velocities), suggesting that it may also be affected by the same systematic errors 

influencing the pitch rates. The velocity is higher in all slip cases by the same differential 

of 0.0245 m/s. 

 

 

Figure 4.34: Traversed distance in the world x-direction vs simulation time, for different slip values 

(flat terrain). 

 



123 

 

 Figure 4.34 examines the total distance travelled in the global x-direction by the 

rover in the given simulation time of 75 seconds for varying amounts of slip. As 

expected, the solid line representing the no-slip case, had the highest slope as it travelled 

the furthest in the x-direction. The value of x that it reached, was found to match the 

manually calculated value for the no-slip case exactly. Following the legend provided, as 

the terrain increases its slip value, the slope of the distance vs time line is observed to 

decrease, indicating that the rover did not travel as far. This trend was exactly as 

expected, as higher slip values represent a wheel that is losing forward mobility and 

moving towards spinning its wheels. Naturally, the highest slip value, in this case i=0.5, 

travels the least and barely makes it past 3 m in the 75 seconds of simulated traverse. 

Extending the simulation time, the difference in the distance travelled for different values 

of slip would grow.  

 

Case 2: Uphill Sloped Terrain 

 

Figure 4.35: Walking beam pitch rates vs. time, for a slip of 0.1 (inclined terrain). 

 



124 

 

 

Figure 4.36: Rover velocity components over simulated traverse (inclined terrain). 

 

 The results for the upslope case for a 10-degree inclined slope are displayed in 

Figures 4.35 and 4.36. With regards to the walking beam pitch rates in Figure 4.35, the 

overall trends are precise, in that the rates are constant which follows for constant 

commanded velocity and unchanging terrain. In addition, the walking beams exhibit the 

correct behaviour in that they mirror each other, which correlates with the behaviour seen 

in the position kinematic analysis and the established coordinates of each joint. The 

chassis pitch rate, which can be viewed along with the other results in Appendix C, also 

follows the relationship between it and the two walking beams as defined by the rear-



125 

 

suspension. Again, Figure 4.35 exhibits the same inaccuracy for pitch rate as Figure 4.32. 

Figure 4.36 displays the rover’s overall velocity components for the simulated traverse 

for four different slip values. Due to the shape of the inclined terrain and the direction of 

travel for the rover (straight line in x-direction), it was expected that the rover would have 

velocity components in the longitudinal and vertical directions, or for the world 

coordinate frame, in the x and z-directions. The results from the simulation follow the 

expected trend, with velocity in the x-direction being larger due to the small angle of the 

terrain for this particular test case. Although the values carry some inaccuracy, which 

may be due to the systematic error producing the inaccurate pitch rates, the model is 

consistent and also displays the correct decrease in both velocities for the increase in slip. 

Furthermore, the model is accurate in obtaining the correct translational displacement of 

the rover.  

 

 

Figure 4.37: Traversed distance in the world x-direction vs simulation time, for different slip values 

(inclined terrain). 



126 

 

 

 

Figure 4.38: Displacement in the world z-direction vs simulation time, for different slip values 

(inclined terrain). 

 

 Examination of Figures 4.37 and 4.38 further demonstrate the model’s accuracy 

in driving the rover to the correct displacement given the slip value of the terrain. The 

model correctly depicts the correlation between distance travelled and slip, with the no-

slip case (solid line) having the highest slope and thus the largest distance travelled in the 

x-direction (7.204 m) and z-direction (1.2635 m). The highest slip value of 0.5 made the 

least progress, covering barely over 3m in the x-direction. Comparing the no-slip value to 

the expected value that was externally determined, the value is exact, indicating a high 

level of accuracy in the model being able to accurately move the rover given the terrain 

and its slip value. 

 



127 

 

Case 3: Side Slope Terrain 

 

Figure 4.39: Walking beam pitch rates vs. time for a slip of 0.1 (side slope terrain). 

 

 

Figure 4.40: Rover velocity components over simulated traverse (side slope terrain). 



128 

 

 

 The next case study was for a lateral or side sloped terrain of 10o where, in the 

position analysis of Case 3 in Section 4.2.3, the rover experienced a roll to match the 

terrain slope and other angles had a zero value. Simulating a traverse over this terrain for 

the chosen simulation time of 75 seconds, the walking beam pitch rates are given in 

Figure 4.39. Similar to the position kinematic analysis, the results for the flat and side 

slope cases offer identical pitch angles, with the only difference being that the side slope 

provides a roll angle to the chassis. As such, it was expected that the velocity analysis 

should also have the pitch rates match for both the flat and side slope terrains, since pitch 

is not activated on either of these cases. Comparison of Figures 4.39 and 4.32 confirms 

the expected match, with the same pitch rate inaccuracy evident. Furthermore, the result 

shown in Figure 4.39 is representative of the result obtained for all the slip cases for the 

side terrains. Figure 4.40 highlights the translational components of velocity of the rover 

for different slip values. With the direction of travel being a straight line in the x-

direction, and no elevation changes along its trajectory, the rover only experiences a 

velocity in the global x-direction as shown. Correctly incorporating the impact of slip, it 

is observed that the increase in slip decreases the translation velocity of the rover. 

Additional results and figures can be viewed in Appendix C. 

 



129 

 

 

Figure 4.41: Traversed distance in the world x-direction vs simulation time, for different slip values 

(side slope terrain). 

 

 Continuing with the impact of slip, examination of Figure 4.41 shows the 

modeling of the expected behaviour of the rover progression in response to slip. The 

distance travelled in the global x-direction is accurately computed for the no-slip case as 

compared to the expected value determined during the generation of the terrain path 

maps. Likewise, the distance travelled for the other values of slip is shown, with the least 

amount of progress made on the terrain with the slip value of 0.5. 

 

 

 

 



130 

 

Case 4: Sinusoidal Terrain 

 

Figure 4.42: Walking beam pitch rates vs. time for a slip of 0.1 (sinusoidal terrain). 

 

 

Figure 4.43: Rover velocity components over simulated traverse (sinusoidal terrain). 



131 

 

 

 The final terrain case was a more complicated sine terrain to show the model 

coping with the changing slope. Figures 4.42 and 4.43 show some of the results from the 

velocity analysis, with more results located in Appendix C. From Figure 4.42 the walking 

beam pitch rates can be observed for the simulated traverse. It should be noted that the 

result presented in Figure 4.42 for 0.1 slip is representative of the results obtained for the 

other values of slip and can be viewed in the Appendix C. As well, the pitch rates are 

constant for the traverse and are displaying the same inaccuracy noted in the previous 

case studies. Figure 4.43 is interesting as it shows the translational velocity components 

of the rover; however, due to the nature of the changing slope of the sine curve, the 

velocity values are seen to fluctuate and follow somewhat of a rippling curve, most 

notably in the z-direction which is (the z of the terrain) dictated by the sine curve. As slip 

increases, each velocity component is reduced as expected; however, it is interesting to 

note the increased rippling in the z velocity component as slip increases. The increased 

rippling may be due to the cases with increased slip values relying more on interpolation 

based on the application of slip to obtain the correct velocity and establish the new set of 

wheel-ground contact points for the next time point of the analysis. Interpolation is 

smooth and easy on the straight-line slope terrains, however, for more complex terrains 

the interpolation may be improved by altering the time step of the simulation or possibly 

changing the method of interpolation. Subsequent testing, with time steps ranging from 1 

to 7 seconds, revealed that a time step of 4 seconds eliminated the rippling for the sine 

function used, at moderate levels of slip. Since the change in time step did not completely 



132 

 

eliminate the rippling in all slip cases for the sinusoidal terrain, implementation of a non-

linear interpolation function is recommended. 

 

 

Figure 4.44: Traversed distance in the world x-direction vs simulation time, for different slip values 

(sinusoidal terrain). 

 

Figure 4.45: Displacement in the world z-direction vs simulation time, for different slip values 

(sinusoidal terrain). 



133 

 

 

 Finally, the distance travelled in the global x-direction over the simulation 

time is examined in Figure 4.44, not only as an indication of accuracy in properly moving 

the rover along the terrain, but also to check for the correct inclusion of slip. Figure 4.44 

shows the correct trends for increasing slip, as the rover makes less progress forward with 

higher values of slip. When comparing with the expected value for total distance travelled 

in the x-direction for the no-slip case, the model demonstrated an acceptable degree of 

accuracy. 

 

The accuracy in total distance travelled is also reflected in Figure 4.45, which 

displays the displacement of the rover in the z-direction over the time of the simulated 

drive. Examination of Figure 4.45 illustrates a shift to the right of the peak displacement 

with an increase in slip. This shift is due to the reduced forward motion in the x-direction, 

which results in reduced progress along the sine curve of the terrain, thus affecting the 

displacement of the rover in the z-direction. Therefore, as slip increases, the rover reaches 

the peak of the sinusoidal terrain at a later time. 

 

 Overall, the velocity kinematic analysis model ran smoothly, with no convergence 

issues in all simulated traverses. The improvement in convergence is likely due to using 

the solution from position analysis for each time step, in addition to an initial guess, 

thereby requiring convergence to first occur in solving the inverse position kinematics 

problem.  The solver had to be tuned to reduce the step tolerance several orders of 

magnitude from the default of 1e-6 to 1e-12, as the fsolve solver would occasionally stall 



134 

 

for a given time step, although it still reported successfully converging at a solution.  All 

simulated traverses (all terrains and slip values) were able to be completed in less than a 

minute for each case. However, as noted in the aforementioned case studies, there are 

some inaccuracies in terms of the pitch rates computed. The model was able to predict the 

correct trends for each of the angular rates and velocities, but upon close inspection the 

magnitude of the walking beam pitch rates, and subsequently, the chassis pitch rate, were 

consistently off by the same inaccuracy across all cases and values of slip. The overall 

rover velocity values were also inaccurate, being 0.0245 m/s over the correct value, 

which for the flat no-slip case was 0.1 m/s, and this error may have been the result of the 

incorrect pitch rates. Yet, even with the presence of systematic errors, the three-

dimensional velocity model was still able to accurately move the rover, incorporating 

slip, and to accurately determine its pose. The following tables examine the accuracy and 

precision of the model itself more quantitatively. The percentage deviations detailed in 

Tables 4.2, 4.3, and 4.4 are based upon Equation 4.20 and notes 1 and 2 beneath each 

table. 

 

%𝐷𝑒𝑣 =
𝑉𝑟−𝑉𝑥,𝑓𝑙𝑎𝑡

𝑉𝑥,𝑓𝑙𝑎𝑡
∗ 100     (4.20) 

 

For further details, refer to the sample calculations provided in Appendix C. 

  



135 

 

 

Table 4.2: Results of rover velocities and deviation with respect to the flat case.1,2 

Case Slip Rover Vx 
[m/s] 

Rover Vz 
[m/s] 

Percent Deviation 
[%] 

Flat 

0 0.1245 0 - 

0.05 0.1195 0 - 

0.1 0.1145 0 - 

0.25 0.0995 0 - 

0.5 0.0745 0 - 

Side Slope 10o 

0 0.1226 0 -1.53 

0.05 0.1176 0 -1.59 

0.1 0.1126 0 -1.66 

0.25 0.0976 0 -1.91 

0.5 0.0726 0 -2.55 

Incline 10o 

0 0.1171 0.0426 0.09 

0.05 0.1122 0.0418 0.20 

0.1 0.1073 0.0409 0.29 

0.25 0.0925 0.0383 0.62 

0.5 0.0679 0.0339 1.87 

Sinusoidal 

0 0.1191 -0.0365 0.05 

0.05 0.1151 -0.0325 0.08 

0.1 0.1103 -0.0313 0.14 

0.25 0.0926 -0.0196 -4.87 

0.5 0.0742 0.0037 -0.28 
1. % deviation is calculated with respect to velocities (or distance travelled as appropriate) having the 

same slip on flat terrain. 

2. x and z velocity components are combined using Euclidian distance theorem for comparison with 

uni-directional values, by magnitude only. 

 

  From Table 4.2, the velocity components of the rover are displayed for each 

terrain case and values of slip. The percent deviation value is that relative to the flat 

terrain case for that particular value of slip. The terrain with the highest percent deviation 

is the sinusoidal terrain, with the largest difference being less than 5.00%, which was 

observed at the slip case of 0.25. Both the incline and sinusoidal terrains which utilise 



136 

 

pitch, had small percent deviations at 1.87% and -4.87% respectively, with the largest 

values for both occurring for higher slip values. These values are all of a low magnitude 

and suggest that even with the inaccuracies occurring in the pitch rates, the model is 

accurate for the values it produced for other terrains when compared to the flat terrain 

case. It is worthwhile to note that the aforementioned change in time step for the 

sinusoidal terrain which eliminated the ripple effect for slip of 0.25, also reduced the 

resultant velocity percent deviation from -4.87% to -0.03%. The percentage deviation at 

other slip values and for other terrain cases remained relatively unchanged, suggesting 

that a nonlinear interpolation function should be implemented. It is expected that upon 

resolving the systematic error occurring in the flat case, that these percent deviations will 

remain unchanged. These results for percent deviation also indicate that the model is 

fairly precise in its computation, as amongst all cases the deviation values listed in Table 

4.2 are all small and similar in magnitude, grouping the results.  



137 

 

Table 4.3: Results of axle velocities and deviation with respect to the flat case.3,4 

Case Slip Axle Vx [m/s] Axle Vz [m/s] Percent Deviation [%] 

Flat 

0 0.1000 0 - 

0.05 0.0950 0 - 

0.1 0.0900 0 - 

0.25 0.0750 0 - 

0.5 0.0500 0 - 

Side Slope 

10o 

0 0.1000 0 0 

0.05 0.0950 0 0 

0.1 0.0900 0 0 

0.25 0.0750 0 0 

0.5 0.5000 0 0 

Incline 10o 

0 0.0985 0.0174 0.03 

0.05 0.0936 0.0165 0.05 

0.1 0.0886 0.0156 -0.04 

0.25 0.0739 0.0130 0.05 

0.5 0.0492 0.0087 -0.07 

Sinusoidal 

0 

Front 

Wheels 
0.0988 -0.0155 0.01 

Rear 

Wheels 
0.0990 -0.0139 -0.03 

0.05 

Front 

Wheels 
0.0940 -0.0139 0.02 

Rear 

Wheels 
0.0943 -0.0112 -0.04 

0.1 

Front 

Wheels 
0.0890 -0.0132 -0.03 

Rear 

Wheels 
0.0894 -0.0104 0.00 

0.25 

Front 

Wheels 
0.0745 -0.0083 -0.05 

Rear 

Wheels 
0.0748 -0.0048 -0.06 

0.5 

Front 

Wheels 
0.0500 0.0000 0.00 

Rear 

Wheels 
0.0499 0.0024 -0.08 

3. % deviation is calculated with respect to velocities (or distance travelled as appropriate) having the 

same slip on flat terrain. 

4. x and z velocity components are combined using Euclidian distance theorem for comparison with 

uni-directional values, by magnitude only. 



138 

 

 

Table 4.3 examines the percent deviation of the axle velocity components and the 

corresponding value of slip for all terrain cases simulated. Although not a quantity 

directly solved by solving the Jacobian velocity equation set, the velocity kinematic 

model involved computation of the axle velocities and incorporated slip to help with 

moving the rover to the correct spot for the next time step. The sinusoidal and 

longitudinal inclined terrains were naturally noted to have velocity components in the 

x and z-directions. However, the sinusoidal terrain has a slope that changes with 

one’s position on the curving terrain, thus the analysis was computed for both front 

and rear wheels separately. The results of the percent deviation calculation with 

respect to the flat case, provide a quantitative indication of the model’s level of 

accuracy and precision. The model is accurate in its computation of the velocities in 

terms of the individual results with respect to the flat case, with the side slope terrain 

performing the best in that no deviation was found. Yet both the inclined and 

sinusoidal terrains had very small values of deviation, with the largest value being      

-0.08%, again suggesting a high accuracy in comparison to the flat terrain as they’re 

close to zero. These numbers are all very close in value, which demonstrates that 

amongst all cases there is a good level of precision in the model’s computation. 

 

Upon re-examination of Table 4.2 and its prior discussion, it is apparent that a 

large systematic error is included in the results for the rover translational velocities 

which are located at the C of G of the vehicle.  The rover velocity results shown 

appear to be in error by 0.0245 m/s when compared with the commanded velocity of 



139 

 

ωr= 0.1 m/s.  However, when examining Table 4.3, the translational velocities for the 

axles exactly match the expected results at all values of slip.  The comparison of the 

results of Tables 4.2 and 4.3 therefore indicates that the deviation in translational 

velocity for the C of G of the rover is systematic and could potentially be tuned out 

when experimentally validating the overall kinematic model. Further investigation of 

the rover translational velocity error by reformulation of the system of equations 

yielded the same results shown in Table 4.2.  As noted in Chapter 1, Objective 2 

states that the 3D kinematics model is intended to accurately determine the 

progression of the rover on the terrain.  The objective is accomplished based on the 

wheel axle results and the distance travelled results.  The rover (C of G) velocity 

results are intended to provide a unified, central equivalent to the axle results and can 

be corrected as part of future work on the model. 

  



140 

 

Table 4.4: Results of distance travelled and deviation with respect to the flat case.5,6 

Case Slip Rover X 

Distance [m/s] 

Rover Z 

Distance [m/s] 

Percent Deviation 

[%] 

Flat 

0 7.3152 0 - 

0.05 6.9494 0 - 

0.1 6.5837 0 - 

0.25 5.4864 0 - 

0.5 3.6576 0 - 

Side Slope 

10o 

0 7.3152 0 0.00 

0.05 6.9494 0 0.00 

0.1 6.5837 0 0.00 

0.25 5.4864 0 0.00 

0.5 3.6576 0 0.00 

Incline 10o 

0 7.2041 1.2635 -0.02 

0.05 6.8439 1.2000 -0.02 

0.1 6.4837 1.1365 -0.02 

0.25 5.4031 0.9459 -0.02 

0.5 3.6021 0.6283 -0.03 

Sinusoidal 

0 7.3397 0.0842 0.34 

0.05 6.9709 0.1408 0.33 

0.1 6.6074 0.1920 0.40 

0.25 5.4966 0.3178 0.35 

0.5 3.6228 0.3880 -0.39 

5. % deviation is calculated with respect to velocities (or distance travelled as appropriate) having the 

same slip on flat terrain. 

6. x and z distance components are combined using Euclidian distance theorem for comparison with 

uni-directional values, by magnitude only. 

 

Finally, Table 4.4 displays the percent deviations for each value of slip from the flat 

terrain case with regards to the distance travelled by the rover. For comparison with the 

flat case, the Euclidean distance is computed using the distance components and the 

percent deviation for that particular slip value is computed. Similar to the previous 

results, the side slope terrain matches the distances travelled by the rover on the flat 

terrain for each slip case, and is seen to be the most accurate, with a percent deviation of 

zero.  The percent deviation for the inclined terrain was also close to zero, with the 



141 

 

largest percent deviation occurring at 0.5 slip. The percent deviations were larger for the 

sinusoidal terrain; however, they were still small in magnitude with the largest value of 

0.40% for a slip of 0.1, closely followed by the slip case of 0.5 at -0.39%. Examining the 

individual percent deviations for each case relative to the flat terrain, there is a high 

accuracy in the distances computed. This level of accuracy was expected as, while 

running the model for each terrain and slip value, the results were checked against 

manually calculated values for the corresponding no-slip case for that terrain and the 

numbers were very exact to four decimal places, which gave confidence in the results 

obtained. Likewise, with the results in the other tables, these percent deviations for rover 

distance travelled were all very small in magnitude (less than 0.4%) and close to the other 

values, which again suggests that the model has a high degree of precision in the 

computation of these distances. 

 

 

4.4  General Comments 

 

 Overall the models presented appear to be able to reproduce the Argo J5 in their 

own capacity. Although not particularly useful for modeling the rover with respect to 

three-dimensional terrain, the planar model initially used still had value in providing 

visual insight into how a single side of the rover was likely to move along the terrain in a 

constrained setting of all four-wheels on the ground. The three-dimensional model 

directly answers objectives 1 and 2 of the research, with the accurate determination of 

pose, progression, and motion of the rover in response to the shape of the terrain and its 



142 

 

slip value. Based on the angles computed for each interval step, one could compare them 

to the angle values (if known) that would constitute in the tipping of the rover and ending 

the mission. The over-constrained nature of the rover as a parallel manipulator, meant 

that convergence was an issue which was resolved by removing orientation equations 

based on how the contact points could actually move in relation to each other. The model 

was able to accurately generate the pose of the rover, with the exception of the pitch 

angle rates, which were consistently off by half of what they should be for any terrain 

with a slope. Revisiting the joint coordinate frame assignments and subsequent transform 

matrix derivations and formulations yielded the same equation set for solution, so a 

correction factor of 2 was applied, as a tuning parameter. Likewise, the velocity 

kinematic model also experienced a systematic offset in the pitch rates obtained, which 

may have contributed to the rover velocity being a little bit higher than expected. 

Convergence was easier to achieve, and all 25 equations could be used, with the only 

adjustment to the default fsolve solver settings to lower the step tolerance to limit the 

occasional stall (although it still landed on a solution).  With regards to the pitch rates and 

overall rover velocity being subject to inaccuracy from systematic error, the velocity 

kinematic model will require tuning prior to use. Furthermore, the rates determined by 

the model are an ideal case and do not take into account the joint friction and damping 

which will lower the joint rates from the ideal calculated values. These tuning parameters 

must be determined via experimental validation in order to obtain the best accuracy in the 

model. 

 



143 

 

 It should be noted that in using the original D-H convention, the most time 

required on the part of the user is in the establishment of the equations for solution 

through careful selection of coordinate frames and determination of D-H parameters. 

Once the equation set is established, one can easily apply it in other areas beyond pose 

and path progression prediction, such as using it to control the rover to stay on its 

commanded path. Although both models account for the shape of the terrain, with 

velocity incorporating the effects of the terrain’s slip, neither are able to account for other 

effects such as the sinkage that occurs in deformable terrain. The conceptualized dynamic 

model is intended to account for sinkage and other factors. 

 

 

  



144 

 

Chapter  5: Dynamic Analysis 

 

While a kinematic analysis can provide useful data on rover progression, path 

traversability, and traversability metrics, it can be used as the foundation of a path 

following control scheme as demonstrated by Helmick et al [61].  Rover pose relative to 

tipping and warning of any joint constraint violations based upon motion and pose only 

provide part of the picture. Dynamic models and analysis go beyond pose and motion, to 

examine accelerations, forces, and corresponding torques. Depending upon the desired 

metrics, dynamic simulations have the potential to provide a more detailed survey 

relative to the rover’s interaction with terrain because they can be paired with a wheel-

soil interaction model. There are several methods of modeling the dynamics of a system, 

from the purely mathematical formulation of the La Grange and Newton-Euler methods, 

to various multibody physics software platforms. In terms of analysing robotic systems 

and vehicles, most applications (as noted in Chapter 2) choose to use multibody physics 

software due to the potential for higher accuracy combined with relative ease of use 

through the graphic user interfaces (GUI’s). However, such elaborate software comes at a 

high financial cost due to the years of development to produce a user-friendly interface 

with equations and modules applicable to any system (robotic manipulator vs vehicle). 

 

 The work presented in this thesis initially began with expansion of the three-

dimensional kinematic analysis of the rover since it was the next logical progression and 

continued with the desire to develop the most open-source and least expensive method. In 

addition to creating a dynamics model of the J5 rover, a wheel-soil interaction model had 



145 

 

to be selected for pairing with the dynamic model to demonstrate full capability and 

provide more accurate picture of the forces and moments acting on the vehicle. 

 

 Terramechanics provides the forces imparted to the vehicle by the terrain and its 

specific properties, which can significantly impact the vehicle. Terrain type, as has been 

observed from previous and current rover missions, can have quite a significant impact 

on the rovers traversability of the extraterrestrial terrain. One of the most infamous 

examples being that of the Spirit rover, where it broke through a thin, seemingly solid 

crust to sink into the underlying soft sand [15]. Upon examination of the literature, it was 

decided to use a semi-empirical approach as the best compromise between the advantages 

and disadvantages of empirical and analytical techniques. As a result, it was decided to 

use a pre-existing terramechanics model to avoid the months building one from scratch 

would require.  After consultation of both literature and resident expertise in the area of 

terramechanics modeling, the model of Irani et al [37] was selected. 

 

 This chapter presents the derivation and development of the dynamic model for 

the J5 rover, followed by a review of the terramechanics model used to complete the 

conceptual model. Due to the time constraints of the master’s thesis, the combined 

dynamic-terramechanic model developed is conceptual due to the added work in tuning 

the model to accurately fit the rover, including some experimental work. To make up for 

this shortcoming, a sample test case is provided for a single rover wheel, to further 

demonstrate the model and the expected outcomes.  

 



146 

 

5.1 Dynamic Model Development 

 

The dynamics of the rover were initially developed in terms of the position and 

time derivatives of its joint angles using the La Grange formulation [65, 67]. After some 

investigation, it was decided to abandon this line of pursuit due to the level of effort and 

simplifications required. Based upon recommendations, it was decided to use a different 

approach to generate a dynamic model using SimMechanics. However, the La Grange 

formulation still provides a sense of how SimMechanics works and the developmental 

work accomplished on the dynamic torque equation is provided in Appendix D. 

 

 Following the decision to pursue a more efficient means of dynamic modeling, 

MATLAB Simulink’s SimMechanics was selected to generate the dynamic model of the 

J5 rover. Although not an open source code or method, MATLAB Simulink was selected 

due it’s flexibility and compatibility with other platforms, along with its being relatively 

inexpensive. Furthermore, SimMechanics enables the user to remain hands-on and has 

the potential for interfacing with a previously generated kinematic analysis. In addition, 

MATLAB and Simulink are capable of autogenerating C code, which means that the 

models and code developed in this thesis could be converted to the programming 

language C, making it more open-source so that companies would not be forced to 

purchase software. 

 

 In order to generate a dynamic model of the rover in SimMechanics, a physical 

body of the rover must be generated, either in SimMechanics itself or as an externally 



147 

 

made computer aided design (CAD) solidmodel of the rover. Although a fully detailed 

CAD model of the J5 rover exists, it was not accessible due to it containing proprietary 

information. However, using the information provided to the author, such as the mass 

information and drawing included in Appendix A, rough estimates for masses could be 

assumed and dimensions obtained from the drawing and a determinable scale. 

Extrapolating dimensions from measuring the drawing and applying the scale, allowed 

components of the rover to be created in CAD software. Solidworks was used to produce 

the solid model used in this work; however, it could be easily created in Autodesk’s 

Fusion 360 [68] which is very inexpensive.  

 

 In modeling the individual components of the J5 rover using CAD, the back 

suspension of the rover could easily be included, which is important in providing a 

necessary constraint to the system. Since dimensions and mass values were not provided 

for the back-suspension components, dimensions were estimated using early rough 

measurements of the physical rover and a material of 7075 Aluminum was assumed. 

When applied to the components assigned a material density, the mass of each 

component was obtained, along with their associated inertia matrices. This method was 

more accurate than the oversimplified La Grange attempt.  Similarly, equivalent solid 

models were generated for the components of the chassis, walking beams, and wheels 

using dimensions and masses obtained from the drawing and other information provided 

in Appendix A. The wheels modeled are the metal wheels intended for use in planetary 

exploration, as illustrated in the drawing in Appendix A. Figure 5.1 presents various 

views of the CAD model created by the author. 



148 

 

 

 

Figure 5.1: Isometric and orthographic projection of the J5 rover CAD model (isometric (a), top (b), 

rear (c), and right (d)). 

 

From Figure 5.1, the rear suspension can easily be spotted in the top and rear views. It 

should be noted that more precise details could have been added; however, it would have 

been purely for aesthetics as the information important for dynamic modelling had 

already been incorporated (ie mass, size, etc). The resultant model was carefully 

assembled to properly reflect the degrees of freedom of each joint. 

 



149 

 

 The solid model was then imported into SimMechanics by exporting the CAD 

model assembly into a .xml file which could be read by Simulink and converted into a 

rigid body dynamic model. 

 

 

Figure 5.2: SimMechanics dynamic model of the J5 rover. 

 

The resulting dynamic model of the J5 rover is depicted in Figure 5.2. As observed, the 

model is a rigid body representation with rigid components and joints. A world frame is 



150 

 

present to connect the rover to the world origin frame and provide context for the overall 

movement of the rover and its joints. With SimMechanics, rigid bodies are connected via 

joints and the appropriate transform blocks, forming pairs around joints, and enabling the 

program to determine the pose of each component similar to a 3D position kinematic 

analysis. Similarly, it was decided to add a 6 DoF joint to connect the chassis centre of 

gravity with the world frame, to allow for actuation and to travel away from the world 

frame. Note that although a 6 DoF joint does not exist in the real world, it is a viable tool 

in SimMechanics to represent the three possible translations and orientations. To actuate 

the model, forces and/or torques are applied to the joints themselves, as opposed to the 

rigid bodies. SimMechanics automatically includes the weight of each of the components 

in its computations. As such, forces must be applied at each of the wheel axles to provide 

a force in opposition to the weight of the rover and keep it from falling in space. The 

axles are where the forces from the terramechanics model will need to be applied. It 

should be noted that experimental validation with the actual rover would be needed to 

provide a more complete dynamic model, as damping would need to be added between 

the two walking beams to help conform the rover to its actual behaviour observed. Such 

work became beyond the scope of the time constraints of this thesis and is left as future 

work in need of completion. 

 

 At this point, it is necessary to import the terramechanic model and pair it with the 

dynamic model. The terramechanic model selected was Irani et al [37] for a single wheel 

testbed and was developed in Simulink.  

 



151 

 

5.2 Terramechanics Model 

 

 As defined in the literature review of Chapter 2, terramechanics is the study of 

forces and moments imparted by the terrain to the vehicle, and is thus dependent on 

terrain properties, such as soil cohesion. To understand how the terramechanic model 

works on its own and how it is being paired with the dynamic model, the relevant theory 

and equations of terramechanics are presented in this section. Figures, notation, and 

equations presented are in common use as detailed by Irani et al [37, 38, 39], Wong [29], 

Ishigami et al [42], and others (see Chapter 2). Terramechanics is not something a rover 

operator or designer should ignore given previous and current rover missions having 

demonstrated the effects of different terrain types on rover mobility.  

 

 

Figure 5.3: Terramechanics model representation of typical forces on the wheel [29, 37, 38]. 



152 

 

 

Figure 5.3 is a common depiction of the forces and stresses resulting from the 

wheel-soil interaction and is reproduced in many textbooks and literature. From Figure 

5.3, some of the key parameters involved can be visualised and provide a sense of how 

interconnected these values are. Easily identifiable are the translational velocity 

component, 𝑣𝑥, and the angular wheel velocity, 𝜔, which provide direction context for 

the other components in the diagram. With most terrain, there is expected to be some 

amount of sinkage which, as the name implies, is the amount perpendicular to the surface 

that the wheel penetrates (for flat terrain), measured from the undisturbed terrain in front 

of the wheel. The depth of the track left behind by the wheel is simply 𝜂𝑧, where the 

sinkage value is multiplied by a ratio of track depth to sinkage. In line with sinkage and 

track depth, are the wheel sinkage angles listed as various θ, more specifically with 𝜃𝑓 as 

the forward or entry wheel sinkage angle, 𝜃𝑟 as the wheel sinkage rear or exit angle, and 

𝜃𝑚 denoting the location of the maximum normal stress. Equations 5.1 – 5.3 describe the 

relation of these angles to the sinkage and wheel radius, r. 

 

𝜃𝑓 = cos−1 (1 −
𝑧

𝑟
)     (5.1) 

𝜃𝑟 = −cos−1 (1 −
𝜂𝑧

𝑟
)    (5.2) 

𝜃𝑚 = (𝑏0 + 𝑏1𝑠)𝜃𝑓     (5.3) 

 

Examination of Equations 5.1 and 5.2 shows the dependence upon the ratio of sinkage to 

the wheel radius. Equation 5.3 is one of the Wong-Reece relationships [37], with the 



153 

 

values of 𝑏0, 𝑏1 as constants with values of 0.4 and between 0 and 0.3 respectively. These 

angles form the basis of the rest of the terramechanics equations. 

 

 Returning to Figure 5.3, the main stresses acting on the wheel are observed to be 

the normal and shear stress imparted by the terrain. The normal stress acts normal or 

perpendicular to the terrain surface, whereas the shear stress will always be tangential to 

the wheel-soil interface and in the opposite direction to the angular velocity of the wheel. 

The normal stress equation is given by Equation 5.4. 

 

𝜎(𝜃) = {
𝑟𝑛𝑘 (cos (𝜃𝑓 − (

𝜃−𝜃𝑟

𝜃𝑚−𝜃𝑟
) (𝜃𝑓 − 𝜃𝑚)) − cos 𝜃𝑓)

𝑛

𝑟𝑛𝑘(cos 𝜃 − cos 𝜃𝑓)
𝑛

         (𝜃𝑟≤𝜃<𝜃𝑚)
(𝜃𝑚≤𝜃<𝜃𝑓)

 (5.4) 

 

Equation 5.4 shows a strong dependence upon the wheel sinkage angles as mentioned, 

along with the wheel radius and terrain parameters, 𝑘 and 𝑛. The variable 𝑛 represents the 

sinkage exponent whereas 𝑘 is the Bekker coefficient of proportionality. 

 

𝑘 =
𝑘𝑐

𝑏
+ 𝑘𝜙     (5.5) 

 

Equation 5.5 defines the Bekker coefficient of proportionality, where 𝑘𝑐 and 𝑘𝜙 are soil 

parameters: the cohesive modulus and frictional modulus of sinkage, respectively, and 



154 

 

must be determined through testing. For planetary exploration rovers these values are 

estimated using an appropriate simulant soil. The parameter 𝑏 denotes the width of the 

rover wheel. 

 

𝜏(𝜃) = (𝑐 + 𝜎(𝜃) tan𝜙) (1 − 𝑒−
𝑗(𝜃)

𝐾 )   (5.6) 

 

 Equation 5.6 denotes the relationship for the shear stress at the wheel-soil 

interface and is referred to in the literature as the Janosi and Hanamoto equation, as 

utilised by Irani et al [37]. It can be observed that not only is the shear stress a function of 

the normal stress, and by extension the sinkage angles, but also depends on certain soil 

parameters. These include the cohesion, 𝑐, internal angle of friction, 𝜙, and the shear 

modulus, 𝐾. Again, these parameters are estimates for planetary exploration rovers based 

on laboratory testing of simulant soils.  

 

𝑗(𝜃) = 𝑟[𝜃𝑓 − 𝜃 − (1 − 𝑖)(sin 𝜃𝑓 − sin 𝜃)]    (5.7) 

 

The other term in Equation 5.6 is the soil deformation term, given by 𝑗(𝜃), and expressed 

above as Equation 5.7. From Equation 5.7 it can be seen that it is highly dependent upon 

the entry wheel sinkage angle, along with the wheel radius and slip for that terrain. 

Although previously defined in Chapter 4, the equation for slip is repeated as Equation 

5.8. 

 



155 

 

𝑖 =
𝜔𝑟−𝑣𝑥

𝜔𝑟
= 1 −

𝑣𝑥

𝜔𝑟
     (5.8) 

 

 Another important relationship in terramechanics is the pressure-sinkage 

relationship.  

 

𝑝(𝑧) = 𝑘𝑧𝑛      (5.9) 

𝑝(𝑧) = (𝑘𝑐 + 𝑏𝑘𝜑)(𝑧)𝑛     (5.10) 

 

Equation 5.9 is the original pressure-sinkage relationship used by Bekker [27] and early 

work of Wong [28, 29], whereas most (such as Irani et al [37]) now use Equation 5.10 

which is the modified Reece equation, sometimes referred to in the literature as the 

Wong-Reece equation for pressure-sinkage. 

 

 With the shear and normal stresses defined, the final elements of Figure 5.3 can 

be examined. These are some of the important metrics to be determined from a 

terramechanics analysis, which are the vertical force imparted by the terrain, 𝐹𝑧, and the 

drawbar pull, 𝐷𝑃. Equations 5.11 and 5.13 detail the formulation of each respectively. 

Equation 5.12 describes the lateral force acting on the wheel. 

 

𝐹𝑧 = 𝑟𝑏 ∫ [𝜏𝑥(𝜃) sin 𝜃 + 𝜎(𝜃) cos 𝜃]𝑑𝜃
𝜃𝑓

𝜃𝑟
    (5.11) 

𝐹𝑦 = ∫ [𝑟𝑏 𝜏𝑦(𝜃) + 𝑅𝑏(𝑟 − ℎ(𝜃) cos 𝜃)]𝑑𝜃
𝜃𝑓

𝜃𝑟
   (5.12) 

𝐷𝑃 = 𝐹𝑥 = 𝑟𝑏 ∫ [𝜏𝑥(𝜃) cos 𝜃 − 𝜎(𝜃) sin 𝜃]𝑑𝜃
𝜃𝑓

𝜃𝑟
   (5.13) 



156 

 

 

Both Equations 5.11 and 5.13 show that the vertical forces and horizontal (or drawbar 

pull) forces rely on components of the normal and shear stresses, and consequently, the 

wheel sinkage angles. Furthermore, each of the integrals of the stresses is then applied to 

the rough contact area of the wheel given by the product of the radius and wheel width. 

The vertical force combats sinkage that is due to the pressure imposed by the weight of 

the vehicle. As will be seen in the following section, when applied to a dynamic model, 

the vertical force has a recursive relationship in that once calculated it also determines the 

value of sinkage which then enters the next iteration of the rover as moving along the 

terrain. Drawbar pull, as discussed in Chapter 2, is a common performance metric in both 

planetary rovers and vehicle performance. The drawbar pull is the horizontal force (along 

the direction of motion) which is accessible to the vehicle after overcoming the motion 

resistance of the terrain and can be used to pull a load.  

 

 

5.3 Combined Dynamic and Terramechanics Model 

 

 It is advantageous to combine the previously established dynamic model for the 

rover with a terramechanics model, incorporating slip, to create a more realistic model of 

the rover in motion. Some advantages include determination of wheel sinkage relative to 

potential embedding and drawbar pull in terms of a safety margin on traction or potential 

towing capacity.  



157 

 

 

Fi
gu

re
 5

.4
: S

im
M

ec
ha

ni
cs

 d
yn

am
ic

 m
od

el
 c

om
bi

ne
d 

w
ith

 te
rr

am
ec

ha
ni

cs
 m

od
el

. 



158 

 

 

Figure 5.5: Close-up view of the added terramechanics-related blocks. 

 

 Figure 5.4 depicts the overall combined dynamic and terramechanic model. In 

comparison with Figure 5.2, the dynamic model can be easily identified and is the centre 

of the overall model itself. Recalling that the forces must be placed so as to act on the 

wheel joints, it is logical that the elements of the terramechanics portion are added to 

each of the wheel axles, making for four inputs. A close up of one of the wheels and 

terramechanics additions is provided in Figure 5.5, for clarity. 

 

 Examination of Figure 5.5 shows that there are three large subsystem blocks 

added, along with a smaller external force and torque block, which, as the name implies, 

allows for the application of an external force and torque to a subsequent block. The three 

subsystem blocks include an initialisation block shown in gold, the blue box containing 

the actual terramechanics model, and a white box for the sinkage and slippage 

calculations.  

 



159 

 

 

Figure 5.6: Initialisation block subsystem. 

 

 Beginning with the initialisation blocks, the inner workings the subsystem’s 

purpose is to initialise certain parameters. Parameter initialisation is accomplished by the 

use of step input blocks which provide the signal that SimMechanics can interpret. For 

example, the step input of 0 to 1, simply turns on the signal. To then give each variable a 

real value, the step input is multiplied by a gain where the gain is the value of that 

variable. For this model, the gains include the wheel rotation or angular velocity of the 

wheel, along with model tuning parameters, a0 and a1, which were determined by Irani et 

al [37] in the development of this terramechanics model and represent the values b0 and 

b1 from Equation 5.3. Table velocity is included as an artefact of how Irani et al’s 

terramechanics model was developed; however, it is irrelevant to the dynamic model of a 

rover traversing terrain instead of a table and is therefore not applied in the overall model. 



160 

 

Lambda requires a different step input from 1 to the value of lambda and is subsequently 

multiplied by the gain of the lambda simulation value to provide lambda or the ratio of 

the measured sinkage to track depth (η) as was discussed in Section, 5.2. Once initialised, 

all four parameters are then exported for use and their signals taken to the next block. 

 

 These parameters are then input to the blue terramechanics model block. 

However, before examining that block, there are two inputs of slip and sinkage that 

should be discussed. Examining the sinkage calculation box, it can be observed from the 

overall diagram that the required inputs are the force normal to the terrain and the angular 

velocity of the wheel. Figure 5.7 reveals the inner workings of the sinkage calculation 

box. 

  



161 

 

 

Fi
gu

re
 5

.7
: W

he
el

 si
nk

ag
e 

ca
lc

ul
at

io
n 

su
bs

ys
te

m
. 



162 

 

 

From Figure 5.7, the first input is the normal or, in the flat terrain case, vertical force. 

This force gets passed through a transform sensor block which measures the vertical 

location of the wheel axle, along with the force in regard to the world coordinate frame 

and the horizontal (x direction) linear translational wheel velocity. The axle location is 

sent to a scope box for visualisation and is also compared to the reference or zero location 

of the axle, allowing the overall displacement or sinkage to be computed. Meanwhile the 

measured horizontal, translational velocity of the wheel is then combined with the 

commanded wheel velocity, which is the product of 𝜔𝑟, in the block diagram version of 

the slip equation. The version presented here is the translation velocity, 𝑣𝑥, as the 

denominator, hence the addition block where a very small decimal value (1e-6) is added 

to prevent a scenario of dividing by zero in the event of 100% slip. This preventative 

measure is also why there is a saturation block applied before the output, to effectively 

round the slip ratio to the correct value. The slip and sinkage values are then outputs 

which are sent directly to the terramechanics model. 

 

 The blue box containing the terramechanics model is not a subsystem like the 

other blocks, but rather represents the overall MATLAB script and nested scripts which 

perform the necessary recursive terramechanics analysis. The terramechanic model script 

was provided by the Multi-Domain-Laboratory at Carleton University and the scripts are 

based on the work of Irani et al [37]. Following the overview of terramechanics in the 

previous section, the analysis begins with computing the wheel sinkage angles as they are 

the foundation for the remaining equations. With the angles computed, the 



163 

 

terramechanics model then proceeds to compute the horizontal longitudinal force or 

drawbar pull (𝐹𝑥), the lateral force (𝐹𝑦), and the vertical force (𝐹𝑧). Each of these are 

computed by calling upon function files for each that compute the corresponding 

integrand. These function files for obtaining the integrand each begin by computing the 

normal stress imparted by the terrain, using the appropriate case for the given angle of 

Equation 5.4. With the normal stress determined, the shear stress may be obtained 

following computation of the soil deformation according to the properties of the soil used 

and the slip ratio, as noted by Equations 5.6 and 5.7. Once the appropriate normal and 

shear stresses have been computed, the integrands for the corresponding force are 

obtained, and are then returned to the overall terramechanics model for integration and 

multiplication with the wheel radius and width. If torque is desired, it can also be 

computed by taking the vertical force and applying it about the radius of the wheel, 

provided the model parameter, a0, matches its simulated value. 

 

 These force values then enter the external force and torque block which takes an 

output force of the vertical force and applies it to the wheel axle joint, but also as an input 

to the sinkage calculation block, to update the sinkage. When the model is fully 

functional, it will be necessary to initially run it with an angular velocity of zero to allow 

the rover to settle into the terrain and obtain its initial sinkage value. Once the model has 

converged on an initial sinkage value, it can then be run for the commanded angular 

velocity along the selected path. It should be noted that the soil properties and tuning 

parameters are unchanged from Irani et al’s investigation [37], and as such, even using 

the same simulant, additional work is needed to fine tune the terramechanics model for 



164 

 

the J5 rover and its set of wheels. The J5 rover is much larger, with wheels of radius     

0.3 m as opposed to the original Irani et al rover of 0.075 m [37]. The configuration 

differences require the opportunity to test the real rover in a sandbox of that simulant, or 

to at least take a wheel and put it in a single wheel test rig to collect data for validation 

and establishment of tuning parameters. Since this additional work is needed to get the 

overall model working in a useful way, the full model could not be completed within the 

time constraints of this thesis. However, a single wheel model was created using the same 

features as the J5 rover and the same terramechanics model and run for a sinusoidal 

terrain, in an attempt to further demonstrate how this model would work and what overall 

results are likely to occur. 

 

 

5.4 Terramechanics Model Modifications 

 

 Although the previous section has discussed the combination of the 

terramechanics and dynamic model and how it would conceptually work, a deeper 

understanding can be acquired by examining the application in the context of a single 

wheel.  Subsequent modifications are proposed for the terramechanics portion in order to 

accommodate the effects of non-flat terrain. By limiting the examination to a single 

wheel, one can more easily see the impact of the terrain shape in addition to the other 

parameters of the terramechanics analysis. One can recall from the classic physics 

problem of a box being forced up an inclined plane that the net normal and tangential 



165 

 

forces are impacted by the shape, specifically the slope of the incline, thus one would 

expect the terrain to affect the force components.  

 

 

Figure 5.8: Modified terramechanics model. 

 

 Figure 5.8 displays the components of the terramechanics model for a non-flat 

terrain. Similar to Figure 5.3, the same parameters are present, however the addition of 

non-flat terrain like a sinusoidal function or an incline will affect the values of certain 

parameters. From the diagram it can be observed that the wheel is travelling along the 

more complicated terrain of a sinusoidal function, where the height and slope of the 

terrain are constantly changing with progression in the horizontal (global x) direction. 

From Section 5.3 and examination of Figure 5.8, it can be seen that the sinkage (z) is 

defined as the vertical distance from the top of the wheel-soil interface at the front of the 

wheel and to the bottom of the wheel’s contact point. Subsequently, it must be 



166 

 

emphasized that the terramechanics formulae require a sinkage input that aligns with the 

normal force, as illustrated by 𝑧′ in Figure 5.8. Furthermore, for non-flat terrain such as a 

sinusoidal curve, as the wheel progresses over the terrain and the terrain height changes, 

the sinkage values will be affected. Non-flat terrain will require modification to the 

sinkage value prior to computing the terramechanics. From the equations presented in 

Section 5.3, one can likewise ascertain that the wheel sinkage values will change as a 

result of the modification to sinkage, most notably for the front wheel sinkage angle (𝜃𝑓). 

If, for example, the wheel is climbing a sine curve, the increase in modified sinkage as a 

result of adding a positive terrain height differential, will cause the ratio of sinkage to 

wheel radius will increase, causing the entry wheel sinkage angle to increase (as the ratio 

approaches the value of 1, 𝜃𝑓 approaches 𝜋
2
). With wheel sinkage values such as 𝜃𝑓 

affected, the values determined by subsequent terramechanics equations in the sequence 

will also be affected because the wheel sinkage values appear in all remaining equations. 

For example, the location of the maximum normal stress will be increased for an increase 

in the front wheel sinkage angle, and both of these angles are used in the subsequent soil 

deformation, followed by stress computations, and finally in determining the forces. 

Sinkage is the value that’s directly affected by terrain and, in turn, also affects the other 

quantities computed in a terramechanics analysis, hence sinkage is what needs to be 

modified for a non-flat terrain.  

 



167 

 

 

Figure 5.9: Modified single wheel terramechanics testbed model code architecture. 

 

 Figure 5.9 presents a visual walkthrough of how the terramechanics model works 

when applied to a single wheel and with the modifications added to sinkage. Upon review 

of the Figure 5.9, one should note that there are two terramechanics blocks present. These 

two blocks indicate that there are essentially two separate phases or applications of the 

terramechanics model. The first phase is for a commanded angular velocity of zero. The 

rationale is to let the rover wheel to sink into the terrain on account of its own weight as it 

would in reality prior to embarking on a traverse and establishes the static sinkage of the 

system. The terramechanics model in the second phase involves computing the forces and 

sinkage for the rover in motion, and as such is dynamic sinkage. As shown in the code 

architecture diagram, the increase in terrain height is added to the sinkage after the 

sinkage calculation (involving the vertical terrain force and weight/load on the wheel) 



168 

 

and prior to its input to the terramechanics model and set of equations. Following the 

processes outlined in the flowchart in Figure 5.9, the SimMechanics model would be 

initiated through a driver or MATLAB script file and the numerical solution process 

would be as follows:  

1. SimMechanics model is initiated through the driver file. Constant variables such 

as soil properties/characteristics and wheel parameters are loaded into 

SimMechanics. 

2. Through time delay settings in the step input signal generation blocks in the 

initialisation, the step inputs to initialise quantities such as the commanded 

angular velocity are delayed for a specified time (t= 3 seconds). This delay allows 

the model to initially run for the static case (𝜔 = 0).  Thus, no slip will be 

calculated, and the wheel will remain at its initial coordinates, as the rover wheel 

sinks into the terrain as it would naturally, settling on a static sinkage value in 

response to the weight as opposed to the normal force imparted by the terrain. 

3. Once the rover wheel has reached steady state and converged on a value for static 

sinkage, the rest of the input parameters are used at their dynamic value (no 

longer 0) and are once again fed into the terramechanics model. However, now 

that the velocity of the axle is non-zero, slip is computed as a non-zero input for 

the terramechanics equations. Prior to entering the terramechanics model in phase 

2 of Figure 5.9, the sinkage (now dynamic sinkage) is calculated based on the 

vertical force of the terrain from the previous iteration of the terramechanics 

model, along with the weight of the wheel load and any damping terms. It is after 

this calculation that the terrain height for the given horizontal location is added to 



169 

 

the sinkage, in order to account for the change in terrain elevation. The modified 

sinkage is then input to the terramechanics model. 

4. The terramechanics model computes wheel sinkage values using the modified 

sinkage, followed by the normal stress, soil deformation, and shear stress. The 

resulting normal and shear stresses are then used to compute the normal and 

tangential forces (ie. 𝐹𝑧 , 𝐹𝑦, 𝐹𝑥). 

5. Forces, torque (if computed), and sinkage are all outputs that can then be fed into 

a dynamic model if one is connected. For the full rover model, these parameters 

would be applied at joint blocks for the wheel axles. These values are also 

displayed as recorded outputs. Depending upon the dynamic model or user 

preference, the forces can be resolved along the terrain or in the global world 

frame. 

6. The normal (vertical if on flat terrain) force, 𝐹𝑧, is then returned to the sinkage 

calculator where it is combined with the weight/load on the wheel and any 

damping included in the model to produce an updated sinkage value. The velocity 

of the axle is obtained and used to update the wheel axle’s location on the terrain, 

which allows for the new contact position to be determined. Using the new 

location and the terrain function, the height of the terrain that needs to be added to 

the next calculation of sinkage is computed. 

7. SimMechanics ends upon completing all of the time steps for the simulation. 



170 

 

 

With regards to expected results, it was previously mentioned that the increase in the 

terrain height (ie. for climbing a sine curve) would increase the sinkage value and 

subsequent entry sinkage angle (increases as ratio of sinkage to wheel radius 

approaches 1). These changes would also shift the location of the maximum normal 

stress, while soil deformation increases. The drawbar pull should increase with slope, 

as the resulting increase in entry sinkage value would alter the components of the 

integrals of the stress. 

 

5.4.1 Preliminary Test Results for the Argo J5 Rover 

 The single wheel terramechanics model was initially run for the J5 wheel 

parameters and the wheel’s mass only. Subsequent test runs used the ¼ vehicle mass 

that each wheel was expected to experience. All test results are included in Appendix 

D, while test results at the higher mass are included herein, for slip values of 0.05 and 

0.25. 

 



171 

 

 

Figure 5.10: Single wheel terramechanics model for Argo J5 at 0.05 slip (flat terrain). 

 

 

Figure 5.11: Single wheel terramechanics model for Argo J5 at 0.25 slip (flat terrain). 

 

Figures 5.10 and 5.11 illustrate the outputs from the terramechanics model over a 

total simulation time of 7 seconds. The respective curves for each output parameter are 



172 

 

similar in shape between the two slip values, with different magnitudes. The initial 

settling period corresponds to 3 seconds and represents the static sinkage phase prior to 

motion. Following the settling period, the commanded angular velocity of the wheel 

initiates a transient startup, prior to reaching a steady state for each individual parameter.  

 

Table 5.1: Terramechanics output parameters for various slip values for the Argo J5 rover (flat 

terrain). 

Slip, i Fx [N] Fz [N] Static Sinkage [mm] 
Dynamic Sinkage 

[mm] 

Torque 

[Nm] 

0.05 401.2 1128 27.35 42.26 338.4 

0.1 517.1 1128 27.35 42.66 338.4 

0.25 726.0 1128 27.35 43.39 338.4 

0.5 845.0 1128 27.35 44.06 338.4 

 

Table 5.1 summarises the output of the single wheel terramechanics model for the 

Argo J5 rover over different slip values. The normal force, Fz, static sinkage, and torque 

values remain constant as expected since these results depend on the terrain properties 

and the weight of the vehicle, which do not change. With regards to dynamic sinkage, 

one can observe that this value increases with slip, as is typical of the slip-sinkage effect. 

The drawbar pull also increases with slip as expected, noted by Wong [29]. It should be 

noted that similar effects were produced for the original wheel that the model was built 

for. The current results require experimental validation to determine whether any tuning 

parameters are necessary.  

 



173 

 

The modifications proposed in Section 5.5 were implemented for a sinusoidal 

terrain, matching the sine function used in Chapter 4, Sections 4.2 and 4.3. Sample results 

for the Argo J5 rover are illustrated in Figures 5.12 and 5.13. 

 

 

Figure 5.12: Modified single wheel terramechanics model for Argo J5 at 0.05 slip (sinusoidal terrain). 

 

 



174 

 

 

Figure 5.13: Modified single wheel terramechanics model for Argo J5 at 0.25 slip (sinusoidal terrain). 

 

 Examination of Figures 5.12 and 5.13 reveal similar results between slip values of 

0.05 and 0.25 for a total simulation time of 7 seconds. Again, there is a 3 second static 

sinkage phase to allow the rover to settle into the terrain as it would in reality, followed 

by the step change to the dynamic sinkage phase where the rover begins to move. It is 

noted that the static to dynamic transient of the curves is significantly different in the 

modified model as compared to the unmodified model. The modified model appears to 

illustrate a transient zone with less damping and a higher initial overshoot.  

 

It should be noted that the results illustrated in Figures 5.12 and 5.13 only cover the first 

4 seconds of motion (dynamic phase). These figures have the appearance of flat curve 

results, in spite of a sinusoidal terrain input. 



175 

 

 

Figure 5.14: Dynamic phase of modified single wheel terramechanics model for Argo J5 at 0.25 slip 

(sinusoidal terrain), extended to 100 seconds. 

 

 A supplemental examination of the 0.25 slip case for the modified terramechanics 

model, as shown in Figure 5.14, extended the traverse duration to 100 seconds. 

Neglecting the static phase and the transition to the dynamic phase, Figure 5.14 illustrates 

the full effect of the input terrain. As expected, the sinkage varies with the shape of the 

terrain which, in turn, propagates through the terramechanics formulations to affect the 

resulting torque and forces.  

 

 

 

 

 



176 

 

Table 5.2: Modified terramechanics output parameters for various slip values for the Argo J5 rover 

(sinusoidal terrain). 

Slip, i Fx [N] 
Static Fz 

[N] 

Dynamic Fz 

[N] 

Static Sinkage 

[mm] 

Dynamic Sinkage 

[mm] 

Torque 

[Nm] 

0.05 416.7 1128.2 1156.8 27.35 43.00 347.0 

0.1 535.5 1128.2 1156.8 27.35 43.41 347.0 

0.25 748.7 1128.2 1156.7 27.35 44.14 347.0 

0.5 868.9 1128.2 1156.7 27.35 44.82 347.0 

 

 Table 5.2 summarises the resulting output from the modified terramechanics 

model. Similar to the unmodified model, the drawbar pull and dynamic sinkage increase 

with slip. However, the magnitude of these parameters with respect to the same slip case 

for the unmodified model is slightly higher. This shift is due to the upward slope of the 

terrain which, from the proposed modification, adds to the sinkage. 

 

 

Figure 5.15: Drawbar pull vs slip. 



177 

 

 

 Figure 5.15 depicts the relationship between drawbar pull and slip for both the 

modified and unmodified models. The curves illustrated are characteristic for drawbar 

pull with respect to slip and widely noted in the literature [19, 34, 42, 58]. It is noted that 

the curve for the modified model is higher than the unmodified model and the difference 

between the two increases with slip. 

 

 Overall the proposed modification to the terramechanics model of Irani et al [37], 

to accommodate for non-flat terrain, demonstrates the trends expected from the analysis 

herein. However, additional work is required to validate the modified model 

experimentally to incorporate any necessary tuning parameters. It should also be noted 

that a major limitation of using a terramechanics model such as this is that it becomes 

inaccurate for high levels of slip. Should one wish to model the dynamics of the J5 rover 

for high levels of slip, incorporating the forces and moments produced by the wheel-soil 

interaction for a given terrain, an alternate method such as DEM or its associated look-up 

tables would need to be employed.  

  



178 

 

Chapter  6: Conclusions and Future Work 

 

 Planetary exploration rovers are designed to traverse a range of terrain conditions 

and manage unstructured environments of another world that cannot fully be predicted. In 

particular, the more occluded hazards such as slip and sinkage, encompassed by the 

unique characteristics of the terrain, are most challenging to anticipate and require 

predictive modelling to assess rover capabilities.  In this thesis an investigation was 

carried out to assess how to develop kinematic and dynamic models for the four-wheel 

Argo J5 rover.  

 

The conclusions drawn from this work are organised to address each of the 

research objectives from Chapter 1 and are presented below. A selection of general 

comments are also included. It should be noted that the Maple files referred to in 

Chapters 4 and 5 are not included in this document due to file size limitations. They can 

be made available upon request. 

 

 

6.1 Objective 1 

Produce a model to determine the pose of the rover in response to terrain geometry (ie. 

slopes & bumps, etc). 

 

Objective 1 was accomplished for varying terrain geometry, as outlined in 

Chapter 4, Sections 4.1 and 4.2. Due to the nature of the three-dimensional velocity 



179 

 

analysis and how it directly utilises the pose generated from solving the inverse three-

dimensional position kinematics analysis, it was also achieved as part of the velocity 

kinematics model. Similarly, the dynamic model can provide information regarding the 

pose of the rover.  

 

However, while the planar position model (Section 4.1) was able to visually 

model the pose of the J5 rover and conform to the terrain function, it is limited in 

application as it is planar and not suitable for actual, three-dimensional terrains without 

significant modifications. As such, it does not capture the full behaviour of the rover. 

 

The three-dimensional position kinematics was used to model the full rover and 

demonstrate the interdependence of some joints in response to terrain disturbance input. 

The results obtained showed good agreement with expected trends (ie. chassis angles 

with respect to the terrain) and accurately predicted the total distance the centre of the 

chassis travelled with respect to manually calculated estimates for the selected step 

intervals. Other manual calculations of joint positions also showed agreement. The results 

of the model show agreement to within 3% for the speeds and distances on various 

terrains relative to the flat terrain case, for all values of slip studied. However, for best 

accuracy the model would need to be validated experimentally for the entire rover. Once 

determined, the pose for each step interval on various terrains can then be compared with 

the joint displacements for the specific rover that could result in tipping or exceed other 

functional limitations. A sub-objective was also achieved in this model as its executed 

code, although written in MATLAB, can be fairly easily transferred to another 



180 

 

programming language of choice. There were some limitations in achieving this objective 

as the accuracy is limited to that of manually estimated joint displacements for a given 

terrain. Subsequently, this limitation makes the more complex terrains harder to compute 

and estimate accuracy. Furthermore, it was noted that convergence was initially difficult 

to achieve due to the number of joints and equations causing the problem to be over 

constrained, requiring careful thought as to which equations could be safely removed. 

Finally, another limitation with regards to the solver used for this method is that the 

Jacobian of the system will never be square. Thus, a solver that utilises an algorithm 

capable of handling non-square Jacobians is required or further manipulation of the 

Jacobian matrix would be necessary. 

 

 

6.2 Objective 2 

Produce a three-dimensional velocity kinematics model incorporating predicted slip to 

accurately determine the progression of the rover on the terrain. 

 

Building on the application of the original D-H convention [66] and the 

determined equation sets capable of describing the rover’s pose, the velocity Jacobians 

were generated for each wheel-ground contact point, providing the equation sets required 

to analyse the velocity of the J5 rover as it travels over the terrain. The resulting equation 

sets were successfully combined with the results from the position analysis using the 

inputs of terrain path coordinates, along with the inclusion of slip read from the terrain 

path data. The model was able to simulate traverses along different test case terrains for 



181 

 

varying slip values, with results displaying the expected trends. Incorporating slip, the 

model was able to accurately drive the rover over the terrain with higher slip values 

resulting in less overall ground being covered, as expected. The pose was again 

determined to a high degree of accuracy, whereas the individual joint rates were less 

accurate, requiring experimental validation. Again, the program was written and executed 

in MATLAB, making the code flexible and more accessible. Also, the computational 

time is generally under a minute per time step. 

 

However, although the objective was achieved, there are some limitations to 

address. As with the 3D position kinematic analysis, the solver used must be capable of 

handling non-square Jacobians which limits the choice of solver employed. As previously 

noted, the number of joints and kinematic pathways of the rover creates an over-

constrained system of nonlinear equations, making convergence more difficult to achieve 

and resulting in some inaccuracies in the joint rates computed. The 3D velocity kinematic 

model requires experimental validation and tuning to account for friction and damping 

occurring between the joints.  The actual joint rate will differ from those predicted by the 

3D velocity kinematic model. Forces and accelerations are not addressed by Objective 2. 

 

 

 

 

 

 



182 

 

6.3 Objective 3 

Produce a dynamic model, incorporating slip and terrain geometry as inputs, allowing 

for other traversability metrics, such as torques and drawbar pull, to be determined. 

 

The original method of continuing with mathematical models built upon the D-H 

convention for describing the transformation between kinematic pairs, to include 

acceleration and the dynamic torque equation proved to require too many simplifications.  

In addition, the complexities of accurately determining the kinetic energy terms without 

accurate inertia information, made this method not worth pursuing. Also, the 

complexities would not make it user friendly in analysing the potential path for particular 

metrics. SimMechanics’ easier generation of a dynamic model from a solid model CAD 

file, enables flexibility in changing the rover design and makes it easier for a generic 

operator to visually understand it, as opposed to complicated mathematical terms. 

SimMechanics also automatically generates a three-dimensional visual animation which 

can be manipulated for different viewpoints so there is no need to code for visualisation. 

The dynamic model for the J5 was able to be paired with a terramechanics model and was 

applied to each wheel axle, and it allowed for further inputs from the terrain geometry, or 

the potential to actuate other joints.  

 

Unfortunately, Objective 3 was not fully achieved because significantly more 

work was needed to get the fully combined model running for inputs on all four wheels. 

The additional time required to troubleshoot the model, demands experimental work to 

determine the tuning for the correct amount of damping while also accounting for the 



183 

 

friction in the joints. Likewise, the terramechanics model must also be tuned for the J5 

rover model (ie. wheel dimensions) and the terrains over which it will be traveling. These 

are direct limitations on the current model. 

 

 

6.4 General Comments 

 

 Overall, the use of the D-H convention in describing the transformation between 

kinematic pairs, and subsequently using the transformations to build models describing 

the pose and motion of the rover proved to be a valid and fairly accurate approach. 

Although the D-H method has shown to be fairly accurate in producing three-dimensional 

position and velocity models that account for slip and the geometry of the terrain, this 

approach does require a significant time investment in the establishment of the D-H 

parameters to obtain the correct equation set. However, once the position-related equation 

set has been correctly established, these equations can be used to provide prediction of 

pose and progression traversability metrics to aid in path selection. They could also be 

applied to a feedback controller to help with path following. The models developed in 

this thesis examined pose, velocity, and dynamics and were developed to work in concert 

to provide different aspects of traversability analysis to overall rover simulation on 

potential paths. Depending upon the objective, the user could simply run one or more of 

the models to obtain the desired information. An alternative development could include 

all three aspects within SimMechanics alone. 

 



184 

 

 

6.5 Recommendations for Future Work 

 

 Based upon the literature review and work presented in this thesis, the author 

offers the following recommendations for possible future work: 

 

1. Experimental validation of the kinematic models to add tuning parameters for 

increased accuracy of the simulation. 

 

2. Further investigation to determine appropriate time steps for interpolation 

stability, or review of the potential application of non-linear interpolation 

techniques. 

 

3. Activation of steering within the kinematic model, in accordance with the skid 

steering system of the J5 rover. 

 

4. Perform both kinematic and dynamic simulations with complex steering 

maneuvers on varying complexities of terrain, such as turning on a slope, with 

different amounts of slip.  

 

5. Extend the study to high values of slip, by running simulations at the higher (i > 

0.6) slip and validate with experimental results to best of ability. 



185 

 

 

6. Extend the study to more erratic terrain maps, including those with different 

terrain types (bedrock vs soft loose sand) and slip values. Also include random 

bumps for different sides of the rover. 

 

7. Finalise the fully combined dynamic and terramechanics model of the Argo J5 

rover. Finalisation would include the required experimental validation to generate 

appropriate tuning parameters, along with expanding the terrain properties in the 

terramechanics model to include other terrains likely to be encountered by the 

rover. 

 

8. Validate the terramechanics model for the rover wheel with a single wheel testbed 

experiment, allowing for comparison with other models. Also generate DEM look 

up tables for the higher regions of slip where terramechanics breaks down. 

 

9. Instrument a J5 rover with accelerometers to measure the forces on each wheel 

and selected joints during experimental drives over controlled terrain, such as that 

of the Canadian Space Agency’s (CSA’s) MarsYard. 

 

  



186 

 

References 

 

1. “Odyssey Orbiter Mission Overview,” NASA, Available: 

https://mars.nasa.gov/odyssey/mission/overview/. 

2. “Phoenix,” NASA, Available: 

https://mars.nasa.gov/programmissions/missions/past/phoenix/. 

3. “InSight Mission Overview,” NASA, Available: https://mars.nasa.gov/insight/. 

4. Northon, K., “Mars Helicopter to Fly on NASA's Next Red Planet Rover 

Mission,” NASA, Available: https://www.nasa.gov/press-release/mars-helicopter-

to-fly-on-nasa-s-next-red-planet-rover-mission. 

5. “What Is Dragonfly?”, Dragonfly, Available: http://dragonfly.jhuapl.edu/What-Is-

Dragonfly/. 

6. Bugby, D., Seghi, S., Kroliczek, E., and Pauken, M. “Novel Architecture for a 

Long-Life, Lightweight Venus Lander”, AIP Conference Proceedings, Vol. 1103, 

No. 1, United States, Mar. 2009, pp. 39 – 50. Web. doi:10.1063/1.3115545. 

7. Grego, P., Mars and how to observe it, New York: Springer, 2012.  

8. “NASA's Mars Exploration Program,” NASA, Available: 

https://mars.nasa.gov/#mars_exploration_program/3.  

9. Orosei, R., Lauro, S. E., Pettinelli, E., et-al, “Radar evidence of subglacial liquid 

water on Mars,” Science, Vol. 361, No. 6401, Aug. 2018, pp. 490 – 493. 

doi: 10.1126/science.aar7268. 



187 

 

10. Carsten, J., Rankin, A., Ferguson, D., and Stentz, A., “Global Path Planning on 

Board the Mars Exploration Rovers,” 2007 IEEE Aerospace Conference, 2007, 

pp. 1–11. 

11.  “Moving around Mars,” NASA. Available: 

https://mars.nasa.gov/mer/mission/timeline/surfaceops/navigation/ 

12. “Viking 1 & 2,” NASA. Available: 

https://mars.nasa.gov/programmissions/missions/past/viking/. 

13. Trease, B., Arvidson, R., Lindemann, R., et-al, “Dynamic Modeling and Soil 

Mechanics for Path Planning of the Mars Exploration Rovers,” 35th Mechanisms 

and Robotics Conference, Parts A and B, Vol. 6, Aug. 2011, pp. 1–11.   

14. Bouguelia, M.-R., Gonzalez, R., Iagnemma, K., and Byttner, S., “Unsupervised 

classification of slip events for planetary exploration rovers,” Journal of 

Terramechanics, Vol. 73, Sep. 2017, pp. 95–106. 

doi: 10.1016/j.jterra.2017.09.001.   

15. Arvidson, R. E., Bell, J. F., Bellutta, P., et-al, “Spirit Mars Rover Mission: 

Overview and selected results from the northern Home Plate Winter Haven to the 

side of Scamander crater,” Journal of Geophysical Research, Vol. 115, 2010, pp. 

1–19. 

doi:10.1029/2010JE003633. 

16. Vogt, G. L., “Chapter 1: The Two Faces of Mars,” Landscapes of Mars: A Visual 

Tour, New York: Springer, 2008, pp. 27–40. 

17. “Rover Wheels,” NASA. Available: 

https://mars.nasa.gov/mars2020/mission/rover/wheels/ 



188 

 

18. Lindemann, R., and Voorhees, C., “Mars Exploration Rover Mobility Assembly 

Design, Test and Performance,” 2005 IEEE International Conference on Systems, 

Man and Cybernetics, Oct. 2005. 

doi: 10.1109/ICSMC.2005.1571187. 

19. Zhou, F., Arvidson, R. E., Bennett, K., Trease, B., Lindemann, R., Bellutta, P., 

Iagnemma, K., and Senatore, C., “Simulations of Mars Rover Traverses,” Journal 

of Field Robotics, Vol. 31, No. 1, Jan. 2014, pp. 141–160. 

doi: 10.1002/rob.21483. 

20. Heverly, M., Matthews, J., Lin, J., Fuller, D., Maimone, M., Biesiadecki, J., and 

Leichty, J., “Traverse Performance Characterization for the Mars Science 

Laboratory Rover,” Journal of Field Robotics, Vol. 30, No. 6, 2013, pp. 835–846. 

doi: 10.1002/rob.21481. 

21. Fookes, P.G., Lee, E.M., and Griffiths, J.S. Engineering Geomorphology - Theory 

and Practice - 7.2 Engineering Soil Behaviour: Clays. Whittles Publishing, 2007, 

pp. 47. Retrieved from:  

https://app.knovel.com/hotlink/pdf/id:kt00BRWZ57/engineering-

geomorphology/engineering-soil-behaviour 

22. Nof, S. Y., Handbook of industrial robotics, New York: John Wiley, 1999, p. 148. 

23. “Mars Exploration Rover - Opportunity,” NASA. Available: 

https://www.jpl.nasa.gov/missions/mars-exploration-rover-opportunity-mer/ 

24. NASA Jet Propulsion Laboratory, “NASA Facts - Mars Exploration Rover,” 

NASA Facts - Mars Exploration Rover 

25. “Rover,” NASA. Available: https://mars.jpl.nasa.gov/msl/mission/rover/. 



189 

 

26.  “ARGO J5 XTR robot platform for extreme terrain,” ARGO Xtreme Terrain 

Robotics. Available: https://www.argo-xtr.com/index.php/xtr-robots/j5-xtr/. 

27. Bekker, M. G., Off-the-road locomotion, Ann Arbor, Michigan: The University of 

Michigan Press, 1960. 

28. Wong, J., “An introduction to terramechanics,” Journal of Terramechanics, Vol. 

21, 1984, pp. 5–17. 

29. Wong, J. Y., Terramechanics and off-road vehicle engineering: terrain behavior, 

off-road vehicle performance and design, Amsterdam: Butterworth-Heinemann, 

2010. 

30. Wong, J. Y., Theory of ground vehicles, New York: John Wiley, 2001. 

31. Ding, L., Gao, H.B., Deng, Z.Q., and Tao, J.G., “Wheel slip-sinkage and its 

prediction model of lunar rover,” Journal of Central South University of 

Technology, Vol. 17, No. 1, 2010, pp. 129–135. 

32. Taheri, S., Sandu, C., Taheri, S., Pinto, E., and Gorsich, D., “A technical survey 

on terramechanics models for tire–terrain interaction used in modeling and 

simulation of wheeled vehicles,” Journal of Terramechanics, Vol. 57, 2015, pp. 

1–22. 

doi: 10.1016/j.jterra.2014.08.003. 

33. Smith, W., Melanz, D., Senatore, C., Iagnemma, K., and Peng, H., “Comparison 

of discrete element method and traditional modeling methods for steady-state 

wheel-terrain interaction of small vehicles,” Journal of Terramechanics, Vol. 56, 

2014, pp. 61–75. 

doi: 10.1016/j.jterra.2014.08.004. 



190 

 

34. Johnson, J. B., Kulchitsky, A. V., Duvoy, P., Iagnemma, K., Senatore, C., 

Arvidson, R. E., and Moore, J., “Discrete element method simulations of Mars 

Exploration Rover wheel performance,” Journal of Terramechanics, Vol. 62, 

2015, pp. 31–40. 

doi: 10.1016/j.jterra.2015.02.004. 

35. Johnson, J. B., Duvoy, P. X., Kulchitsky, A. V., Creager, C., and Moore, J., 

“Analysis of Mars Exploration Rover wheel mobility processes and the 

limitations of classical terramechanics models using discrete element method 

simulations,” Journal of Terramechanics, Vol. 73, Oct. 2017, pp. 61–71. 

doi: 10.1016/j.jterra.2017.09.002. 

36. Nishiyama, K., Nakashima, H., Yoshida, T., Ono, T., Shimizu, H., Miyasaka, J., 

and Ohdoi, K., “2D FE–DEM analysis of tractive performance of an elastic wheel 

for planetary rovers,” Journal of Terramechanics, Vol. 64, Apr. 2016, pp. 23–35. 

doi: 10.1016/j.jterra.2015.12.004. 

37. Irani, R., Bauer, R., and Warkentin, A., “Modelling a Single-wheel Testbed for 

Planetary Rover Applications”, Proceedings ASME Dynamic Systems and Control 

Conference, Sept. 2010, pp. 181–188. 

38. Irani, R., Bauer, R., and Warkentin, A., “A dynamic terramechanic model for 

small lightweight vehicles with rigid wheels and grousers operating in sandy 

soil,” Journal of Terramechanics, Vol. 48, No. 4, Aug. 2011, pp. 307–318. 

doi: 10.1016/j.jterra.2011.05.001. 



191 

 

39. Irani, R. A., Bauer, R. J., and Warkentin, A., “Dynamic Wheel-Soil Model for 

Lightweight Mobile Robots with Smooth Wheels,” Journal of Intelligent & 

Robotic Systems, Vol. 71, No.2, Aug. 2012, pp. 179–193. 

doi: 10.1007/s10846-012-9777-3. 

40. Ghotbi, B., Azimi, A., K�vecses Jozsef, and Angeles, J., “Sensitivity Analysis of 

Mobile Robots for Unstructured Environments,” 8th International Conference on 

Multibody Systems, Nonlinear Dynamics, and Control, Parts A and B, Vol. 4, 

2011, pp. 1–7. 

41. Iagnemma, K., Senatore, C., Trease, B., Arvidson, R., Bennett, K., Shaw, A., 

Zhou, F., Dyke, L. V., and Lindemann, R., “Terramechanics Modeling of Mars 

Surface Exploration Rovers for Simulation and Parameter Estimation,” 8th 

International Conference on Multibody Systems, Nonlinear Dynamics, and 

Control, Parts A and B, Vol. 4, Aug. 2011, pp. 1–8. 

42. Ishigami, G., Miwa, A., Nagatani, K., and Yoshida, K., “Terramechanics-based 

model for steering maneuver of planetary exploration rovers on loose 

soil,” Journal of Field Robotics, Vol. 24, No. 3, Mar. 2007, pp. 233–250. 

doi: 10.1002/rob.20187. 

43. Chhaniyara, S., Brunskill, C., Yeomans, B., Matthews, M., Saaj, C., Ransom, S., 

and Richter, L., “Terrain trafficability analysis and soil mechanical property 

identification for planetary rovers: A survey,” Journal of Terramechanics, Vol. 

49, No. 2, Apr. 2012, pp. 115–128. 

doi: 10.1016/j.jterra.2012.01.001. 



192 

 

44. Ding, L., Yang, H., Gao, H., Li, N., Deng, Z., Guo, J., and Li, N., 

“Terramechanics-based modeling of sinkage and moment for in-situ steering 

wheels of mobile robots on deformable terrain,” Mechanism and Machine Theory, 

Vol. 116, Oct. 2017, pp. 14–33. 

doi: 10.1016/j.mechmachtheory.2017.05.011. 

45. Gallina, A., Krenn, R., and Schäfer, B., “On the treatment of soft soil parameter 

uncertainties in planetary rover mobility simulations,” Journal of 

Terramechanics, Vol. 63, Feb. 2016, pp. 33–47. 

doi: 10.1016/j.jterra.2015.08.002. 

46. Tarokh, M., Mcdermott, G., Hayati, S., and Hung, J., “Kinematic modeling of a 

high mobility Mars rover,” Proceedings 1999 IEEE International Conference on 

Robotics and Automation, May 1999, pp. 992–998. 

doi: 10.1109/ROBOT.1999.772441. 

47. Chakraborty, N., and Ghosal, A., “Kinematics of wheeled mobile robots on 

uneven terrain,” Mechanism and Machine Theory, Vol. 39, No. 12, Dec. 2004, pp. 

1273–1287. 

doi: 10.1016/j.mechmachtheory.2004.05.016. 

48. Tarokh, M., and McDermott, G., “Kinematics modeling and analyses of 

articulated rovers,” IEEE Transactions on Robotics, Vol. 21, No. 4, Aug. 2005, 

pp. 539–553. 

doi: 10.1109/TRO.2005.847602. 



193 

 

49. Mcdermott, G., and Tarokh, M., “A General Approach to Kinematics Modeling of 

All-Terrain Rovers,” 2005 IEEE International Conference on Systems, Man and 

Cybernetics, Oct. 2005. 

doi: 10.1109/ICSMC.2005.1571445. 

50. Auchter, J., Moore, C. A., and Ghosal, A., “A Novel Kinematic Model for Rough 

Terrain Robots,” Lecture Notes in Electrical Engineering Advances in 

Computational Algorithms and Data Analysis, Springer, Dordrecht, 2009, pp. 

215–234. 

51. Parakh, S., Wahi, P., and Dutta, A., “Velocity kinematics based control of rocker-

bogie type planetary rover,” TENCON 2010 - 2010 IEEE Region 10 Conference, 

Nov. 2010, pp. 939–944. 

doi: 10.1109/TENCON.2010.5686545. 

52. Tarokh, M., Ho, H. D., and Bouloubasis, A., “Systematic kinematics analysis and 

balance control of high mobility rovers over rough terrain,” Robotics and 

Autonomous Systems, Vol. 61, No. 1, Jan. 2013, pp. 13–24. 

doi: 10.1016/j.robot.2012.09.010. 

53. Seegmiller, N., and Kelly, A., “Enhanced 3D Kinematic Modeling of Wheeled 

Mobile Robots,” Robotics: Science and Systems X, 2014. 

54. Srividhya, G., Sharma, G., and Kumar, H. N. S., “Software for Modelling and 

Analysis of Rover on Terrain,” Proceedings of Conference on Advances In 

Robotics - AIR 13, July 2013, pp. 1–8. 

doi: 10.1145/2506095.2506112. 



194 

 

55. Bauer, R., Barfoot, T., Leung, W., and Ravindran, G., “Dynamic Simulation Tool 

Development for Planetary Rovers,” International Journal of Advanced Robotic 

Systems, Vol. 5, No. 3, Sept. 2008, pp. 311–314. 

doi: 10.5772/5609. 

56. Li, W., Ding, L., Gao, H., Deng, Z., and Li, N., “ROSTDyn: Rover simulation 

based on terramechanics and dynamics,” Journal of Terramechanics, Vol. 50, No. 

3, June 2013, pp. 199–210. 

doi: 10.1016/j.jterra.2013.04.003. 

57. Reina, G., and Foglia, M., “On the mobility of all‐terrain rovers,” Industrial 

Robot: An International Journal, Vol. 40, No. 2, Mar. 2013, pp. 121–131. 

58. Senatore, C., Stein, N., Zhou, F., Bennett, K., Arvidson, R. E., Trease, B., 

Lindemann, R., Bellutta, P., Heverly, M., and Iagnemma, K., “Modeling and 

Validation of Mobility Characteristics of the Mars Science Laboratory Curiosity 

Rover,” 2014. 

59. Schäfer, B., Gibbesch, A., Krenn, R., and Rebele, B., “Planetary rover mobility 

simulation on soft and uneven terrain,” Vehicle System Dynamics, Vol. 48, No. 1, 

2010, pp. 149–169. 

doi: 10.1080/00423110903243224. 

60. Gonzalez, R., and Iagnemma, K., “Slippage estimation and compensation for 

planetary exploration rovers. State of the art and future challenges,” Journal of 

Field Robotics, Vol. 35, No. 4, June 2018, pp. 564–577. 

doi: 10.1002/rob.21761. 



195 

 

61. Helmick, D., Angelova, A., and Matthies, L., “Terrain Adaptive Navigation for 

planetary rovers,” Journal of Field Robotics, Vol. 26, No. 4, Apr. 2009, pp. 391–

410. 

doi: 10.1002/rob.20292. 

62. Thueer, T., and Siegwart, R., “Mobility evaluation of wheeled all-terrain 

robots,” Robotics and Autonomous Systems, Vol. 58, No. 5, May 2010, pp. 508–

519. 

doi: 10.1016/j.robot.2010.01.007. 

63. Richards, K. L., “34.3 Kinematic Definitions”, Design Engineer's Sourcebook, 

CRC Press, 2018, p. 820.  

Retrieved from: https://app.knovel.com/hotlink/pdf/id:kt011MJYJG/design-

engineers-sourcebook/mechanism 

64. Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G., ‘Kinematics’, Robotics 

Modelling, Planning and Control, Springer, London, 2009, pp. 39–103. 

65. Craig, J. J., Introduction to Robotics: Mechanics and Control. 2nd ed., Addison-

Wesley, Reading, Mass., 1989. 

66. Denavit, J., Hartenberg, R. S., "A kinematic notation for lower-pair mechanisms 

based on matrices," Trans ASME Journal of Applied Mechanics, Vol. 23, 1955, 

pp. 215–221. 

67. Spong, M. W., Hutchinson, S., and Vidyasagar, M., “Chapter 9 

DYNAMICS,” Robotics, Dynamics and Control, 2nd ed., Wiley, Jan. 2004, pp. 

187–224. 



196 

 

68. “Fusion 360: Free Software for Hobbyists,” Autodesk. Available: 

https://www.autodesk.com/campaigns/fusion-360-for-hobbyists. 

 

 



197 

 

 

 

 

 

 

 

 

Appendices 

  



198 

 

Appendix A  - Argo J5 Data and Specifications 

All rover data provided to the author is collected in this appendix. 

A.1 Argo J5 Rover Data Summary 

Rover: Argo J5 Rover (also manufactured/sold by Clearpath Robotics)1 

 

Total Mass: 460 kg (1013 lbs) – includes wheels, batteries, mast, sensors. 

Total Envelope/Footprint: 1.52 m long x 1.48 m wide 

Steering:  Skid Steering 

Special notes: - back suspension connecting walking beams to chassis (chassis 

connection at rear) averages out the pitch of each walking beams to get the pitch of the 

chassis. 

 

Main Components 

Chassis 

• Mass: 200 kg 
• Dimensions: 1.30 m long x 0.77 m wide 

Walking Beams 

• Mass: 50 kg (each) x2 
• Dimensions: 1.32 m long x 0.29 m wide 

Wheels2: 

• Mass: 15 kg (each) x4 
• Diameter: 0.60 m 
• Thickness: 0.30 m 



199 

 

 

Note: In text of thesis, refer to it as the Argo J5 rover based on the language used by the 

company in possession of the rover (Mission Control Space Services) and special advisor 

to the project, Dr. M. Faragalli. 

 

For more information, see: 

Argo J5XTR website: https://www.argo-xtr.com/index.php/xtr-robots/j5-xtr/ 

Clearpath Robotics Warthog: https://clearpathrobotics.com/warthog-unmanned-ground-

vehicle-robot/ 

 

1. Rover manufacturer spec sheet & drawing attached. 
(https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/) 

2. Wheels can be either be metal or rubber. Metal tires assumed for the analysis. 
 

  

https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/


© Clearpath Robotics, Inc. All Rights Reserved.  Clearpath Robotics, Jackal, and clearpathrobotics.com are trademarks of Clearpath Robotics. 
All other product and company names listed are trademarks or trade names of their respective companies.

TECHNICAL SPECIFICATIONS
SIZE AND WEIGHT
EXTERNAL DIMENSIONS (L x W x H) 1.52 x 1.38 x 0.83 m (4.9 x 4.5 x 2.72 ft )

BASE WEIGHT (includes base battery pack) 280 kg (551 lbs)

GROSS VEHICLE WEIGHT 590 kg (1300 lbs)

GROUND CLEARANCE 254 mm (10 in)

SPEED AND PERFORMANCE
MAX. PAYLOAD 272 kg (600 lbs) 

MAX. INCLINE 35 - 45° 

MAX. SPEED 18 km/h (11 mph)

SUSPENSION Geometric Passive Articulation

TRACTION 24” Argo tire (24” Turf tire or 12” wide Quad Track System optional)

BATTERY AND POWER SYSTEM
BATTERY CHEMISTRY AGM sealed lead acid (Li-ion optional)

CAPACITY 105 Ah at 48 V, expandable to 110Ah with Li-ion option

CHARGE TIME 4 hrs

NOMINAL RUN TIME Lead acid: 2.5 hrs Li-ion: 3 hrs

USER POWER 5 V, 12 V Fused (24 V, 48 V optional)

INTERFACING AND COMMUNICATION
CONTROL MODES Remote control, Computer controlled velocity commands (v, θ), Indoor/outdoor autonomy packages

FEEDBACK Battery voltage, motor currents, wheel odometry, control system status, temperature, safety status

COMMUNICATION Ethernet, USB, Remote Control, Wi-Fi

DRIVERS AND APIs Packaged with ROS Indigo (includes RViz, Gazebo support), Matlab API available

INCLUDED HARDWARE IMU, encoders, Onboard computer, E-Stop (hardware loop), E-Stop (software loop), removable 
mounting plates, bilge pumps, brakes

ENVIRONMENTAL
OPERATING AMBIENT TEMPERATURE -20 to 40 °C (-4 to 104 °F)

STORAGE TEMPERATURE -40 to 50 °C (-40 to 122 °F)

IP RATING IP65 - Vehicle is designed to float and should not be fully submerged

AMPHIBIOUS Fully amphibious, 4 km/h (2.4 mph) maximum water speed*

WARTHOG TM

SIDE FRONTTOP

1.38 m
[4.52 ft]

1.34 m
[4.39 ft]

1.52 m
[4.92 ft]

0.83 m
[2.73 ft]

© 2016 Clearpath Robotics, Inc. All Rights Reserved.  Clearpath Robotics, Warthog, and clearpathrobotics.com are trademarks of Clearpath Robotics. 
All other product and company names listed are trademarks or trade names of their respective companies. * Warthog is not amphibious with Quad T�������������

AMPHIBIOUS UNMANNED GROUND VEHICLE

Contact us today for pricing and a free 30 minute technical assessment:  1-800-301-3863



201 

 

A.3 Rover Drawing 



202 

 

Appendix B  - 2D Kinematic Analysis Data 

 

This appendix contains the relevant formulation and results for Chapter 4, Section 4.1. 

 

B.1 Rover Data & Analysis Setup 

Rover: Argo J5 (4-wheel) 

 

Figure B1: Right-side profile with labelled pivot points and rigid distances between pivot points. 

 

Associated Dimensions: 

rAB = rCD = 0.254 m   rAC = 0.90932 m 

rAE = 0.4653 m    rAF = 0.632 m 

rCE = 0.465 m    rCF = 0.5088 m 

rEF = 0.256 m    rFG = 0.607 m 

 

Equation Set 1 



203 

 

Developed from the geometry seen in Figure B.1 and the associated dimensions. 

Implemented in MATLAB function file: geomJ5_nosusp.m 

 

(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 = 𝑟𝐴𝐵
2  

(𝑥𝐶 − 𝑥𝐷)2 + (𝑦𝐶 − 𝑦𝐷)2 = 𝑟𝐶𝐷
2  

(𝑥𝐴 − 𝑥𝐶)2 + (𝑦𝐴 − 𝑦𝐶)2 = 𝑟𝐴𝐶
2  

     (𝑥𝐴 − 𝑥𝐸)2 + (𝑦𝐴 − 𝑦𝐸)2 = 𝑟𝐴𝐸
2    

(𝑥𝐶 − 𝑥𝐸)2 + (𝑦𝐶 − 𝑦𝐸)2 = 𝑟𝐶𝐸
2  

𝑦𝐵 − 𝑓(𝑥𝐵) = 0 

𝑦𝐷 − 𝑓(𝑥𝐷) = 0 

𝑚2(𝑦𝐴 − 𝑦𝐵) + (𝑥𝐴 − 𝑥𝐵) = 0 

     𝑚4(𝑦𝐶 − 𝑦𝐷) + (𝑥𝐶 − 𝑥𝐷) = 0  

 

 

Equation Set 2 

Independent equation set developed based on geometry as a means of validating the 

results and troubleshooting if need be. Note: 𝑐𝑥 and 𝑐𝑦 were considered known points. 𝛾 

represents the slope angle and 𝛼 is the angle of the walking beam between the link 

lengths 𝑟𝐴𝐸 and 𝑟𝐶𝐸. 

 

𝑎𝑥 = 𝑐𝑥 + 𝑟𝐴𝐶 cos 𝛾 

𝑎𝑦 = 𝑐𝑦 + 𝑟𝐴𝐶 sin 𝛾 



204 

 

𝑑𝑥 = 𝑐𝑥 + 𝑟𝐶𝐷 sin 𝛾  

𝑑𝑦 = 𝑐𝑦 −
𝑟𝐶𝐷

cos 𝛾
  

𝑏𝑥 = 𝑑𝑥 + 𝑟𝐴𝐶 cos 𝛾 

𝑏𝑦 = 𝑑𝑦 + 𝑟𝐴𝐶 sin 𝛾 

𝑒𝑥 = 𝑐𝑥 + 𝑟𝐶𝐸 sin (
𝛼

2
− 𝛾) 

𝑒𝑦 = 𝑐𝑦 + 𝑟𝐶𝐸 cos (
𝛼

2
− 𝛾) 

 

  



205 

 

B.2 MATLAB Script: Planar Position Kinematics for J5 Rover 

(J5_KinematicModel_1.m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Positional Kinematics for J5 Rover 

%% 

%% Based on Rocky 7 paper on velocity kinematics control. Specifcally,  

%% using equations and coordinate assignment derived. Purpose of 

recreating 

%% their model is to serve as a baseline for kinematic model for J5 

%% 

%% Written by: E. Austen 

%% Created on: April 20, 2018 

%% Last Modified: 

%%      May 3, 2018 - changed eqtn set alternative solution 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

clear all; 

clc; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Assumptions 

%%  

%% 1. All rover components (links, wheels, etc) are assumed to be rigid 

%%    bodies. Thus making distances between joints (etc) constant and  

%%    relative velocities btwn them zero. 

%% 2. Rover travels at constant nominal speed 

%% 3.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Terrain Function & Parameters 

tmax=10; % Max run-time [s] 

del_t=1; % Time step [s] 

t=0; 

% t=0:del_t:tmax; 

x_terr=-0.2:1.6; 

% y_ter=0.01875*sin(x);  % Overall terrain function 

y_terr=0.12*sin(x_terr); 

%y_terr=0.5*x_terr;       % Flat land test function 

v_r=0.1;    % Rover nominal speed [m/s] 

  

  



206 

 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Intitial parameters (initial guess) 

% Incl. suspension 

% x0 = zeros(13,1); 

% x0(1) = 0.909;      x0(8) = 0.254;      % Initial coordinates of 

joints & contact points 

% x0(2) = 0.909;      x0(9) = 0;          % these will be used as 

"guess" for Newton Rhapson 

% x0(3) = 0.4545;     x0(10) = 0.352; 

% x0(4) = 0.358;      x0(11) = 0.8065;     % Note that the back wheel 

is used as x=0 

% x0(5) = -0.246;     x0(12) = 0.747;  

% x0(6) = 0;          x0(13) = 0; 

% x0(7) = 0.254;         

  

%Without Suspension 

x0=zeros(9,1); 

x0(1) = 0.909;      x0(6) = 0.254;      % Initial coordinates of joints 

& contact points 

x0(2) = 0.909;      x0(7) = 0;          % these will be used as "guess" 

for Newton Rhapson 

x0(3) = 0.4545;     x0(8) = 0.352; 

x0(4) = 0;          x0(9) = 0;     % Note that the back wheel is used 

as x=0 

x0(5) = 0.254;       

  

  

% Set cx as independent variable to make 13 unknowns for 13 eqtns. 

x_5i=0;     % Initial position of x_7i (x-coordinate of back wheel) 

  

% t2=v_r/x0(2); 

% f2=y_ter(t2);   % Elevation of terrain at each contact point 

% f4=y_ter(v_r/x0(4)); 

% f6=y_ter(v_r/x0(6)); 

  

% m2=diff(y_ter(v_r/x0(2)));   % Slope value of tangent at wheel-gnd 

contact pt 

% m4=diff(y_ter(v_r/x0(4))); 

% m6=diff(y_ter(v_r/x0(6))); 

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Outer time loop to move over terrain 

  

while t<= tmax 

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Perform Newton-Raphson (or nonlinear eqtn sovler) 

  

% [xnr, iter_nr]=feval(NR_nlm,x0,y_terr,x_8i,'geom6W','Jacob15'); 



207 

 

[xnr, iter_nr]=NR_nlm_J5(x0,x_5i,'geomJ5_nosusp','Jacob9'); 

  

% Fsolve built in function 

% xnr=fsolve(geom6W,x0) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% 

% Reassign x variables for ease of plotting 

Ax(t+1) = xnr(1); 

Bx(t+1) = xnr(2); 

Ex(t+1) = xnr(3); 

Dx(t+1) = xnr(4); 

Cx(t+1) = x_5i; 

% Reassign x variables (9-16) back to y variables for ease of plotting 

Ay(t+1) = xnr(6); 

By(t+1) = xnr(7); 

Ey(t+1) = xnr(8); 

Fy(t+1) = xnr(9); 

Cy(t+1) = xnr(5); 

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Plot rover suspension system & animate to follow inputs 

%%  

  

% plot(x1,y1,x2,y2,x7,y7,x8,y8) 

% legend('a','b','g','h') 

  

figure 

%Q=figure; 

hold on 

  

%title('J5 Rover Traversing Terrain') 

xlabel('Horizontal Component, X [m]') 

ylabel('Vertical Component, Y [m]') 

  

%plot(y_terr) 

% y_sine=@(x) 0.12*sin(pi*x); 

% fplot(y_sine, [-0.25 4]) 

y_terr2= @(x) 0.5*x; 

fplot(y_terr2, [-0.3 1.5]); 

plot([xnr(1) xnr(3)], [xnr(6) xnr(8)]) 

% plot([xnr(3) xnr(4)], [xnr(10) xnr(11)]) 

% plot([xnr(4) xnr(5)], [xnr(11) xnr(12)]) 

plot([xnr(3) x_5i], [xnr(8) xnr(5)]) 

  

% legend('Terrain', 'Link AE', 'Link EF', 'Link FG', 'Link 

CE','Location', 'east') 

legend('Terrain', 'Link AE', 'Link CE', 'Location', 'southeast') 

  

th = 0:pi/50:2*pi; 

r = 0.254; 



208 

 

x_c1 = r * cos(th) + xnr(1); 

y_c1 = r * sin(th) + xnr(6); 

x_c2 = r * cos(th) + x_5i; 

y_c2 = r * sin(th) + xnr(5); 

  

plot(x_c1, y_c1, x_c2, y_c2) 

axis equal 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

%saveas(Q,sprintf('FIG%d.jpg',t)); 

saveas(gcf,'FIG%d.jpg') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

% Update time step 

t=t + del_t; 

  

% Update initial guess 

x0=xnr; 

  

% Update independent & thereby move further along the terrain 

x_5i = x_5i + (v_r*del_t); 

  

end 

  

figure 

hold on 

%title('Elevation of pivot points with respect to terrain traversed') 

xlabel('Horizontal Component, X [m]') 

ylabel('Vertical Component, Y [m]') 

  

plot(Ax,Ay) 

plot(Bx,By) 

plot(Ex,Ey) 

plot(Cx,Cy) 

  

legend('A', 'B', 'E', 'C','Location', 'southeast') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  



209 

 

B.3 MATLAB Function File: Planar Kinematic Equation Set for J5 Rover 

(geomJ5_nosusp.m) 

function [F] = geomJ5_nosusp( x , x_5i ) 

%geomJ5 Eqtn set for based on the geometry of the rover configuration 

and 

%the coordinates of each node. 

 

%% Rover fixed parameters 

r_ac = 0.9093;       % Distance between wheels a & c [m] 

r_ae = 0.4653;       % Link length from wheel e to chassis pivot joint 

[m] 

r_ce = 0.4653;       % Link length from wheel e to chassis pivot joint 

[m] 

  

  

r_ab = 0.254;     % Radius of wheel a. Also distance between wheel 

centre and 

                  % ground contact point. Units: [m]  

r_cd = 0.254;     % Radius of wheel c. Units: [m] 

  

  

%% Functions based on terrain 

% f2=y_terr(x(2)); 

% f4=y_terr(x(4)); 

  

% f2=0; % Flat land case 

% f4=0; 

% f2=0.5*x(2); % Incline 

% f4=0.5*x(4); 

f2=0.12*sin(pi*x(2)); 

f4=0.12*sin(pi*x(4)); 

  

%% Slope values 

% m2=diff(f2); 

% m4=diff(f4); 

  

% m2=0; % Flat land case 

% m4=0; 

% m2=0.5; % Slope case 

% m4=0.5; 

m2=0.12*pi*cos(pi*x(2)); 

m4=0.12*pi*cos(pi*x(4)); 

  

%% Equation set to be solved 

F(1) = ((x(1)-x(2))^2) + ((x(6)-x(7))^2) - r_ab^2;    % Eqtns for 

wheel-gnd 

F(2) = ((x_5i-x(4))^2) + ((x(5)-x(9))^2) - r_cd^2;    % contact pt 

  

F(3) = ((x(1)-x_5i)^2) + ((x(6)-x(5))^2) - r_ac^2;    % Eqtns for links 

F(4) = ((x(1)-x(3))^2) + ((x(6)-x(8))^2) - r_ae^2; 

F(5) = ((x_5i-x(3))^2) + ((x(5)-x(8))^2) - r_ce^2; 

  



210 

 

F(6) = x(7) - f2;    % Wheel-terrain 

F(7) = x(9) - f4; 

  

F(8) = m2.*(x(6)-x(7)) + (x(1)-x(2)); 

F(9) = m4.*(x(5)-x(9)) + (x_5i-x(4)); 

  

F=F.'; 

end 

 

 



211 

 

B.4 MATLAB Function File: Nonlinear multi-variate Newton-Raphson solver 

(NR_nlm_J5.m) 

function [x, iter] = NR_nlm_J5(x0,x_5i,F,J) 

%NR_nlm Newton-Raphson method for nonlinear multivariate system of 

eqtns. 

%   Detailed explanation goes here 

  

N = 100;  % Number of iterations 

Eps = 1e-10;    % Tolerance 

Div = 1000;     % Divergence value 

xx = x0;        % Load array of inital guess 

  

% f2=0;   % Values for static flat terrain for debugging purposes 

% f4=0; 

% f6=0; 

  

while N>0 

    Jc = feval('Jacob9',xx, x_5i); 

     

    if abs(det(Jc))<Eps 

        error('Jacobian is singular. Change x0'); 

        abort; 

    end 

     

    Xn = xx - inv(Jc)*feval('geomJ5_nosusp',xx,x_5i); 

     

    if abs(feval('geomJ5_nosusp',Xn,x_5i))<Eps 

        x = Xn; 

        iter  = 100 - N; 

        return; 

    end 

     

    if abs(feval('geomJ5_nosusp',xx,x_5i))>Div 

        iter = 100 - N; 

        disp(['Iterations = ', num2str(iter)]); 

        error('Solution fails to converge'); 

        abort; 

    end 

     

    N = N - 1; 

    xx = Xn; 

end 

error('No convergence after 100 iterations'); 

abort; 

  

end 

 



212 

 

B.5 MATLAB Script: Jacobian function file for use in nonlinear, multivariate, 

Newton-Raphson function (Jacob9.m) 

function [J] = Jacob9(x, x_5i) 

%Jacob9 Evaluates the Jacobian of a 9x9 matrix for a nonlinear system 

of 

%9 equations 

%   Detailed explanation goes here 

  

  

%% NOTE: x_5i is the x-coordinate of point 5(C), however to make the 

square 

%% Jacobian, it is defined as an independent variable (as per paper). 

Thus, 

%% x10 becomes x(5). 

  

% Extracting f2, f6 from terrain function 

% f2=y_terr(x(2)); 

% f6=y_terr(x(4)); 

  

% f2=0; 

% f4=0; 

  

% Slope values for test 

% m2=0.5;   % Flat land case. 0.5 for slope 

% m4=0.5; 

m2=0.12*pi*cos(pi*x(2)); 

m4=0.12*pi*cos(pi*x(4)); 

%x_8i=0; 

  

J = zeros(9,9);   % Initialise matrix of zeroes 

  

J(1,1) = 2*(x(1)-x(2));     J(1,2) = 2*(x(2)-x(1));  

J(1,6) = 2*(x(6)-x(7));     J(1,7) = 2*(x(7)-x(6)); 

  

J(2,4) = 2*(x(4)-x_5i);     J(2,5) = 2*(x(5)-x(9));  

J(2,9) = 2*(x(9)-x(5));      

  

J(3,1) = 2*(x(1)-x_5i);     %J(3,5) = 2*(x(5)-x(3)); 

J(3,5) = 2*(x(5)-x(6));    J(3,6) = 2*(x(6)-x(5)); 

  

J(4,1) = 2*(x(1)-x(3));     J(4,3) = 2*(x(3)-x(1));  

J(4,6) = 2*(x(6)-x(8));    J(4,8) = 2*(x(8)-x(6)); 

  

J(5,3) = 2*(x(3)-x_5i);     %J(5,8) = 2*(x_8i-x(5));  

J(5,5) = 2*(x(5)-x(8));    J(5,8) = 2*(x(8)-x(5)); 

  

J(6,2) = 0.5;      

J(6,7) = 1;  

% J(6,2)=-0.12*pi*cos(pi*x(2)); 

  

J(7,4) = 0.5;      

J(7,9) = 1; 



213 

 

% J(7,4)=-0.12*pi*cos(pi*x(4)); 

  

J(8,1) = 1;     J(8,2) = -1;  

J(8,6) = m2;    J(8,7) = -m2; 

  

J(9,4) = -1;        %J(13,4) = -1;  

J(9,5) = m4;      J(9,9) = -m4; 

  

  

end 

 

 

  



214 

 

B.6 Further Results for J5 Rover 

 

I. Flat Terrain Case 

 
Figure B.2: Planar inclined pose for flat terrain, t=4s. 

 
 
 

 
Figure B.3: Pivot point traces for flat terrain. 



215 

 

 

II. Inclined Terrain Cases 

Terrain Function: 𝑦 = 0.1𝑥 

 

Figure B.4: Planar inclined pose for a slope of 5.71o, t=4s. 

 

 

Figure B.5: Pivot point traces for inclined terrain with slope of 5.71o.  



216 

 

Terrain Function: 𝑦 = 0.5𝑥 

 

Figure B.6: Planar inclined pose for a slope of 26.57o, t=4s. 

 

 

 

Figure B.7: Pivot point traces for inclined terrain with slope of 26.57o.  



217 

 

III. Sinusoidal Terrain Cases 

Terrain Function: 𝑦 = 0.03 sin (
𝜋

2
𝑥) 

 

 

Figure B.8: Planar pose for a sine terrain of 𝒚 = 𝟎. 𝟎𝟑 𝐬𝐢𝐧 (
𝝅

𝟐
𝒙), t=17s. 

 

 

 

Figure B.9: Pivot point traces for a sine terrain of 𝒚 = 𝟎. 𝟎𝟑 𝐬𝐢𝐧 (
𝝅

𝟐
𝒙).  



218 

 

Terrain Function: 𝑦 = 0.12 sin(𝜋𝑥) 

 

 

Figure B.10: Planar pose for a sine terrain of 𝒚 = 𝟎. 𝟏𝟐 𝐬𝐢𝐧(𝝅𝒙), t=12s. 

 

 

 

Figure B.11: Pivot point traces for a sine terrain of 𝒚 = 𝟎. 𝟏𝟐 𝐬𝐢𝐧(𝝅𝒙). 

 



219 

 

B.7 Rover Data & Analysis Setup (from original paper) 

Rover: Rocky 7 (6-wheel) 

 

Figure B1: Right-side profile with labelled pivot points. 

 

Associated Dimensions: 

rAB = rCD = rEF = 0.065 m   rAC = 0.240 m 

rAG = rCG = 0.170 m    rEH = 0.339 m 

rHG = 0.170 m     rEG = 0.379 m 

 

  



220 

 

Equation Set 1 

Developed from the geometry seen in Figure B.1 and the associated dimensions. 

Implemented in MATLAB function file: geom6W.m 

 

(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 = 𝑟𝐴𝐵
2  

(𝑥𝐶 − 𝑥𝐷)2 + (𝑦𝐶 − 𝑦𝐷)2 = 𝑟𝐶𝐷
2  

(𝑥𝐸 − 𝑥𝐹)2 + (𝑦𝐸 − 𝑦𝐹)2 = 𝑟𝐸𝐹
2  

(𝑥𝐴 − 𝑥𝐶)2 + (𝑦𝐴 − 𝑦𝐶)2 = 𝑟𝐴𝐶
2  

     (𝑥𝐴 − 𝑥𝐺)2 + (𝑦𝐴 − 𝑦𝐺)2 = 𝑟𝐴𝐺
2    

(𝑥𝐶 − 𝑥𝐺)2 + (𝑦𝐶 − 𝑦𝐺)2 = 𝑟𝐶𝐺
2  

(𝑥𝐻 − 𝑥𝐺)2 + (𝑦𝐻 − 𝑦𝐺)2 = 𝑟𝐻𝐺
2  

(𝑥𝐸 − 𝑥𝐺)2 + (𝑦𝐸 − 𝑦𝐺)2 = 𝑟𝐸𝐺
2  

(𝑥𝐸 − 𝑥𝐻)2 + (𝑦𝐸 − 𝑦𝐻)2 = 𝑟𝐸𝐻
2  

𝑦𝐵 − 𝑓(𝑥𝐵) = 0 

𝑦𝐷 − 𝑓(𝑥𝐷) = 0 

𝑦𝐹 − 𝑓(𝑥𝐹) = 0 

𝑚2(𝑦𝐴 − 𝑦𝐵) + (𝑥𝐴 − 𝑥𝐵) = 0 

     𝑚4(𝑦𝐶 − 𝑦𝐷) + (𝑥𝐶 − 𝑥𝐷) = 0  

𝑚6(𝑦𝐸 − 𝑦𝐹) + (𝑥𝐸 − 𝑥𝐹) = 0 

 

  



221 

 

Equation Set 2 

Independent equation set developed based on geometry as a means of validating the 

results and troubleshooting if need be. Note: 𝑒𝑥  was considered to be a known point. 𝛾 

represents the slope angle and 𝐿 is the length or distance of wheel E from the start of a 

slope. 

𝑎𝑥 = 𝑟𝐸𝐶 cos 𝜃 + (𝐿 − 𝑥) sin 2𝛾 + 𝑟𝐴𝐶 cos 𝛾 

𝑎𝑦 = 𝑟𝐸𝐶 sin 𝜃 + (𝐿 − 𝑥) sin 2𝛾 +
𝑟𝐴𝐵

cos 𝛾
+ 𝑟𝐴𝐶 sin 𝛾 

𝑏𝑥 = 𝑟𝐸𝐶 cos 𝜃 + (𝐿 − 𝑥) sin 2𝛾 + 𝑟𝐴𝐵 sin 𝛾 + 𝑟𝐴𝐶 cos 𝛾 

𝑏𝑦 = 𝑟𝐸𝐶 sin 𝜃 + (𝐿 − 𝑥) sin 2𝛾 +𝑟𝐴𝐶 sin 𝛾 

𝑐𝑥 = 𝑟𝐸𝐶 cos 𝜃 + (𝐿 − 𝑥) sin 2𝛾 

𝑐𝑦 = 𝑟𝐸𝐶 sin 𝜃 + (𝐿 − 𝑥) sin 2𝛾 +
𝑟𝐴𝐵

cos 𝛾
 

𝑑𝑥 = 𝑟𝐸𝐶 cos 𝜃 + (𝐿 − 𝑥) sin 2𝛾 + 𝑟𝐴𝐵 sin 𝛾 

𝑑𝑦 = 𝑟𝐸𝐶 sin 𝜃 + (𝐿 − 𝑥) sin 2𝛾 + 𝑟𝐴𝐵 tan 𝛾 sin 𝛾 

𝑒𝑦 =
𝑟𝐴𝐵

cos 𝛾
 

𝑓𝑥 = 𝑟𝐴𝐵 sin 𝜃 

𝑓𝑦 = 𝑟𝐴𝐵 tan 𝜃 sin 𝜃 

𝑔𝑥 = 𝑟𝐸𝐶 cos 𝜃 + (𝐿 − 𝑥) sin 2𝛾 + 𝑟𝐶𝐺 sin(45 − 𝛾) 

𝑔𝑦 = 𝑟𝐸𝐶 sin 𝜃 + (𝐿 − 𝑥) sin 2𝛾 +
𝑟𝐴𝐵

cos 𝛾
+ 𝑟𝐶𝐺 cos(45 − 𝛾) 

݄𝑥 = 𝑟𝐸𝐶 cos 𝜃 + (𝐿 − 𝑥) sin 2𝛾 + 𝑟𝐶𝐺 sin(45 − 𝛾) − 𝑟𝐻𝐺 cos 𝛾 

݄𝑦 = 𝑟𝐸𝐶 sin 𝜃 + (𝐿 − 𝑥) sin 2𝛾 +
𝑟𝐴𝐵

cos 𝛾
+ 𝑟𝐶𝐺 cos(45 − 𝛾) + 𝑟𝐻𝐺 cos 𝛾 



222 

 

B.8 MATLAB Script: Planar Kinematic Equation Set for Rocky 7 Rover 

(geom6W.m) 

function  F = geom6W( x , x_8i) 

%geom6W Eqtn set for based on the geometry of the rover configuration 

and 

%the coordinates of each node. 

%   Detailed explanation goes here 

  

%% Rover fixed parameters 

r_ac = 0.24;       % Distance between wheels a & c [m] 

r_ag = 0.12*sqrt(2);       % Length of bogie link [m] 

r_cg = 0.12*sqrt(2); 

r_eh = 0.24*sqrt(2);       % Link length from wheel e to chassis pivot 

joint 

r_hg = r_eh-r_ag;       % Link length from h to g (rocker) 

r_eg = sqrt((r_eh^2)+(r_hg^2));   % Distance between wheel e and bogie 

pivot joint 

  

r_ab = 0.065;     % Radius of wheel a. Also distance between wheel 

centre and 

                  % ground contact point. Units: [m] 

r_cd = 0.065;     % Radius of wheel c. Units: [m] 

r_ef = 0.065;     % Radius of wheel e. Units: [m] 

  

%% Functions based on terrain 

% f2=y_terr(x(2)); 

% f4=y_terr(x(4)); 

% f7=y_terr(x(7)); 

f2=0.1*sin(1.9*pi*x(2)); 

f4=0.1*sin(1.9*pi*x(4)); 

f7=0.1*sin(1.9*pi*x(7)); 

% f2=0; 

% f4=0; 

% f7=0; 

  

%% Slope values 

  

% m2=0; % Flat land case 

% m4=0; 

% m7=0; 

m2=0.19*pi*cos(1.9*pi*x(2)); 

m4=0.19*pi*cos(1.9*pi*x(4)); 

m7=0.19*pi*cos(1.9*pi*x(7)); 

%x_8i = 0; 

  

%% Equation set to be solved 

F(1) = ((x(1)-x(3))^2) + ((x(9)-x(11))^2) - r_ac^2;    % Eqtns for 

links 

F(2) = ((x(1)-x(5))^2) + ((x(9)-x(13))^2) - r_ag^2; 

F(3) = ((x(3)-x(5))^2) + ((x(11)-x(13))^2) - r_cg^2; 

F(4) = ((x(6)-x(5))^2) + ((x(14)-x(13))^2) - r_hg^2; 

F(5) = ((x_8i-x(5))^2) + ((x(8)-x(13))^2) - r_eg^2; 



223 

 

F(6) = ((x_8i-x(6))^2) + ((x(8)-x(14))^2) - r_eh^2; 

  

F(7) = ((x(1)-x(2))^2) + ((x(9)-x(10))^2) - r_ab^2;    % Eqtns for 

wheel-gnd 

F(8) = ((x(3)-x(4))^2) + ((x(11)-x(12))^2) - r_cd^2;    % contact pt 

F(9) = ((x_8i-x(7))^2) + ((x(8)-x(15))^2) - r_ef^2; 

  

F(10) = x(10) - f2;    % Wheel-terrain 

F(11) = x(12) - f4; 

F(12) = x(15) - f7; 

  

F(13) = m2.*(x(9)-x(10)) + (x(1)-x(2)); 

F(14) = m4.*(x(11)-x(12)) + (x(3)-x(4)); 

F(15) = m7.*(x(8)-x(15)) + (x_8i-x(7)); 

  

F=F.'; 

end 

% End of function 

 

 



224 

 

B.9 MATLAB Script: Jacobian function file for use in nonlinear, multivariate, 

Newton-Raphson function for the Rocky 7 rover (Jacob15.m) 

function [J] = Jacob15(x, x_8i) 

%Jacob15 Evaluates the Jacobian of a 15x15 matrix for a nonlinear 

system of 

%15 equations 

%   Rocky 7 Rover (6 wheels)  

  

%% NOTE: x_8i is the x-coordinate of point 8(E), however to make the 

square 

%% Jacobian, it is defined as an independent variable (as per paper). 

Thus, 

%% x16 becomes x(8). 

  

% Extracting f2, f4, f7 from terrain function 

% f2=y_terr(x(2)); 

% f4=y_terr(x(4)); 

% f7=y_terr(x(7)); 

% f2=0; 

% f4=0; 

% f7=0; 

  

% Slope values for test 

% m2=0;     % Flat land case 

% m4=0; 

% m7=0; 

m2=0.19*pi*cos(1.9*pi*x(2)); 

m4=0.19*pi*cos(1.9*pi*x(4)); 

m7=0.19*pi*cos(1.9*pi*x(7)); 

%x_8i=0; 

  

J = zeros(15,15);   % Initialise matrix of zeroes 

  

J(1,1) = 2*(x(1)-x(3));     J(1,3) = 2*(x(3)-x(1));  

J(1,9) = 2*(x(9)-x(11));     J(1,11) = 2*(x(11)-x(9)); 

  

J(2,1) = 2*(x(1)-x(5));     J(2,5) = 2*(x(5)-x(1));  

J(2,9) = 2*(x(9)-x(13));     J(2,13) = 2*(x(13)-x(9)); 

  

J(3,3) = 2*(x(3)-x(5));     J(3,5) = 2*(x(5)-x(3)); 

J(3,11) = 2*(x(11)-x(13));    J(3,13) = 2*(x(13)-x(11)); 

  

J(4,5) = 2*(x(5)-x(6));     J(4,6) = 2*(x(6)-x(5));  

J(4,13) = 2*(x(13)-x(14));    J(4,14) = 2*(x(14)-x(13)); 

  

J(5,5) = 2*(x(5)-x_8i);     %J(5,8) = 2*(x_8i-x(5));  

J(5,13) = 2*(x(13)-x(8));    J(5,8) = 2*(x(8)-x(13)); 

  

J(6,6) = 2*(x(6)-x_8i);     %J(6,8) = 2*(x_8i-x(6));  

J(6,14) = 2*(x(14)-x(8));    J(6,8) = 2*(x(8)-x(14)); 

  

J(7,1) = 2*(x(1)-x(2));     J(7,2) = 2*(x(2)-x(1));  



225 

 

J(7,9) = 2*(x(9)-x(10));     J(7,10) = 2*(x(10)-x(9)); 

  

J(8,3) = 2*(x(3)-x(4));     J(8,4) = 2*(x(4)-x(3));  

J(8,11) = 2*(x(11)-x(12));    J(8,12) = 2*(x(12)-x(11)); 

  

J(9,7) = 2*(x(7)-x_8i);     %J(9,8) = 2*(x_8i-x(7));  

J(9,15) = 2*(x(15)-x(8));    J(9,8) = 2*(x(8)-x(15)); 

  

% J(10,2) = 0;      

J(10,10) = 1;  

J(10,2)=0.19*pi*cos(1.9*pi*x(2)); 

  

% J(11,4) = 0;      

J(11,12) = 1; 

J(11,4)=0.19*pi*cos(1.9*pi*x(4)); 

  

% J(12,7) = 0;      

J(12,15) = 1;  

J(12,7)=0.19*pi*cos(1.9*pi*x(7)); 

  

J(13,1) = 1;     J(13,2) = -1;  

J(13,9) = m2;    J(13,10) = -m2; 

  

J(14,3) = 1;        J(14,4) = -1;  

J(14,11) = m4;      J(14,12) = -m4; 

  

J(15,7) = -1;        %J(15,8) = 1;  

J(15,15) = -m7;      J(15,8) = m7; 

  

  

end 

% End of function 

 

 

  



226 

 

B.10 Further Results for Rocky 7 Rover 

Results were generated for the Rocky 7 Rover to confirm correct application and coding 

of the process used in the original paper by Parakh et al [50]. 

I. Flat Case 

 
 

Figure B.12: Planar inclined pose for flat terrain, t=6s. 

 

 
 

Figure B.13: Pivot point traces for flat terrain.  



227 

 

 

II. Upslope Case 

Terrain Function: 𝑦 = 0.5𝑥 

 

Figure B.16: Planar inclined pose for a slope of 26.57o, t=8s. 

 

 

Figure B.17: Pivot point traces for inclined terrain with slope of 26.57o.  



228 

 

 

III. Sinusoidal Terrain 

Terrain Function: 𝑦 = 0.1 sin(2𝜋𝑥) 

 

Figure B.18: Planar pose for a sine terrain of 𝒚 = 𝟎. 𝟏 𝐬𝐢𝐧(𝟐𝝅𝒙), t=4.5s. 

 

 

Figure B.19: Pivot point traces for a sine terrain of 𝒚 = 𝟎. 𝟏 𝐬𝐢𝐧(𝟐𝝅𝒙).  



229 

 

 

IV. Sinusoidal Terrain 

Terrain Function: 𝑦 = 0.12 sin(𝜋𝑥) 

 

Figure B.20: Planar pose for a sine terrain of 𝒚 = 𝟎. 𝟏𝟐 𝐬𝐢𝐧(𝝅𝒙), t=11s. 

 

 

Figure B.21: Pivot point traces for a sine terrain of 𝒚 = 𝟎. 𝟏𝟐 𝐬𝐢𝐧(𝝅𝒙). 

  



230 

 

Appendix C  - 3D Kinematic Analysis Data 

 

Appendix C contains material pertinent to the development of the 3D position and 

velocity kinematic models, including additional results. 

 

C.1 D-H Tables 

The following are the full set of D-H parameters describing all four kinematic chains of 

the rover. 

 

 

Table C.1: D-H Parameters for the Kinematic Chain – World Origin Frame to Right Rear Wheel. 

n θ [deg] α [deg] a [m] d [m] 
0 + 90 + 90 0 0 
1 - 90 - 90 0 X

trans
 

2 - 90 + 90 0 Y
trans

 

3 0 0 0 Z
trans

 + h
CoG

 

4 φ
yaw

 - 90 0 0 
5 Φ

pitch
 + 90 + 90 0 0 

6 φ
roll

 + 90 0 0 
8 θ

wbr
 – β 0 a

wb
 d

cmwb
 

 



231 

 

 

 

Table C.2: D-H Parameters for the Kinematic Chain – World Origin Frame to Right Front Wheel. 

n θ [deg] α [deg] a [m] d [m] 
0 + 90 + 90 0 0 
1 - 90 - 90 0 X

trans
 

2 - 90 + 90 0 Y
trans

 

3 0 0 0 Z
trans

 + h
CoG

 

4 φ
yaw

 - 90 0 0 
5 Φ

pitch
 + 90 + 90 0 0 

6 φ
roll

 + 90 0 0 
10 θ

wbr
 + β 0 a

wb
 d

cmwb
 

 

 

 

Table C.3: D-H Parameters for the Kinematic Chain – World Origin Frame to Left Rear Wheel. 

n θ [deg] α [deg] a [m] d [m] 
0 + 90 + 90 0 0 
1 - 90 - 90 0 X

trans
 

2 - 90 + 90 0 Y
trans

 

3 0 0 0 Z
trans

 + h
CoG

 

4 φ
yaw

 - 90 0 0 
5 Φ

pitch
 + 90 + 90 0 0 

7 φ
roll

 - 90 0 0 
9 θ

wbl
 + β 0 a

wb
 d

cmwb
 

 

 

  



232 

 

 

 

Table C.4: D-H Parameters for the Kinematic Chain – World Origin Frame to Left Front Wheel. 

n θ [deg] α [deg] a [m] d [m] 
0 + 90 + 90 0 0 
1 - 90 - 90 0 X

trans
 

2 - 90 + 90 0 Y
trans

 

3 0 0 0 Z
trans

 + h
CoG

 

4 φ
yaw

 - 90 0 0 
5 Φ

pitch
 + 90 + 90 0 0 

7 φ
roll

 - 90 0 0 
11 θ

wbl
 – β 0 a

wb
 d

cmwb
 

 

 

  



233 

 

C.2 MATLAB Script File:  3D Position Kinematic Model 

(J5_3DPositionKinematics.m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% 3D Position Kinematics 

%% 

%% Written by: E. Austen 

%% 

%% This script solves the inverse position kinematics in 3D for the J5 

%% rover, for a given set of wheel-ground contact positions. These 

contact 

%% positions can be either obtained from a DEM of the terrain or 

extraction 

%% from a specified terrain function. The kinematic equations used were  

%% derived using the original Denavit-Hartenberg convention. 

%% 

%% Created on: May 24, 2019 

%% Last Modified: 

%% July 15, 2019 - added chassis angle orientation plot 

%% June 2, 2019 - fixed orientation eqtns 

%% May 29, 2019 - eqtn set 

%% May 28, 2019 - terrain variables & loop conditions 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

clear all; 

clc; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Initialisation of parameters & importing the terrain path 

coordinates 

  

% Establish global variables 

global X_lr Y_lr Z_lr i_lr X_rr Y_rr Z_rr i_rr X_lf Y_lf Z_lf i_lf X_rf 

Y_rf Z_rf i_rf 

global phiX_lr phiY_lr phiZ_lr phiX_rr phiY_rr phiZ_rr phiX_lf phiY_lf 

phiZ_lf phiX_rf phiY_rf phiZ_rf 

global delta_rr delta_lr delta_rf delta_lf 

  

% Rover speed 

w=1/3;  % Commanded angular velocity of wheels [rad/s] 

w_r=w;  % Skid steering, thus assume right wheels have same w, and 

likewise 

        % for left wheels 

w_l=w; 

  

% Import terrain path map 

% pathdata=readtable('FlatTerrain_NoSlip_Test2.xlsx'); 

% pathdata=readtable('UpslopeTerrain_10deg_NoSlip.xlsx'); 

% pathdata=readtable('UpslopeTerrain_15deg_NoSlip.xlsx'); 



234 

 

% pathdata=readtable('DownslopeTerrain_10deg_NoSlip.xlsx'); 

% pathdata=readtable('SideslopeTerrain_10deg_NoSlip.xlsx'); 

pathdata=readtable('SineTerrain_NoSlip.xlsx'); 

  

  

x_lr=pathdata{1:30,{'x_lr'}};   % Terrain path data for left rear wheel 

y_lr=pathdata{1:30,{'y_lr'}}; 

z_lr=pathdata{1:30,{'z_lr'}}; 

I_lr=pathdata{1:30,{'i_lr'}}; 

  

x_rr=pathdata{1:30,{'x_rr'}};   % Terrain path data for right rear 

wheel 

y_rr=pathdata{1:30,{'y_rr'}}; 

z_rr=pathdata{1:30,{'z_rr'}}; 

I_rr=pathdata{1:30,{'i_rr'}}; 

  

x_lf=pathdata{1:30,{'x_lf'}};   % Terrain path data for left front 

wheel 

y_lf=pathdata{1:30,{'y_lf'}}; 

z_lf=pathdata{1:30,{'z_lf'}}; 

I_lf=pathdata{1:30,{'i_lf'}}; 

  

x_rf=pathdata{1:30,{'x_rf'}};   % Terrain path data for right front 

wheel 

y_rf=pathdata{1:30,{'y_rf'}}; 

z_rf=pathdata{1:30,{'z_rf'}}; 

I_rf=pathdata{1:30,{'i_rf'}}; 

  

% Initial guess for solver 

q0 = zeros(8,1);  

% q0=[0; 0; 0; 0; 0.1746; 0; -0.1746; 0.1746]; 

  

% Set loop conditions 

%x_lrmax=x_lr(10); 

u=1; 

u_max=25; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Start of while loop to solve eqtn set for each position 

while u<= u_max 

     

         

    %Pose of RR wheel-gnd contact pt 

      X_rr=x_rr(u); 

      Y_rr=y_rr(u);       

      Z_rr=z_rr(u); 

      i_rr=I_rr(u); 

  

       

    %Pose of LR wheel-gnd contact pt 

      X_lr=x_lr(u); 

      Y_lr=y_lr(u);       

      Z_lr=z_lr(u); 



235 

 

      i_lr=I_lr(u); 

  

    %Pose of RF wheel-gnd contact pt 

      X_rf=x_rf(u); 

      Y_rf=y_rf(u);       

      Z_rf=z_rf(u); 

      i_rf=I_rf(u); 

  

    %Pose of LF wheel-gnd contact pt 

      X_lf=x_lf(u); 

      Y_lf=y_lf(u);       

      Z_lf=z_lf(u); 

      i_lf=I_lf(u); 

  

       

    % Orientation of contact points 

    if u==1 

%         phiX_rf=(pi/2)+asin((Z_lf-Z_rf)/1.1786);    % Roll case 

        phiX_rf=(pi/2); 

%         phiX_rf=0; 

        phiX_lf=-phiX_rf; 

%         phiX_rr=(pi/2)+asin((Z_lr-Z_rr)/1.1786); 

        phiX_rr=(pi/2); 

%         phiX_rr=0; 

        phiX_lr=-phiX_rr; 

         

        phiY_rf=-asin((Z_rf-Z_rr)/0.9144);  % Pitch 

%         phiY_rf=(pi/2)-asin((Z_rf-Z_rr)/0.9144);    % Other 

coordinate defn 

        phiY_rr=phiY_rf; 

        phiY_lf=-asin((Z_lf-Z_lr)/0.9144); 

%         phiY_lf=(pi/2)-asin((Z_rf-Z_rr)/0.9144);    % Other 

coordinate defn 

        phiY_lr=phiY_lf; 

         

        phiZ_rf=-(pi/2);    % Yaw 

%         phiZ_rf=0;      % For other coordinate defn 

        phiZ_rr=phiZ_rf; 

        phiZ_lf=(pi/2); 

%         phiZ_lf=0;      % For other coordinate defn 

        phiZ_lr=phiZ_lf; 

         

%         delta_rf=asin((Z_rf-Z_rr)/0.9144);  % Pitch 

        delta_rf=0; 

        delta_rr=delta_rf; 

%         delta_lf=-asin((Z_lf-Z_lr)/0.9144); 

        delta_lf=0; 

        delta_lr=delta_lf; 

    else 

        if y_rf(u)-y_rf(u-1)==0         %Roll 

        phiX_rf=(pi/2);   % Non-side slope 

%         phiX_rf=0; 

%         phiX_rf=(pi/2)+asin((Z_lf-Z_rf)/1.1786);    % Side slope case 

        phiX_lf=-phiX_rf; 

        else 



236 

 

        phiX_rf=atan2((z_rf(u)-z_rf(u-1)),(y_rf(u)-y_rf(u-1)));  % Roll 

        phiX_lf=atan2((z_lf(u)-z_lf(u-1)),(y_lf(u)-y_lf(u-1))); 

        end 

         

        if y_rr(u)-y_rr(u-1)==0 

         phiX_rr=(pi/2);   % Non-slide slope 

%         phiX_rr=0; 

%         phiX_rr=(pi/2)+asin((Z_lr-Z_rr)/1.1786);    % Side slope 

        phiX_lr=-phiX_rr; 

        else 

        phiX_rr=atan2((z_rr(u)-z_rr(u-1)),(y_rf(u)-y_rr(u-1)));  

        phiX_lr=atan2((z_lr(u)-z_lr(u-1)),(y_lr(u)-y_lr(u-1))); 

        end 

         

        phiY_rf=-atan((z_rf(u)-z_rf(u-1))/(x_rf(u)-x_rf(u-1))); % Pitch 

        phiY_rr=-atan((z_rr(u)-z_rr(u-1))/(x_rr(u)-x_rr(u-1))); 

        phiY_lf=-atan((z_lf(u)-z_lf(u-1))/(x_lf(u)-x_lf(u-1))); 

        phiY_lr=-atan((z_lr(u)-z_lr(u-1))/(x_lr(u)-x_lr(u-1))); 

%         phiY_rf=(pi/2)-atan2((z_rf(u)-z_rf(u-1)),(x_rf(u)-x_rf(u-

1))); % Pitch for other coordinate defn 

%         phiY_rr=(pi/2)-atan2((z_rr(u)-z_rr(u-1)),(x_rr(u)-x_rr(u-

1))); 

%         phiY_lf=(pi/2)-atan2((z_lf(u)-z_lf(u-1)),(x_lf(u)-x_lf(u-

1))); 

%         phiY_lr=(pi/2)-atan2((z_lr(u)-z_lr(u-1)),(x_lr(u)-x_lr(u-

1))); 

         

        phiZ_rf=-(pi/2);    % Yaw 

%         phiZ_rf=0;      % Other coordinate defn 

        phiZ_rr=phiZ_rf; 

        phiZ_lf=(pi/2); 

%         phiZ_lf=0;      %Other coordinate defn 

        phiZ_lr=phiZ_lf; 

         

%         delta_rf=atan((z_rf(u)-z_rf(u-1))/(x_rf(u)-x_rf(u-1))); % 

Pitch 

%         delta_rr=atan((z_rr(u)-z_rr(u-1))/(x_rr(u)-x_rr(u-1))); 

%         delta_lf=-atan((z_lf(u)-z_lf(u-1))/(x_lf(u)-x_lf(u-1))); 

%         delta_lr=-atan((z_lr(u)-z_lr(u-1))/(x_lr(u)-x_lr(u-1))); 

        delta_rf=0; 

        delta_rr=delta_rf; 

        delta_lf=0; 

        delta_lr=delta_lf; 

    end 

  

     

    %% Nonlinear Eqtn Solver 

    options1 = optimoptions('fsolve'); 

    options1.Algorithm = 'levenberg-marquardt'; 

    options1.FunctionTolerance = 1e0;  %e-4 for flat, e-1 for slope, e-

2 for side slope 

     

    qSol=fsolve(@J5posKin3, q0, options1) 

     

     



237 

 

    % Reassign variables for ease of plotting 

Q1(u) = qSol(1);  % Xtrans or distance travelled in global X [m] 

Q2(u) = qSol(2);  % Ytrans or distance travelled in global Y [m] 

Q3(u) = qSol(3);  % Ztrans or distance travelled in global Z [m] 

Q4(u) = qSol(4);  % Yaw of the chassis [RAD] 

Q5(u) = qSol(5);  % Pitch of the chassis [RAD] 

Q6(u) = qSol(6);  % Roll of the chassis [RAD] 

Q7(u) = qSol(7);  % Pitch of the right walking beam [RAD] 

Q8(u) = qSol(8);  % Pitch of the left walking beam [RAD] 

% Q9(u) = qSol(9);  % Contact angle right rear wheel [RAD] 

% Q10(u) = qSol(10);    % Contact angle left rear wheel [RAD]  

% Q11(u) = qSol(11);    % Contact angle right front wheel [RAD] 

% Q12(u) = qSol(12);    % Contact angle left front wheel [RAD] 

  

%if u==1 

qSol(1)=qSol(1)-Q1(1); 

  

qSol(2)=qSol(2)-Q2(1); 

qSol(3)=qSol(3)-Q3(1); 

  

% if u==1 

qSol(5)=2*Q5(u); 

qSol(7)=2*Q7(u); 

qSol(8)=2*Q8(u); 

  

Q5(u)=qSol(5); 

Q7(u)=qSol(7); 

Q8(u)=qSol(8); 

% end 

  

%end 

Q1(u)=qSol(1); 

Q2(u)=qSol(2); 

Q3(u)=qSol(3); 

  

qSol 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Update parameters prior to exiting the loop 

  

% Upate time step or condition of the loop 

% t=t + del_t; 

u=u+1; 

  

% Update initial guess 

q0=qSol; 

  

  

  

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Display outputs 



238 

 

  

% Plot terrain as DEM 

[X,Y] = meshgrid(-5:0.5:10,-5:0.5:10); 

Z = zeros([31 31]); 

figure 

%hold on 

%title('Terrain map with the selected path') 

xlabel('X [m]') 

ylabel('Y [m]') 

zlabel('Z [m]') 

  

surf(X,Y,Z) 

  

% set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

%hold off 

  

% Plot walking beam/bogie angles vs time?? 

figure 

hold on 

%title('Walking Beam Pitch') %Plotted with respect to Xdistance 

travelled 

xlabel('X [m]') 

ylabel('Walking Beam Pitch [DEG]') 

  

plot(Q1,(Q7*180/pi)) 

plot(Q1,(Q8*180/pi)) 

legend('Right Walking Beam', 'Left Walking Beam','Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

% Plot chassis angles vs time?? 

figure 

hold on 

%title('Chassis Orientation Angles') %Plotted with respect to Xdistance 

travelled 

xlabel('X [m]') 

ylabel('Chassis Orientation Angles [DEG]') 

  

plot(Q1,(Q4*180/pi))    % Yaw 

plot(Q1,(Q5*180/pi))    % Pitch 

plot(Q1,(Q6*180/pi))    % Roll 

legend('Yaw', 'Pitch', 'Roll', 'Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 



239 

 

C.3 MATLAB Function File:  3D Position Equation Set for Solution 

(J5posKin3.m) 

function Fval = J5posKin3(q) 

%J5posKin This function uses the extracted position kinematics eqtns 

for  

% the pose of each wheel-gnd contact point to solve for the joint 

angles & 

% displacements. 

%   Each eqtn is extracted from the transform or T-matrix for the  

%   corresponding kinematic chain. Details on the derivation of the  

%   T-matrices and subsequent pose eqtn sets can be viewed in the  

%   corresponding Maple files. The full eqtn set for all wheels are  

%   structured in the form F=0,as per the conditions for using fsolve.  

%   Global variables determined in the outer loop are brought in as  

%   additional inputs to the expected 

%   vectors q (joint displacements) and initial guess q0. 

  

%% Declaration of global variables based on terrain path in main script 

global X_lr Y_lr Z_lr X_rr Y_rr Z_rr X_lf Y_lf Z_lf X_rf Y_rf Z_rf 

global phiX_lr phiY_lr phiZ_lr phiX_rr phiY_rr phiZ_rr phiX_lf phiY_lf 

phiZ_lf phiX_rf phiY_rf phiZ_rf 

global delta_rr delta_lr delta_rf delta_lf 

  

%% Assignment of constant rover parameters 

beta=(71.67*pi/180); % Angle of walking beam, formed btwn the two 

wheels [RAD] 

h_cog=0.4515;     % Height to centre of gravity [m]. 

d_comwb=0.5644;  % Distance from CoG to centre of walking beam [m]. 

a_wb=0.4816;     % Link length from walking beam/bogie pivot pt to 

wheel axle [m]. 

r=0.3;      % Wheel radius [m] 

  

%% Assigning joint variables to the vector q 

X_trans=q(1,1); 

Y_trans=q(2,1); 

Z_trans=q(3,1); 

phi_yaw=q(4,1); 

phi_pitch=q(5,1); 

phi_roll=q(6,1); 

theta_wbr=q(7,1); 

theta_wbl=q(8,1); 

% delta_rr=q(9,1); 

% delta_lr=q(10,1); 

% delta_rf=q(11,1); 

% delta_lf=q(12,1); 

% delta_rr=0; 

% delta_lr=0; 

% delta_rf=0; 

% delta_lf=0; 

  



240 

 

%% Full set of kinematic eqtns to be solved. See Maple for full 

derivation 

% Back Suspension Eqtn 

Fval(1,1)=theta_wbl-theta_wbr-(2*phi_pitch); 

  

% Right rear wheel eqtns 

Fval(2,1)=((-cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(be

ta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos(phi_yaw)-

sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*cos(-theta_wbr+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*sin(p

hi_pitch)-cos(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*cos(phi_yaw)-

r*sin(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(del

ta_rr)))*sin(-theta_wbr+beta)-

sin(phi_pitch)*cos(phi_yaw)*sin(phi_roll)*d_comwb+sin(phi_yaw)*cos(phi_

roll)*d_comwb+X_trans - X_rr; 

Fval(3,1)=((-cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(be

ta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*sin(phi_yaw)+cos(phi_yaw)*s

in(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*cos(-theta_wbr+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*sin(p

hi_pitch)-cos(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*sin(phi_yaw)+r*cos(phi_yaw)*sin(phi_ro

ll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*sin(-

theta_wbr+beta)-sin(phi_pitch)*sin(phi_yaw)*sin(phi_roll)*d_comwb-

cos(phi_roll)*cos(phi_yaw)*d_comwb+Y_trans - Y_rr; 

Fval(4,1)=(-cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*cos(phi_pitch)-

r*sin(phi_pitch)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos

(-theta_wbr+beta)+(-

r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*cos(p

hi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*sin(-theta_wbr+beta)-

cos(phi_pitch)*sin(phi_roll)*d_comwb+h_cog+Z_trans - Z_rr; 

  

% Fval(6,1)=asin(sin(phi_roll))-phiX_rr; 

Fval(5,1)=(asin((-

cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*cos(phi

_pitch)-sin(phi_pitch)*(sin(beta)*sin(delta_rr)-

cos(beta)*cos(delta_rr)))*cos(-theta_wbr+beta)-sin(-

theta_wbr+beta)*(cos(phi_roll)*(sin(beta)*sin(delta_rr)-

cos(beta)*cos(delta_rr))*cos(phi_pitch)-

sin(phi_pitch)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))))-

phiY_rr; 

% 

Fval(6,1)=(asin(((((cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitc

h)*cos(beta))*cos(delta_rr)+sin(delta_rr)*(cos(phi_roll)*sin(phi_pitch)

*cos(beta)-cos(phi_pitch)*sin(beta)))*sin(phi_yaw)-

sin(phi_roll)*cos(phi_yaw)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta

_rr)))*cos(-theta_wbr+beta)-(((cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta))*cos(delta_rr)-

sin(delta_rr)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*co



241 

 

s(beta)))*sin(phi_yaw)-sin(phi_roll)*cos(phi_yaw)*(-

sin(beta)*sin(delta_rr)+cos(beta)*cos(delta_rr)))*sin(-

theta_wbr+beta))/cos(phi_pitch)))-phiZ_rr; 

  

% Right front wheel 

Fval(6,1)=((-

cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb

)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*cos(phi_yaw)-

sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(d

elta_rf)+a_wb))*cos(theta_wbr+beta)+((r*cos(phi_roll)*(cos(beta)*sin(de

lta_rf)-

sin(beta)*cos(delta_rf))*sin(phi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos

(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb))*cos(phi_yaw)+r*sin(phi_yaw)

*sin(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*sin(theta_wbr+beta)-

sin(phi_pitch)*cos(phi_yaw)*sin(phi_roll)*d_comwb+sin(phi_yaw)*cos(phi_

roll)*d_comwb+X_trans - X_rf; 

Fval(7,1)=((-

cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb

)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*sin(phi_yaw)+cos(phi_yaw)*sin(phi_roll)*(r*co

s(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb))*cos(theta_wbr+be

ta)+((r*cos(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*sin(phi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos

(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb))*sin(phi_yaw)-

r*cos(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*sin(theta_wbr+beta)-

sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)*d_comwb-

cos(phi_yaw)*cos(phi_roll)*d_comwb+Y_trans - Y_rf; 

Fval(8,1)=(-

cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb

)*cos(phi_pitch)-r*sin(phi_pitch)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*cos(theta_wbr+beta)+(r*cos(phi_roll)*(cos(bet

a)*sin(delta_rf)-sin(beta)*cos(delta_rf))*cos(phi_pitch)-

sin(phi_pitch)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_w

b))*sin(theta_wbr+beta)-

cos(phi_pitch)*sin(phi_roll)*d_comwb+h_cog+Z_trans - Z_rf; 

  

% Fval(11,1)=(asin(sin(phi_roll)))-phiX_rf; 

Fval(9,1)=(-asin((cos(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*cos(phi_pitch)-

sin(phi_pitch)*(sin(beta)*sin(delta_rf)+cos(beta)*cos(delta_rf)))*cos(t

heta_wbr+beta)+sin(theta_wbr+beta)*(cos(phi_roll)*(sin(beta)*sin(delta_

rf)+cos(beta)*cos(delta_rf))*cos(phi_pitch)+sin(phi_pitch)*(cos(beta)*s

in(delta_rf)-sin(beta)*cos(delta_rf)))))-phiY_rf; 

% Fval(11,1)=(asin(((((-

cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta))*cos(de

lta_rf)+sin(delta_rf)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_p

itch)*sin(beta)))*sin(phi_yaw)+sin(phi_roll)*cos(phi_yaw)*(sin(beta)*co

s(delta_rf)-

cos(beta)*sin(delta_rf)))*cos(theta_wbr+beta)+sin(theta_wbr+beta)*(((co

s(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos(delt

a_rf)+sin(delta_rf)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta)))*sin(phi_yaw)-



242 

 

sin(phi_roll)*cos(phi_yaw)*(sin(beta)*sin(delta_rf)+cos(beta)*cos(delta

_rf))))/cos(phi_pitch)))-phiZ_rf; 

  

%Left rear wheel 

Fval(10,1)=((-

cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb

)*sin(phi_pitch)-r*cos(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*cos(phi_yaw)-

sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(d

elta_lr)+a_wb))*cos(theta_wbl+beta)+((r*cos(phi_roll)*(cos(beta)*sin(de

lta_lr)-sin(beta)*cos(delta_lr))*sin(phi_pitch)-

cos(phi_pitch)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_w

b))*cos(phi_yaw)+r*sin(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*sin(theta_wbl+beta)+sin(phi_pitch)*cos(phi_ya

w)*sin(phi_roll)*d_comwb-sin(phi_yaw)*cos(phi_roll)*d_comwb+X_trans - 

X_lr; 

Fval(11,1)=((-

cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb

)*sin(phi_pitch)-r*cos(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*sin(phi_yaw)+cos(phi_yaw)*sin(phi_roll)*(r*co

s(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb))*cos(theta_wbl+be

ta)+((r*cos(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*sin(phi_pitch)-

cos(phi_pitch)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_w

b))*sin(phi_yaw)-r*cos(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*sin(theta_wbl+beta)+sin(phi_yaw)*sin(phi_pitc

h)*sin(phi_roll)*d_comwb+cos(phi_yaw)*cos(phi_roll)*d_comwb+Y_trans - 

Y_lr; 

Fval(12,1)=(-

cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb

)*cos(phi_pitch)+r*sin(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*cos(theta_wbl+beta)+(r*cos(phi_roll)*(cos(bet

a)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*cos(phi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos

(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb))*sin(theta_wbl+beta)+cos(phi

_pitch)*sin(phi_roll)*d_comwb+h_cog+Z_trans - Z_lr; 

  

% Fval(16,1)=(asin(sin(phi_roll)))-phiX_lr; 

Fval(13,1)=(asin((cos(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*cos(phi_pitch)+sin(phi_pitch)*(sin(delta_lr)*s

in(beta)+cos(beta)*cos(delta_lr)))*cos(theta_wbl+beta)+sin(theta_wbl+be

ta)*(cos(phi_roll)*(sin(delta_lr)*sin(beta)+cos(beta)*cos(delta_lr))*co

s(phi_pitch)-sin(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))))-phiY_lr; 

% 

Fval(16,1)=(asin(((((cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pit

ch)*cos(beta))*cos(delta_lr)-

sin(delta_lr)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta)))*sin(phi_yaw)-

sin(phi_roll)*cos(phi_yaw)*(sin(beta)*cos(delta_lr)-

cos(beta)*sin(delta_lr)))*cos(theta_wbl+beta)-

sin(theta_wbl+beta)*(((cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta))*cos(delta_lr)+sin(delta_lr)*(cos(phi_roll)*si

n(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta)))*sin(phi_yaw)-



243 

 

sin(phi_roll)*cos(phi_yaw)*(sin(delta_lr)*sin(beta)+cos(beta)*cos(delta

_lr))))/cos(phi_pitch)))-phiZ_lr; 

  

% Left front wheel 

Fval(14,1)=((-cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*sin(phi_pitch)-

r*cos(phi_pitch)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*cos

(phi_yaw)-sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*cos(-theta_wbl+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*sin(p

hi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*cos(phi_yaw)-

r*sin(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(del

ta_lf)))*sin(-

theta_wbl+beta)+cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)*d_comwb-

cos(phi_roll)*sin(phi_yaw)*d_comwb+X_trans - X_lf; 

Fval(15,1)=((-cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*sin(phi_pitch)-

r*cos(phi_pitch)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*sin

(phi_yaw)+cos(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*cos(-theta_wbl+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*sin(p

hi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*sin(phi_yaw)+r*cos(phi_yaw)*sin(phi_ro

ll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*sin(-

theta_wbl+beta)+sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)*d_comwb+cos(p

hi_yaw)*cos(phi_roll)*d_comwb+Y_trans - Y_lf; 

Fval(16,1)=(-cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*cos(phi_pitch)+r*sin(phi_pitch)*(cos(be

ta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*cos(-theta_wbl+beta)+(-

r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*cos(p

hi_pitch)-sin(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*sin(-

theta_wbl+beta)+cos(phi_pitch)*sin(phi_roll)*d_comwb+h_cog+Z_trans - 

Z_lf; 

% Fval(21,1)=(asin(sin(phi_roll)))-phiX_lf; 

Fval(17,1)=(-asin((-

cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*cos(phi

_pitch)+sin(phi_pitch)*(sin(beta)*sin(delta_lf)-

cos(beta)*cos(delta_lf)))*cos(-theta_wbl+beta)-sin(-

theta_wbl+beta)*(cos(phi_roll)*(sin(beta)*sin(delta_lf)-

cos(beta)*cos(delta_lf))*cos(phi_pitch)+sin(phi_pitch)*(cos(beta)*sin(d

elta_lf)+sin(beta)*cos(delta_lf)))))-phiY_lf; 

% Fval(21,1)=(-asin(((((cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_lf)+sin(delta_lf)*(cos(phi_roll)*si

n(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta)))*sin(phi_yaw)-

sin(phi_roll)*cos(phi_yaw)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta

_lf)))*cos(-theta_wbl+beta)-

(((cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos

(delta_lf)-sin(delta_lf)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta)))*sin(phi_yaw)-

sin(phi_roll)*cos(phi_yaw)*(cos(beta)*cos(delta_lf)-

sin(beta)*sin(delta_lf)))*sin(-theta_wbl+beta))/cos(phi_pitch)))-

phiZ_lf; 

end 



244 

 

C.4 MATLAB Script File:  3D Velocity Kinematic Model 

(J5_3DVelocityKinematics_v1.m) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% 3D Velocity Kinematics 

%% 

%% Written by: E. Austen 

%% 

%% This script solves the inverse velocity kinematics in 3D for the J5 

%% rover, for a given set of wheel-ground contact positions and the 

%% the solution to the inverse kinematics problem. These contact 

%% positions can be either obtained from a DEM of the terrain or 

extraction 

%% from a specified terrain function. The kinematic equations used were  

%% derived using the original Denavit-Hartenberg convention. 

%% 

%% Created on: June 2, 2019 

%% Last Modified: 

%% Aug 10, 2019 - new plots 

%% Aug 08, 2019 - new Jacobian 

%% July 24, 2019 - added index j 

%% July 01, 2019 - changed parameter update for better interpolation 

%% June 30, 2019 - r 

%% June 21, 2019 - updated velocity 

%% June 10, 2019 - updated outline in script file 

%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

clear all; 

clc; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Initialisation of parameters & importing the terrain path 

coordinates 

  

% Establish global variables 

global X_lr Y_lr Z_lr i_lr X_rr Y_rr Z_rr i_rr X_lf Y_lf Z_lf i_lf X_rf 

Y_rf Z_rf i_rf 

global phiX_lr phiY_lr phiZ_lr phiX_rr phiY_rr phiZ_rr phiX_lf phiY_lf 

phiZ_lf phiX_rf phiY_rf phiZ_rf 

global delta_rr delta_lr delta_rf delta_lf 

  

global Xdot_lr Ydot_lr Zdot_lr Xdot_rr Ydot_rr Zdot_rr Xdot_lf Ydot_lf 

Zdot_lf Xdot_rf Ydot_rf Zdot_rf 

global wX_lr wY_lr wZ_lr wX_rr wY_rr wZ_rr wX_lf wY_lf wZ_lf wX_rf 

wY_rf wZ_rf 

global deltadot_rr deltadot_lr deltadot_rf deltadot_lf A 

  

% Rover speed 

w=1/3;  % Commanded angular velocity of wheels [rad/s] 



245 

 

w_r=w;  % Skid steering, thus assume right wheels have same w, and 

likewise 

        % for left wheels 

w_l=w; 

r=0.3; 

  

% Import terrain path map 

% pathdata=readtable('FlatTerrain_NoSlip_Test2.xlsx'); 

% pathdata=readtable('FlatTerrain_NoSlip.xlsx'); 

% pathdata=readtable('FlatTerrain_i0.5.xlsx'); 

% pathdata=readtable('SideslopeTerrain_10deg_NoSlip.xlsx'); 

% pathdata=readtable('SideslopeTerrain_10deg_i0.5.xlsx'); 

pathdata=readtable('UpslopeTerrain_10deg_NoSlip.xlsx'); 

% pathdata=readtable('UpslopeTerrain_10deg_i0.5.xlsx'); 

% pathdata=readtable('SineTerrain_NoSlip2.xlsx'); 

% pathdata=readtable('SineTerrain_i0.5.xlsx'); 

  

  

x_lr=pathdata{1:31,{'x_lr'}};   % Terrain path data for left rear wheel 

y_lr=pathdata{1:31,{'y_lr'}}; 

z_lr=pathdata{1:31,{'z_lr'}}; 

I_lr=pathdata{1:31,{'i_lr'}};   %Note: I is slip value 

  

x_rr=pathdata{1:31,{'x_rr'}};   % Terrain path data for right rear 

wheel 

y_rr=pathdata{1:31,{'y_rr'}}; 

z_rr=pathdata{1:31,{'z_rr'}}; 

I_rr=pathdata{1:31,{'i_rr'}}; 

  

x_lf=pathdata{1:31,{'x_lf'}};   % Terrain path data for left front 

wheel 

y_lf=pathdata{1:31,{'y_lf'}}; 

z_lf=pathdata{1:31,{'z_lf'}}; 

I_lf=pathdata{1:31,{'i_lf'}}; 

  

x_rf=pathdata{1:31,{'x_rf'}};   % Terrain path data for right front 

wheel 

y_rf=pathdata{1:31,{'y_rf'}}; 

z_rf=pathdata{1:31,{'z_rf'}}; 

I_rf=pathdata{1:31,{'i_rf'}}; 

  

% Initial guess for solver 

q0 = zeros(8,1);  

qdot0 = zeros(8,1);  

A=zeros(8,1); 

  

  

% Set loop conditions, time in secs. 

t=0; 

del_t=3.048; 

tmax=75; 

u=1; 

j=(t+del_t)/del_t; 

  



246 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Start of while loop to solve eqtn sets for position & velocity for 

each 

%% time step. 

  

while t<=tmax 

        

    

       

    % Orientation of contact points 

    if t==0 && u==1 

         

        %Pose of RR wheel-gnd contact pt 

          X_rr=x_rr(u); 

          Y_rr=y_rr(u);       

          Z_rr=z_rr(u); 

          i_rr=I_rr(u); 

          x_rrt(j)=X_rr; 

          y_rrt(j)=Y_rr; 

          z_rrt(j)=Z_rr; 

          i_rrt(j)=i_rr; 

        %Pose of LR wheel-gnd contact pt 

          X_lr=x_lr(u); 

          Y_lr=y_lr(u);       

          Z_lr=z_lr(u); 

          i_lr=I_lr(u); 

          x_lrt(j)=X_lr; 

          y_lrt(j)=Y_lr; 

          z_lrt(j)=Z_lr; 

          i_lrt(j)=i_lr; 

        %Pose of RF wheel-gnd contact pt 

          X_rf=x_rf(u); 

          Y_rf=y_rf(u);       

          Z_rf=z_rf(u); 

          i_rf=I_rf(u); 

          x_rft(j)=X_rf; 

          y_rft(j)=Y_rf; 

          z_rft(j)=Z_rf; 

          i_rft(j)=i_rf; 

        %Pose of LF wheel-gnd contact pt 

          X_lf=x_lf(u); 

          Y_lf=y_lf(u);       

          Z_lf=z_lf(u); 

          i_lf=I_lf(u); 

          x_lft(j)=X_lf; 

          y_lft(j)=Y_lf; 

          z_lft(j)=Z_lf; 

          i_lft(j)=i_lf; 

           

        %phiX_rf=(pi/2)+asin((Z_lf-Z_rf)/1.1786);    % Roll 

        phiX_rf=(pi/2); 

        phiX_lf=-phiX_rf; 

        %phiX_rr=(pi/2)+asin((Z_lr-Z_rr)/1.1786); 

        phiX_rr=(pi/2); 



247 

 

        phiX_lr=-phiX_rr; 

         

        phiY_rf=-asin((z_rf(u)-z_rr(u))/0.9144);  % Pitch 

        phiY_rr=phiY_rf; 

        phiY_lf=-asin((z_lf(u)-z_lr(u))/0.9144); 

        phiY_lr=phiY_lf; 

         

        phiZ_rf=-(pi/2);    % Yaw 

        phiZ_rr=phiZ_rf; 

        phiZ_lf=(pi/2); 

        phiZ_lr=phiZ_lf; 

         

%         delta_rf=asin((z_rf(u)-z_rr(u))/0.9144);  % Pitch 

        delta_rf=0; 

        delta_rr=delta_rf; 

%         delta_lf=-asin((z_lf(u)-z_lr(u))/0.9144); 

        delta_lf=0; 

        delta_lr=delta_lf; 

    else 

        if y_rft(j)-y_rft(j-1)==0         %Roll 

        phiX_rf=(pi/2); 

%         phiX_rf=(pi/2)+asin((Z_lf-Z_rf)/1.1786);    % Side slope case 

        phiX_lf=-phiX_rf; 

        else 

        phiX_rf=atan((z_rft(j)-z_rft(j-1))/(y_rft(j)-y_rft(j-1)));  % 

Roll 

        phiX_lf=atan((z_lft(j)-z_lft(j-1))/(y_lft(j)-y_lft(j-1))); 

        end 

         

        if y_rrt(j)-y_rrt(j-1)==0 

        phiX_rr=(pi/2); 

%         phiX_rr=(pi/2)+asin((Z_lr-Z_rr)/1.1786);    % Side slope 

        phiX_lr=-phiX_rr; 

        else 

        phiX_rr=atan((z_rrt(j)-z_rrt(j-1))/(y_rft(j)-y_rrt(j-1)));  

        phiX_lr=atan((z_lrt(j)-z_lrt(j-1))/(y_lrt(j)-y_lrt(j-1))); 

        end 

         

        phiY_rf=-atan((z_rft(j)-z_rft(j-1))/(x_rft(j)-x_rft(j-1))); % 

Pitch 

        phiY_rr=-atan((z_rrt(j)-z_rrt(j-1))/(x_rrt(j)-x_rrt(j-1))); 

        phiY_lf=-atan((z_lft(j)-z_lft(j-1))/(x_lft(j)-x_lft(j-1))); 

        phiY_lr=-atan((z_lrt(j)-z_lrt(j-1))/(x_lrt(j)-x_lrt(j-1))); 

         

        phiZ_rf=-(pi/2);    % Yaw 

        phiZ_rr=phiZ_rf; 

        phiZ_lf=(pi/2); 

        phiZ_lr=phiZ_lf; 

         

%         delta_rf=atan((z_rft(j)-z_rft(j-1))/(x_rft(j)-x_rft(j-1))); % 

Pitch 

%         delta_rr=atan((z_rrt(j)-z_rrt(j-1)/(x_rrt(j)-x_rrt(j-1)))); 

%         delta_lf=-atan((z_lft(j)-z_lft(j-1))/(x_lft(j)-x_lft(j-1))); 

%         delta_lr=-atan((z_lrt(j)-z_lrt(j-1))/(x_lrt(j)-x_lrt(j-1))); 

        delta_rf=0; 



248 

 

        delta_rr=0; 

        delta_lf=0; 

        delta_lr=0; 

         

        delta_rft(j)=delta_rf; 

        delta_rrt(j)=delta_rr; 

        delta_lft(j)=delta_lf; 

        delta_lrt(j)=delta_lr; 

    end 

  

    %% End effector velocity inputs 

    % Right rear wheel 

    Xdot_rr=-i_rr*w_r*r*cos(-phiY_rr); 

    Ydot_rr=0; 

    Zdot_rr=-i_rr*w_r*r*sin(-phiY_rr); 

    wX_rr=0; 

    wY_rr=w_r; 

    wZ_rr=0; 

     

    %Left rear wheel 

    Xdot_lr=-i_lr*w_l*r*cos(-phiY_lr); 

    Ydot_lr=0; 

    Zdot_lr=-i_lr*w_l*r*sin(-phiY_lr); 

    wX_lr=0; 

    wY_lr=w_l; 

    wZ_lr=0; 

     

    % Right front wheel 

    Xdot_rf=-i_rf*w_r*r*cos(-phiY_rf); 

    Ydot_rf=0; 

    Zdot_rf=-i_rf*w_r*r*sin(-phiY_rf); 

    wX_rf=0; 

    wY_rf=w_r; 

    wZ_rf=0; 

     

    % Left front wheel 

    Xdot_lf=-i_lf*w_l*r*cos(-phiY_lf); 

    Ydot_lf=0; 

    Zdot_lf=-i_lf*w_l*r*sin(-phiY_lf); 

    wX_lf=0; 

    wY_lf=w_l; 

    wZ_lf=0; 

     

    % Rate of contact angle change 

    if t==0 

        deltadot_rf=0; 

        deltadot_rr=0; 

        deltadot_lf=0; 

        deltadot_lr=0; 

    else 

        deltadot_rf=(delta_rft(j)-delta_rft(j-1))/del_t; 

        deltadot_rr=(delta_rrt(j)-delta_rrt(j-1))/del_t; 

        deltadot_lf=(delta_lft(j)-delta_lft(j-1))/del_t; 

        deltadot_lr=(delta_lrt(j)-delta_lrt(j-1))/del_t; 

    end 



249 

 

     

     

    %% Nonlinear Eqtn Solver 

    options1 = optimoptions('fsolve'); 

    options1.Algorithm = 'levenberg-marquardt'; 

    options1.FunctionTolerance = 1e-3; 

     

     

    qSol=fsolve(@J5posKin3, q0, options1)    % Solves IK for joint 

displacements 

     

     

     

    %% Reassign and store solutions for ease of plotting 

     

    % Position 

Q1(j) = qSol(1);  % Xtrans or distance travelled in global X [m] 

Q2(j) = qSol(2);  % Ytrans or distance travelled in global Y [m] 

Q3(j) = qSol(3);  % Ztrans or distance travelled in global Z [m] 

Q4(j) = qSol(4);  % Yaw of the chassis [RAD] 

Q5(j) = qSol(5);  % Pitch of the chassis [RAD] 

Q6(j) = qSol(6);  % Roll of the chassis [RAD] 

Q7(j) = qSol(7);  % Pitch of the right walking beam [RAD] 

Q8(j) = qSol(8);  % Pitch of the left walking beam [RAD] 

% Q9(j) = qSol(9);  % Contact angle right rear wheel [RAD] 

% Q10(j) = qSol(10);    % Contact angle left rear wheel [RAD]  

% Q11(j) = qSol(11);    % Contact angle right front wheel [RAD] 

% Q12(j) = qSol(12);    % Contact angle left front wheel [RAD] 

  

% Correction Factors 

if j==1 

qSol(1)=qSol(1)-Q1(1); 

  

qSol(2)=qSol(2)-Q2(1); 

qSol(3)=qSol(3)-Q3(1); 

  

Q1(j)=qSol(1); 

Q2(j)=qSol(2); 

Q3(j)=qSol(3); 

end 

  

% if u==1 

qSol(5)=2*Q5(j); 

qSol(7)=2*Q7(j); 

qSol(8)=2*Q8(j); 

  

Q5(j)=qSol(5); 

Q7(j)=qSol(7); 

Q8(j)=qSol(8); 

% end 

  

  

  

  

qSol 



250 

 

A=qSol; 

  

    %% Nonlinear Eqtn Solver Inverse Velocity 

    options2 = optimoptions('fsolve'); 

    options2.Algorithm = 'levenberg-marquardt'; 

    options2.FunctionTolerance = 1e-1; 

    options2.StepTolerance = 1e-12; 

     

    qdotSol=fsolve(@J5veloKin2, qdot0, options2)   % Solves IK velocity 

  

  

    % Velocity 

Qdot1(j) = qdotSol(1);  % Xdot or velocity in global X [m/s] 

Qdot2(j) = qdotSol(2);  % Ydot of velocity in global Y [m/s] 

Qdot3(j) = qdotSol(3);  % Zdot or velocity in global Z [m/s] 

Qdot4(j) = qdotSol(4);  % Yaw rate of the chassis [RAD/s] 

Qdot5(j) = qdotSol(5);  % Pitch rate of the chassis [RAD/s] 

Qdot6(j) = qdotSol(6);  % Roll rate of the chassis [RAD/s] 

Qdot7(j) = qdotSol(7);  % Pitch rate of the right walking beam [RAD/s] 

Qdot8(j) = qdotSol(8);  % Pitch rate of the left walking beam [RAD/s] 

% Qdot9(j) = qdotSol(9);  % Contact angle rate right rear wheel [RAD/s] 

% Qdot10(j) = qdotSol(10);    % Contact angle rate left rear wheel 

[RAD/s]  

% Qdot11(j) = qdotSol(11);    % Contact angle rate right front wheel 

[RAD/s] 

% Qdot12(j) = qdotSol(12);    % Contact angle rate left front wheel 

[RAD/s] 

  

% Plot rover suspension sides for later animation 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Update parameters prior to exiting the loop 

  

% Upate time step or condition of the loop 

t=t + del_t; 

j=int16((t+del_t)/del_t); 

  

% Update initial guesses 

q0=qSol; 

qdot0=qdotSol; 

  

% Update position of contact points 

  

%% Right rear wheel 

v_xaxrr=w_r*r*(1-i_rr)*cos(-phiY_rr); 

v_yaxrr=0; 

v_zaxrr=w_r*r*(1-i_rr)*sin(-phiY_rr); 

  

x_rrt(j)=x_rrt(j-1) + (v_xaxrr*del_t); 

y_rrt(j)=y_rrt(j-1) + (v_yaxrr*del_t); 

%z_rrt(j)=z_rrt(j-1) + (v_zaxrr*del_t); % Check for even terrain 

  

if x_rrt(j)==x_rr(u+1) && y_rrt(j)==y_rr(u+1) 

    z_rrt(j)=z_rr(u+1); 



251 

 

    i_rrt(j)=I_rr(u+1); 

elseif x_rr(u+1)>x_rrt(j) 

        if x_rr(u+1)==x_rrt(j-1) 

            ifx=0; 

        else 

            ifx=(x_rrt(j)-x_rrt(j-1))/(x_rr(u+1)-x_rrt(j-1)); 

        end 

        if y_rr(u+1)==y_rrt(j-1) 

            ify=0; 

        else 

            ify=(y_rrt(j)-y_rrt(j-1))/(y_rr(u+1)-y_rrt(j-1)); 

        end 

         

        factor=sqrt((ifx^2)+(ify^2)); 

         

        z_rrt(j)=(factor*(z_rr(u+1)-z_rrt(j-1)))+z_rrt(j-1); 

        i_rrt(j)=(factor*(I_rr(u+1)-i_rrt(j-1)))+i_rrt(j-1); 

else 

    if x_rr(u+2)==x_rrt(j-1) 

            ifx=0; 

    else 

        ifx=(x_rrt(j)-x_rrt(j-1))/(x_rr(u+2)-x_rrt(j-1)); 

    end 

    if y_rr(u+2)==y_rrt(j-1) 

        ify=0; 

    else 

        ify=(y_rrt(j)-y_rrt(j-1))/(y_rr(u+2)-y_rrt(j-1)); 

    end 

  

    factor=sqrt((ifx^2)+(ify^2)); 

  

    z_rrt(j)=(factor*(z_rr(u+2)-z_rrt(j-1)))+z_rrt(j-1); 

    i_rrt(j)=(factor*(I_rr(u+2)-i_rrt(j-1)))+i_rrt(j-1); 

     

end 

  

% if x_rrt(j)>=x_rr(u+1) 

%     u=u+1; 

% end 

  

%% Right front wheel 

v_xaxrf=w_r*r*(1-i_rf)*cos(-phiY_rf); 

v_yaxrf=0; 

v_zaxrf=w_r*r*(1-i_rf)*sin(-phiY_rf); 

  

x_rft(j)=x_rft(j-1) + (v_xaxrf*del_t); 

y_rft(j)=y_rft(j-1) + (v_yaxrf*del_t); 

%z_rft(j)=z_rft(j-1) + (v_zaxrf*del_t); % Check for even terrain 

  

if x_rft(j)==x_rf(u+1) && y_rft(j)==y_rf(u+1) 

    z_rft(j)=z_rf(u+1); 

    i_rft(j)=I_rf(u+1); 

elseif x_rf(u+1)>x_rft(j) 

        if x_rf(u+1)==x_rft(j-1) 

            ifx=0; 



252 

 

        else 

            ifx=(x_rft(j)-x_rft(j-1))/(x_rf(u+1)-x_rft(j-1)); 

        end 

        if y_rf(u+1)==y_rft(j-1) 

            ify=0; 

        else 

            ify=(y_rft(j)-y_rft(j-1))/(y_rf(u+1)-y_rft(j-1)); 

        end 

         

        factor=sqrt((ifx^2)+(ify^2)); 

         

        z_rft(j)=(factor*(z_rf(u+1)-z_rft(j-1)))+z_rft(j-1); 

        i_rft(j)=(factor*(I_rf(u+1)-i_rft(j-1)))+i_rft(j-1); 

else 

    if x_rf(u+2)==x_rft(j-1) 

            ifx=0; 

    else 

        ifx=(x_rft(j)-x_rft(j-1))/(x_rf(u+2)-x_rft(j-1)); 

    end 

    if y_rf(u+2)==y_rft(j-1) 

        ify=0; 

    else 

        ify=(y_rft(j)-y_rft(j-1))/(y_rf(u+2)-y_rft(j-1)); 

    end 

  

    factor=sqrt((ifx^2)+(ify^2)); 

  

    z_rft(j)=(factor*(z_rf(u+2)-z_rft(j-1)))+z_rft(j-1); 

    i_rft(j)=(factor*(I_rf(u+2)-i_rft(j-1)))+i_rft(j-1); 

     

end 

  

%% Left rear wheel 

v_xaxlr=w_l*r*(1-i_lr)*cos(-phiY_lr); 

v_yaxlr=0; 

v_zaxlr=w_l*r*(1-i_lr)*sin(-phiY_lr); 

  

x_lrt(j)=x_lrt(j-1) + (v_xaxlr*del_t); 

y_lrt(j)=y_lrt(j-1) + (v_yaxlr*del_t); 

%z_lrt(j)=z_lrt(j-1) + (v_zaxlr*del_t); % Check for even terrain 

  

if x_lrt(j)==x_lr(u+1) && y_lrt(j)==y_lr(u+1) 

    z_lrt(j)=z_lr(u+1); 

    i_lrt(j)=I_lr(u+1); 

elseif x_lr(u+1)>x_lrt(j) 

        if x_lr(u+1)==x_lrt(j-1) 

            ifx=0; 

        else 

            ifx=(x_lrt(j)-x_lrt(j-1))/(x_lr(u+1)-x_lrt(j-1)); 

        end 

        if y_lr(u+1)==y_lrt(j-1) 

            ify=0; 

        else 

            ify=(y_lrt(j)-y_lrt(j-1))/(y_lr(u+1)-y_lrt(j-1)); 

        end 



253 

 

         

        factor=sqrt((ifx^2)+(ify^2)); 

         

        z_lrt(j)=(factor*(z_lr(u+1)-z_lrt(j-1)))+z_lrt(j-1); 

        i_lrt(j)=(factor*(I_lr(u+1)-i_lrt(j-1)))+i_lrt(j-1); 

else 

    if x_lr(u+2)==x_lrt(j-1) 

            ifx=0; 

    else 

        ifx=(x_lrt(j)-x_lrt(j-1))/(x_lr(u+2)-x_lrt(j-1)); 

    end 

    if y_lr(u+2)==y_lrt(j-1) 

        ify=0; 

    else 

        ify=(y_lrt(j)-y_lrt(j-1))/(y_lr(u+2)-y_lrt(j-1)); 

    end 

  

    factor=sqrt((ifx^2)+(ify^2)); 

  

    z_lrt(j)=(factor*(z_lr(u+2)-z_lrt(j-1)))+z_lrt(j-1); 

    i_lrt(j)=(factor*(I_lr(u+2)-i_lrt(j-1)))+i_lrt(j-1); 

     

end 

  

%% Left front wheel 

v_xaxlf=w_l*r*(1-i_lf)*cos(-phiY_lf); 

v_yaxlf=0; 

v_zaxlf=w_l*r*(1-i_lf)*sin(-phiY_lf); 

  

x_lft(j)=x_lft(j-1) + (v_xaxlf*del_t); 

y_lft(j)=y_lft(j-1) + (v_yaxlf*del_t); 

%z_lft(j)=z_lft(j-1) + (v_zaxlf*del_t); % Check for even terrain 

  

if x_lft(j)==x_lf(u+1) && y_lft(j)==y_lf(u+1) 

    z_lft(j)=z_lf(u+1); 

    i_lft(j)=I_lf(u+1); 

elseif x_lf(u+1)>x_lft(j) 

        if x_lf(u+1)==x_lft(j-1) 

            ifx=0; 

        else 

            ifx=(x_lft(j)-x_lft(j-1))/(x_lf(u+1)-x_lft(j-1)); 

        end 

        if y_lf(u+1)==y_lft(j-1) 

            ify=0; 

        else 

            ify=(y_lft(j)-y_lft(j-1))/(y_lf(u+1)-y_lft(j-1)); 

        end 

         

        factor=sqrt((ifx^2)+(ify^2)); 

         

        z_lft(j)=(factor*(z_lf(u+1)-z_lft(j-1)))+z_lft(j-1); 

        i_lft(j)=(factor*(I_lf(u+1)-i_lft(j-1)))+i_lft(j-1); 

else 

    if x_lf(u+2)==x_lft(j-1) 

            ifx=0; 



254 

 

    else 

        ifx=(x_lft(j)-x_lft(j-1))/(x_lf(u+2)-x_lft(j-1)); 

    end 

    if y_lf(u+2)==y_lft(j-1) 

        ify=0; 

    else 

        ify=(y_lft(j)-y_lft(j-1))/(y_lf(u+2)-y_lft(j-1)); 

    end 

  

    factor=sqrt((ifx^2)+(ify^2)); 

  

    z_lft(j)=(factor*(z_lf(u+2)-z_lft(j-1)))+z_lft(j-1); 

    i_lft(j)=(factor*(I_lf(u+2)-i_lft(j-1)))+i_lft(j-1); 

     

end 

  

% Update u when necessary 

if x_rrt(j)>=x_rr(u+1) 

    u=u+1; 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

% Update global variable positions 

    %Pose of RR wheel-gnd contact pt 

      X_rr=x_rrt(j); 

      Y_rr=y_rrt(j);       

      Z_rr=z_rrt(j); 

      i_rr=i_rrt(j); 

    %Pose of LR wheel-gnd contact pt 

      X_lr=x_lrt(j); 

      Y_lr=y_lrt(j);       

      Z_lr=z_lrt(j); 

      i_lr=i_lrt(j); 

    %Pose of RF wheel-gnd contact pt 

      X_rf=x_rft(j); 

      Y_rf=y_rft(j);       

      Z_rf=z_rft(j); 

      i_rf=i_rft(j); 

    %Pose of LF wheel-gnd contact pt 

      X_lf=x_lft(j); 

      Y_lf=y_lft(j);       

      Z_lf=z_lft(j); 

      i_lf=i_lft(j); 

  

end % End of loop 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%% Display outputs 

  

tplot = linspace(0,(t-1),(j-1)); 

  

% Plot terrain as DEM 



255 

 

[X,Y] = meshgrid(-5:0.5:10,-5:0.5:10); 

Z = zeros([31 31]); 

figure 

% hold on 

% title('Terrain map with the selected path') 

xlabel('X [m]') 

ylabel('Y [m]') 

zlabel('Z [m]') 

  

surf(X,Y,Z) 

  

% set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

  

% Plot walking beam/bogie angles vs distance 

figure 

hold on 

% title('Walking Beam Pitch') %Plotted with respect to Xdistance 

travelled 

xlabel('X [m]') 

ylabel('Walking Beam Pitch [RAD]') 

  

plot(Q1,Q7) 

plot(Q1,Q8) 

legend('Right Walking Beam', 'Left Walking Beam','Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

  

% Plot walking beam angular rate vs time?? 

figure 

hold on 

% title('Walking Beam Pitch Rate') %Plotted with respect to time 

travelled 

xlabel('Time [s]') 

ylabel('Walking Beam Pitch Rate [RAD/s]') 

  

plot(tplot,Qdot7) 

plot(tplot,Qdot8) 

legend('Right Walking Beam', 'Left Walking Beam','Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

  

% Plot chassis angles vs time?? 

figure 

hold on 

% title('Chassis Orientation Angles wrt Time') %Plotted with respect to 

time travelled 

xlabel('Time [s]') 

ylabel('Chassis Orientation Angles [RAD]') 

  

plot(tplot,Q4)   % Yaw 

plot(tplot,Q5)   % Pitch 



256 

 

plot(tplot,Q6)   % Roll 

legend('Yaw', 'Pitch', 'Roll', 'Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

  

% Plot chassis angles vs time?? 

figure 

hold on 

% title('Chassis Orientation Angular Rates wrt Time') %Plotted with 

respect to time travelled 

xlabel('Time [s]') 

ylabel('Chassis Angular Rates [RAD/s]') 

  

plot(tplot,Qdot4)   % Yaw 

plot(tplot,Qdot5)   % Pitch 

plot(tplot,Qdot6)   % Roll 

legend('Yaw', 'Pitch', 'Roll', 'Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

% Plot distance travelled vs time 

figure 

hold on 

% title('Rover Distance Travelled') %Plotted with respect to time 

travelled 

xlabel('Time [s]') 

ylabel('Rover Distance Travelled [m]') 

  

plot(tplot,Q1) 

plot(tplot,Q2) 

plot(tplot,Q3) 

legend('Global X-direction', 'Global Y-direction', 'Global Z-

direction', 'Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 

  

  

% Plot translational velocity vs time 

figure 

hold on 

% title('Rover Translational Velocity') %Plotted with respect to time 

travelled 

xlabel('Time [s]') 

ylabel('Rover Translational Velocity [m/s]') 

  

plot(tplot,Qdot1) 

plot(tplot,Qdot2) 

plot(tplot,Qdot3) 

legend('Global X-direction', 'Global Y-direction', 'Global Z-

direction', 'Location', 'east') 

set(findall(gca, 'Type', 'Line'),'LineWidth',2) 

hold off 



257 

 

C.5 MATLAB Function File:  3D Velocity Equation Set for Solution 

(J5veloKin.m) 

function V = J5veloKin(qdot) 

%J5veloKin This function contains the extracted velocity kinematics for 

%each wheel-gnd contact point to enable solution of individual joint 

%angle and displacement rates. 

%   Each eqtn is extracted from the velocity kinematics eqtn involving 

the 

%   Jacobian matrix. Details on the derivation of the Jacobian and 

%   subsequent vector eqtn sets can be viewed in the corresponding 

Maple 

%   files. The full eqtn set for all wheels are structured in the form 

%   V=0,as per the conditions for using fsolve. Global variables 

determined 

%   in the outer loop are brought in as additional inputs to the 

expected 

%   vectors q (joint angles & displacements) and initial guess qdot0 

%   (joint angular & displacement rates). 

  

%% Declaration of global variables based on terrain path in main script 

global Xdot_lr Ydot_lr Zdot_lr Xdot_rr Ydot_rr Zdot_rr Xdot_lf Ydot_lf 

Zdot_lf Xdot_rf Ydot_rf Zdot_rf 

global wX_lr wY_lr wZ_lr wX_rr wY_rr wZ_rr wX_lf wY_lf wZ_lf wX_rf 

wY_rf wZ_rf 

global delta_rr delta_lr delta_rf delta_lf 

global deltadot_rr deltadot_lr deltadot_rf deltadot_lf A 

  

%% Assignment of constant rover parameters 

beta=(71.67*pi/180); % Angle of walking beam, formed btwn the two 

wheels [RAD] 

h_cog=0.4515;     % Height to centre of gravity [m]. 

d_comwb=0.5644;  % Distance from CoG to centre of walking beam [m]. 

a_wb=0.4816;     % Link length from walking beam/bogie pivot pt to 

wheel axle [m]. 

r=0.3;      % Wheel radius [m] 

  

%% Assigning joint variables to the vector q 

X_trans=A(1,1); 

Y_trans=A(2,1); 

Z_trans=A(3,1); 

phi_yaw=A(4,1); 

phi_pitch=A(5,1); 

phi_roll=A(6,1); 

theta_wbr=A(7,1); 

theta_wbl=A(8,1); 

  

%% Assigning joint variables to the vector qdot 

Xdot_trans=qdot(1,1); 

Ydot_trans=qdot(2,1); 

Zdot_trans=qdot(3,1); 

phidot_yaw=qdot(4,1); 



258 

 

phidot_pitch=qdot(5,1); 

phidot_roll=qdot(6,1); 

thetadot_wbr=qdot(7,1); 

thetadot_wbl=qdot(8,1); 

  

  

%% Full set of kinematic eqtns to be solved. See Maple for full 

derivation 

  

% Right rear wheel eqtns 

V(1,1)=(1)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(((cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*sin(phi_pitch)-

r*cos(phi_pitch)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*sin

(phi_yaw)-cos(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*cos(-

theta_wbr+beta)+((r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*co

s(delta_rr))*sin(phi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*sin(phi_yaw)-

r*cos(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(del

ta_rr)))*sin(-

theta_wbr+beta)+d_comwb*(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(

phi_yaw)*cos(phi_roll)))*phidot_yaw + (-

cos(phi_yaw)*((cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*cos(phi_pitch)+r*sin(phi_pitch)*(cos(be

ta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos(-

theta_wbr+beta)+(r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos

(delta_rr))*cos(phi_pitch)-sin(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*sin(-

theta_wbr+beta)+cos(phi_pitch)*sin(phi_roll)*d_comwb))*phidot_pitch + 

((cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*cos(-

theta_wbr+beta)+r*(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delt

a_rr))*sin(-theta_wbr+beta)-

d_comwb*(cos(phi_yaw)*sin(phi_pitch)*cos(phi_roll)+sin(phi_yaw)*sin(phi

_roll)))*phidot_roll + (((r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos(de

lta_rr)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(be

ta))*sin(delta_rr)-

cos(phi_roll)*sin(phi_pitch)*a_wb)*cos(phi_yaw)+sin(phi_yaw)*sin(phi_ro

ll)*(r*sin(beta)*sin(delta_rr)-r*cos(beta)*cos(delta_rr)-a_wb))*sin(-

theta_wbr+beta)+((r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pit

ch)*cos(beta))*cos(delta_rr)-r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*sin(de

lta_rr)+cos(phi_pitch)*a_wb)*cos(phi_yaw)+r*sin(phi_yaw)*sin(phi_roll)*

(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos(-

theta_wbr+beta))*thetadot_wbr 

+(((((cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta))*

cos(delta_rr)+sin(delta_rr)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta)))*cos(phi_yaw)+sin(phi_yaw)*sin(phi_roll)*(cos

(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos(-theta_wbr+beta)-

(((cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta))*cos(delta_rr)-



259 

 

sin(delta_rr)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*co

s(beta)))*cos(phi_yaw)+sin(phi_yaw)*sin(phi_roll)*(cos(beta)*cos(delta_

rr)-sin(beta)*sin(delta_rr)))*sin(-theta_wbr+beta))*r)*deltadot_rr - 

Xdot_rr; 

V(2,1)=(0)*Xdot_trans + (1)*Ydot_trans + (0)*Zdot_trans + (((-

cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(be

ta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos(phi_yaw)-

sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*cos(-theta_wbr+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*sin(p

hi_pitch)-cos(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*cos(phi_yaw)-

r*sin(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(del

ta_rr)))*sin(-theta_wbr+beta)-

d_comwb*(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll)))*phidot_yaw + (-

sin(phi_yaw)*((cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*cos(phi_pitch)+r*sin(phi_pitch)*(cos(be

ta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos(-

theta_wbr+beta)+(r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos

(delta_rr))*cos(phi_pitch)-sin(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*sin(-

theta_wbr+beta)+cos(phi_pitch)*sin(phi_roll)*d_comwb))*phidot_pitch + 

((sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))

*(r*cos(beta)*cos(delta_rr)-r*sin(beta)*sin(delta_rr)+a_wb)*cos(-

theta_wbr+beta)+r*(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_ya

w)*cos(phi_roll))*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*sin

(-theta_wbr+beta)+(-

sin(phi_yaw)*sin(phi_pitch)*cos(phi_roll)+cos(phi_yaw)*sin(phi_roll))*d

_comwb)*phidot_roll + (((r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos(de

lta_rr)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(be

ta))*sin(delta_rr)-cos(phi_roll)*sin(phi_pitch)*a_wb)*sin(phi_yaw)-

cos(phi_yaw)*sin(phi_roll)*(r*sin(beta)*sin(delta_rr)-

r*cos(beta)*cos(delta_rr)-a_wb))*sin(-theta_wbr+beta)-cos(-

theta_wbr+beta)*((-

r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta))*cos

(delta_rr)+r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*sin(de

lta_rr)-

cos(phi_pitch)*a_wb)*sin(phi_yaw)+r*cos(phi_yaw)*sin(phi_roll)*(cos(bet

a)*sin(delta_rr)+sin(beta)*cos(delta_rr))))*thetadot_wbr +(-((((-

cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_rr)-

sin(delta_rr)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta)))*sin(phi_yaw)+sin(phi_roll)*cos(phi_yaw)*(cos

(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos(-theta_wbr+beta)-

sin(-theta_wbr+beta)*(((-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos(de

lta_rr)+sin(delta_rr)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_p

itch)*cos(beta)))*sin(phi_yaw)+sin(phi_roll)*cos(phi_yaw)*(cos(beta)*co

s(delta_rr)-sin(beta)*sin(delta_rr))))*r)*deltadot_rr - Ydot_rr; 

V(3,1)=(0)*Xdot_trans + (0)*Ydot_trans + (1)*Zdot_trans + 

(0)*phidot_yaw + ((-cos(phi_roll)*(r*sin(beta)*sin(delta_rr)-



260 

 

r*cos(beta)*cos(delta_rr)-a_wb)*sin(phi_pitch)-

r*cos(phi_pitch)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*cos

(-

theta_wbr+beta)+(r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos

(delta_rr))*sin(phi_pitch)-cos(phi_pitch)*(r*sin(beta)*sin(delta_rr)-

r*cos(beta)*cos(delta_rr)-a_wb))*sin(-

theta_wbr+beta)+sin(phi_pitch)*sin(phi_roll)*d_comwb)*phidot_pitch + 

((-sin(phi_roll)*(r*sin(beta)*sin(delta_rr)-r*cos(beta)*cos(delta_rr)-

a_wb)*cos(-

theta_wbr+beta)+r*sin(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(

delta_rr))*sin(-theta_wbr+beta)-

cos(phi_roll)*d_comwb)*cos(phi_pitch))*phidot_roll + 

((r*cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*cos

(phi_pitch)-sin(phi_pitch)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb))*cos(-theta_wbr+beta)-

(cos(phi_roll)*(r*cos(beta)*cos(delta_rr)-

r*sin(beta)*sin(delta_rr)+a_wb)*cos(phi_pitch)+r*sin(phi_pitch)*(cos(be

ta)*sin(delta_rr)+sin(beta)*cos(delta_rr)))*sin(-

theta_wbr+beta))*thetadot_wbr 

+(((cos(phi_roll)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))*cos

(phi_pitch)+sin(phi_pitch)*(sin(beta)*sin(delta_rr)-

cos(beta)*cos(delta_rr)))*cos(-theta_wbr+beta)+sin(-

theta_wbr+beta)*(cos(phi_roll)*(sin(beta)*sin(delta_rr)-

cos(beta)*cos(delta_rr))*cos(phi_pitch)-

sin(phi_pitch)*(cos(beta)*sin(delta_rr)+sin(beta)*cos(delta_rr))))*r)*d

eltadot_rr - Zdot_rr; 

  

V(4,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + (-

sin(phi_yaw))*phidot_yaw + (cos(phi_yaw)*cos(phi_pitch))*phidot_pitch + 

(-

cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+sin(phi_yaw)*cos(phi_roll))*p

hidot_roll + (-

cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+sin(phi_yaw)*cos(phi_roll))*t

hetadot_wbr + (-

cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+sin(phi_yaw)*cos(phi_roll))*d

eltadot_rr - wX_rr; 

V(5,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(cos(phi_yaw))*phidot_yaw + (sin(phi_yaw)*cos(phi_pitch))*phidot_pitch 

+ (-sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

cos(phi_yaw)*cos(phi_roll))*phidot_roll + (-

sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

cos(phi_yaw)*cos(phi_roll))*thetadot_wbr + (-

sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

cos(phi_yaw)*cos(phi_roll))*deltadot_rr - wY_rr; 

V(6,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(0)*phidot_yaw + (-sin(phi_pitch))*phidot_pitch + (-

cos(phi_pitch)*sin(phi_roll))*phidot_roll + (-

cos(phi_pitch)*sin(phi_roll))*thetadot_wbr + (-

cos(phi_pitch)*sin(phi_roll))*deltadot_rr - wZ_rr; 

  

% Right front wheel eqtns 

V(7,1)=(1)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(((cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a

_wb)*sin(phi_pitch)-r*cos(phi_pitch)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*sin(phi_yaw)-



261 

 

cos(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(d

elta_rf)+a_wb))*cos(theta_wbr+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*sin(phi_pitch)-

cos(phi_pitch)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_w

b))*sin(phi_yaw)+r*cos(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*sin(theta_wbr+beta)+d_comwb*(sin(phi_yaw)*sin

(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll)))*phidot_yaw + (-

cos(phi_yaw)*((cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin

(delta_rf)+a_wb)*cos(phi_pitch)+r*sin(phi_pitch)*(cos(beta)*sin(delta_r

f)-sin(beta)*cos(delta_rf)))*cos(theta_wbr+beta)+(-

r*cos(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*cos(phi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos

(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb))*sin(theta_wbr+beta)+cos(phi

_pitch)*sin(phi_roll)*d_comwb))*phidot_pitch + 

((cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(

delta_rf)+a_wb)*cos(theta_wbr+beta)-

r*(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*sin(theta_wbr+beta)-

d_comwb*(cos(phi_yaw)*sin(phi_pitch)*cos(phi_roll)+sin(phi_yaw)*sin(phi

_roll)))*phidot_roll + 

(((r*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*

cos(delta_rf)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*sin(delta_rf)+sin(phi_pitch)*cos(phi_roll)*a_

wb)*cos(phi_yaw)+sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rf)+

r*sin(beta)*sin(delta_rf)+a_wb))*sin(theta_wbr+beta)-

cos(theta_wbr+beta)*((r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_rf)-

r*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*sin

(delta_rf)-

cos(phi_pitch)*a_wb)*cos(phi_yaw)+r*sin(phi_yaw)*sin(phi_roll)*(sin(bet

a)*cos(delta_rf)-cos(beta)*sin(delta_rf))))*thetadot_wbr +(-

((((cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_rf)-

sin(delta_rf)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*si

n(beta)))*cos(phi_yaw)+sin(phi_yaw)*sin(phi_roll)*(sin(beta)*cos(delta_

rf)-cos(beta)*sin(delta_rf)))*cos(theta_wbr+beta)-

(((cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos

(delta_rf)+sin(delta_rf)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta)))*cos(phi_yaw)+sin(phi_yaw)*sin(phi_roll)*(sin

(beta)*sin(delta_rf)+cos(beta)*cos(delta_rf)))*sin(theta_wbr+beta))*r)*

deltadot_rf - Xdot_rf; 

V(8,1)=(0)*Xdot_trans + (1)*Ydot_trans + (0)*Zdot_trans + (((-

cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb

)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*cos(phi_yaw)-

sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(d

elta_rf)+a_wb))*cos(theta_wbr+beta)+((r*cos(phi_roll)*(cos(beta)*sin(de

lta_rf)-

sin(beta)*cos(delta_rf))*sin(phi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos

(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb))*cos(phi_yaw)+r*sin(phi_yaw)

*sin(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*sin(theta_wbr+beta)-



262 

 

d_comwb*(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll)))*phidot_yaw + (-

sin(phi_yaw)*((cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin

(delta_rf)+a_wb)*cos(phi_pitch)+r*sin(phi_pitch)*(cos(beta)*sin(delta_r

f)-sin(beta)*cos(delta_rf)))*cos(theta_wbr+beta)+(-

r*cos(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*cos(phi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos

(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb))*sin(theta_wbr+beta)+cos(phi

_pitch)*sin(phi_roll)*d_comwb))*phidot_pitch + 

((sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))

*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_wb)*cos(theta_w

br+beta)-

r*(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll)

)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*sin(theta_wbr+beta)+d_comwb*(-

sin(phi_yaw)*sin(phi_pitch)*cos(phi_roll)+cos(phi_yaw)*sin(phi_roll)))*

phidot_roll + 

(((r*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*

cos(delta_rf)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*sin(delta_rf)+sin(phi_pitch)*cos(phi_roll)*a_

wb)*sin(phi_yaw)-

cos(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(d

elta_rf)+a_wb))*sin(theta_wbr+beta)+((-

r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_rf)+r*(cos(phi_roll)*sin(phi_pitch)

*cos(beta)+cos(phi_pitch)*sin(beta))*sin(delta_rf)+cos(phi_pitch)*a_wb)

*sin(phi_yaw)+r*cos(phi_yaw)*sin(phi_roll)*(sin(beta)*cos(delta_rf)-

cos(beta)*sin(delta_rf)))*cos(theta_wbr+beta))*thetadot_wbr +(r*((((-

cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta))*cos(de

lta_rf)+sin(delta_rf)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_p

itch)*sin(beta)))*sin(phi_yaw)+sin(phi_roll)*cos(phi_yaw)*(sin(beta)*co

s(delta_rf)-cos(beta)*sin(delta_rf)))*cos(theta_wbr+beta)-

sin(theta_wbr+beta)*(((-cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta))*cos(delta_rf)-

sin(delta_rf)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta)))*sin(phi_yaw)+sin(phi_roll)*cos(phi_yaw)*(sin

(beta)*sin(delta_rf)+cos(beta)*cos(delta_rf)))))*deltadot_rf - Ydot_rf; 

V(9,1)=(0)*Xdot_trans + (0)*Ydot_trans + (1)*Zdot_trans + 

(0)*phidot_yaw + 

((cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_

wb)*sin(phi_pitch)+cos(phi_pitch)*r*(sin(beta)*cos(delta_rf)-

cos(beta)*sin(delta_rf)))*cos(theta_wbr+beta)+(r*cos(phi_roll)*(sin(bet

a)*cos(delta_rf)-cos(beta)*sin(delta_rf))*sin(phi_pitch)-

cos(phi_pitch)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_w

b))*sin(theta_wbr+beta)+sin(phi_pitch)*sin(phi_roll)*d_comwb)*phidot_pi

tch + 

((sin(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_

wb)*cos(theta_wbr+beta)+r*sin(phi_roll)*(sin(beta)*cos(delta_rf)-

cos(beta)*sin(delta_rf))*sin(theta_wbr+beta)-

cos(phi_roll)*d_comwb)*cos(phi_pitch))*phidot_roll + ((-

r*cos(phi_roll)*(sin(beta)*cos(delta_rf)-

cos(beta)*sin(delta_rf))*cos(phi_pitch)-

sin(phi_pitch)*(r*cos(beta)*cos(delta_rf)+r*sin(beta)*sin(delta_rf)+a_w

b))*cos(theta_wbr+beta)+(cos(phi_roll)*(r*cos(beta)*cos(delta_rf)+r*sin

(beta)*sin(delta_rf)+a_wb)*cos(phi_pitch)-



263 

 

r*sin(phi_pitch)*(sin(beta)*cos(delta_rf)-

cos(beta)*sin(delta_rf)))*sin(theta_wbr+beta))*thetadot_wbr 

+(((cos(phi_roll)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf))*cos(phi_pitch)-

sin(phi_pitch)*(sin(beta)*sin(delta_rf)+cos(beta)*cos(delta_rf)))*cos(t

heta_wbr+beta)+(cos(phi_roll)*(sin(beta)*sin(delta_rf)+cos(beta)*cos(de

lta_rf))*cos(phi_pitch)+sin(phi_pitch)*(cos(beta)*sin(delta_rf)-

sin(beta)*cos(delta_rf)))*sin(theta_wbr+beta))*r)*deltadot_rf - 

Zdot_rf; 

  

V(10,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + (-

sin(phi_yaw))*phidot_yaw + (cos(phi_yaw)*cos(phi_pitch))*phidot_pitch + 

(-

cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+sin(phi_yaw)*cos(phi_roll))*p

hidot_roll + (-

cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+sin(phi_yaw)*cos(phi_roll))*t

hetadot_wbr + (-

cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+sin(phi_yaw)*cos(phi_roll))*d

eltadot_rf - wX_rf; 

V(11,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(cos(phi_yaw))*phidot_yaw + (sin(phi_yaw)*cos(phi_pitch))*phidot_pitch 

+ (-sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

cos(phi_yaw)*cos(phi_roll))*phidot_roll + (-

sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

cos(phi_yaw)*cos(phi_roll))*thetadot_wbr + (-

sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

cos(phi_yaw)*cos(phi_roll))*deltadot_rf - wY_rf; 

V(12,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(0)*phidot_yaw + (-sin(phi_pitch))*phidot_pitch + (-

cos(phi_pitch)*sin(phi_roll))*phidot_roll + (-

cos(phi_pitch)*sin(phi_roll))*thetadot_wbr +(-

cos(phi_pitch)*sin(phi_roll))*deltadot_rf - wZ_rf; 

  

% Left rear wheel eqtns 

V(13,1)=(1)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(((cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a

_wb)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*sin(phi_yaw)-

cos(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(d

elta_lr)+a_wb))*cos(theta_wbl+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*sin(phi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos

(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb))*sin(phi_yaw)+r*cos(phi_yaw)

*sin(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*sin(theta_wbl+beta)-

(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))*

d_comwb)*phidot_yaw + (-

cos(phi_yaw)*((cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin

(delta_lr)+a_wb)*cos(phi_pitch)-

r*sin(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*cos(theta_wbl+beta)+(-

r*cos(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*cos(phi_pitch)-

sin(phi_pitch)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_w

b))*sin(theta_wbl+beta)-



264 

 

cos(phi_pitch)*sin(phi_roll)*d_comwb))*phidot_pitch + 

((cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(

delta_lr)+a_wb)*cos(theta_wbl+beta)-

r*(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*sin(theta_wbl+beta)+d_comwb*(cos(phi_yaw)*sin(

phi_pitch)*cos(phi_roll)+sin(phi_yaw)*sin(phi_roll)))*phidot_roll + 

(((-r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos(de

lta_lr)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(be

ta))*sin(delta_lr)+cos(phi_roll)*sin(phi_pitch)*a_wb)*cos(phi_yaw)+sin(

phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta

_lr)+a_wb))*sin(theta_wbl+beta)-

cos(theta_wbl+beta)*((r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi

_pitch)*cos(beta))*cos(delta_lr)+r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*sin(de

lta_lr)+cos(phi_pitch)*a_wb)*cos(phi_yaw)+r*sin(phi_yaw)*sin(phi_roll)*

(sin(beta)*cos(delta_lr)-cos(beta)*sin(delta_lr))))*thetadot_wbl +(-

((((cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta))*co

s(delta_lr)-sin(delta_lr)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta)))*cos(phi_yaw)+sin(phi_yaw)*sin(phi_roll)*(sin

(beta)*cos(delta_lr)-cos(beta)*sin(delta_lr)))*cos(theta_wbl+beta)-

sin(theta_wbl+beta)*(((cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta))*cos(delta_lr)+sin(delta_lr)*(cos(phi_roll)*si

n(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta)))*cos(phi_yaw)+sin(phi_

yaw)*sin(phi_roll)*(sin(beta)*sin(delta_lr)+cos(beta)*cos(delta_lr))))*

r)*deltadot_lr - Xdot_lr; 

V(14,1)=(0)*Xdot_trans + (1)*Ydot_trans + (0)*Zdot_trans + (((-

cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb

)*sin(phi_pitch)-r*cos(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*cos(phi_yaw)-

sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(d

elta_lr)+a_wb))*cos(theta_wbl+beta)+((r*cos(phi_roll)*(cos(beta)*sin(de

lta_lr)-sin(beta)*cos(delta_lr))*sin(phi_pitch)-

cos(phi_pitch)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_w

b))*cos(phi_yaw)+r*sin(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*sin(theta_wbl+beta)+(cos(phi_yaw)*sin(phi_pit

ch)*sin(phi_roll)-sin(phi_yaw)*cos(phi_roll))*d_comwb)*phidot_yaw + (-

sin(phi_yaw)*((cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin

(delta_lr)+a_wb)*cos(phi_pitch)-

r*sin(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*cos(theta_wbl+beta)+(-

r*cos(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*cos(phi_pitch)-

sin(phi_pitch)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_w

b))*sin(theta_wbl+beta)-

cos(phi_pitch)*sin(phi_roll)*d_comwb))*phidot_pitch + 

((sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))

*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb)*cos(theta_w

bl+beta)-

r*(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll)

)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*sin(theta_wbl+beta)-d_comwb*(-

sin(phi_yaw)*sin(phi_pitch)*cos(phi_roll)+cos(phi_yaw)*sin(phi_roll)))*



265 

 

phidot_roll + (((-r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos(de

lta_lr)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(be

ta))*sin(delta_lr)+cos(phi_roll)*sin(phi_pitch)*a_wb)*sin(phi_yaw)-

cos(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(d

elta_lr)+a_wb))*sin(theta_wbl+beta)+cos(theta_wbl+beta)*((-

r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta))*cos

(delta_lr)-r*(-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*sin(de

lta_lr)-

cos(phi_pitch)*a_wb)*sin(phi_yaw)+r*cos(phi_yaw)*sin(phi_roll)*(sin(bet

a)*cos(delta_lr)-cos(beta)*sin(delta_lr))))*thetadot_wbl +(((((-

cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_lr)+sin(delta_lr)*(cos(phi_roll)*si

n(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta)))*sin(phi_yaw)+sin(phi_roll)*cos(phi_yaw)*(sin

(beta)*cos(delta_lr)-cos(beta)*sin(delta_lr)))*cos(theta_wbl+beta)-

sin(theta_wbl+beta)*(((-

cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos(de

lta_lr)-

sin(delta_lr)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*co

s(beta)))*sin(phi_yaw)+sin(phi_roll)*cos(phi_yaw)*(sin(beta)*sin(delta_

lr)+cos(beta)*cos(delta_lr))))*r)*deltadot_lr - Ydot_lr; 

V(15,1)=(0)*Xdot_trans + (0)*Ydot_trans + (1)*Zdot_trans + 

(0)*phidot_yaw + 

((cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_

wb)*sin(phi_pitch)-cos(phi_pitch)*r*(sin(beta)*cos(delta_lr)-

cos(beta)*sin(delta_lr)))*cos(theta_wbl+beta)+(r*cos(phi_roll)*(sin(bet

a)*cos(delta_lr)-

cos(beta)*sin(delta_lr))*sin(phi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos

(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb))*sin(theta_wbl+beta)-

sin(phi_pitch)*sin(phi_roll)*d_comwb)*phidot_pitch + 

((sin(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(delta_lr)+a_

wb)*cos(theta_wbl+beta)+r*sin(phi_roll)*(sin(beta)*cos(delta_lr)-

cos(beta)*sin(delta_lr))*sin(theta_wbl+beta)+cos(phi_roll)*d_comwb)*cos

(phi_pitch))*phidot_roll + ((-r*cos(phi_roll)*(sin(beta)*cos(delta_lr)-

cos(beta)*sin(delta_lr))*cos(phi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos

(delta_lr)+r*sin(beta)*sin(delta_lr)+a_wb))*cos(theta_wbl+beta)+sin(the

ta_wbl+beta)*(cos(phi_roll)*(r*cos(beta)*cos(delta_lr)+r*sin(beta)*sin(

delta_lr)+a_wb)*cos(phi_pitch)+r*sin(phi_pitch)*(sin(beta)*cos(delta_lr

)-cos(beta)*sin(delta_lr))))*thetadot_wbl 

+(((cos(phi_roll)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr))*cos(phi_pitch)+sin(phi_pitch)*(sin(beta)*sin(d

elta_lr)+cos(beta)*cos(delta_lr)))*cos(theta_wbl+beta)+(cos(phi_roll)*(

sin(beta)*sin(delta_lr)+cos(beta)*cos(delta_lr))*cos(phi_pitch)-

sin(phi_pitch)*(cos(beta)*sin(delta_lr)-

sin(beta)*cos(delta_lr)))*sin(theta_wbl+beta))*r)*deltadot_lr - 

Zdot_lr; 

  

V(16,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + (-

sin(phi_yaw))*phidot_yaw + (cos(phi_yaw)*cos(phi_pitch))*phidot_pitch + 

(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*phidot_roll + 

(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*thetadot_wbl 



266 

 

+(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*deltadot_lr - wX_lr; 

V(17,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(cos(phi_yaw))*phidot_yaw + (sin(phi_yaw)*cos(phi_pitch))*phidot_pitch 

+ 

(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))*

phidot_roll + 

(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))*

thetadot_wbl 

+(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))

*deltadot_lr - wY_lr; 

V(18,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(0)*phidot_yaw + (-sin(phi_pitch))*phidot_pitch + 

(cos(phi_pitch)*sin(phi_roll))*phidot_roll + 

(cos(phi_pitch)*sin(phi_roll))*thetadot_wbl 

+(cos(phi_pitch)*sin(phi_roll))*deltadot_lr - wZ_lr; 

  

% Left front wheel eqtns 

V(19,1)=(1)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(((cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(be

ta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*sin(phi_yaw)-

cos(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*cos(-

theta_wbl+beta)+((r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*co

s(delta_lf))*sin(phi_pitch)-cos(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*sin(phi_yaw)-

r*cos(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(del

ta_lf)))*sin(-theta_wbl+beta)-

(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))*

d_comwb)*phidot_yaw + (-((cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*cos(phi_pitch)-

r*sin(phi_pitch)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*cos

(-

theta_wbl+beta)+(r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos

(delta_lf))*cos(phi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*sin(-theta_wbl+beta)-

cos(phi_pitch)*sin(phi_roll)*d_comwb)*cos(phi_yaw))*phidot_pitch + 

((cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*cos(-

theta_wbl+beta)+r*(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delt

a_lf))*sin(-

theta_wbl+beta)+d_comwb*(cos(phi_yaw)*sin(phi_pitch)*cos(phi_roll)+sin(

phi_yaw)*sin(phi_roll)))*phidot_roll + (((-

r*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos

(delta_lf)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*sin(delta_lf)-

cos(phi_roll)*sin(phi_pitch)*a_wb)*cos(phi_yaw)+sin(phi_yaw)*sin(phi_ro

ll)*(r*sin(beta)*sin(delta_lf)-r*cos(beta)*cos(delta_lf)-a_wb))*sin(-

theta_wbl+beta)+((r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_lf)+r*(cos(phi_roll)*sin(phi_pitch)

*cos(beta)+cos(phi_pitch)*sin(beta))*sin(delta_lf)-

cos(phi_pitch)*a_wb)*cos(phi_yaw)+r*sin(phi_yaw)*sin(phi_roll)*(cos(bet



267 

 

a)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*cos(-

theta_wbl+beta))*thetadot_wbl 

+(((((cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_lf)+sin(delta_lf)*(cos(phi_roll)*si

n(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta)))*cos(phi_yaw)+sin(phi_

yaw)*sin(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*c

os(-theta_wbl+beta)-sin(-

theta_wbl+beta)*(((cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch

)*sin(beta))*cos(delta_lf)-

sin(delta_lf)*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta)))*cos(phi_yaw)+sin(phi_yaw)*sin(phi_roll)*(cos

(beta)*cos(delta_lf)-sin(beta)*sin(delta_lf))))*r)*deltadot_lf - 

Xdot_lf; 

V(20,1)=(0)*Xdot_trans + (1)*Ydot_trans + (0)*Zdot_trans + (((-

cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*sin(phi_pitch)-

r*cos(phi_pitch)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*cos

(phi_yaw)-sin(phi_yaw)*sin(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*cos(-theta_wbl+beta)+((-

r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*sin(p

hi_pitch)+cos(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*cos(phi_yaw)-

r*sin(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(del

ta_lf)))*sin(-

theta_wbl+beta)+(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*d_comwb)*phidot_yaw + (-

((cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*cos(phi_pitch)-

r*sin(phi_pitch)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf)))*cos

(-

theta_wbl+beta)+(r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos

(delta_lf))*cos(phi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*sin(-theta_wbl+beta)-

cos(phi_pitch)*sin(phi_roll)*d_comwb)*sin(phi_yaw))*phidot_pitch + 

((sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))

*(r*cos(beta)*cos(delta_lf)-r*sin(beta)*sin(delta_lf)+a_wb)*cos(-

theta_wbl+beta)+r*(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_ya

w)*cos(phi_roll))*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*sin

(-theta_wbl+beta)-d_comwb*(-

sin(phi_yaw)*sin(phi_pitch)*cos(phi_roll)+cos(phi_yaw)*sin(phi_roll)))*

phidot_roll + (((-

r*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*cos

(delta_lf)+r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*sin(delta_lf)-

cos(phi_roll)*sin(phi_pitch)*a_wb)*sin(phi_yaw)-

cos(phi_yaw)*sin(phi_roll)*(r*sin(beta)*sin(delta_lf)-

r*cos(beta)*cos(delta_lf)-a_wb))*sin(-theta_wbl+beta)-cos(-

theta_wbl+beta)*((-r*(cos(phi_roll)*sin(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta))*cos(delta_lf)-

r*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*sin(beta))*sin

(delta_lf)+cos(phi_pitch)*a_wb)*sin(phi_yaw)+r*cos(phi_yaw)*sin(phi_rol

l)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))))*thetadot_wbl +(-

r*((((-

cos(phi_roll)*sin(phi_pitch)*sin(beta)+cos(phi_pitch)*cos(beta))*cos(de

lta_lf)-



268 

 

sin(delta_lf)*(cos(phi_roll)*sin(phi_pitch)*cos(beta)+cos(phi_pitch)*si

n(beta)))*sin(phi_yaw)+cos(phi_yaw)*sin(phi_roll)*(cos(beta)*sin(delta_

lf)+sin(beta)*cos(delta_lf)))*cos(-theta_wbl+beta)-sin(-

theta_wbl+beta)*(((-cos(phi_roll)*sin(phi_pitch)*cos(beta)-

cos(phi_pitch)*sin(beta))*cos(delta_lf)+sin(delta_lf)*(cos(phi_roll)*si

n(phi_pitch)*sin(beta)-

cos(phi_pitch)*cos(beta)))*sin(phi_yaw)+cos(phi_yaw)*sin(phi_roll)*(cos

(beta)*cos(delta_lf)-sin(beta)*sin(delta_lf)))))*deltadot_lf - Ydot_lf; 

V(21,1)=(0)*Xdot_trans + (0)*Ydot_trans + (1)*Zdot_trans + 

(0)*phidot_yaw + ((-cos(phi_roll)*(r*sin(beta)*sin(delta_lf)-

r*cos(beta)*cos(delta_lf)-

a_wb)*sin(phi_pitch)+r*cos(phi_pitch)*(cos(beta)*sin(delta_lf)+sin(beta

)*cos(delta_lf)))*cos(-

theta_wbl+beta)+(r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos

(delta_lf))*sin(phi_pitch)+cos(phi_pitch)*(r*sin(beta)*sin(delta_lf)-

r*cos(beta)*cos(delta_lf)-a_wb))*sin(-theta_wbl+beta)-

sin(phi_pitch)*sin(phi_roll)*d_comwb)*phidot_pitch + ((-

sin(phi_roll)*(r*sin(beta)*sin(delta_lf)-r*cos(beta)*cos(delta_lf)-

a_wb)*cos(-

theta_wbl+beta)+r*sin(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(

delta_lf))*sin(-

theta_wbl+beta)+cos(phi_roll)*d_comwb)*cos(phi_pitch))*phidot_roll + 

((r*cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*cos

(phi_pitch)+sin(phi_pitch)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb))*cos(-theta_wbl+beta)-sin(-

theta_wbl+beta)*(cos(phi_roll)*(r*cos(beta)*cos(delta_lf)-

r*sin(beta)*sin(delta_lf)+a_wb)*cos(phi_pitch)-

r*sin(phi_pitch)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))))*th

etadot_wbl 

+(r*((cos(phi_roll)*(cos(beta)*sin(delta_lf)+sin(beta)*cos(delta_lf))*c

os(phi_pitch)-sin(phi_pitch)*(sin(beta)*sin(delta_lf)-

cos(beta)*cos(delta_lf)))*cos(-theta_wbl+beta)+sin(-

theta_wbl+beta)*(cos(phi_roll)*(sin(beta)*sin(delta_lf)-

cos(beta)*cos(delta_lf))*cos(phi_pitch)+sin(phi_pitch)*(cos(beta)*sin(d

elta_lf)+sin(beta)*cos(delta_lf)))))*deltadot_lf - Zdot_lf; 

  

V(22,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + (-

sin(phi_yaw))*phidot_yaw + (cos(phi_yaw)*cos(phi_pitch))*phidot_pitch + 

(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*phidot_roll + 

(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*thetadot_wbl 

+(cos(phi_yaw)*sin(phi_pitch)*sin(phi_roll)-

sin(phi_yaw)*cos(phi_roll))*deltadot_lf - wX_lf; 

V(23,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(cos(phi_yaw))*phidot_yaw + (sin(phi_yaw)*cos(phi_pitch))*phidot_pitch 

+ 

(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))*

phidot_roll + 

(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))*

thetadot_wbl 

+(sin(phi_yaw)*sin(phi_pitch)*sin(phi_roll)+cos(phi_yaw)*cos(phi_roll))

*deltadot_lf - wY_lf; 

V(24,1)=(0)*Xdot_trans + (0)*Ydot_trans + (0)*Zdot_trans + 

(0)*phidot_yaw + (-sin(phi_pitch))*phidot_pitch + 



269 

 

(cos(phi_pitch)*sin(phi_roll))*phidot_roll + 

(cos(phi_pitch)*sin(phi_roll))*thetadot_wbl 

+(cos(phi_pitch)*sin(phi_roll))*deltadot_lf - wZ_lf; 

  

End 

 

 

  



270 

 

 

C.6 Additional Results – 3D Position Kinematic Analysis 

Case 2: Uphill Sloped Terrain 

 

 

Figure C.1: Uphill 15o inclined terrain digital elevation map. 

 

Figure C.2: Walking beam pitch vs distance travelled (15⁰ Incline). 



271 

 

 

 

 

Figure C.3: Chassis orientation angles with respect to distance travelled (15⁰ incline). 

  



272 

 

C.7 Additional Results – 3D Velocity Kinematic Analysis 

 

Case 1: Flat Terrain 

I. No-Slip 

 

 
Figure C.4:  Chassis angles vs time (flat terrain), for slip, i=0. 

 

 

 
Figure C.5:  Chassis angle rates vs time (flat terrain), for slip, i=0. 



273 

 

 

Figure C.6:  Walking beam pitch vs distance (flat terrain), for slip, i=0. 

 

 

 

Figure C.7:  Walking beam pitch rates vs time (flat terrain), for slip, i=0. 



274 

 

 

Figure C.8:  Displacement vs time (flat terrain), for slip, i=0. 

 

 

 

Figure C.9:  Rover translational velocities vs time (flat terrain), for slip, i=0. 

 

  



275 

 

 

II. 0.05 Slip 

 

 
Figure C.10:  Chassis angles vs time (flat terrain), for slip, i=0.05. 

 

 

 

 
Figure C.11:  Chassis angle rates vs time (flat terrain), for slip, i=0.05. 



276 

 

 

Figure C.12:  Walking beam pitch vs distance (flat terrain), for slip, i=0.05. 

 

 

 

Figure C.13:  Walking beam pitch rates vs time (flat terrain), for slip, i=0.05. 



277 

 

 

Figure C.14:  Displacement vs time (flat terrain), for slip, i=0.05. 

 

 

 

Figure C.15:  Rover translational velocities vs time (flat terrain), for slip, i=0.05 

 

  



278 

 

III. 0.1 Slip 

 

 

Figure C.16:  Chassis angles vs time (flat terrain), for slip, i=0.1. 

 

 

 

Figure C.17:  Chassis angle rates vs time (flat terrain), for slip, i=0.1. 



279 

 

 

Figure C.18:  Walking beam pitch vs distance (flat terrain), for slip, i=0.1. 

 

 

 

Figure C.19:  Walking beam pitch rates vs time (flat terrain), for slip, i=0.1. 



280 

 

 

Figure C.20:  Displacement vs time (flat terrain), for slip, i=0.1. 

 

 

 

Figure C.21:  Rover translational velocities vs time (flat terrain), for slip, i=0.1. 

 

  



281 

 

IV. 0.25 Slip 

 

 

 
Figure C.22:  Chassis angles vs time (flat terrain), for slip, i=0.25. 

 

 

 

 

 

 
Figure C.23:  Chassis angle rates vs time (flat terrain), for slip, i=0.25. 



282 

 

 

Figure C.24:  Walking beam pitch vs distance (flat terrain), for slip, i=0.25. 

 

 

 

Figure C.25:  Walking beam pitch rates vs time (flat terrain), for slip, i=0.25. 



283 

 

 

Figure C.26:  Displacement vs time (flat terrain), for slip, i=0.25. 

 

 

 

Figure C.27:  Rover translational velocities vs time (flat terrain), for slip, i=0.25. 

 

  



284 

 

 

V. 0.5 Slip 

 

 

 
Figure C.28:  Chassis angles vs time (flat terrain), for slip, i=0.5. 

 

 

 

 

 
Figure C.29:  Chassis angle rates vs time (flat terrain), for slip, i=0.5. 



285 

 

 

Figure C.30:  Walking beam pitch vs distance (flat terrain), for slip, i=0.5. 

 

 

 

Figure C.31:  Walking beam pitch rates vs time (flat terrain), for slip, i=0.5. 



286 

 

 

Figure C.32:  Displacement vs time (flat terrain), for slip, i=0.5. 

 

 

 

Figure C.33:  Rover translational velocities vs time (flat terrain), for slip, i=0.5. 

 

 

 

  



287 

 

Case 2: Uphill Sloped Terrain (10o) 

I. No-Slip 

 

 

 
Figure C.34:  Chassis angles vs time (10o incline), for slip, i=0. 

 

 

 

 

 
Figure C.35:  Chassis angle rates vs time (10o incline), for slip, i=0. 



288 

 

 

Figure C.36:  Walking beam pitch vs distance (10o incline), for slip, i=0. 

 

 

 

Figure C.37:  Walking beam pitch rates vs time (10o incline), for slip, i=0. 



289 

 

 

Figure C.38:  Displacement vs time (10o incline), for slip, i=0. 

 

 

 

Figure C.39:  Rover translational velocities vs time (10o incline), for slip, i=0. 

 

  



290 

 

 

II. 0.05 Slip 

 

 

 
Figure C.40:  Chassis angles vs time (10o incline), for slip, i=0.05. 

 

 

 

 

 
Figure C.41:  Chassis angle rates vs time (10o incline), for slip, i=0.05. 



291 

 

 

Figure C.42:  Walking beam pitch vs distance (10o incline), for slip, i=0.05. 

 

 

 

Figure C.43:  Walking beam pitch rates vs time (10o incline), for slip, i=0.05. 

 

 

 



292 

 

 

Figure C.44:  Displacement vs time (10o incline), for slip, i=0.05. 

 

 

 

 

Figure C.45:  Rover translational velocities vs time (10o incline), for slip, i=0.05 

 

  



293 

 

 

III. 0.1 Slip 

 

 

 
Figure C.46:  Chassis angles vs time (10o incline), for slip, i=0.1. 

 

 

 

 

 
Figure C.47:  Chassis angle rates vs time (10o incline), for slip, i=0.1. 



294 

 

 

Figure C.48:  Walking beam pitch vs distance (10o incline), for slip, i=0.1. 

 

 

 

Figure C.49:  Walking beam pitch rates vs time (10o incline), for slip, i=0.1. 



295 

 

 

Figure C.50:  Displacement vs time (10o incline), for slip, i=0.1. 

 

 

 

Figure C.51:  Rover translational velocities vs time (10o incline), for slip, i=0.1. 

 

  



296 

 

 

IV. 0.25 Slip 

 

 

 
Figure C.52:  Chassis angles vs time (10o incline), for slip, i=0.25. 

 

 

 

 

 

 
Figure C.53:  Chassis angle rates vs time (10o incline), for slip, i=0.25. 



297 

 

 

Figure C.54:  Walking beam pitch vs distance (10o incline), for slip, i=0.25. 

 

 

 

Figure C.55:  Walking beam pitch rates vs time (10o incline), for slip, i=0.25. 



298 

 

 

Figure C.56:  Displacement vs time (10o incline), for slip, i=0.25. 

 

 

 

Figure C.57:  Rover translational velocities vs time (10o incline), for slip, i=0.25. 

 

  



299 

 

 

V. 0.5 Slip 

 

 

 
Figure C.58:  Chassis angles vs time (10o incline), for slip, i=0.5. 

 

 

 

 

 
Figure C.59:  Chassis angle rates vs time (10o incline), for slip, i=0.5. 



300 

 

 

Figure C.60:  Walking beam pitch vs distance (10o incline), for slip, i=0.5. 

 

 

 

Figure C.61:  Walking beam pitch rates vs time (10o incline), for slip, i=0.5. 



301 

 

 

Figure C.62:  Displacement vs time (10o incline), for slip, i=0.5. 

 

 

 

Figure C.63:  Rover translational velocities vs time (10o incline), for slip, i=0.5. 

  



302 

 

Case 3: Side-slope Terrain (10o) 

I. No-Slip 

 

 

 
Figure C.64:  Chassis angles vs time (side-slope 10o), for slip, i=0. 

 

 

 

 

 

 
Figure C.65:  Chassis angle rates vs time (side-slope 10o), for slip, i=0. 



303 

 

 

Figure C.66:  Walking beam pitch vs distance (side-slope 10o), for slip, i=0. 

 

 

 

Figure C.67:  Walking beam pitch rates vs time (side-slope 10o), for slip, i=0. 



304 

 

 

Figure C.68:  Displacement vs time (side-slope 10o), for slip, i=0. 

 

 

 

Figure C.69:  Rover translational velocities vs time (side-slope 10o), for slip, i=0. 

 

 

  



305 

 

 

II. 0.05 Slip 

 

 

 
Figure C.70:  Chassis angles vs time (side-slope 10o), for slip, i=0.05. 

 

 

 

 

 

 
Figure C.71:  Chassis angle rates vs time (side-slope 10o), for slip, i=0.05. 



306 

 

 

Figure C.72:  Walking beam pitch vs distance (side-slope 10o), for slip, i=0.05. 

 

 

 

Figure C.73:  Walking beam pitch rates vs time (side-slope 10o), for slip, i=0.05. 



307 

 

 

Figure C.74:  Displacement vs time (side-slope 10o), for slip, i=0.05. 

 

 

 

Figure C.75:  Rover translational velocities vs time (side-slope 10o), for slip, i=0.05. 

 

  



308 

 

 

III. 0.1 Slip 

 

 

 
Figure C.76:  Chassis angles vs time (side-slope 10o), for slip, i=0.1. 

 

 

 

 

 

 
Figure C.77:  Chassis angle rates vs time (side-slope 10o), for slip, i=0.1. 



309 

 

 

Figure C.78:  Walking beam pitch vs distance (side-slope 10o), for slip, i=0.1. 

 

 

 

Figure C.79:  Walking beam pitch rates vs time (side-slope 10o), for slip, i=0.1. 



310 

 

 

Figure C.80:  Displacement vs time (side-slope 10o), for slip, i=0.1. 

 

 

 

Figure C.81:  Rover translational velocities vs time (side-slope 10o), for slip, i=0.1. 

 

  



311 

 

 

IV. 0.25 Slip 

 

 

 
Figure C.82:  Chassis angles vs time (side-slope 10o), for slip, i=0.25. 

 

 

 

 

 

 

 
Figure C.83:  Chassis angle rates vs time (side-slope 10o), for slip, i=0.25. 



312 

 

 

Figure C.84:  Walking beam pitch vs distance (side-slope 10o), for slip, i=0.25. 

 

 

 

Figure C.85:  Walking beam pitch rates vs time (side-slope 10o), for slip, i=0.25. 



313 

 

 

Figure C.86:  Displacement vs time (side-slope 10o), for slip, i=0.25. 

 

 

 

Figure C.87:  Rover translational velocities vs time (side-slope 10o), for slip, i=0.25. 

 

  



314 

 

 

V. 0.5 Slip 

 

 

 
Figure C.88:  Chassis angles vs time (side-slope 10o), for slip, i=0.5. 

 

 

 

 

 

 
Figure C.89:  Chassis angle rates vs time (side-slope 10o), for slip, i=0.5. 



315 

 

 

Figure C.90:  Walking beam pitch vs distance (side-slope 10o), for slip, i=0.5. 

 

 

 

Figure C.91:  Walking beam pitch rates vs time (side-slope 10o), for slip, i=0.5. 



316 

 

 

Figure C.92:  Displacement vs time (side-slope 10o), for slip, i=0.5. 

 

 

 

Figure C.93:  Rover translational velocities vs time (side-slope 10o), for slip, i=0.5. 

  



317 

 

Case 4: Sinusoidal Terrain 

Sine function: z=0.4sin(0.4x) 

 

I. No-Slip 

 

 

 
Figure C.94:  Chassis angles vs time (sinusoidal terrain), for slip, i=0. 

 

 

 

 

 
Figure C.95:  Chassis angle rates vs time (sinusoidal terrain), for slip, i=0. 



318 

 

 

Figure C.96:  Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0. 

 

 

 

Figure C.97:  Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0. 



319 

 

 

Figure C.98:  Displacement vs time (sinusoidal terrain), for slip, i=0. 

 

 

 

Figure C.99:  Rover translational velocities vs time (sinusoidal terrain), for slip, i=0. 

 

  



320 

 

 

II. 0.05 Slip 

 

 

 
Figure C.100:  Chassis angles vs time (sinusoidal terrain), for slip, i=0.05. 

 

 

 

 

 

 

 
Figure C.101:  Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.05. 



321 

 

 

Figure C.102:  Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.05. 

 

 

 

Figure C.103:  Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.05. 



322 

 

 

Figure C.104:  Displacement vs time (sinusoidal terrain), for slip, i=0.05. 

 

 

 

Figure C.105:  Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.05. 

 

  



323 

 

 

III. 0.1 Slip 

 

 

 
Figure C.106:  Chassis angles vs time (sinusoidal terrain), for slip, i=0.1. 

 

 

 

 

 

 
Figure C.107:  Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.1. 



324 

 

 

Figure C.108:  Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.1. 

 

 

 

Figure C.109:  Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.1. 



325 

 

 

Figure C.110:  Displacement vs time (sinusoidal terrain), for slip, i=0.1. 

 

 

 

Figure C.111:  Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.1. 

 

  



326 

 

 

IV. 0.25 Slip 

 

 

 
Figure C.112:  Chassis angles vs time (sinusoidal terrain), for slip, i=0.25. 

 

 

 

 

 

 
Figure C.113:  Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.25. 



327 

 

 

Figure C.114:  Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.25. 

 

 

 

Figure C.115:  Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.25. 



328 

 

 

Figure C.116:  Displacement vs time (sinusoidal terrain), for slip, i=0.25. 

 

 

 

Figure C.117:  Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.25. 

  



329 

 

 

V. 0.5 Slip 

 

 

 
Figure C.118:  Chassis angles vs time (sinusoidal terrain), for slip, i=0.5.  

 

 

 

 

 

 
Figure C.119:  Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.5. 



330 

 

 

Figure C.120:  Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.5. 

 

 

 

Figure C.121:  Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.5. 



331 

 

 

Figure C.122:  Displacement vs time (sinusoidal terrain), for slip, i=0.5. 

 

 

 

Figure C.123:  Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.5. 

  



332 

 

C.8 Additional Results – 3D Velocity Kinematic Analysis 

A sample calculation for each percent deviation table is detailed below. 

 

I. Percent deviation of rover velocities with respect to the flat case. 

 

Using inclined (10o) terrain at 0.05 slip. 

 

Velocity analysis produces rover velocities for inclined terrain at 0.05 slip of: 

 

𝑉𝑥 = 0.1122
𝑚

𝑠
 

𝑉𝑧 = 0.0418
𝑚

𝑠
 

 

The corresponding flat terrain rover velocity at 0.05 slip is: 

 

𝑉𝑥,𝑓𝑙𝑎𝑡 = 0.1195
𝑚

𝑠
 

 

For comparison with the flat case, the resultant velocity for the inclined terrain 

is 

 

𝑉𝑟 = √(𝑉𝑥
2 + 𝑉𝑧

2)   

= √(0.1122
𝑚

𝑠
) 2 + (0.0418

𝑚

𝑠
) 2 

= 0.1197
𝑚

𝑠
 

 

Comparing with the rover velocity for flat terrain with 0.05 slip, yields 

 

 

%𝐷𝑒𝑣 =
𝑉𝑟 − 𝑉𝑥,𝑓𝑙𝑎𝑡

𝑉𝑥,𝑓𝑙𝑎𝑡
∗ 100 

=
0.1197

𝑚
𝑠 − 0.1195

𝑚
𝑠

0.1195
𝑚
𝑠

∗ 100 

= 0.20% 

  



333 

 

II. Percent deviation of rover axle velocities with respect to the flat case. 

 

Using inclined (10o) terrain at 0.05 slip. 

 

Velocity analysis produces rover axle velocities for inclined terrain at 0.05 

slip of: 

 

𝑉𝑥,𝑎𝑥𝑙𝑒 = 0.0936
𝑚

𝑠
 

𝑉𝑧,𝑎𝑥𝑙𝑒 = 0.0165
𝑚

𝑠
 

 

 

The corresponding flat terrain rover velocity at 0.05 slip is: 

 

𝑉𝑥,𝑓𝑙𝑎𝑡 𝑎𝑥𝑙𝑒 = 0.0950
𝑚

𝑠
 

 

For comparison with the flat case, the resultant velocity for the inclined terrain 

is 

 

𝑉𝑟,𝑎𝑥𝑙𝑒 = √(𝑉𝑥,𝑎𝑥𝑙𝑒
2 + 𝑉𝑧,𝑎𝑥𝑙𝑒

2 )   

= √(0.0936
𝑚

𝑠
) 2 + (0.0165

𝑚

𝑠
) 2 

= 0.09504
𝑚

𝑠
 

 

Comparing with the rover velocity for flat terrain with 0.05 slip, yields 

%𝐷𝑒𝑣 =
𝑉𝑟,𝑎𝑥𝑙𝑒 − 𝑉𝑥,𝑓𝑙𝑎𝑡 𝑎𝑥𝑙𝑒

𝑉𝑥,𝑓𝑙𝑎𝑡 𝑎𝑥𝑙𝑒
∗ 100 

=
0.09504

𝑚
𝑠 − 0.0950

𝑚
𝑠

0.0950
𝑚
𝑠

∗ 100 

= 0.05% 

 

  



334 

 

III. Percent deviation of rover displacement with respect to the flat case. 

 

Using inclined (10o) terrain at 0.05 slip. 

 

Velocity analysis produces rover displacement for inclined terrain at 0.05 slip 

of: 

𝑋 = 6.8439 𝑚 

𝑍 = 1.2000 𝑚 

 

The corresponding flat terrain rover displacement at 0.05 slip is: 

 

𝑋𝑓𝑙𝑎𝑡 = 6.9494 𝑚 

 

For comparison with the flat case, the resultant velocity for the inclined terrain 

is 

𝐷𝑟 = √(𝑋2 + 𝑍2)   

= √(6.8439 𝑚) 2 + (1.2000 𝑚) 2 

= 6.9483 𝑚 

 

Comparing with the rover velocity for flat terrain with 0.05 slip, yields 

%𝐷𝑒𝑣 =
𝐷𝑟 − 𝑋𝑓𝑙𝑎𝑡

𝑋𝑓𝑙𝑎𝑡
∗ 100 

=
6.9483 𝑚 − 6.9494 𝑚

6.9494 𝑚
∗ 100 

= −0.020% 

  



335 

 

 

IV. Percent deviation of rover velocity from expected/commanded velocity. 

For flat terrain (i = 0):  

𝑉𝑥,𝑓𝑙𝑎𝑡 = 0.1245
𝑚

𝑠
 

Commanded velocity:  

𝜔𝑟 = 0.1000 𝑚/𝑠 

Percent Deviation:  

%𝐷𝑒𝑣 = 24.5% 

 

  



336 

 

C.9 Sample Terrain Maps 

 

Sample terrain maps are attached for each of the four basic terrain cases for a 

value of no-slip. It should be noted that to generate the maps for other slip values, one 

simply updates the value in the slip column at the appropriate locations for the given 

terrain. Also, these terrain maps include extra columns where the expected values were 

manually determined and inserted as a means for checking the first simulations. 

 



337 

 

  

T
ab

le
 C

.5
: F

la
t t

er
ra

in
 m

ap
 –

 n
o 

sl
ip

. 



338 

 

  

T
ab

le
 C

.6
: I

nc
lin

ed
 te

rr
ai

n 
(1

0o )
 m

ap
 –

 n
o 

sli
p.

 



339 

 

  

T
ab

le
 C

.7
: S

id
e 

sl
op

e 
te

rr
ai

n 
(1

0o )
 m

ap
 –

 n
o 

sli
p.

 



340 

 

  

T
ab

le
 C

.8
: S

in
us

oi
da

l t
er

ra
in

 m
ap

 –
 n

o 
sli

p.
 



341 

 

 

Appendix D  - Dynamic Analysis and Data 

 

This appendix contains the La Grange formulation along with additional results from 

preliminary analysis. 

  



342 

 

D.1 La Grange Formulation 

 

The dynamics of the rover are developed in terms of the position and time 

derivatives of its joint angles as [65] illustrated by Equation 5.1 in its torque form. 

 

𝜏 = 𝐽𝑇(𝑞) [𝑀𝑋(𝑞)𝑋̈   +   𝑉𝑋(𝑞, 𝑞̇) + 𝐺𝑋(𝑞)]    (5.1) 

 

Examination of Equation 5.1 reveals the different components of a dynamic analysis, 

with 𝐽𝑇(𝑞) being the transpose of the Jacobian, which is dependent on the joint 

displacements and displacement rates, given here as 𝑞 and 𝑞̇. 𝑀𝑋(𝑞) represents the mass 

matrix with respect to the x coordinate in the world frame and is multiplied by the 

acceleration column vector, 𝑋̈. The Coriolis and centrifugal effects are jointly represented 

by 𝑉𝑋(𝑞, 𝑞̇), whereas the contributions from gravity are given by 𝐺𝑋(𝑞). However, it can 

also be used in the expanded version as Equation 5.2, with specific matrices for the 

Coriolis and Centrifugal coefficients, given by 𝐵𝑋(𝑞) and 𝐶𝑋(𝑞̇), respectively. 

 

𝜏 = 𝐽𝑇(𝑞) [𝐽−𝑇(𝑞) 𝑀(𝑞) 𝐽−1(𝑞)]𝑋̈   +    𝐵𝑋(𝑞)[𝑞̇ 𝑞̇]   +     𝐶𝑋(𝑞̇)[𝑞̇]2   +   𝐺(𝑞)     (5.2) 

 

The two new vectors, [𝑞̇ 𝑞̇]  and [𝑞̇]2  are vectors of joint velocity products and joint 

velocity, and are defined as follows:  

 

[𝑞̇ 𝑞̇] = [𝑞̇1𝑞̇2 𝑞̇2𝑞̇3 … 𝑞̇𝑛−1𝑞̇𝑛]    (5.3) 



343 

 

[𝑞̇]2  = [𝑞̇1
2 𝑞̇2

2 … 𝑞̇𝑛
2]     (5.4) 

 

 The dynamic torque equation can be derived using either the La Grange or 

Newton-Euler method from which the above equations are formed by grouping the 

derived terms (ie. group the acceleration terms, group the displacement terms, etc). The 

La Grange method, as the name implies, requires that the Lagrangian of the system be 

determined and is often referred to as an energy method [67], the Lagrangian being the 

difference between the kinetic and potential energy of the system. Not only is this method 

built around the concept of energy, it is also advantageous since the inertia parameters 

have linearity, along with skew symmetry and passivity characteristics exhibited by the 

inertia matrix [67]. These features make this method more suited for application in 

feedback control, if one desires to take the work in that direction. It also allows for 

deformation to be modeled in this approach. The Newton-Euler method, on the other 

hand, has its basis in Newton’s 2nd law and, as such the formulation is compiled through 

the forces and moments which dynamically describe the system. Unlike the La Grange 

method, the links in the Newton-Euler method are all individually analysed for force and 

torque balance, from which the resulting equations must be recursively solved. This 

involves first determining joint poses, initial velocities and accelerations which enable the 

forces and moments to be computed from the resulting angular velocity and accelerations 

plus the linear acceleration. 

 

 For the work presented in this thesis, the La Grange method was selected for its 

advantages and considering the complexity of the system (rover) to be analysed. 



344 

 

Additionally, the La Grange method is more flexible in allowing the user to choose the 

generalised coordinates and doesn’t require all the constraint forces to be accounted for, 

which is especially convenient when the problem has a multitude of constraints [67]. As 

such, it tends to be more commonly used in multibody dynamic platforms. 

 

 In applying the La Grange method, the equation for torque becomes that of 

Equation 5.5, wherein the torque can be computed as the difference of the time derivative 

of the partial derivative of the Lagrangian with respect to joint velocity rates and the 

partial derivative of the Lagrangian with respect to joint displacements. 

 

𝜏𝑖 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) − 

𝜕𝐿

𝜕𝑞𝑖
     (5.5) 

 

As shown by Equation 5.5, to obtain the desired equation for torque, the Lagrangian must 

be computed. It can also be observed that to obtain Equation 5.5, it is required to have the 

complete pose (joint displacements) along with the joint rates from an earlier kinematic 

analysis. For this work, both of those were derived and computed in Chapter 4. The next 

piece to compute is that of the Lagrangian, for which the formula is given by Equation 

5.6. 

 

𝐿 = ∑ (𝐾𝑗 − 𝑃𝑗)𝑛
𝑗=1      (5.6) 

 



345 

 

Equation 5.6 confirms the definition of the Lagrangian as the sum of the differences in 

kinetic (K) and potential energy (P) as one goes through the kinematic pairs of the 

system.  

 

 Beginning with the potential energy term, P, it can be defined in Equation 5.7. 

 

𝑃𝑗 = 𝑚𝑗𝑔𝑧𝑗      (5.7) 

 

Following the standard definition, potential energy is dependent on the vertical 

displacement, 𝑧,  experienced by an object of weight 𝑚𝑗𝑔. Note that the displacement 

variable depends upon the chosen world coordinate frame definition – whichever 

direction corresponds to the vertical displacement is chosen and care is taken to note the 

direction of gravity. For the system presented in Chapter 4, the component will remain to 

be 𝑧 with the datum at the world origin frame. These z components were found by 

concatenating the homogeneous transform (T) matrices from the world reference frame to 

each particular link, and extracting the cell [3, 4] from the resultant matrix. For example, 

to obtain the z component of the chassis centre, the concatenation of matrices is as 

follows in Equation 5.8.  

 

𝑇6
𝑊 = 𝑇0

𝑊𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇6

5    (5.8) 

= [

− c 𝜑𝑦 s 𝜑𝑝 𝑐𝜑𝑟 − s 𝜑𝑦 s 𝜑𝑟 𝑐𝜑𝑦𝑐𝜑𝑝 − c 𝜑𝑦 s 𝜑𝑝 𝑠𝜑𝑟 + 𝑠𝜑𝑦𝑐𝜑𝑟 𝑋𝑡𝑟𝑎𝑛𝑠

−𝑠𝜑𝑦 s 𝜑𝑝𝑐𝜑𝑟 + 𝑐𝜑𝑦 s 𝜑𝑟 𝑠𝜑𝑦𝑐𝜑𝑝 − s 𝜑𝑦 s 𝜑𝑝 𝑠𝜑𝑟 − 𝑐𝜑𝑦𝑐𝜑𝑟 𝑌𝑡𝑟𝑎𝑛𝑠

−𝑐𝜑𝑝𝑐𝜑𝑟 −𝑠𝜑𝑝 −𝑐𝜑𝑝 s 𝜑𝑟 𝑍𝑡𝑟𝑎𝑛𝑠 + ݄𝐶𝑜𝐺

0 0 0 1

] 



346 

 

 

All symbolic multiplication was performed in Maple. Following the procedure mentioned 

above, the z component for the chassis centre is extracted as cell [3, 4] from Equation 5.8 

and yields Equation 5.9. 

 

𝑧𝑐ℎ𝑎𝑠 = 𝑍𝑡𝑟𝑎𝑛𝑠 + ݄𝐶𝑜𝐺    (5.9) 

 

Therefore, the potential energy is 

 

𝑃𝑐ℎ𝑎𝑠 = 𝑚𝑐ℎ𝑎𝑠𝑔(𝑍𝑡𝑟𝑎𝑛𝑠 + ݄𝐶𝑜𝐺)     (5.10) 

 

Having generated the kinematic models, the required z components and subsequent 

potential energy terms are fairly easily obtained.  

 

 Next, the kinetic energy of each link is determined. Similar to the potential 

energy, it follows the basic definition as Equation 5.11 [67]. 

 

𝐾𝑗 =
1

2
𝑚𝑗(𝑣⃗1 ∙ 𝑣⃗1)2 =

1

2
𝑚𝑗(𝑥̇𝑗

2 + 𝑦̇𝑗
2 + 𝑧̇𝑗

2)     (5.11) 

 

With Equation 5.11, mass is easily determined, with the velocity components of the end 

effector obtained from velocity Jacobians or computing the derivative of the position 

equations.  Although Equation 5.11 appears in the majority of textbooks and sample 



347 

 

problems, its popularity is due to the majority of problems applied being those that can be 

treated as a point mass. While Equation 5.11 is applicable to simple mechanisms (ie. 

pendulums), one cannot justify applying it to a large four-wheel rover, where the inertia 

will have an impact on the motion of the system. As such, the kinetic energy equation is 

modified to account for inertia, as detailed in Equation 5.12. 

 

𝐾 =
1

2
𝑞̇𝑇 ∑ [𝑚𝑗𝐽𝑣,𝑗

𝑇 (𝑞)𝐽𝑣,𝑗(𝑞) + 𝐽𝜔,𝑗
𝑇 (𝑞)𝑅𝑗(𝑞)𝐼𝑗𝑅𝑗

𝑇(𝑞)𝐽𝜔,𝑗(𝑞)]𝑞̇𝑛
𝑗   (5.12) 

𝐾 =
1

2
𝑞̇𝑇𝐷(𝑞)𝑞̇ 

 

𝐷(𝑞) is also referred to as the inertia matrix. Attempts were made to obtain the kinetic 

energy terms, however the complexity of the rover meant that many assumptions were 

made to grossly simplify it, but the terms still were difficult to obtain. After some 

investigation, it was decided to drop this line of pursuit due to the level of effort required, 

and because the solution obtained would not be accurate. This rationale is why most 

companies opt to use some form of multibody software because it’s not only accurate, but 

easier to use. Based upon recommendations, it was decided to use a different approach to 

generate a dynamic model.  The decision made was to use SimMechanics as described in 

the next section; however, it is still important to go through La Grange derivation of the 

dynamic equation, as this is still applicable as the basis of the multibody physics 

platforms. 

 

 



348 

 

D.2 Additional Terramechanics Runs and Simulation Results 

 

It should be noted that prior to running the single wheel terramechanics model of Irani et 

al [37], the model was run for the different cases and modifications using the original 

model parameters, to serve as a guideline for the trends and expected results. 

 

D.1.1 Unmodified Terramechanics Model Results 

 

Case: Single Wheel Mass (15 kg) 

 

 

Figure D.1: Unmodified terramechanics single wheel model results for i =0.003. 



349 

 

 

Figure D.2: Unmodified terramechanics single wheel model results for i =0.05. 

 

 

 

Figure D.3: Unmodified terramechanics single wheel model results for i =0.1. 



350 

 

 

Figure D.4: Unmodified terramechanics single wheel model results for i =0.25. 

 

 

 

Figure D.5: Unmodified terramechanics single wheel model results for i =0.5 

 

 



351 

 

Case: Single Wheel with ¼ Rover Mass (~115 kg) 

 

Figure D.6: Unmodified terramechanics single wheel model results for i =0.003. 

 

 

Figure D.7: Unmodified terramechanics single wheel model results for i =0.05. 

 



352 

 

 

Figure D.8: Unmodified terramechanics single wheel model results for i =0.1. 

 

 

Figure D.9: Unmodified terramechanics single wheel model results for i =0.25. 

 



353 

 

 

Figure D.10: Unmodified terramechanics single wheel model results for i =0.5 

 

 

 

  



354 

 

D.1.2 Modified Terramechanics Model Results 

 

Case: Single Wheel Mass (15 kg) 

 

Figure D.11: Modified terramechanics single wheel model results for i =0.003. 

 

 

Figure D.12: Modified terramechanics single wheel model results for i =0.05. 



355 

 

 

 

Figure D.13: Modified terramechanics single wheel model results for i =0.1. 

 

 

Figure D.14: Modified terramechanics single wheel model results for i =0.25. 

 



356 

 

 

Figure D.15: Modified terramechanics single wheel model results for i =0.5 

 

 

Case: Single Wheel with ¼ Rover Mass (~115 kg) 

 

 

Figure D.16: Modified terramechanics single wheel model results for i =0.003. 

 



357 

 

 

Figure D.17: Modified terramechanics single wheel model results for i =0.05. 

 

 

Figure D.18: Modified terramechanics single wheel model results for i =0.1. 

 



358 

 

 

Figure D.19: Modified terramechanics single wheel model results for i =0.25. 

 

 

Figure D.20: Modified terramechanics single wheel model results for i =0.5 

 

 


