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Abstract

Planetary exploration rovers are the most efficient means of off-world surface
exploration. As mobile laboratories, they are used to perform various experiments and
gather data semi-autonomously from remote extraterrestrial environments, both for
planetary science and assessing conditions in preparation for human exploration. To
accomplish the mission and access sites of scientific interest, the rover must be able to
traverse various types of unstructured terrain without becoming embedded or succumbing
to other hazards. Modelling of the rover is essential to understand how the rover interacts
with its environment and how to select the best path. This thesis presents the
development of three-dimensional kinematic and dynamic models, using MATLAB and
SimMechanics, describing the Argo J5 four-wheel rover, in response to terrain elevation
inputs and slip. The kinematic models describe the pose and velocity of the rover using
the Denavit-Hartenberg convention, while the SimMechanics dynamic model is
combined with a terramechanics model to develop accelerations and obtain the forces and
torques, based on terrain properties. The kinematic analyses were performed for
simulated traverses including cases of flat, inclined, side slope, and sinusoidal terrain,
with varying amounts of slip in the velocity analysis. The results showed good agreement
with expected trends and values for the joint displacements and rates, with the largest
percent deviation for the distance travelled being approximately 0.4 %. The results of the
combined dynamic and terramechanics model, incorporating slip, are limited to the
conceptual development of the model due to time constraints, and are thus inconclusive at

this time.
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Dedication

“Remember to look up at the stars and not down at your feet. Try to make sense of what
you see and wonder about what makes the universe exist. Be curious. And however
difficult life may seem, there is always something you can do and succeed at.

It matters that you don't just give up.”

Dr. Stephen Hawking
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Statement of Original Contributions

The key contributions of the research shown in this thesis are:

1. A three-dimensional kinematic model of the Argo J5 rover.

2. A conceptual three-dimensional dynamic model combined with a wheel-soil

interaction model (terramechanics) for the Argo J5 rover.
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Chapter 1: Introduction

This thesis is an investigation of the issue of traversability facing exo-planet
rovers and the means and methods available to address it. For a particular rover, the
Argo J5, a number of approaches were attempted in pursuit of developing kinematic and
dynamic models to assist in path planning, but also to assess the capabilities and
limitations of this particular rover under varying terrain conditions. The need for the

work presented herein is revealed in the greater context of extraterrestrial exploration.

In humanity’s ongoing quest to reach out into space, planetary exploration rovers
remain the most efficient and feasible means of exploring the surface of other bodies in
our solar system. Satellites, while they have the potential to cost less, are limited mainly
to mapping and imaging missions, like the Odyssey Orbiter mission [1]. Although highly
useful in obtaining planet-wide data, they are limited to the resolution of their payload
and cannot perform in-situ measurements. Landers such as the Phoenix Mars Lander [2],
and more recently InSight [3], are also valuable tools of surface exploration and in-situ
data collection but are limited to the location in which they land and their physical reach.
Although the eventual goal is to place humans on Mars and other bodies in our solar
system, it’s more expensive to send humans into space, as it requires more fuel and
infrastructure. In addition, the risk to human lives is much greater. Planetary rovers have
the capability to travel between multiple sites of scientific interest without the limitations
of the human body and can go where humans can’t easily access while carrying various

scientific payloads and instrumentation. Subsequently, rovers can improve the chances of
1



success for the preparation and execution of a human mission. However, it should be
noted that drones are an increasing opportunity as there are plans to send one to Mars [4]
and NASA has recently announced a return to Saturn’s moon, Titan [5], with the

Dragonfly mission to take samples and measurements of both surface and atmosphere.

Planetary rovers are the most popular means of surface exploration, contingent
upon them being able to operate in remote and challenging environments. If
traversability or mobility is limited, a rover can be prevented from achieving its goal and
possibly realizing a mission critical failure. In order to get a sense of the complexity and
importance of traversability of planetary rovers, we need to examine the challenging

conditions they may face.

1.1 Martian Environment

One of the fundamental questions driving human exploration of space is to
determine whether life is unique to Earth. Naturally, we look to our closest neighbours in
our solar system for new insights: our Moon, Venus, Mars, Galilean moons, etc. Venus
and Mars are both terrestrial (rocky) inner planets, however Venus is too hot and volatile
to easily land a rover, with previous Russian landers lasting no more than two hours [6].
Mars is also relatively close, as the fourth planet from the Sun, and has potential not just
for water and the building blocks of life, but as a place to establish a human colony.

Smaller than Earth, with roughly 10% of Earth’s mass and 37.5% of Earth’s gravity,



Mars is the most similar planet to Earth since it has an atmosphere (albeit significantly
thinner), a Martian day (sol) comparable to Earth at 24 hours and 37 min, and has similar
weather phenomena such as dust storms, and seasons due to its axial tilt of 25.2° [7, 8].
Martian temperatures are known to vary between daytime highs and lows by about 70°C
in winter and 100°C in summer (on average) dependent upon location. Planetary
observations have provided surface evidence of the existence of water by water-cut
channels, along with water beneath the polar ice deposits and glaciers. These
observations were recently corroborated by Orosei et al’s analysis of radar profiles from

the Mars Express spacecraft [9].

However, for all the similarities between Earth and Mars and its relative
accessibility, it remains a challenging destination. Humans are unable to survive on Mars
without significant infrastructure and environmental suits due to conditions on the
surface, making a manned mission both high risk and expensive. In preparation for
sending humans to Mars, there have been many observation and planetary exploration
missions to gather and analyze planetary data. In addition to being safer and cheaper than
sending humans, rovers are able to traverse much of the Martian terrain to investigate
various scientific sites of interest and carry a suite of instruments. A significant challenge
of operating rovers on the Mars is that due to the vast distances between Earth and Mars
(which is variable depending on their orbital relationship), there is a significant time
delay or latency period between signals transmitted and received. On average, it takes a
transmission around 13 min to reach Mars, thus a roundtrip delay of 26 min [10, 11]. The

orbiter itself typically communicates with the rover for approximately 8 min at a time,



per sol. This time delay makes remote operation by direct control unfeasible, requiring all
planetary rovers to be semi-autonomous, which also enables more time to be dedicated to
rover operations such as driving to new targets or performing its mission. Mars has
received the most probes, from the Mariner satellites as the first to orbit and NASA’s
Viking mission with the first successful landers [12]. Sojourner was the first rover
successfully landed, followed by MERs Spirit and Opportunity, and with Curiosity
currently in operation. The European Space Agency’s Rosalind rover (formerly ExoMars

2020) and NASA’s Mars 2020 rover are scheduled for launch in the near future.

Operating a planetary rover in a widely varying terrain on a remote world has its
challenges. To be successful in its mission and access the various scientific regions of
interest, it is highly important to examine the rover, its traverse, and its ability to deal

with obstacles.

1.1.1 Obstacles

One of the more obvious challenges for a rover in traversing from point A to point
B, is that the shortest path generated is not always the best or has the shortest excursion
time or is safest. Often, there are obstacles in the way that either cannot be overcome, or
should not be attempted, such as Olympus Mons or the highly rippled dunes of recurring
slope lineae (RSL), that are seasonal and have very steep slopes. These are called
geometric obstacles which, as the name implies, are hazards that have significant volume
based on geometry, such as large boulders or crevasses. Such hazards can sometimes be

viewed from orbital imagery, but definitely through the rovers own visual sensors. As



such, most vision systems are quick to focus on geometric obstacles of the terrain and
spend most of their effort on avoiding them or minimising contact with them. These

features are commonly included in path planning algorithms [10].

However, there are other obstacles and challenges that are not as easily observed.
These become classified as non-geometric hazards that do not depend on their
dimensions. With regards to rover mobility, non-goemetric hazards are some of the major
challenges facing a rover, slip in particular. Slip is the condition where the wheel turns
but does not progress as much in the forward direction due to loss of traction. As such,
slip is harder to analyse from an overall satellite map, and thus requires additional
analysis to plan traverse. Slip has been a major challenge to the current and previous
rovers, with it severely limiting progress and even leading to mission critical events. Slip-
sinkage effect: wherein, on deformable terrain, as slip increases for a wheel, the
lessening of forward motion and increasing wheel spinning excavates the ground around
it [13]. An example of the slip-sinkage effect is shown in Figure 1.1, where the wheel
ends up excavating the terrain surrounding it and subsequently the wheel sinks and starts

to embed, making it very difficult to extract.



Figure 1.1: Testbed wheel beginning to sink and embed [15].

If the sinkage becomes significant enough to have embedding, the rover mission could
fail. Spirit experienced significant slip-sinkage and embedding, which was made worse
when one of its wheels failed and ended up being dragged. This failure ultimately
terminated the mission when it became embedded and couldn’t be extricated [15]. Figure

1.2 shows a picture taken by Spirit of its embedded wheel.



Figure 1.2: Spirit’s embedded wheel (courtesy NASA/JPL).

1.1.2 Terrain Types

In order to reach science targets and gather data, the planetary rover must be
capable of traversing the Martian terrain. Mars is a rocky body, with mountainous and
heavily cratered terrain in the southern hemisphere and large, comparatively smooth
plains comprised of basaltic lava flows and sedimentary deposits [16]. Additionally, the
Martian surface has many dunes as a result of the wind which is one of the dominant
forces shaping the surface [16]. From both satellite and rover data, the terrain can vary
from hard bedrock to softer sands. These variations in terrain and the larger features all
pose challenges which the rover must contend with. Thus, the traversability of the rover

is a key concern for design. The current and previous Mars rovers all feature a rocker-



bogie suspension system which has proven advantageous in that it can negotiate obstacles

1.5 times the wheel diameter [17, 18].

Bedrock

Due to the firmness or hardness of bedrock, this type of terrain has the least
amount of wheel sinkage [19]. Although this might make bedrock seem like the best
surface for driving on, it is often sharp and thus results in more wear on the tires/rover
wheels. Indeed, the MSL Curiosity rover opted during sol 463 to drive on some available
bedrock to minimize wheel sinkage and obtain better traction, only to damage its wheel
tread and significantly increase the wear/damage to the wheels as seen in Figure 1.3. In
addition, smooth bedrock can be hard to gain traction on and thus result in higher
amounts of slip as noted by Heverly et al [20] from the Scarecrow data and, with more
texture, the tractive performance improves as the wheel grousers gain purchase on the

terrain.



Figure 1.3: Curiosity wheel damage (courtesy NASA/JPL).

Cohesive Sand

Mars is also covered by a lot of sandy terrain. Sand can be further separated by its
cohesion value, which is the degree that the individual particles or grains of sand stick
together and provide a firmer surface. Cohesive soil or sand is composed of finer grain
particles that want to adhere or stick to each other, even more so when wet. They have a
high clay content and do not easily crumble. Such terrain is fairly easy for the rover to
traverse, even uphill, as the transition from low to high slip is more continuous [20]. The
adhesion between the terrain particles means that terrain deformation, and by extension

sinkage of the wheels, is typically minimal for cohesive sand [20]. However, it should be



noted that this terrain type experiences the most variability due to its reliance upon other

environmental factors, such as moisture content.

Cohesionless Sand

The other broad classification of terrain is cohesionless sand. As the name
implies, cohesionless sand particles do not adhere to each other or pack together. As
noted by Heverly [20], with the analog Scarecrow tests, this terrain poses a significant
challenge to the rover and its ability to make forward progress. Due to the lack of
cohesion, as slip increases, the wheels experience more sinkage since the sand gives way
and is excavated from beneath the wheels. The resulting sinkage significantly impedes
the forward progress of the rover and can result in embedding which can take weeks to
extricate the rover [20]. It should also be noted that the slopes able to be traversed on
cohesionless sand are significantly lower, and the transition to high slip occurs at a lower
slope [20] such as 75% slip occurring at a slope of 16° for the Scarecrow, vs 30% slip at

28° slope.

Duricrust

Another terrain of note is duricrust, as while it may appear firm on the surface, it
tends to have more porous and softer material underneath [21]. Duricrust forms via
accumulation due to the presence of groundwater [21] and is of interest to planetary
scientists looking for evidence of water (and life) on Mars. This particular type of terrain
is challenging as it is not necessarily obvious and the hard-upper shell can be broken by

the wheel, allowing the wheel to sink and embed.
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1.2 Planetary Exploration Rovers

The work presented in this thesis is focused on planetary exploration rovers since
they are currently the best means (including costs) of investigating the surfaces of remote
worlds. For rover surface exploration, wheeled locomotion is favoured since wheels are
simple, cost efficient (longer design life), and shown to be effective in negotiating
smaller obstacles less than half the wheel diameter [22]. Since rovers are mobile science
platforms/laboratories, it is desired that they be fairly resilient, steady, sturdy platforms
upon reaching their target location in addition to traversing the challenging and varied
terrain to reach their specific target. As such, to help select a path, it is needed to know
the pose of the rover as it travels that potential path. Four rovers have been sent to Mars,
with only Curiosity remaining operational as the MER Opportunity ended its mission
June 2018 after a planet-wide dust storm [23]. To help extend the rover mission life, it is
important to get an understanding of how the rover reacts to various terrains and use that
information to evaluate the path. Finally, with the return to the Moon, more rover

missions are expected to aid human exploration of the Moon as well.

1.2.1 Rover Configurations

Planetary exploration rovers are generally relatively small vehicles, with Spirit
and Opportunity having a mass of 174 kg [24], and Curiosity being the largest at 899 kg
[25]. All rovers that have been sent have been of a six-wheel configuration, as are the two

near future rover missions. Additionally, these rovers all favoured what’s commonly
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referred to as a rocker-bogie suspension. The common six-wheel configuration is shown

below in Figure 1.4 for the Curiosity rover.

Figure 1.4: Rocker-bogie configuration for the Curiosity rover (courtesy NASA/JPL) [25].

Examining Figure 1.4, one can see that two of the wheels are connected via a smaller link
called the rocker [25]. The rocker connects to the larger link that is connected directly to
the chassis which is call the bogie. Between the two sides of the rover there is a
differential to help average out the motion of the chassis [25]. The advantage of using a

rocker-bogie design with Ackermann steering is that it increases the capability of the

12



rover to negotiate obstacles while minimising the chances of the wheels losing contact

with the terrain [25].

These rovers are well documented and make up the majority of published

research. However, the rover in question for axe investigation is a different configuration.

1.2.2 Argo JS Rover
For the work presented in this thesis, the vehicle in question is the Argo J5 rover,
depicted in Figure 1.5. It is the candidate vehicle selected by Mission Control Space

Services (Ottawa).

Rover forward
direction \

Figure 1.5: Argo J5 rover [24].

The J5 is a large platform vehicle, roughly in size of an all-terrain vehicle (ATV) and is

thus capable of holding a significant payload. It has been tested with regards to terrestrial
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applications in fire-fighting and amphibious scenarios [26]. Compared with the more
traditional rover configuration, it is immediately obvious that the J5 rover does not have
Ackermann steering, as it only possesses four wheels. The J5 operates via skid steering,
meaning that a separate motor drives each side, with the wheels on one side being
connected via a belt drive. Turning with skid steering, involves one side’s wheels turning
more slowly or opposite to the other side. Examining Figure 1.5, one can see that the
rover can be considered to have three main components, the chassis and two walking

beams of which each has two wheels.

In addition to differences in the number of wheels and the absence of a rocker-
bogie system, the J5 has a unique rear suspension system connecting the walking beams
to the centre rear of the chassis. The rear suspension acts to average the pitch of each
walking beam, in order to try and keep the chassis level with respect to the terrain. Since
the rear suspension connection to the walking beam is aft of the joint between the
walking beam and the chassis, a pitch upwards of the left walking beam would push the
left suspension rod aft, causing the back beam to rotate and push the right suspension rod
forward. The result of the overall motion attempts to compensate for the left walking
beam upward pitch by forcing the right walking beam to pitch downward. Finally, the J5
has the option of two different tires, rubber and metal. For the purposes of the work

presented here, it is assumed to have the metal tires intended for planetary exploration.
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1.3 Thesis Objectives and Outline

The overall goal of this thesis is to develop a process for assessing the
traversability of a planetary rover for a given path, based on the terrain data from
previous drives and other data from visual terrain maps. Specifically, to create models
that can take in terrain data, in the form of digital elevation maps (from scans of the
surface), to analyse the traverse of a rover along a selected path. This work involves
developing a dynamic model to first characterise the reaction of the rover as it drives over
terrain and then modifying it to interface with a wheel-soil interaction model including
slip, to simulate potential soft terrain conditions. Empirical slip-slope data obtained from
previous drives could be used as an input. In the context of this work, it is assumed that
the slip data has already been incorporated in the terrain map. Eventually, the goal of this
process is to use the model data to develop metrics to characterise the traversability of the

vehicle for the specified terrain.

The following specific objectives have been identified for this work:

Research Objective 1: produce a model to determine the pose of the rover in response to
terrain geometry (ie. slopes & bumps, etc).

The determination of pose will be accomplished through an inverse position kinematics
model of the J5 rover. Terrain is input as the X, y, z coordinates of the respective path for
each wheel. This type of data can realistically be pulled from digital elevation maps from

satellite data. With the analysis, it is possible to use the pose of the rover to get a sense of
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its stability at that point in time on the map. The creation of a position kinematics model
is also useful as it serves as the foundation for velocity analysis and, by extension, the
dynamic analysis of the rover. There is currently no publicly available model for the

Argo J5 rover.

Research Objective 2: produce a three-dimensional velocity kinematics model
incorporating predicted slip to accurately determine the progression of the rover on the
terrain.

A three-dimensional inverse velocity kinematic analysis will be accomplished by
extending the inverse position kinematics. It is assumed for the velocity portion that the
terrain map path was first processed through terrain classification software, such as
Mission Control Space Services’ Autonomous Soil Assessment System (ASAS). The
slopes measured from the digital elevation map were then used along with the terrain
type, to determine slip values from the appropriate slip-slope curve obtained from
experimental drives of the J5 rover. These slip values have been assumed and are
included in the terrain maps used. The resulting inverse velocity kinematics model with
slip incorporated enables the time of the traverse to be determined as a potential

evaluation criterion.
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Research Objective 3: produce a dynamic model, incorporating slip and terrain
geometry as inputs, allowing for other traversability metrics, such as torques and
drawbar pull, to be determined.

The three-dimensional dynamic model is included, as it is only at this level that the full
effect of the rover wheels’ interaction with the terrain can be determined. Since dynamics
includes forces, the model is paired with a previously established terramechanics model
to obtain the resulting forces acting on each wheel. The terrain elevation and slip
experienced by each wheel are (again) inputs to the dynamic model from the digital

terrain map.

This work is organised as follows: Following the introductory chapter, a review of
traversability related studies and modeling is presented in the Literature Review of
Chapter 2. Chapter 3 introduces the governing analysis methodology that is the Denavit-
Hartenberg convention. The bulk of the analysis follows in Chapters 4 and 5, with
Chapter 4 detailing all aspects of the kinematic analyses, leaving the dynamic analysis to
be covered in Chapter 5. Both of these chapters begin with the theoretical formulation
and application, and then finish with a display of representative results and discussion.
Finally, this document concludes with Chapter 6 which summarises the overall results,
along with comments and recommendations for future work. Appendices pertinent to
each section of analysis are included at the back, containing full formulation, MATLAB

scripts, and other results.
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Chapter 2: Literature Review

The extreme challenges of exploring relatively unknown and uncontrolled
environments posed by planetary exploration, means that it is essential to have designed
as robust a vehicle as possible to maximise the probability of success. It is crucial to be
able to model and understand the vehicle to get a sense of how it will perform and
whether it has any specific limitations prior to its implementation. Furthermore, as
unexpected challenges arise during the mission, having a reliable model aids in
generating strategies likely to mitigate their outcomes. Successful mitigation has allowed
several rovers to outlive their designed mission life [14, 16]. Large quantities of research
and analysis have been published in various areas of rover science and development
underscoring its popularity. Over the years these analyses allowed for expansion of the
capabilities of rovers. As mentioned in Chapter 1, more rover missions are forthcoming
with the ESA’s Rosalind rover and NASA’s Mars 2020, along with a return to the Moon,

making ongoing rover research relevant.

Although there are many published research papers relating to planetary
exploration rovers, this literature review will be focused on the following specific areas
only: terramechanics and wheel-soil interaction models, rover vehicle modeling, slippage

estimation, and performance metrics.
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2.1 Terramechanics and Wheel-Soil Interaction Models

One of the most prevalent and oldest methods of studying the interaction between
a vehicle and the terrain characteristics is terramechanics. First theorised by Bekker in the
1960°s [27], the term was popularized by Wong’s work in the 1980°s [28]. Bekker and
Wong are often referred to throughout much of the literature and are seen as the founders
of Terramechanics. As defined by Wong, terramechanics is the “study of the overall
performance for the machine in relation to its operational environment — the terrain [is
typically considered to consist of] two main branches: terrain-vehicle mechanics and
terrain-implement mechanics” [28]. Regarding the traversability or ability to traverse the
terrain, planetary rovers are more concerned with their respective tractive performance
while negotiating the unstructured terrain and its obstacles, which is the domain of
terrain-vehicle mechanics [28]. Terramechanics as a discipline has since expanded to
become its own in-depth field. Although the field is broad, this section tries to focus on

research pertaining to planetary rovers and suitable non-Earth terrains.

In the field of terramechanics, Wong’s expansion on Bekker’s initial work has
many of the content and equations referred to as the Bekker-Wong terramechanics.
Wong’s work was consolidated into two textbooks, Terramechanics and Off-road
Vehicle Engineering: Terrain Behavior, Off-road Vehicle Performance and Design [29]
and Theory of Ground Vehicles [30], and they are frequently viewed as essential texts on

the subject. The content includes what are considered the basic equations of
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terramechanics. Classical terramechanics uses characteristics and properties of the terrain
to determine the stresses, and subsequently forces, imparted to the vehicle. The equations
are semi-empirical, requiring knowledge of certain terrain properties determined through
extensive in-situ lab testing. One technique is the bevameter technique which is
comprised of two tests [29]. The plate penetration test allows the pressure-sinkage
relationship to be obtained for a contact area the size of the plate, along with the motion
resistance of the terrain. The shear test enables values related to traction, such as tractive-
effort slip, to be computed using shear strength and displacement relationships. Such tests
are not yet feasible on planets and moons, since limited exploration has occurred. One of
the main outputs from terramechanics is the force in the longitudinal direction: drawbar
pull. Drawbar pull is the force corresponding to the ability to overcome the motion
resistance imparted by the terrain [29, 31]. Sinkage is the other important result from
terramechanics analysis and is essential for understanding the effects of deformable

terrain, which can significantly impact the rover’s progress [13, 15, 19].

Classic terramechanics has since given rise to other methods, which can be
categorised as empirical, analytical, or semi-empirical. Within each of these categories,
the analyses have sometimes been modified for better accuracy. One such example is the
Wong-Reece equation, which resulted from Reece’s modifications to Wong’s work on
the pressure-sinkage relationship, as detailed by Ding et al [31]. Taheri et al [32] provide
a good summary and comparison of other terramechanic models beyond those discussed

herein.

20



2.1.1 Empirical Methods

Empirical models are those based on correlations determined from experimental
data. Consequently, these relationships are more simplistic in nature and can only be
applied to situations that match the conditions/environment in which the experiment was
conducted. Hence, extrapolation to different terrains is not possible, nor are the models
scalable [32]. As noted by Taheri et al [32], these models are more useful for a simple
scenario such as determining a broad-based go or no-go. One example could be outfitting
a rover with rotary encoders or using the visual odometry to determine the slip
experienced while driving over known terrain types and slopes, such as those at a
MarsYard, and producing slip-slope curves particular to the rover model, wheel design,
and terrain type. Results from empirical methods can also be used as a measure to

improve wheel design.

It should also be noted that, although Reece updated the pressure sinkage
relationship as their major contribution to classical terramechanics, the relationship is
focussed on longitudinal as opposed to lateral slip effects on sinkage as noted by Ding et

al [31].

2.1.2 Analytical Methods

Due to the limited flexibility of purely empirical methods and the desire for
improved accuracy, advancements in computing have allowed for the development of
various analytical methods of modeling the wheel-soil interaction. Analytical or physics-

based methods are ones that involve applying the appropriate principles of physics to the
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system. The system in these cases refers to a discretized set of elements for both the
terrain and vehicle, with interactions occurring between elements. As such, the system
quickly becomes more complex with the additional components. With high complexity,
the presence of discretized elements in the system requires the use of more powerful
analytical methods to solve. From the overview provided by Taheri et al [32], it is noted
that these methods have the potential to be more accurate and reflective of actual
processes, particularly for highly deformable terrains, but they come at a cost of greater
computation time. Such advancements also present the possibility of real-time capability
given the right set of conditions (ie. particle/element size not too small, etc). as indicated
by a surge in publications over the last decade. The main analytical techniques are

Discrete Element Method (DEM) and Finite Element Method (FEM).

Discrete element method or DEM centres around modeling the soil as a system of
spherical, discrete elements or particles [32]. The mechanical interactions between
individual particles and those adjacent to them are included, with normal and tangential
stiffness and damping applied to each force element, along with friction force in the
tangential direction. For most DEM models, Coulomb damping is applied. In 2014, Smith
et al [33] conducted a comparison between DEM and traditional and dynamic Bekker
terramechanics modeling. They examined the three methods for a single wheel testbed,
that could be applied to a rover-like small vehicle, at steady-state conditions. Upon
examination of the predicted performance, the dynamic method was determined to be
more realistic than traditional Bekker since it can not only accommodate multibody

dynamics, but also simulate that with more complex soils. Furthermore, the results
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supported that DEM is capable of being more realistic because it can model the
movement of soil from the interaction along with the deformation that occurs. The
discretized nature of the particles allows for modeling non-homogeneous soil
characteristics. More realistic particle shapes can also be used in the model to increase
the overall accuracy, however the associated increase in computational time is something

that must be evaluated.

Most of the published literature only applies DEM to a single wheel test bed,
rather than a full body dynamic simulation of a rover. Johnson et al [34] built upon
previous work of single wheel DEM simulations for the Mars Exploration Rovers
(MERs), specifically examining the accuracy of DEM simulations with regards to wheel
mobility performance predictions. A DEM software called Coupi 3D DEM was used to
perform various simulations for the single wheel, which were then compared to
experimental results. With higher confidence in the low slip regime, the parameters of the
DEM simulation were tuned accordingly, prior to generating predictions for the higher
slip regimes. More realistic particle shapes were used, including trisphere, ellipsoid, and
poly-ellipsoid (as opposed to spherical), so interlocking effect could occur as they would
in nature. The DEM simulations were found to be most accurate for regions of high slip

(slip, i= 0.7, 0.9, 0.99).

Johnson et al also published a comparison between classic terramechanics and
DEM analyses for the MER wheels [35]. Again, the DEM simulations were performed

using Coupi 3D DEM for a single wheel, over the entire slip range from 0 to 1. The
23



performance metrics used for comparison were drawbar pull and wheel sinkage. Due to
the limitations of the single wheel testbed, the wheel tests were only performed up to a
slip of 0.7. The results obtained show that classical terramechanics does indeed break
down for high slip (i > 0.6) conditions. Johnson et al explain the limitation to be due to
the presence of a tailings pile of regolith which contributes to a higher sinkage and is not
accounted for in the classic terramechanics equations. The authors recommend a series of

lookup tables based on good agreement of DEM simulations for scenarios of high slip.

Compared to empirical methods, the DEM is more realistic and accurate with
nature since the discretized elements and characteristics of the analysis mean that
empirical equations are unnecessary to complete the wheel simulations [33]. However, as
mentioned previously, the detailed nodes significantly increase the computing
process/computing time. As such, in the tuning stage there is no efficient way to tune the

model and get it to match the experimental results other than via curve fitting.

Finite element method or FEM assumes a continuum rather than a discretized
surface, and the continuum is comprised of a finite number of elements [29]. Due to the
use of the continuum assumption, continuum mechanics are able to be applied. Unlike the
spherical and semi-spherical elements used in DEM, the elements of FEM are angular,
with quadrilateral and triangular shell elements. For 3D FEM, the computing cost is
much higher than that of 2D, but less than that of DEM. However, for accuracy,

compared to terramechanics, a more reasonable computing time is gained, although FEM
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has certain limitations. Some of these limitations include that it cannot replicate large and
discontinuous soil deformation, along with soil flow. According to Taheri et al. [32],
some of these limitations are due to FEM being ill-equipped to handle singular boundary

conditions.

Recently, there has been an increase in research interest for combining certain
aspects of FEM and DEM analytical methods to try and get the best of both techniques
and provide a higher degree of accuracy without exponentially increasing the
computation time. Increased computation time essentially removes the possibility of real-
time force and sinkage prediction for path planning. In 2016, Nishiyama et al [36]
combined FEM and DEM models for a 2D analysis of the wheel-soil interaction for the
wheel of a planetary rover. FEM was used for the more rigid (although elastic) body that
was the wheel, whereas DEM was only applied to the top layer of the soil due to it
experiencing the most deformation. Simulations analysing tractive performance were
computed for flat terrain, including slip, and were then compared to experimental results
from the single wheel test bed. Good agreement was found between the results,
suggesting that pairing FEM with DEM is beneficial for controlling the additional

computing time.

2.1.3 Semi-empirical Methods
Although there are advantages and disadvantages to empirical and analytical
techniques, the majority of the published literature utilises semi-empirical models which

are founded on a modified version of the Bekker-Wong equations. Semi-empirical
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techniques combine experimental results and correction factors with the formulations of
terramechanics equations and certain aspects of analytical methods [32]. Applications of
these semi-empirical methods are popular in literature as they provide a suitable degree
of accuracy without costing too much in computation time. These methods also allow for
some extrapolation unlike pure empirical models. Many of the software packages fall into

the semi-empirical category, such as AS*TM and SCM [32].

One of the issues with the traditional Bekker-Wong terramechanics models is that
they do not account for dynamic effects in the wheel-soil interactions. In 2010 and 2011,
Irani et al attempted to address this issue for smooth wheels [37] and for the dynamic
effects of grousers on rigid wheels [38]. Previous single wheel testbed results were
showing repeating ridge tracks, which are not accounted for in traditional Bekker-Wong.
The modeling of this effect was accomplished by modifying the pressure-sinkage
relationship to include use of a manually tuned sinusoidal function [37] and through the
generation and addition of new empirical dimensionless coefficients in the sinusoidal
function [38]. Both models were compared with experimental test data for a single wheel
testbed and loose sandy soil, using the usual metrics of normal force, sinkage and
drawbar pull, and were found to predict the oscillations observed. This work was further
expanded by Irani et al with a third publication in 2012 [39]. The model also included
modifications to the Reece-Wong pressure sinkage relationship. Once again, fluctuations
in drawbar pull seen in previous experiments were predicted by the model, but in this
study for a range of slip values and normal loads. The results showed good agreement

with the experimental results, also revealing that increases in slip and normal loads
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correlated with an increase in the amplitude of the added term, with a similar relationship

demonstrated for sinkage.

Ghottbi et al [40] published a sensitivity analysis for mobile robots in
unstructured environments in 2016. The sensitivity analysis was computed for both the
Bekker and the Wong-Reece methods for a single wheel to try and ascertain which
models were more sensitive to certain parameters/conditions. Regarding soil parameters
such as cohesion and internal angle of friction, the Wong-Reece was more sensitive, in
particular for position and velocity analyses. The authors also found that larger wheels,
both radially and widthwise, were less sensitive to the terrain and experienced lower
magnitudes of stress. Knowing the sensitivity of the model being used can help in both

using the model to optimise a design and overall to interpret the accuracy of the results.

One of the semi-empirical tire-soil interaction models that has been popular, is the
AESCO Soft Soil Tire Model or AS*TM [32]. The AS?TM model is built for use in
MATLAB and Simulink, modeling a solitary point of contact, for both steady state and
dynamic conditions with real-time capability. Since the model was built as an add-on for
Simulink, it is typically paired with a multibody dynamics simulation to analyse traction
and mobility. The model is built upon the classic Bekker formulation while it also
incorporates an improvement for lateral shear. It can also be made to incorporate different
terrains and flexible or rigid tires at the discretion of the user, using the Bekker and

Coulomb values. AS*TM does have a drawback in that it cannot compute the bulldozing
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force. However, it can account for other parameters such as rolling resistance, soil

compaction, slip-sinkage, and multipass effect.

Another prevalent semi-empirical model is the Soil Contact Model (SCM) [32].
The SCM model is also based on the Bekker equations; however, it is a 3D model where
the tire is modeled as a solid object and the solid is represented by a set of discretized

columns.

Perhaps one of the most well-known applications of semi-empirical
terramechanics in the field of planetary exploration rovers is the ARTEMIS system
employed on both MERs and Curiosity [13, 19, 20, 41]. In 2011, [agnemma et al [41]
published their results on the terramechanic modeling included in ARTEMIS. ARTEMIS
is an Adams-based dynamic simulation of the rover paired with a modified Bekker-Wong
terramechanics approach that was optimised using a least-squares optimisation equation.
Their paper details not only the development of ARTEMIS, but also the application of it
to simulate Opportunity’s drive to the Endeavour Crater, along with Spirit popping a
wheelie and an embedding scenario. The results of these simulations were validated with
real data. The authors also demonstrate that ARTEMIS could be used for estimating
terrain parameters for the dry sand case. The results were accurate to within +/- 10% for
most parameters. The only parameter for which it was not very accurate was for
determining the cohesion value, which they expected due to the nature of dry sand having

poor cohesion.
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Most common in the application of semi-empirical terramechanics equations,
focus is given to the parameters as they might affect the longitudinal progress and
stability criteria of the rover, which can be seen in the some of the literature presented
herein. In 2007 Ishigami et al [42] investigated the effects of terramechanics on the
steering maneuvers of a four-wheel planetary rover on lunar regolith simulant. Using the
terramechanics equations, Ishigami et al focused on the lateral components, including
side force and bulldozing resistance, which logically have an impact on the wheel during
steering maneuvers. They subsequently developed a model to predict and analyse the
steering maneuvers for a given rover. The model was first validated using a single wheel
test bed, prior to combining with a multibody dynamic model. The combined multibody
dynamic model was evaluated for different slip cases and experimentally validated using
a four-wheeled rover test bed. Comparison with the more common kinematic steering

models showed improvements in accuracy predictions.

A commentary on various semi-empirical terramechanics models was compiled in
2012 by Chhaniyara et al [43], for inclusion in their review on terrain trafficability
analysis. Although their review was more focused on the terrain classification side of the
analysis, as opposed to trafficability, they identify that some degree of testing to obtain
some parameters is unavoidable due to the nature of the models. Furthermore, they
demonstrate that by using terrain classification and obtaining the slip and sinkage, some

of the terrain interaction parameters are obtainable.
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In 2010, Ding et al [31] released the results of their investigation into the slip-
sinkage relationship from the Wong-Reece terramechanics model. The experiment was
conducted for three different sized rover wheels on a single wheel testbed, which were
varied for different slip ratios and lug heights to observer the effects. From the
experiment, the authors were able to use the results and improve the existing Wong-
Reece model by calculating sinkage based on vertical load and slip ratio, in addition to
changing the sinkage exponent to a variable dependent upon the slip ratio. By doing so,
the slip-sinkage takes into account more of the actual contributing factors, whereas the
traditional Bekker method is limited to computing static sinkage and the Wong-Reece
only accounts for longitudinal slip-sinkage. Slip-sinkage is a critical failure mode that

must be understood for mission success.

Ding et al’s work on sinkage continued, with another paper published in 2017
[44] focusing on modeling sinkage using terramechanics as a basis, and also to determine
the moment of in-situ steering wheels. Again, they looked at cases of deformable terrain.
Unlike their previous paper, this study focused more on a steering-sinkage relationship.
The collected data, along with the terramechanics formulation, allowed for the sinkage

relationship to be further improved.

Continuing with the problem of exploring unspecified terrains, Gallina et al [45],
focused on the problem of lack of knowledge of terrain parameters required by soft soil
contact models. They conducted their investigation using a multibody dynamics model

paired with the SCM model mentioned above. Their results indicate that the Bayesian
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approach was the best way to manage the uncertainties in these parameters; however,
their results illustrate the limitation of pure models for such unknown and unstructured

environments.

2.2 Rover Vehicle Modeling

The other side of the problem is the modeling of the rover vehicle itself in such a
way that the terrain data can be incorporated, and the response of the rover can be
determined. Terramechanics and wheel-soil interaction models can provide force inputs
and terrain deformation (sinkage); however, depending on the rover size and
configuration, the effects can differ significantly. In addition, the geometry of the terrain
itself, will also have an effect on the rover’s pose and stability. Vehicle modeling is
generally classified as one of two model types — kinematics or dynamics. Kinematics
describes the position and velocity of the vehicle, whereas dynamics focuses on the
forces and accelerations present and can be manipulated for torques. Depending on the
search parameters, vehicle kinematics often brings up material regarding position and
heading (steering) of the vehicle with the application of path planning and following.
Most models in existence are multibody dynamic models from multibody physics
software. Consequently, many of these models require specific physics-based software

platforms, such as ADAMS, to operate.
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2.2.1 Kinematic Modeling

A paper by Tarokh and McDermott et al [46] published in 1999, was found to use
a 3D kinematic approach with the D-H convention for a Mars rover. In their paper they
apply the D-H convention to a small 6-wheel rover, the Rocky 7, which is closer to the
size of Soujourner than Curiosity. Their method begins by assigning frames starting from
the centre of mass and working outwards to each of the wheel contact points. From the
frame assignments and corresponding parameters, the authors were able to get a full set
of equations describing the forward and inverse kinematics. Additionally, for the velocity
portion of the analysis, they computed specific wheel Jacobians as they found it provided
a more accurate depiction of wheel roll and slip. For this paper, only the method was
described and there was no experimental data presented for comparison with the results.
Due to the nature of the methodology, with each contact point being treated like an end
effector, the authors mention that their model should be applicable to traversing rough or

uneven terrain.

Later in 2004, Chakraborty and Ghosal [47], developed a kinematic analysis for a
three wheeled robot on uneven terrain. Although similar to Tarokh, Chakraborty and
Ghosal chose a slightly different application of frames in their model, beginning from the
contact point of each wheel and working up through the joints to meet at the common end
effector, which was the chassis in this case. Rather than using the D-H convention and
obtaining the corresponding parameters and transform matrices, the corresponding

translations and rotations were covered using Euler angles and rotation matrices coupled
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with rotations. In addition, the authors chose to model their wheels as tori, rather than
thin disks, to capture the location of the assumed single point of contact. Even though slip
was not included in the model as an input or as a predicted output, they used the tori
wheels to generate another set of constraint equations for which the system could only be
solved if its joints were able to find positions that removed slip from the scenario.

Numerical solvers were employed to solve the set of ODEs.

In 2005, Tarokh and McDermott [48] published paper expanding their previous
kinematic model into a more generalised kinematic analysis. As in their previous study,
the analysis was again applied to the Rocky 7 rover following the same D-H approach,
although using more specifically described wheels as end effectors. Similarly, the wheel
Jacobians were kept and enabled full motion of the wheel. However, in this paper, more
results are shown from actual simulations of the rover over given terrains. The terrains
are given as a function or an elevation map, with a single contact per wheel and no
sinkage or penetration of the terrain is assumed. The outputs of the simulations include
pitch and roll of the rover, along with elevation and joint angles. Tarokh and
McDermott’s simulations were able to achieve good results for a variety of different
paths (ie. straight and serpentine), even with the addition of noise. However due to the

nature of the kinematic model, no different terrain types were tested.

Shortly afterwards, McDermott and Tarokh followed up with another paper [49]
further generalising their approach and establishing an overall guide to the general

approach to kinematic modeling of a rover. Although this work was applied again to the

33



6-wheel Rocky 7 rover, they applied differential kinematics to obtain the motion of the
wheels and likewise wheel Jacobians. The modeling of Rocky 7 was considered
successful as it was able to travel over the simulated terrain; however, this model is still
somewhat limited in its application as, although it can calculate slip, it does not account
for soft or deformable terrain effects. Thus, sinkage and embedding effects cannot be
observed. It is also limited in that the terrain input is comprised of multiple discontinuous

terrain contact points.

Building on the work of Chakraborty and Ghosal, in 2009 Auchter et al [50]
produced a kinematic solution for a simple three-wheel rover on uneven terrain, and then
applied it to test a passive vehicle camber (PVC) component. As such, their model also
uses a torus to model the wheels, allowing for lateral tilt, and follows the idea of the
parallel manipulator with multiple kinematic chains leading to a single end-effector.
However, in their study, the inputs to the joints are considered known and the position
and velocity of the platform are the outputs. Their model includes equations describing
the wheel contact and are used to constrain the wheels to roll only, with no slip. When
applied to the rover with PVC components, the program monitors the constraint
equations for violation indicating there is slip occurring. The results of their study show
that their design does reduce slip. It should be noted that the rover modeled, although

using a more complicated wheel model, does not have complex linkages taken into effect.

In 2010, Parakh et al [51], published a different approach to kinematic modeling

of a six-wheel rover. In their approach, the rover is modeled in planar form with each
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joint locus given a set of coordinates and equations to describe the rigid Euclidean
distances between the joint loci. This method is further detailed in Chapter 4 as part of a
“working up” investigation to obtain an idea of how pose would change with respect to
the terrain. However, it should be noted that the rover joint loci only give location in x

and y since the model is planar.

In 2012, Tarokh et al [52] published further work on kinematic modeling of high
mobility rovers, with their paper presenting a systematic approach to a general kinematic
analysis that could be applied to any rover over uneven terrain and used to aid in
parametric design studies. Expanding beyond their previous formulations, they produced
an extended D-H table for easier formulation and highlighted their algorithm which takes
the table and directly applies it to create the kinematic model. In their paper, the method
and corresponding algorithm is applied to a very complicated, small, multi-tasking rover
with individual leg actuators and hence capable of different angles and configurations.
Different terrain topologies were used as inputs, with zero slip assumed and all wheels in
contact with the ground at all times. The results presented show the model was able to

follow the desired trajectory with minimal errors.

Another investigation examining 3D kinematics for wheeled mobile robots was
published in 2014 by Seegmiller and Kelly [53]. Although they focused on a three-
dimensional approach for their simple rover, they also acknowledge the larger number of
2D kinematic models due to their relative ease in derivation and the consequently cheaper

computational costs and higher computational speeds. Often a 2D approach is acceptable
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due to the slow speeds of the rovers themselves, however for uneven terrains, the 3D
analysis is required. Seegmiller and Kelly used more of a velocity propagation approach
as opposed to D-H convention and transform matrices which are not inefficient given the
relative simplicity of their rover. Like all the kinematic models presented so far, a single
point of contact was assumed for each wheel. Slip prediction for the rover body was one
of the outputs included and their results, when applied, were found to have a significant

improvement on the odometry of the rover.

2.2.2 Dynamic Modeling

The more common form of modeling used for planetary exploration rovers is
dynamic modeling. Various software platforms and packages exist which make the
modelling work a lot simpler than generating the dynamic equations using a technique
like La Grange formulation. Most of the modeling literature (even some of

terramechanics) relates to dynamic modeling as opposed to kinematic modeling.

One of the more frequent multibody dynamic softwares mentioned in the
literature is the ARTEMIS software for dynamic modeling paired with terramechanics. In
2011, Trease et al [13], published details on ARTEMIS and its implementation.
ARTEMIS stands for Adams-based Rover TErramechanics and Mobility Interaction
Simulator. As the acronym implies, ARTEMIS is a multibody dynamics software based
on the Adams multibody platform. Adams/View is a very expensive software package,
with a steep learning curve, requiring users to undertake specific training. With

ARTEMIS, the published studies don’t go into kinematics as, with multibody dynamics,
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it’s easier to stick with dynamics and that is what most operators are more concerned
about, with particular regards to forces, torques, and slip, etc. From the basic
Adams/View dynamic model of the rover, it was then paired with subroutines analysing
the terramechanics based off of the semi-empirical Bekker-Wong equations. The main
input to ARTEMIS is a generated terrain path obtained from digital elevation maps.
When applied to previous drives by both Spirit and Opportunity, ARTEMIS was able to
successfully replicate the drives including other aspects of each scenario, such as the
embedding experienced by both rovers. By successfully recreating the embedding,
ARTEMIS enabled further analysis along with how to extricate Opportunity from its
embedding. Such analysis included successful modeling of the slip-sinkage effect with
ARTEMIS being able to reproduce the high wheel slip leading the increased excavation
of soil and the resulting downward displacement or sinkage of the wheel. At the time of
this publication, ARTEMIS did not address deformable, changing terrain, continuous
contact with multiple wheels, and rolling resistance. From one publication alone, it can be
seen why ARTEMIS has persisted in its popularity and also how, for non-NASA rovers,

it means trying to find other solutions that aren’t too expensive.

Another dynamic analysis software for rovers was developed a couple years
later by Srividhya et al [54] called Software for Modelling and Analysis of Rover on
Terrain or SMART. Similar to ARTEMIS, it uses Adams/View as its foundation wherein
the rover itself is modeled from an imported CAD model. Simplified terramechanics
equations are applied using the Adams/Solver component and uneven terrains are

generated using Adams Road Definition files generated in MATLAB, including the
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properties of the terrain. Macros are generated for easier user inputs, and they apply this
software to a simple four-wheel rover with no suspension or differential. The model
assumes that the peak normal stress occurs at the midpoint of the wheel, thereby making
the location of the peak stress independent of the wheel slip. Running the model, the user
obtains slip, sinkage, drawbar pull, and drive torque, with slip being obtained from
drawbar pull and resistances. They were able to model slopes and associated motion
resistances, obstacle negotiation and steering, with simulations performed over flat
terrains both smooth and uneven. At the time of publication, the simulation results had

yet to be verified.

An additional example of dynamic model paired with a wheel soil interaction
model is the Rover Chassis Analysis and Simulation Tool (RCAST). An overview of the
RCAST is given by Bauer et al [55] with respect to its development and then application
to a 6-wheel rocker-bogie rover. RCAST examines both the terrain and the dynamics of
the rover for mobility, allowing the user to designate the terrain case, soil type, and
obstacles. The terramechanics aspect of the analysis is based off of the AESCO soft tire
model (AS*TM) and employs the usual linear Coulomb friction for the tractive force.
RCAST was successfully validated for a single wheel negotiating a step obstacle, where
the friction coefficient was observed to agree strongly between the simulation and
experimental. Later testing was completed for five different wheels of same size, but the
number of grousers was varied, and tested over a range of slopes. The results for drawbar
pull demonstrated the expected effect where increasing the number of grousers improves

drawbar pull by increasing wheel traction.
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Some dynamic models have combined more than just dynamics with a wheel-
soil interaction model. ROSTDyn is a rover simulation based on terramechanics and
dynamics, with the multibody software, Vortex Physics Engine, providing the dynamics
model. The simplified terramechanics model is based off of the work by [agnemma et al
[41] and Li et al [56], with three main equations to obtain the normal force, drawbar pull,
and the resistance torque. The physical model of the terrain utilises DEM. In Li et al’s
overview [56] of ROSTDyn, the platform is applied to a 6-wheel rover which is then
simulated to drive over different inclined slopes. Due to ROSTDyn using a simplified
terramechanics model over Vortex’s built-in contact model, real-time simulation speed
was possible for lower display frequency. The simulation yielding results for slopes from
4 -18° were compared with the experimental data from driving the rover over the same
slopes. The results were found to show good agreement with each other, with both
exhibiting a decrease in the normal force and increase in the total drawbar pull, in
conjunction with an increase in slippage, for the increasing slope. However, ROSTDyn is
somewhat limited in that it does require a preliminary soil test to obtain the necessary soil

parameters for terramechanics.

In 2013 Reina et al [57], examined both kinematic and dynamic modeling
(combined) techniques in applying a simplified set to evaluate the performance of rovers
with rocker-bogie suspension systems with respect to locomotion. Specifically, to
investigate a particular design of rocker-bogie suspension that enables the wheel camber

to change and adapt to the terrain. Simulations with inputs of terrain inclination angle,
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wheel elevation, rover geometry, pose, and speed, were completed and then subsequently
validated experimentally. Outputs obtained included: drive motor torque, wheel load ratio
where increased load corresponds to increased traction ability, and the friction coefficient
wherein a decrease in value indicates a better climbing ability. For the inverse kinematics
it is unclear, but does not appear to use coordinate frame transformation methods
differing from D-H. Additionally, it appears that the dynamics were limited to a simple
quasi-static force analysis, with the application of forces being lumped at the centre of
mass and certain contributions appearing to have been neglected. Finally, this model is

limited in that only firm terrain was investigated.

Returning to ARTEMIS, Zhou et al [19] published a selection of simulations on
the Mars rover traverses in 2014. In comparison to the initial publication by Trease et al
[13], these simulations were not only done for a single wheel, but also the full vehicle.
Traverses for both bedrock and deformable soil were performed. Validation was
accomplished through single wheel tests and drives with Scarecrow (Earth analogue of
Curiosity) at the MarsYard. At the time of publication, ARTEMIS was capable of
calculating longitudinal wheel slip, wheel sinkage, normal stress, drawbar pull,
longitudinal and lateral shear stress, lateral force, and grouser forces. For the full vehicle
test, slip was manually determined which then allowed the sinkage to be indirectly based
on slip-sinkage relationship. The updates to ARTEMIS were demonstrated in successful
replication of MER and Curiosity drives, which also included demonstrating the ability to
simulate both blind drives and those run through autonav. Having both single wheel tests

and full vehicle tests allowed for further tuning of parameters. Good agreement was
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already observed, with the rover’s being able to climb slopes up to 20° before achieving
90% slip, which was expected. It should be noted that ARTEMIS is still limited by its use
of classical terrramechanics and is therefore less reliable when it comes to simulating
regions of high slip such as rippled dunes which rover operators currently try to avoid.
The development of ARTEMIS with regards to Curiosity was further examined by
Senatore et al [58] for modeling and validation. Validation performed with both single
wheel tests and full vehicle tests of Scarecrow, this time on the unprepared terrain of
Dumont Dunes. Simulations were found to predict mobility characteristics, such as

drawbar pull, to good agreement with the experimental data.

In 2009, Schafer et al presents a multibody simulation incorporating both soft
and uneven terrain for the ExoMars rover prototype [59]. The multibody system
dynamics were modeled using SimPack and incorporated two different wheel-soil contact
models, depending on the terrain type. For harder terrains such as bedrock, a PCM
contact model is used which looks at all possible contacts through collision detection
with the hard rocks and populates appropriate elements with the contact forces and
torques. Softer, deformable terrains utilise the SCM contact model, which as mentioned
previously utilises DEM for the soil. Simulations were run for each uneven terrain for
two different wheel geometries and the results were compared with those obtained from
running a breadboard chassis in a sandbox of the same simulant. Good agreement was
found for the mobility characteristics obtained for drawbar pull, wheel torque, etc along

with successful modeling of the multi-pass and bulldozing effects, however further work
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would be needed to confirm validation for other simulant types and conditions (ie high

slip, slope).

23 Slippage Estimation

One of the more important non-geometric hazards imparted by the terrain is slip.
Slip can drastically affect a rover’s progress and as specifically noted by Chakraborty et
al [47], slippage can be a significant wastage of an already limited supply of power. In
addition to power wastage, the lack of forward progress caused by slippage also can
severely impact the rover’s ability to self-localise and lead to further errors with path
planning/execution [50]. Within the research around rover mobility, there are also
research groups focused more on mitigation through better design of wheels, suspension,
and control strategies. Indeed, Seegmiller et al [53] notes that even in the area of
incorporating slip with rover vehicle modeling, most kinematic models and published
rover vehicle models compute slip as it occurs for use as a usable output, and it can then
be incorporated into a feedback control scheme for path following. However, even with
such a scheme, there is still the possibility of a collision occurring before the feedback

controller has time to react.

Gonzalez et al published an overview of current work in slippage
estimation and compensation in 2017 [60]. Limitations of different techniques are also

included. From their investigation, it was observed that most of the published work in slip
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is in the practical detection using visual odometry to provide an estimate. Furthermore,
they note that little published work exists for slip compensation for slope traversals, along
with the overall area of lateral or side slip. Lateral slip would be produced more by
steering maneuvers (and corresponding forces) and is often neglected in the literature as
it was assumed to be minimal for most test conditions. Side slopes would likely exhibit
lateral slip but require further investigation to quantify the effect. Helmick et al [61],
employed the Tarokh model for the Rocky 7 rover and, from the predicted slip, applied a

control loop to keep the rover on a given path.

2.4 Performance Metrics

From many of the papers previously presented, in particular rover vehicle
modeling, common mobility metrics include drawbar pull, wheel torque, slip, and
sinkage. Many of these have been employed since before Wong’s work on
terramechanics, and in his textbooks gives drawbar pull or the drawbar pull coefficient or
efficiency as acceptable methods of comparing data [29, 30]. The drawbar pull
coefficient is simply the ratio of the drawbar pull to the vehicle weight and allows for
better comparison across different rovers. Similarly, the efficiency compares the drawbar

power potential to that expected of the vehicle.

Other metrics were investigated in 2010, by Thueer and Siegwart [62], in an

attempt to standardise rover mobility characteristics for cross-vehicle comparison.
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Although certain characteristics are computed in many of the published investigations,
they are particular to the conditions of that investigation, thus little has been done in the
area of mobile robotics to create a standard. Using a static model, Thueer and Siegwart
suggest the metrics should be minimum friction and torque requirements. The minimum
friction requirement allows ideal torques to be obtained and knowing this value can also
be useful in reduction of slip. Unsurprisingly, absolute accumulated slip is another
suggested metric, due to its non-dimensionality, however the authors acknowledge that it
is more effective in simulations. The final suggested metric is velocity constraint
violation which as the name suggests measures the deviation from the ideal or
commanded velocity, compares it to the kinematic constraints, and computes the risk of
violation. These standardised metrics were first computed for simulations of three
different locomotion approaches and then compared with the experimental data. Overall,
good correlation was observed between the simulated/predicted values and the

measurements obtained from the physical experiment.
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Chapter 3: Denavit-Hartenberg Methodology

To analyse the kinematics and dynamics of a robot, the robot must first be
discretized into the corresponding kinematic pathways or chains. The kinematic chain
describes the rigid components (links) and the joints connecting them, which generates a
motion of the end effector within the boundaries of the workspace [63]. These kinematic
chains can be used to construct mathematical models which describe the motion of the
system as constrained by the joints and the lengths of the links they connect. There are
different classifications of kinematic chains: open and closed are one such classification.
Open kinematic chains have a series of connected links with a relatively independent end
effector. Closed kinematic chains have a series of connected links in one or more loops

with no open attachment point, similar to a four-bar linkage.

Using the kinematic chain, there are different methods to derive the mathematical
equations, employing a geometric approach (one such approach will be illustrated in
Section 4.1) or by attaching reference frames and applying rotations and translations to
describe how the end of one link moves relative to the previous one. While a more purely
geometric approach can be quite elegant and fairly practical in a planar case, once the
kinematic chain reaches a larger number of degrees of freedom, or has a parallel chain, a
more streamlined and standardised approach is desirable for most cases. One of the more
popular methods is the Denavit-Hartenberg convention. In this work, the Denavit-

Hartenberg convention is used to derive transformation matrices to determine the motion
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of an end effector (output link) with respect to a reference link or relatively fixed

coordinate system.

3.1 Introduction to the Devanit-Hartenberg Convention

As mentioned, to effectively operate robots it is imperative that one understands
how the motion of the robot is constrained by the joints, limiting the configurations it can
enter. Particularly, the description of, or ability to predict, the pose of the robot with
certainty and with respect to a reference coordinate system is necessary for effective use

and placement of the end effector in the reference system.

The Denavit-Hartenberg (D-H) convention is one such method of obtaining a
description of a system by attaching reference frames to the joints of the kinematic chain,
following a particular procedure. The result allows for four parameters to be determined
which fully describe the displacement of the system [64, 65]. Although this method was
first introduced in 1955 [66], the standardised procedure is fairly easy to apply and has
become (and remains) a popular method of analysis for kinematic chains. This
convention allows for a standard set of equations for different serial manipulators and the
results can be left in a matrix form which many operators prefer. The resulting set of
vector-matrix equations enable the kinematics of the manipulator to be fully described in
3D space. These 3D kinematic equations not only describe the pose of the end effector

(the forward kinematics) given the input values but allow for the various configurations
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to be determined (the inverse kinematics), which is helpful in terms of workspace
constraints. The end effector is used to describe the end of the kinematic chain and, for
manipulators, would be the location of the tool at the end of the robotic arm [64, 65].
Furthermore, these equations can be used to solve two different types of problems, either
the forward or inverse kinematics. If the active joint values are specified, the forward
kinematics problem determines the position and orientation (pose) of the end effector.
Conversely, if one knows the desired pose of the end effector, the inverse kinematics
problem can be solved to obtain the required, active joint values [64, 65]. In addition, this
set of equations can be further manipulated to produce equations for velocity and
acceleration analysis in 3D, which is the focus of Chapters 4 and 5. An acceleration
analysis is necessary for modeling the dynamics of the system using the LaGrange

method.

Typically for serial manipulators, the inverse kinematics problem is the more

difficult to solve as there can be more than one solution or configuration to produce a

specific end effector pose.
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Figure 3.1: Representing a four-wheel rover (a) as a kinematic chain (b).

Given the effectiveness of the approach, the Denavit-Hartenberg convention was
selected to be applied to the J5 rover as described in Chapter 1, since the rover could be
visualised and analysed as a set of parallel kinematic chains. Figure 3.1 illustrates this
process, with 3.1(a) depicting a simplified drawing of a rover and 3.1(b) representing the
resulting kinematic chain for analysis. It can be seen that the rover is more akin to a
parallel manipulator, with each of the four wheels’ ground contact points being
equivalent to an end effector. Although a 2D geometric approach was used initially (as
detailed in Section 4.2), a 3D approach was deemed necessary with the eventual goal of
describing the rover’s pose with respect to an inertial world frame attached to a terrain
map. With four end effectors and three dimensions, the problem becomes more complex
than typical, wrist-partitioned, serial manipulators, which are well documented and for
which many of the equation sets already exist [64, 65]. However as noted in the literature
survey (Chapter 2), most rover kinematics and dynamics are not investigated using this

method and tend to use expensive multibody software to analyze them. The Denavit-
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Hartenberg method is not limited to a specific software; it only requires an initial setup

based on the original D-H convention outlined below.

It should be noted that there are many variants of the original D-H method, such
as the modified D-H method found in [65]. Each incorporates the same four parameters
to describe the system with only slight differences in procedure and notation [64],
resulting in a slightly different form of equations and transformation matrices. The
method with mixed indices [65] is well-suited to velocity and acceleration propagation
outward from the base to the end effector, and to force and torque propagation from the

end effector back to the base.

3.2 D-H Procedure and Definition of Parameters

As noted, the original D-H convention [66] was selected for use in this work.
Again, it is worth noting the underlying assumptions of this application. The original D-H
method (referred to hereafter as D-H) was applied to each of the kinematic chains of the
rover. Each kinematic chain was assumed to be a series of links beginning from a
designated base reference frame, connected by joints with reference frames, to the final
reference frame of the end effector: the wheel-ground contact point. An important
assumption made is that the links are assumed to be rigid bodies and thereby experience
no deformation [64, 65]. Additionally, each joint in the analysis possesses one degree of

freedom [64, 65]. Each kinematic pair is one of two types of joints: revolute or prismatic.
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For example, a more complicated joint such as a spherical joint, would be broken down
and represented as three revolute joints with mutually orthogonal axes [65]. Revolute
joints rotate about a single axis, like a hinge, whereas prismatic joints translate in a single

direction, like a telescopic pole.

The first and most important step in applying the D-H convention is the
assignment of the joint reference frames, from which the parameters are defined [64]. A
sketch of the system of links is required. Start by identifying all the joint axes and
labelling them as the z axis [64]. For prismatic joints, the z axis is in the direction of
translation, whereas the joint axis for revolute joints is the axis of rotation. Figure 3.2

illustrates the assignments for three sequential, revolute joints.

It is to be seen that for the original D-H method, that there is an offset between the
reference frame labelled with subscript i and the joint on which it is, which the joint is
labelled i + 1 [64]. Looking at joint axes i and i + 1, identify the common perpendicular
between the two axes and at the intersection of the i + 1 joint, is the location of the origin
for that reference frame, or often noted as O;. As such, the z; axis will be along the joint
axis for joint i + 1. Next, the direction of the x; axis is assigned so it points along the
common normal between the joint axes, and if the joint axes are parallel, then the x; can
remain aligned with the previous x axis. Its axis is a line at infinity, perpendicular to the
direction of the p-pair. Finally, the y; axis is selected to complete a right-hand coordinate

system.
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\ ‘O'i—l I /

Figure 3.2: Reference frame assignment and D-H parameter definition [64].

Following the correct assignment of reference frames, the four D-H parameters
can be determined as follows, see Figure 3.2. The first parameter is the link offset, d;,
which refers to the measured distance along the z;_; axis from x;_4 to x;. For prismatic
joints, the link offset becomes the joint variable [64]. The next parameter is the joint
angle, which is the variable 6;. The joint angle is measured about the axis of rotation,
Z;_1, and is measured from x;_4 to x;. The remaining two parameters are constant values
for the given link. The link twist, denoted by «;, describes the twist angle between the
two joints, measured about the x; axis from z;_; to z;. Finally, the link length a;, is the
distance between the two joints (between z;_, and z;) measured along the x; axis. The

four parameters for each joint are collected in a table. Table 3.1 lists the D-H parameters
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for each kinematic chain and is shown below with D-H parameters as illustrated in Figure
3.2. It should be noted that the additional column for coordinate frame is added to permit
a sketch of the reference frame for ease in orientation. In addition, the joint column
differs from the first coordinate frame column due to the notation of the reference frames
in the original D-H method, wherein the integer (label) is offset by 1. The set of

completed D-H tables with values for the J5 rover are provided in Appendix C.

Table 3.1: Sample D-H parameter table.

Joint Coordinate | O;[deg] di [m] ai [m] ai[deg]

Frame

i—1 i—1 Hi—l di a_1 a1

3.3 Homogeneous Transformation Matrices

Once the four D-H parameters have been determined, the next step in obtaining
the kinematic relationships between the reference frames, and thereby joints, is obtaining
the transformation matrix, T that maps point coordinates in frame i to those in frame i —
1. In order to describe the end effector with respect to the base frame, a transformation

must be sequentially concatenated from the end effector back to the base frame. One of
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the main benefits of using the D-H convention, is that rather than having to apply
individual rotations and translations to get from one reference frame to another, the setup
and determination of D-H parameters allows for the transformation to be defined by a

single homogeneous transformation matrix as in Equation 3.1.

c0; —sb;ca; sO;sa; a;ch;
i— 0; cO;ca; —cO;sa; a;sob;
Ti—1 — SU; i i i i i°oVYi 31
¢ 0 sa; ca; d; 3-1)
0 0 0 1

From Equation 3.1, it can be observed that once the D-H parameters have been
determined, the transformation is obtained by simply populating the matrix with the
appropriate values from the table. Note that “c” and “s” are shorthand notation for cosine
and sine, respectively. It should be noted that a transformation matrix will need to be
defined for each of the individual links and will contain a single joint variable (either d
for prismatic joint or © for revolute) [64, 65]. For a kinematic chain comprised of n links,
the end effector can be described in the base reference frame by applying a series of n
transformations. Again, due to the nature of the convention, once the D-H parameters are
all known, one can easily obtain the overall transformation matrix by multiplying the

transformation matrices for each of the links as in Equation 3.2.

T? =TT} ..T ! (3.2)
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With the overall transformation matrix determined, one can either solve the forward or
inverse kinematics problem as desired, depending upon the selected scenario or what
information is known. The exact application of the original D-H convention for the work
presented is further discussed in Chapter 4 for the kinematics along with the presentation

of the dynamic model in Chapter 5.
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Chapter 4: Kinematic Analysis

To understand how the terrain will interact with the rover, it is necessary to first
analyse the kinematics of the rover. The kinematic analysis not only determines the pose
of the rover based on the shape of the terrain but is then expanded to provide insight into
the motion of the rover as it traverses the selected path. Once the analysis includes the
velocity of the rover and its respective components, terrain effects such as slip can be
introduced for examination. As mentioned in Chapter 3, the analysis centres around the
use of D-H parameters to obtain the relative displacements between two joints
representative of any motion applied. In this chapter, a brief investigation into using a
geometric planar approach is presented, prior to the full three-dimensional kinematics

analyses for both position and velocity.

4.1 Planar Kinematic Analysis — A Geometric Approach

During the initial stages of the investigation, a velocity based kinematic approach
by Parakh et al [51] was found to be of value. The method employs a planar approach
and had been applied to a six-wheel rover with a rocker-bogie linkage system, namely the
Rocky 7. The rocker-bogie system is what has typically been employed on planetary
exploration rovers, due to its ability to navigate obstacles that the wheels alone could not
handle as well [18, 25]. The basis of the model presented by Parakh et al. is focussed on

the concept of rigid links and the coordinates of the ends of each link. To confirm the
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correct application of the model, the method was first applied to reproduce the results of

their six-wheel rover. Sample results are presented in Appendix B.

4.1.1 Theoretical Formulation

This method focusses on the side of the rover and the pose of the links in the
rocker-bogie suspension system with respect to the wheels and the shape of the terrain.
As such, it is a planar method, and centres around the rigid body assumption, with x and
y coordinates assigned to each of the pivot points, or joints of the system, in addition to

the wheel ground contact points.

Assumption 1: The rover is a rigid body and any parameters such as link lengths and
relative joint locations can be considered rigid and therefore constant.
In addition, certain distances, such as the distance between the front and rear wheel

centres, are constant.

To begin development of the model, the rover must be projected into a simplified version

of its side view. Figure 4.1 shows the simplified geometry of the right side of the Argo J5

rover analysed.
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N
7

Direction of Motion

Figure 4.1: Simplified right-side profile of the Argo J5 rover with highlighted joints and contact

points.

Figure 4.1 only includes the rigid links and wheels, with the broken line representing the
outline of the chassis for clarity. Line FG is the side rod of the back suspension, with
point F being the location of the back suspension in the walking beam. Point E is the
revolute joint between the chassis and the walking beam. Each end or joint of every
linkage is highlighted and labelled. These points are then assigned a pair of coordinates

(x,y) to locate them in the plane.

Once all coordinates have been allocated, it can be observed from Figure 4.1 that
the linkages provide rigid distances connecting some of these points. Furthermore, due to
the geometry of the rocker-bogie suspension system, there are also rigid distances

between other pivot points. Figure 4.2 depicts these other set distances with a broken line.
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Figure 4.2: Right-side profile with labelled pivot points and rigid distances between pivot points.

Using the x,y coordinate pairs of each point, equations can be developed to determine
each of the distances or rigid lengths between various coordinate pairs. The distances can
easily be determined in this grid system, using the Euclidean distance between two points
or Pythagorean theorem with each rigid length as the hypotenuse. Applying this method

to the J5 rover, yields the following set of equations:
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(x4 = x5)* + (Va — ¥5)* =15
(xc = xp)* + e — ¥p)? = 1ép
(x4 = xc)* + a — ¥e)* = Tic
(xa —xp)* + (Va — ¥£)* =1z 4.1
(xc —xp)? + Ve —yp)* =185
(xc —xp)? + e = ¥p)? =185
(xg —xp)* + (Vg — Yr)* = Tér
(xp —x6)* + F — ¥6)* = 17g

(xa —xp)2 + (Y —yp)? =145

When reviewing the equation set it becomes apparent that for seven points or coordinate
pairs (fourteen unknowns), there are only nine equations. To obtain enough equations to
yield a unique solution, the wheel-ground contact points are analysed to produce more

relations.

Assumption 2: Each wheel has a single point of contact with the ground and all wheels
remain in contact with the terrain throughout the traverse.

For the planar model, the rover is constrained to follow the terrain and cannot “pop a
wheelie”. This constraint also means that the coordinates of the wheel’s contact point
must match the value of the terrain, more specifically that the y-coordinate of the contact

point will match or be identical to the y-value of the terrain function.
59



Thus, the following additional two equations (4.2) are produced:

yg— f(xg) =0

yp—f(xp) =0 (4.2)

Furthermore, the wheel ground contact points can be analysed with respect to the slope of

the terrain it is on, as depicted in Figure 4.3.

\ °
Slope angle, y

Figure 4.3: Right-side profile of rover with sloping terrain.

For each wheel another equation can be produced to describe the relation between the

wheel axle and wheel-ground contact point coordinate values based on the effect of the
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slope of the terrain. Using the geometry shown in Figure 4.3, the following equations

were developed for each wheel:

my(ya —yp) + (x4 —x) =0

my(yc —yp) + (x¢ —xp) =0 (4.3)

At this point, there are now 13 equations and 14 unknowns. In order to make the system
solvable, one coordinate point is selected as an input that is specified and used to displace
the rover. For this model, it was chosen to use the x variable of the back-right wheel as

the input value. Using the x variable as an input yields Equation Set 4.4:

(xa —xp)*+ (Ya—yp)2 -1 =0
(xc —xp)2 + e —Yp)? =14 =0
(Xa = %)+ Wa—yc)? —1ic =0
(x4 —x5)* + (Ya —Ye)* =14 = 0
(x¢ —x)*+ e —ye)?> =18 =0
(x¢ —xp)*+ (Ve —yr)? =15 =0
(xg = xp)? + Vg —Yr)? =1 = 0 (4.4)
(Xp —x6)* + (Vr — ¥6)* — 16 = 0
(xa—x2)2 + Wa—ye)> =14 =0

yg — f(xp) =0
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yop—f(xp) =0
my(Ya—yp) + (x4 —xp) =0

my(yc —yp) + (xc —xp) =0

A few other important assumptions were made in the development of the planar model.

Assumption 3: Distances between the different points of interest are correct and
accurate, with lengths or distances not belonging to an actual link accurately determined
from the observed geometry.

Access was not provided to the actual CAD model and dimensions were hard to
accurately measure from the physical rover. However, measurements were taken as a
rough approximation and these particular distances were measured from a scaled drawing

(ref. Figure 4.9 and Appendix A).

Assumption 4. The left and right sides of the rover experience identical terrain geometry,
and subsequently the same motion and displacement.

Due to the planar nature of the model, the right and the left side are assumed to
experience the same displacements due to the same terrain inputs. This situation could
have been avoided with an expression for the chassis pitch based on the pitch of the two
walking beams; however, it was not used for this model similar to the original paper by
Parakh et al [51]. Treating the left and right separately would also have entailed
determination of rover roll and yaw angles which exist in three-dimensions, beyond the

scope of the planar kinematic analysis.
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4.1.2 Method of Solution

From Equation Set 4.4 in the previous Section (4.1.1), it becomes apparent that
the solution will be the set of the coordinates for each point, since the links and distances
are by the model’s definition rigid and therefore constant and have also been calculated.
Since the first objective is to pre-determine the pose of the rover with respect to a set
terrain path, the terrain function must be known and supplied as the input variable of the
model. With a total of thirteen equations, an equation solver is needed to efficiently
converge at a solution. Due to the nonlinearity of the equations, a nonlinear multivariate
solver was required. The selection of the x coordinate of the rear right wheel axle as an
input resulted in a system of thirteen equations and thirteen unknowns, a determinate
system, which means a square Jacobian can be obtained, opening up the selection of
solvers. Due to its ability to converge fairly quickly and reliably for a set on nonlinear,
multivariate equations, the nonlinear multivariate Newton-Raphson method was selected.
The author wrote a non-linear, multi-variate, Newton-Raphson solver (included in
Appendix B) in order to solve the set of position equations. The nonlinear multivariate
Newton-Raphson method can be summarised by Equation 4.5, where J¢'! is the inverse of
the Jacobian, x is an array of the variables to be solved for, and f(x) is the function

evaluated at x.

F=x-J;' fx) (4.5)
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A separate function file was written to perform the nonlinear multivariate Newton
Raphson solution and the function file can be viewed in Appendix B, along with the rest

of the code and analysis.
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MATLAB was chosen largely because of its compatibility with other programs
and its ability to be easily translated to other programming languages. The algorithm
shown in Figure 4.4 was implemented in MATLAB, with complete script files included
in Appendix B. The algorithm takes an initial guess input by the user, along with rover
parameters and the terrain function, uses the set of equations that describe the geometry
of the rover, and solves them numerically using the nonlinear multivariate Newton-
Raphson function file. The nonlinear multivariate Newton-Raphson function also requires
that the particular Jacobian for that rover’s equation set be manually determined in order
to generate a separate function file to be called by the Newton-Raphson function. The
Jacobian function file can also be found in Appendix B. Once the nonlinear multivariate
Newton-Raphson solver converges to a solution for the given interval, the solution is then
plotted to show the rover’s current position. They are also stored to later show the
overall progression plot of the coordinates over the full time of the traverse. It should also
be noted that the while loop containing the solver is governed by time, with solutions
being produced for a given interval. The rover is forced forward by the x coordinate of
the right rear wheel based on the time interval, At, and the commanded velocity of the

rover. A time step (At) of 1 second was used.

4.1.3 Results
Prior to deriving the equations and writing the scripts for the J5 rover, it should be
noted that the process was first applied to the same Rocky 7 rover used by the original

authors, to ensure that the application was correct, and their results could be replicated.
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The results compared well with those of the original authors. A selection of those results,

along with the algorithm/code developed, are included in Appendix B.

A selection of representative cases was chosen to demonstrate the
functionality/capabilities of the method. Others are included in Appendix B. It should be
noted that more cases can be generated on request, however it does not achieve the
overall goal of this work and is inefficient. It should also be noted that due to the planar
aspect of the method, the back suspension had to be removed to avoid introducing the

necessary complications of a third dimension, rendering the equation set unsolvable.
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Figure 4.5: Planar inclined pose for a slope of 26.57°.
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Figure 4.6: Pivot point traces for inclined terrain with slope of 26.57°.



Figures 4.5 and 4.6 detail the results obtained for an inclined terrain, driving

uphill. For the uphill test case, the inclined slope is given by a terrain function of y=0.5x,

or a slope of 26.57°. The planar pose in Figure 4.5 is generated for each time step and
shows the rover conforming to follow the terrain as expected. Figure 4.6 details the
movement of the pivot point loci (traces) for the rover as it travels along the terrain. As
expected, each of the loci coordinates follows the shape of the terrain, generating lines
with a slope of 0.5. Loci A and C represent the wheel axles, hence the rear wheel (C)
appears connected to the front wheel (A) since eventually the rear wheel traces the path

of the front.
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Figure 4.8: Pivot point traces for sinusoidal terrain.
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A more complicated terrain function is presented in Figures 4.7 and 4.8. A
sinusoidal function was chosen as it is more complex with its change in slope and would
thus be closer to reality, where the terrain is not uniform. Once again, the pose was
successfully determined for each time step, with the rover wheels in contact with the
terrain. Also, as expected, the vehicle pivot point loci (traces) follow the terrain, each
mapping out a sine function and the rear wheel following the path of the front. The
specific terrain function used to generate these figures was y=0.12 sin (m x). It should also
be noted that care must be given to choosing the terrain function, especially for sinusoidal
functions, such that the peaks and valleys are not too narrow for the wheel dimensions,

which would cause the rover displacement to not follow the terrain.

Overall, the planar method presented here can be used to estimate what the pose
of the rover should be as it traverses a given a particular terrain function. However, it is
rather limited in that only one side of the rover is examined, and it does not account well
for non-smooth and rough terrains. Furthermore, the full three orientation angles of the
chassis are not automatically generated and would require extra work to do so. The joint
angles are of particular importance since they can be used in evaluating the stability of
the current pose of the rover and whether the physical constraints of each joint have been

violated.
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4.2 Three-dimensional Position Kinematics (D-H Approach)

As noted from the planar kinematic analysis in Section 4.1, a three-dimensional
analysis is required to accurately describe the effects of rougher terrain on rover pose.
With the need for an accurate description in three dimensions, the geometric method used
in 4.1 becomes cumbersome. The use of the Denavit-Hartenberg (D-H) convention
described in Chapter 3 allows for determining the pose of the rover at any point in its
traverse and to describe this pose in relation to the origin of its path in a world frame. As
outlined in Chapter 3, applying the D-H convention allows for transformation matrices to

be derived that relate the motion of the rover to the world frame.

4.2.1 Theoretical Formulation

To begin construction of a kinematic model, the particular vehicle must be
examined and appropriately modelled. For a kinematic analysis, modeling specifically
refers to focusing on the joints which form the kinematic pairs and the rigid lengths or
links between these pairs. As introduced in Chapter 1, the rover of interest in this work is

the J5.
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From Figures 4.9 and 4.10, it is observed that the rover has a readily identifiable set of
linkages in the back suspension, consisting of two side rods and a back bar. The design of
the rear suspension constrains the pitch of the chassis with respect to each walking beam,
by virtue of the back bar on the chassis being connected to the side rods that interface
with each walking beam. The effect is such that it serves to average the pitch of walking
beams to obtain the pitch of the chassis and attempt to keep the chassis level. Aside from
the obvious linkage suspension system, the rest of the rover can also be discretized into
kinematic pairs or joints separated by rigid lengths. These other components include the

chassis, walking beams, and the wheels.

With the simplified sketch of Figure 4.10, the joints are easily identified. Starting
outwards from J, the centre of gravity (C of G), joints are labelled sequentially, with
even numbered joints on the left side of the rover and odd numbered on the right. It can
further be observed that from the chassis C of G, there are two kinematic paths that can
be taken to reach each of the four wheels and their respective ground contact points,
either directly through the walking beams (J7, Js) or through the back suspension (J2) to
the walking beams (Js, J¢). Each of the four wheel-ground contact points is analogous to
the end effector of a manipulator, effectively meaning that this four-wheel rover is to be
modelled as a parallel manipulator. With the establishment of the joints or kinematic
(pairs, the links of each kinematic chain are more easily visualised, and one can begin to
assign coordinate frames to each joint, along with the end effector and fixed reference

point.
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Initially, the model included all the joints for the back suspension with a spherical
joint (rotates in all 3 directions) connecting the side rods to their respective walking
beams. To apply the D-H convention, each of these spherical joints was decomposed into
three mutually orthogonal revolute joints. This decomposition made an already complex
system even more complex, as each joint adds another row of D-H parameters and
subsequently another transformation matrix to be concatenated in the set from rover C of
G to ground. Early attempts at solving the sets of equations developed proved to yield no
results and the decision was made to simplify the back-suspension system by relating the
pitch of the chassis to the two walking beams. The simplification of the back-suspension
and its associated joints simplifies the rover; however, the remaining system is still

effectively a parallel manipulator.

With the rover model simplified, the body can essentially be stripped away and
represented purely by the individual joints and relative locations. By focusing solely on
the joints, the coordinate frames are properly assigned following the rules of the D-H
convention outlined in Chapter 3. Figure 4.11 depicts the final version of the rover

model which forms the foundation of this kinematic analysis.
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Examination of Figure 4.11 reveals more joints than present in the physical rover,
particularly the three prismatic joints (indicated by cubes) followed by three revolute
joints (cylinders). In order to describe the movement of the rover, or more specifically the
pose of the rover with respect to its environment, two concurrent three degree of freedom
joints were added to connect the rover to the world origin or reference frame. Although
these are not physical joints on the actual rover, their inclusion allows the rover’s position
to be tracked as it moves further from its starting position with the C of G above the
world origin. Having these three degree of freedom joints is also advantageous as it
means that by “actuating the joint” to get to each set of contact points on the terrain map,
the model is closer to driving the rover over the terrain rather than moving the terrain
under a fixed rover, like a velocity table. Similar to a spherical joint, a three degree of
freedom joint must be broken down into a set of concurrent joints comprised of three
prismatic components for translation and three revolute components for rotation. Each of
the prismatic joints handles the rover heading in one of the three world directions,
starting with the x-direction, followed by the y-direction and finally z. With the position
of the rover’s centre of gravity as expressed in the world frame taken care of, the
orientation must follow, hence the three revolute joints. These describe the overall yaw,
pitch, and roll of the chassis about its centre of gravity. Following these joints, the centre
of the chassis has been reached and two branches split off to describe the left and right
sides of the rover. It should be noted that the lines connecting the joints are not drawn to
scale and are more to represent how each joint is oriented with respect to the world
reference frame and the order of connection. The order, in turn, dictates the

concatenation order of the individual transform matrices. Branching off from the centre
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of gravity, the kinematic chain can proceed to the left or right side of the rover. Each
walking beam can rotate or pitch up and down with respect to the world frame. Following
the revolute joint of the walking beam, the kinematic chain branches again with one
branch for the front wheel and its contact point, and the other for the rear. Hence, the
rover can be modeled as a parallel manipulator with four distinct kinematic paths from

the world reference frame to the respective wheel ground contact points.

With all the joints clearly identified as shown in Figure 4.11, the coordinate
frames shown were assigned based on the rules outlined in Chapter 3. It can be seen that
all joints have the z-axis aligned with their respective joint axis and that each coordinate
system has its x-axis such that it is perpendicular to both its own z-axis and the z-axis of
the joint preceding it. As such, the x-axis for each wheel axle is at an angle that aligns it
with the link length between it and the walking beam pivot point. It is also important to
note from Figure 4.11 that the left and right sides of the rover have z-axes pointing in
opposite directions. This choice was made to avoid having to assign negative values to
rigid distances between some of the links. Similarly, the x-axis of each walking beam
joint is in the vertical, downwards or negative global z direction, to take advantage of
bisecting the angle between each walking beam link length (shortest distance between
the axles and the walking beam pivot point). This advantage will become more apparent

as the parameters are discussed.
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At this stage in the formulation, it is beneficial to introduce the assumptions made
in the three-dimensional position kinematic analysis and discuss the rationale behind

them.

Assumption 1: The rover is a rigid body and any parameters such as link lengths and
Jjoint displacements can be considered rigid and therefore constant.

It is reasonable to assume that structural flexion does not need to be accounted for. In
addition, certain distances, such as the distance between the front and rear wheels, are

assumed to be constant.

Assumption 2: Dimensions of the rover are accurately determined from the drawing
provided by the rover operators.

Access was not provided to the actual CAD model and dimensions were hard to
accurately measure from the physical rover. However, a drawing of the rover was
provided and illustrated measurements of certain dimensions were taken from the
drawing and scaled accordingly to obtain other dimensions used throughout the work
presented here. The scale used was 15.8:1. The drawing provided is included in Appendix
A, along with a list of dimensions and properties of the rover. These dimensions were
also used in creating test terrains that would be guaranteed to line up with the wheel-

ground contact points.

80



Assumption 3: The rover’s centre of gravity is in alignment with the walking beam joints.
From the rover diagram mentioned in assumption 2, the checkered circle symbolising the
rover’s centre of gravity can be seen to be slightly off the geometric centre, where the
joints connecting the chassis to each of the walking beams would be aligned. The
relatively small distance (0.01524m) added unnecessary complexity to an already
complex problem and did not significantly impact the D-H parameters governing the
analysis. The location of the centre of gravity would have more impact in the dynamic
analysis, which deals with forces (and by extension: masses and accelerations) whereas

kinematics is limited to position and motion.

Assumption 4: The back-suspension can be replaced and modeled with a function
relating the pitch of each walking beam to the overall pitch of the chassis.

Upon initial derivation of the D-H parameters and consequent transform matrices, it was
determined that modelling the back suspension added too much complexity and number
of equations to an already overly constrained system. Such excessive complexity and the
added number of constraints would be problematic for the software to accommodate.
Based on conversation with the rover owner/operator, it was determined that the
appropriate function would average the pitch of each walking beam to try and keep the

chassis as level as possible. As such, the following equation was developed:
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1
Ochas = 5 (war - gwbl) (4.6)

Where O, and O, are the pitch of the right and left walking beams, respectively, with
the chassis pitch represented by O.nis. The negative sign occurs due to the different
orientations of the z-axes for each walking beam joint which means that the same pitch
will have different directions (signs) in their respective coordinate frames, as governed by

the right-hand rule.

Assumption 5: Each wheel has a single point of contact with the terrain and is located at
the same position as the axle plus a radial distance to the wheel rim.

Each wheel is considered to be more like a disk. Although depending on the type of tire,
terrain, and terra-mechanic forces involved, the actual wheel-ground contact is more of a
continuum than a single point, for a kinematic analysis. The goal is the overall pose of
the rover for the given terrain input and which could be used to determine whether the
pose violates any constraints, or results in an unstable configuration. Thus, it was
determined to be acceptable to proceed with the simplifying assumption of a single point
of contact for each of the four wheels, meaning four input sets from information obtained

from the terrain map.

Assumption 6: The wheel-ground contact point is modeled via Tarokh et-al [48] due to
the relatively fixed relationship between the wheel axle and the rim-ground contact point.

This assumption simplifies the mathematical formulation for the model.
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Parameters

With these governing assumptions in mind, the model above with the coordinate
frames indicated was used to obtain the four D-H parameters describing the
transformation between each kinematic pair. These parameters where collected in tables,

with Table 4.1 as an example.

Table 4.1: D-H parameters for the kinematic chain — world origin frame to right front wheel.

n 0 [deg] o [deg] a[m] d [m]
0 + 90 + 90 0 0
1 -90 -90 0 X
trans
2 -90 +90 0 Y
trans
3 0 0 0 Z +h
trans CoG
4 ® - 90 0 0
yaw
5 (0] +90 +90 0 0
pitch
6 ) + 90 0 0
10 0 +B 0 a d
wbr wb cmwb

The complete set of D-H parameter tables can be viewed in Appendix C. Note
that there are extra rows, one between the world frame and the first joint, and also
between the axle initial orientation and the orientation used in the contact transformation
matrix. These additions do not describe actual joints but were necessary because an
additional rotation was needed for proper alignment. As expected, the three prismatic
joints (rows for n=1, 2, 3) have the joint variables representing the overall translation of

the rover in the three global directions. The third joint, responsible for the global z
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translation of the rover has the constant addition of the height of the rover’s C of G
included, so as to distinguish movement in the global z direction from the influence of the
terrain and not the height of the C of G. The subsequent three revolute joints have joint
variables of theta which represent the overall yaw, pitch, and roll of the chassis. The yaw
angle would be the heading or steering angle of the rover as it follows the chosen path.
For the joint rotation of each walking beam, an additional variable 3, is included. The
angle B corresponds to half the angle between the two walking beam link lengths (awb).
The walking beam link lengths are the shortest distance between the walking beam joint
and the wheel axles. Finally, the last row describing the transformation from the walking
beam joint coordinate frame to the wheel axle also has a joint offset parameter whereas
the previous row (detailing the transformation from the C of G to the walking beam joint)
does not. This joint offset occurs because the coordinate frame for the walking beam joint
has to be effectively translated (although still attached to the joint) to ensure it did not
violate any of the rules for establishing coordinate frames. Its x-axis was not only
perpendicular to its own z-axis and the z-axis of the joint before it, but also that it
intersected the previous z-axis. This joint offset is the width or distance from the rover’s
centre of gravity to the wheel-ground contact point (or end of axle) in the global Y

direction.

Equations

The final step in the formulation of the kinematic model is the generation of
transform matrices between the kinematic pairs or coordinate frames, which in turn

produce the equations describing the motion of an output link relative to the selected
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fixed reference frame. Chapter 3 introduced the homogeneous transform matrix and how
D-H parameters fit. Returning to Table 4.1, and using the D-H parameters for row 2
which describes the transform from coordinate frames 0 to 1 (or the properties for joint

1), the homogeneous transformation matrix is

c6; —sb,ca, sO;sa; a;cH

70 — s, cBicay —cB;sa; a,sH,
1 0 say cay d,
0 0 0 1

c(—=90) —s(—=90)c(—90) s(—90)s(—90) (0)c(—90)

_[s(=90) ¢c(=90)c(=90) —c(—=90)s(=90) (0)s(—90) (4.7)
0 S(—90) C(—90) Xtrans .
0 0 0 1
0 0 1 0
-1 0o 0o o
|o -1 0 Xtrans
0 0 O 1

The full set of homogeneous transformation matrices were produced using Maple but are

not included herein.

The paper with the closest approach to this work, Tarokh et al [48], noted that a
better approach to the transformation matrix from the wheel axle to the contact point was
by applying a simple rotation based on the terrain incline and translations of the contact

joint based on that angle.
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Figure 4.12: Right front wheel contact diagrams (view looking in the axle’s negative z-direction).
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Figure 4.13: Right rear wheel contact diagrams (view looking in the axle’s negative z-direction).
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Figure 4.14: Left front wheel contact diagrams (view looking in the axle’s positive z-direction).
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Figure 4.15: Left rear wheel contact diagrams (view looking in the axle’s positive z-direction).

87



Figures 4.12 through 4.15 show the various wheels on a generic incline and its
effect on the orientation of the coordinate frame at the contact point with respect to the
axle’s coordinate frame. The angle of the incline causes the contact point to rotate about
the axle’s z-axis by that same amount. This rotation results in the x and y location of the
contact point shifting by a magnitude of the radius multiplied by the cosine or the sine of
the angle respectively. By inspection, it can be seen that the transformation matrix

relating the contact point to the wheel axle for the right front wheel is given by Equation

4.8.

by —S6p 0 71y
T10 — S(Srf C6rf 0 T(Srf 4.8
14 0 o 1 o (4.8)
0 0 0 1

Note that, in Equation 4.8, the notation on the transformation matrix, T, connects axle
joint 10 with its wheel-ground contact point for that wheel, 14. After attempting a purely
D-H approach, it was decided to take advantage of this simplification and include it in the

model presented here.

Similarly, the overall transformation matrix describing the end effector of wheel-

ground contact point with respect to the world frame, is obtained by the concatenation of

transformation matrices in Equation 4.9.
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TY = To Ty Ty TS T TS TE T Tioa Tia ® (4.9)

The order of multiplication follows the order of the joints, starting from the world frame
and ending at the contact point. The concatenation of matrices for the remaining three
kinematic chains (wheels) were also completed using Maple. It was decided to use Maple
to obtain the overall transformation matrix for each kinematic chain because it is better

built for symbolic computing.

Recalling the definition of the homogeneous transformation matrix, once the
overall transformation matrix has been determined for each kinematic chain, equations

expressing the pose of the end effector in the world reference can be extracted as follows:

XCi = TCI'/LV[]-l‘l']
YCL' = TCI'/LV[Zl‘l']
Zei =T [34]
_ tan-1 (Tci[33]
@xci = tan (Tgi"[s,u) (4.10)

Py,ci = sin'(=T¢{ [3,2])

@Ozci = tan™?! (TCViV[Z,Z]>
Z,Ci — WA
' TY[1,2]
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A brief examination of the 4™ and 6™ equations of Equation Set 4.10, which have
denominators, indicates that it is extremely unlikely for the denominators to become zero,
given the physical reality of the driving scenario. Once again taking advantage of the
symbolic nature of the Maple environment, the resulting equations were obtained for
direct implementation in the algorithm for solution. The final result was a set of a
maximum of 24 equations to describe the pose of the end effector, with the added
Equation 4.6 replacing the back suspension. From the D-H parameter tables it can be seen
that there are 12 unknowns or joint variables for the system. Details of the algorithm,

including solvers used, are presented in 4.2.2.

4.2.2 Method of Solution

With the derivation of the basic position and orientation (pose) kinematic
equations complete, the algorithm to solve the set of equations given the position of each
contact point on the terrain map was developed next. Figure 4.16 details the final

algorithm.

90



onvergence
acheived?

Figure 4.16: 3D position kinematics algorithm.

Since one of the objectives of this work is to predict the rover behaviour prior to
executing a particular path, the inputs are designed to be representative of the scenario.
As such, the main input to the position kinematic analysis is a terrain path consisting of
location in X and Y, with the elevation at each set of coordinates given by Z.
Alternatively, a terrain function can be used instead of a terrain map of Z(X,Y), however
to try and simulate reality, the elevation terrain map was implemented. The use of a
terrain map also allows for more randomness to be included in the terrain than otherwise
would be. Furthermore, this choice will prove advantageous later in the velocity analysis,
as it allows the terrain map to be populated with estimates for regions of slip. The first
step in the algorithm imports the specified terrain path map and extracts arrays of data for
the different coordinate directions for each wheel-ground contact point. These extracted
arrays will then be used as inputs for the position and orientation of the wheel-ground
contact points. It is important to remember that these inputs must all be expressed using

the world reference frame.
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A “while” loop is used to step through each set of points in the traverse, from
beginning to end. With the inputs defined, the external function, J5posKin.m is called for
solution. The JSposKin.m function can be thought of as the kinematic model or rover
geometry/property file, since it not only contains the extracted kinematic equations but
also the physical geometric properties of the particular rover. This function file could
easily be swapped out for different rover models without much change to the overall
algorithm, making the algorithm more versatile. It should be noted that for most
numerical solvers, an initial guess of the solution is required. For simpler terrain test
cases, the initial guess can be easily made to fit the actual solution, like that of flat land
which can be expected to have a solution of 0 for the joint variables corresponding to the
first location on its traversal path. A good initial guess gives the solver a better chance at
achieving convergence. For each position iteration of the while loop, the corresponding
solution of joint variables are stored for easy plotting of joint motion over the traverse.
For example, the angular displacement of each walking beam over the course of the
traverse is one such end output of the algorithm. The terrain path is also plotted over the

terrain map to provide context and a means for comparison.

The 3D position kinematics algorithm was developed with the goal of being more
software independent than other methods, including some of those highlighted in the
literature presented in Chapter 2. Thus, the source scripts/code displayed in Appendix C,
can easily be modified for other coding platforms and languages. The work presented

here was written in MATLAB, which is relatively inexpensive compared to multibody
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physics engines and other simulation software. MATLAB was also chosen for its ability
to easily interface with other software applications and the familiarity of the author with
its functions. The algorithm being relatively independent of the software utilized is
advantageous since it means that users have more flexibility in the software they use and
are not forced to invest in a software platform that can be costly in terms of both purchase

and training costs.

Within MATLAB, many built-in functions are available for solving systems of
equations and many of these have a choice of algorithms to use in their solution. This
feature makes them more robust and increases the overall chance of convergence. After
investigating some of the solvers applicable to nonlinear equations, the solver ‘fsolve’
was selected. Fsolve was chosen because it not only solves systems of nonlinear
equations, but multivariate ones as well. More importantly, one of its potential solution
methods is the Levenberg-Marquardt algorithm which can handle systems of equations
where the Jacobian fails to be square. The kinematic equation set derived for the J5 rover
has a maximum of 25 equations and 12 unknowns, making it an over-constrained system.
Even reducing the equation set to the bare minimum still results in 13 equations for 12
unknowns. As such, the Jacobian of this equation set will never be square, hence a solver
that can employ a strategy to cope with the non-square Jacobian is required. To use
fsolve, the equation set must be in the form of equations that equal zero as seen in the

function file, J5posKin3.m, included in Appendix C.
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4.2.3 Results

A selection of representative case studies is presented below. Once again, more
cases can be generated upon request, with the representative cases demonstrating the
capabilities of the method. It should be noted that using the full set of 25 equations with
12 unknowns resulted in convergence issues, as the system is over-constrained. Adjusting
settings on the solver did not result in convergence. However, due to the physical nature
of the rover, the wheel-ground contact points remain fixed in their orientation relative to
each other, with respect to yaw and roll. This relationship justified the removal of some

of the orientation equations, which resulted in convergence being achieved.

Case 1: Flat Terrain

Figure 4.17: Flat terrain digital elevation map.
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The first test case was for flat terrain since it was the simplest scenario. Figure
4.17 is the digital elevation map of the flat terrain and the inputted terrain path consisted
of x, y, z coordinates for a straight path in the global x-direction, beginning with the

chassis centred over the world origin (located at (0, 0, 0)).

Right Walking Beam
Left Walking Beam

Walking Beam Pitch [DEG]
(=]

-8 1 1 1 1 |

Figure 4.18: Walking beam pitch vs distance travelled (flat terrain).
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Figure 4.19: Chassis orientation angles with respect to distance travelled (flat terrain).

Figures 4.18 and 4.19 depict the results of the simulated drives. The pitch of each
walking beam is plotted over the course of the rover’s traverse in Figure 4.18. Examining
Figure 4.18, one can observe the proper averaging of the walking beams due to the scale
of the y-axis. Furthermore, the value of the y axis shows that, as expected for the flat
terrain, the pitch of each walking beam is 0°. Similarly, from Figure 4.19, the yaw, pitch,
and roll angles are all O for the flat terrain which is to be expected. The scale of the y-axis
shows a bit of a varied response on the pitch; however, it is off magnitude 10" and is thus
considered to be 0. In both 4.18 and 4.19, these fluctuations are due to the nature of the

solver as it converges toward a solution.
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Case 2: Uphill Sloped Terrain

Figure 4.20: Uphill 10° inclined terrain digital elevation map.

The next test case was for moving up a sloped terrain. The slope of the terrain
shown in Figure 4.20 and was assigned a slope value of 10°. The corresponding terrain
path coordinates for each wheel driving in a straight line in the x-direction were

generated in an Excel sheet and imported as the inputs. Subsequently, it was expected

that the pitch of the walking beams and chassis would have the same value as the slope.
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Figure 4.21: Walking beam pitch vs distance travelled (10° incline).
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Figure 4.22: Chassis orientation angles with respect to distance travelled (10° incline).
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Figures 4.21 and 4.22 detail the results for the simulated drive of a straight path
on an inclined slope of 10°. It was found that for a longitudinal slope that although
convergence was achieved, all pitch angles were computed and were off by half of what
they should be. The apparent error was investigated through further review of the
computer code, along with a complete reformulation of the overall transformation matrix
by trying different order combinations for the first 6 joints. Note that the order of later
joints in the sequence could not be altered as they are specified by the geometry of the
rover. The application of the original D-H method in assigning coordinate frames and
determining the associated parameters, was revisited multiple times to ensure correct
formulation of the individual transformation matrices. Maple was used in the
concatenation of all the transformation matrices to avoid the possibility of human error in
matrix multiplication. The results of the investigation indicated that the various
formulations all produced the same error. Therefore, due to the consistency of this
offset/error, as also verified in a 15° incline test case, a correction factor of 2 was applied
to the pitches. It is important that this correction be applied at this point in the model
because these pitch angles are used later as inputs to the velocity analysis. The resultant
walking beam pitch angles over the traversed distance are shown in Figure 4.21 and, as
expected, they remain constant like the slope of the terrain, each with a corrected value of
10°. Furthermore, the walking beams continue to display the correct behaviour for an
upward slope of 10°, which is negative with respect to the world frame. The right walking
beam experiences a positive pitch and the left walking beam a negative pitch, based on

their coordinate system definition. Thus, the walking beams average the pitch (including
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the direction) to the correct value for the pitch of the chassis, which is depicted in Figure
4.22, and has a value of -10° in the world frame. In addition, Figure 4.22 shows that the
chassis only experiences a pitch angle in its traverse since a straight-line drive on a

longitudinal incline would not encounter roll or yaw.

Case 3: Side Slope Terrain

Figure 4.23: Side slope 10° terrain digital elevation map.

Following the inclined uphill slope, the third test case was decided to be for
driving along a side slope, given that it’s a likely scenario. Figure 4.23 depicts the terrain
for a side slope of 10°. Once again, the rover is simulated for a straight path in the x-
direction. For this case, it was expected that the chassis roll value would match that of the

terrain, while pitch and yaw would have a value of 0.
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Figure 4.24: Walking beam pitch vs distance travelled (side slope 10°).
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Figure 4.25: Chassis orientation angles with respect to distance travelled (side slope 10°).

The results for the side slope terrain are depicted in Figures 4.24 and 4.25. As

expected, the pitch of each walking beam is essentially 0, with the scale on Figure 4.24
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again showing the apparent opposite rotation of each walking beam (due to the positive z
axis of rotation for each walking beam being in opposite directions). Subsequently, the
chassis pitch if the average with a value of 0°, and the yaw is also 0°, both as expected.

The overall chassis roll is given as -10°, which indeed matches the slope of the terrain.

Case 4: Sinusoidal Terrain

Figure 4.26: Sinusoidal terrain digital elevation map.

The final test case included in this thesis is for a slightly more complicated terrain
to show the model’s potential. A sinusoidal curve was chosen, with the exact function as
7=0.4sin(0.4x), and is depicted in Figure 4.26. The sine curve allows for a test of a

changing slope, which should result in changing pitch angles, including the existence of
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the inflection point. The rover is again driven in a straight line in the x-direction, so yaw

and roll angles are expected to remain zero.
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Figure 4.27: Walking beam pitch vs distance travelled (sinusoidal terrain).
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Figure 4.28: Chassis orientation angles with respect to distance travelled (sinusoidal terrain).
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The results for the sinusoidal terrain are included as Figures 4.27 and 4.28. Figure
4.27 displays the walking beam pitch angles over the traversed distance. Due to the
nature of the pitch in this code, the correction factors noted in simple longitudinal slope
tests were maintained. The rover begins the traverse at x=0 of the sine function and as
such, starts on an inclined slope. The slope can be manually determined by taking the
derivative of the function, providing a means to check the numbers being produced by the
MATLAB code. As expected, for an uphill slope, the right walking beam experiences a
positive pitch that is the slope, whereas the left walking beam is its mirror image, with its
positive axis of rotation in the opposite direction. Following the curvature of the terrain,
the walking beam pitches curve towards 0 where they meet, before changing direction
and moving away from each other once more. Figure 4.28 shows the chassis angles of the
rover as it moves over the terrain. Due to the nature of the terrain and the path selected,
the chassis should only be experiencing a change in its pitch, with both yaw and roll
angles stationary at zero. Examination of Figure 4.28 shows that these expectations are
met, with the yaw and roll angles remaining at a constant zero value, and the pitch angle
as the average of the walking beams, meaning that the pose matches the direction and
magnitude of the left walking beam. These results give confidence in the methods used

to produce the code/kinematic position model, even with the correction factor.
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4.3 Three-dimensional Velocity Kinematics (D-H Approach)

With the establishment of kinematic equations describing the position and
orientation of the rover in the world reference frame, the method was expanded to include
velocity analysis. Although being able to predict the pose of the rover as it interacts with
the geometry of the terrain is crucial, having the capability to do a velocity analysis
allows for the effect of non-geometric terrain characteristics, specifically slip, to be

observed as well.

4.3.1 Theoretical Formulation

Since the previous 3D position kinematic model is the foundation for the 3D
velocity analysis, all the previous model formulation presented in Section 4.2.1 still
applies and is used here. In addition to all previous assumptions used in establishing the
three-dimensional position kinematic model, some further assumptions were required for

the velocity analysis.

Assumption 7: The wheels of the rover are constrained to have the same angular velocity
for a given side (ie. right vs left).

As mentioned in previous sections, the rover under analysis is one that is equipped with
skid steering. The application of skid steering in the J5 rover means that each walking
beam contains a motor to drive both wheels via a belt drive. More specifically, it is

assumed that there is no stretch or slip in the belt drive mechanism. In addition, the left
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and right sides may be given different angular velocities to complete various steering

mancuvers.

Assumption 8: The rover wheels cannot be individually actuated or steered.

Building on the assumption of the rover as a rigid body with no deformation and constant
distances between certain joints allows the angular velocity of the contact point to be

simplified to one direction, provided the rover is moving in a straight line.

Assumption 9: Lateral (or side-slip) is minimal and can be considered negligible, not
impacting rover progression.

This assumption allows for side slip to be left out of the analysis but could be added back
in should actual rover tests play a significant role. Similarly, steering angle rate slip was
considered to be negligible due to the steering being skid steering as opposed to certain
wheels having individual steering such as the Rocky 7 six-wheel rover analysed by
Tarokh [48]. This consideration also means that the rover is assumed not to deviate

laterally from its selected path and associated coordinates.

Assumption 10: The speed of the rover is 0.10 m/s or 10 cm/s, in keeping with the speeds

of other documented planetary exploration rovers (see Chapter 2).
The selected speed is convenient as it allows the rover to travel slowly enough to
maintain its assumed quasi-static status. Furthermore, this assumption enables the

commanded angular velocity of the wheels to be calculated, in terms of no-slip.
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Assumption 11: Slip is obtained as part of the digital elevation terrain map and path

coordinates.

Specifically, that the digital elevation map, which could be obtained from satellite
imagery, was post-processed and analysed for slope and terrain type, allowing slip-slope
curves obtained from experimental drives of the J5 rover to be applied for extracting the
approximate slip values. These slip values are then used to populate the map and become

an additional array in the path coordinates.

In the velocity kinematics of serial manipulators, the velocity of the end effector
is given by Equation 4.11, wherein the joint variable rates (q) are multiplied by a matrix

called the Jacobian, represented here by J.

<!
I

Jq (4.11)

The vector, V, is comprised of three translational and three rotational velocities to fully
describe the motion of the end effector, or in this case, the contact point in the world
frame. The manipulator Jacobian relates the set of joint variable rates into these velocities
of the wheel ground contact point. Due to the nature of the problem, with passive joints
and considering information at the contact point to be known, the velocity analysis will
be an inverse kinematics analysis with the joint values as the unknowns to be solved for.
Hence, the manipulator Jacobian must be determined, along with developing expressions

for the different components of the end effector velocity with respect to the world frame.
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For the manipulator Jacobian, it is beneficial to recognise that it too, can be divided into a

translational and angular/rotational part, as shown in Equation 4.12.
] = U”] (4.12)
w

Regardless of how many kinematic pairs or joints are in a chain, the Jacobian will
always have six rows for three-dimensional analysis due to the column vector of the end
effector velocity containing six components. The number of columns will vary, however,
as they are dependent upon the number of joint variables. In doing so, the number of
columns also provides insight into whether the system is under- or over-actuated, with
greater than six columns indicating it is over-actuated and likely to be over-constrained in
the full equation set. For the J5 rover used in this work, there are eight joints in each
kinematic chain from the world reference frame to that of the wheel-ground contact point,
as can be observed in Figure 4.11 in the previous section. Thus, for the J5 rover, the
Jacobian for each kinematic chain has the size/form of 6 x 8. The upper three rows of the
Jacobian contain components for linear velocity, thus forming the linear Jacobian.

Likewise, the rotational Jacobian is formed from the bottom three rows.

opx x| O
0q1 0qy 0qn

J, =& %y OBy 4.13)
0q1 0qy oqn
op; 0pz 9Pz
Ldq1  0q> qn-
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The translational velocity Jacobian is determined first, using the previously
determined overall T matrix and extracting the fourth column elements for the position of
the end effector in the world frame. Using these three elements, the partial derivatives for
each are obtained with respect to each of the joint variables as shown in Equation 4.13.
For the kinematic chain of world reference frame to right rear wheel contact point, the

translational velocity Jacobian is too large to include in the text of this thesis.

Jo = [A1ho  Azhy . Aphp_q] (4.14)

Obtaining the rotational velocity Jacobian is rather different. The columns for this
matrix are determined using Equation 4.14, with / being the third column of the
homogeneous transform matrix, T, from the world reference frame to each of the series of
joints. The variable A, is merely used as a logic statement based on the joint type and is
zero for prismatic joints and one for revolute joints. Thus, if the column corresponds to a
prismatic joint, the result will be a column of zeros which makes intuitive sense as
prismatic joints do not have a rotational component. The rotational velocity Jacobian
components for the revolute joints, having a A of 1, are generated by extracting the third
column in the orientation portion of the T matrix. The T matrix used is based on the
concatenation of T matrices from the world frame to the end effector of that joint.

Equation 4.15 demonstrates this process for the pitch joint of the chassis.
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_Ceyawsgpitch _Sgyaw Ceyawcepitch Xtrans

TW — _Seyawsepitch Ceyaw Sgyawcepitch Ytrans (4 15)
5 = .
l _Cgpitch 0 _Sepitch Ztrans + hCoGJ
0 0 0 1

Therefore, rows four to six, column 5 of the rotational Jacobian are (ceyawcepm),
(seyawcepitch), and (—sﬁpitch). Full derivation of the matrix elements was completed in

Maple. Reassembling the translational and rotational Jacobians yields the overall

Jacobian as shown in Equation 4.16.

r0px  Opx  Opy 0Dy ODx 0Py Opx OPx
dqy 0qz 0q3 044 94qs d4qe aq7 dqg
dpy 0py Opy Opy opy dpy opy opy
dqy 9qz 043 044 94qs d4qe aq7 dqg

] — op; 0Jp; Opg 0Pz 0Pz 0Pz 0Pz op, (4.16)

dq1 0qx 0qz3 09qy 0qs dq¢  0q;  Oqg

0 0 0 h3 X h4 X h5 x h6 X h7 X

0 0 0 hgy hgyy hsy hey hyy

| 0 0 0 hg, hy; hs; he, hy,l

Examining the complete Jacobian one can see that each yields a set of six equations

describing the motion of the end effector with respect to the world frame.

With the Jacobian obtained, the next part in the formulation is to generate
expressions for the end effector velocity components in the world frame. However, since
these involve the wheels, and more specifically, the wheel-ground contact point, one

must first familiarise themselves with the definition of slip. As mentioned earlier in this
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and previous chapters, one of the benefits to going beyond the three-dimensional position
kinematics and performing a velocity analysis, is that it can allow for the prediction of the
effect of slip which is a non-geometric hazard. Slip is guaranteed to occur in
environments such as the Moon or Mars due to the nature of the regolith or terrain, which
is essentially a hard surface covered by fine particles [30, 42]. Slip is usually defined as
the difference in relative motion between the wheel axle and the ground/surface it is
travelling on [13, 30]. Slip is often described by Equation 4.17 as a non-dimensional

variable, i, such that

i=1-= (4.17)

wTr

where v, is the wheel axle translational velocity (in the direction of motion), w is the

commanded angular velocity of the wheel, and r is the wheel radius.

Typically, one associates slip with wheeled motion, but it should be noted that it
can also affect legged robots as well. Usually, analysis of wheeled motion tries to adhere
to what is referred to as the “no-slip” criteria, since it greatly simplifies the analysis.
Wheeled motion is comprised of two parts: rotational, which is typically caused by the
motor and translational representing the forward motion of the vehicle. The two
components are essential for the wheel to effectively progress along a surface. Figure
4.29 depicts the two components of wheeled motion and consequent summation for the

no-slip case.
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Summation Line

When v, = wr (no slip), the contact point instantaneous velocity is zero.

Figure 4.29: Interaction of rotational and translational velocities for wheels with no slip.

Examining Figure 4.29, it can be seen that the wheel has a rotation of o, resulting
in tangential velocity vectors along the wheel’s edge with magnitude, v: = or. Notice that
for a clockwise rotation, the rover moves to the right, resulting in the displayed vectors.
The top of the wheel has a vector, v, in the positive right direction and the bottom, where
the contact point would be for flat, horizontal terrain, has the same magnitude of vector,
but in the opposite direction. The wheel also translates, and for the condition presented of
no-slip, the translation of the centre of the wheel (axle) and by extension, the whole
wheel, is a set of vectors in the positive right direction, with a magnitude of the angular
velocity multiplied by the wheel radius (or). Summation of the vectors results in the
contact point vectors cancelling each other out and having a velocity of zero in that
particular instant. The resultant zero velocity makes it behave like a fixed link for that
movement which gives the no-slip condition. As expected for the no-slip condition, the

center of the wheel advances by a velocity of or.
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Summation Line

When v, < wr (slip), the contact point instantaneous velocity is negative.

Figure 4.30: Interaction of rotational and translational velocities for wheels with slip.

However, the no-slip condition rarely occurs. As depicted in Figure 4.30, when
slip becomes involved, the translation of the wheel becomes significantly less until it
approaches the case of 100% slip where the wheel spins in place and does not move.
Such a case needs to be avoided, however even lower slip values can pose significant
challenges as discussed in the Literature Review of Chapter 2. When slip occurs, the
wheel does not make as much progress and the magnitude of the translation vectors
becomes less than wr (rotational component). Therefore, the velocity at the contact point
has a negative tangential component. From Equation 4.17 for slip, and the wheeled
motion diagrams, an expression of the velocities for the wheel axle and the wheel-ground

contact point can be determined as follows:
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Uxaxle = (UT(]. - i)
Vx,contact = Vx,axle — WT (4.18)

Uy contact = —LWT

Equations 4.18 provide the expected results when the extreme boundaries of slip are

applied (ie 1 =0 vs 1 = 1). However, in keeping with the previous definition of the contact

point to allow the inclusion of the terrain slope (¥), Equations 4.18 were further modified

as follows.

Vyaxte = WT(1 — i) cosy

Vg axte = wr(1 —1i)siny (4.19)
VUx contact = —LlWT COSY
Uz contact = —lwrsiny

These particular equations were then applied directly to produce expressions for

the velocity of the end effector, which allows for the unknowns of this problem to be the

joint variable rates as desired.

Method of Solution

Following the derivation of the velocity kinematic equations, the algorithm to

solve these equations for the joint displacement rates was generated. The code
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architecture flow chart describing the main functions and how it works is depicted in

Figure 4.31.
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Due to the nature of both the forward and inverse velocity kinematics problem,
wherein the Jacobian is not only derived using position kinematics as its foundation, but
also contains joint displacements, the inverse position kinematic analysis is intrinsic to
being able to solve velocity. Thus it can be noticed in the code architecture of Figure
4.31, that some portions of code are very similar to that of the three-dimensional inverse
position kinematics depicted in Figure 4.16, with minor adjustments that can be viewed
in the MATLAB script file located in Appendix C. Identical to the position kinematics
algorithm, the main input is a selected path on a digital elevation map, comprised of X,
Y, Z coordinates for each wheel’s contact point, however, there is also an additional array
of data to be extracted for each set of coordinates containing a slip estimate. Recall that
the slip values were assumed to have been extracted based on analysing the terrain for
type and slope, then reading the slip off of the respective curve. These values are
imported from excel spread sheets for the demonstrative test cases and are stored in

arrays within the workspace of MATLAB.

Although a while loop is used again to step the rover through its selected path, the
condition of the loop for this inverse velocity script is now based on time. The reason for
using time is that when slip occurs, the rover will not progress as far along the path and
won’t coincide with the next set of coordinates on the map. The use of a time step is also
more realistic as the real-life rover won’t have a terrain map or path perfectly matched to
rover’s full set of contact coordinates. As such, it is fairly straightforward to determine
the next set of solutions for a given interval (or delta) of time. The time step allows for

new coordinates to be determined via the velocities and interpolation, along with the
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added benefit of keeping track of the overall time in traversing the selected path. After
entering the while loop, the end effector pose and velocities are determined and then the
inverse kinematics problem is solved for that time step. Once the joint displacements are
known, the same solver, fsolve, is applied to the set of velocity equations to perform
inverse velocity kinematics with an initial guess and the previously solved for joint
displacements as inputs. The full set of velocity equations to be solved is contained in the
function file, J5VeloKin.m, and is attached in Appendix C. The solver selected had to be
fsolve again, due to the Jacobian not being square, as well as being able to handle non-
linear multivariate equations. Typically, in textbooks, when it comes to inverse velocity,
the solution methods are presented as the geometric or algebraic solution where the
inverse of the Jacobian matrix would be required. The non-square structure of this
Jacobian makes resolution difficult plus, with computer programs such as MATLAB, it is

easy to take advantage of numerical solution methods by using solvers, such as fsolve.

Once the inverse velocity kinematics has been solved, the variables are then
updated before beginning the next time step. Interpolation steps are required due to the
inclusion of slip in this analysis. The linear and angular velocities, along with slip and the
time increment, are used to compute the new change in X, Y coordinates of each wheel
axle. This change (delta) is then applied to the previous X, Y coordinates of the
respective wheel contact point to obtain the new contact coordinates for each wheel in X
and Y. From the terrain map, comparisons are made and then, if necessary, interpolation
factors in X and Y are computed. Using these values and the terrain path data, the

corresponding new Z values and slip are determined for the subsequent time step of the
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loop. Finally, more visualisations of the data can be produced based upon the additional

data available.

4.3.3 Results

Following the same case studies used in the 3D position kinematic analysis, a
selection of results is presented for each, incorporating a range of slip values. The case
studies presented were selected as being representative of the basic different terrain
scenarios that could be encountered and thus the model needs to accommodate. Due to
the 3D velocity analysis incorporating the solution of the position kinematic analysis, the
full equation sets for the velocity Jacobians could be used with convergence achieved in
the position analysis. With the rover speed of 0.1 m/s or a commanded angular wheel
velocity of 0.333 rad/s, the simulation time was selected to be 75 seconds since the
terrain and results did not change when compared with longer simulations. The time step
used to generate the following results was 3 seconds, although other time steps could be

used.

With regards to measuring accuracy, the position of the rover’s centre of gravity
during the traverse is compared with manually calculated position increments (for the
CoQG) included in the terrain maps. Since experimental validation has not occurred at this
time, there are no true values of velocity against which to compare the results of the
model. Therefore, velocity results for different terrain cases can only be compared against
the flat terrain case for the same slip value, or the commanded translational velocity of

the rover (based on the commanded angular velocity of the wheel). It should be noted that
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mathematical models and processes are intended to simulate reality, and do not exhibit

inherent accuracy. Model and process accuracy depends upon experimental validation to

provide the true values for comparison.

Case 1: Flat Terrain
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Figure 4.32: Walking beam pitch rates vs. time for a slip of 0.1.
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Figure 4.33: Rover velocity components over simulated traverse.

Figures 4.32 and 4.33 detail a sample of the angular and translational velocities
computed for the simplest case study of flat terrain. Building from the results of the
position analysis, the resultant angles are included as an input to the velocity Jacobian.
The velocity analysis converged quickly, with simulation run time under a minute for all
cases of slip. The full set of results are included in Appendix C. From Figure 4.32, the
walking beam pitch rates were observed for the simulation and were similar to rates for
other values of slip on the flat terrain. As expected, the rates remain constant, with no
change in commanded angular velocity or change in terrain. However, it was noticed that

the pitch rates had a constant, non-zero value, which was not expected. This error
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persisted consistently throughout all case simulations and even reformulating the
Jacobian and resultant equation sets produced the same result. Thus, it is noted as a
systematic error at this time. The velocity components shown in Figure 4.33 are of
constant value, as expected, and only the x-component has a magnitude which is
expected as that is the rover’s direction of travel in the world frame. With increasing slip,
the translation velocity of the rover decreases which is to be expected as the presence of
slip limits the traction of the rover and the wheel does not travel as far forward. The
longitudinal or x-component of translational velocity also is a bit larger in magnitude
than the expected velocity (based on the no-slip case and commanded angular wheel
velocities), suggesting that it may also be affected by the same systematic errors

influencing the pitch rates. The velocity is higher in all slip cases by the same differential
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Figure 4.34: Traversed distance in the world x-direction vs simulation time, for different slip values

(flat terrain).
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Figure 4.34 examines the total distance travelled in the global x-direction by the
rover in the given simulation time of 75 seconds for varying amounts of slip. As
expected, the solid line representing the no-slip case, had the highest slope as it travelled
the furthest in the x-direction. The value of x that it reached, was found to match the
manually calculated value for the no-slip case exactly. Following the legend provided, as
the terrain increases its slip value, the slope of the distance vs time line is observed to
decrease, indicating that the rover did not travel as far. This trend was exactly as
expected, as higher slip values represent a wheel that is losing forward mobility and
moving towards spinning its wheels. Naturally, the highest slip value, in this case i=0.5,
travels the least and barely makes it past 3 m in the 75 seconds of simulated traverse.
Extending the simulation time, the difference in the distance travelled for different values

of slip would grow.

Case 2: Uphill Sloped Terrain
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Figure 4.35: Walking beam pitch rates vs. time, for a slip of 0.1 (inclined terrain).
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Figure 4.36: Rover velocity components over simulated traverse (inclined terrain).

The results for the upslope case for a 10-degree inclined slope are displayed in
Figures 4.35 and 4.36. With regards to the walking beam pitch rates in Figure 4.35, the
overall trends are precise, in that the rates are constant which follows for constant
commanded velocity and unchanging terrain. In addition, the walking beams exhibit the
correct behaviour in that they mirror each other, which correlates with the behaviour seen
in the position kinematic analysis and the established coordinates of each joint. The
chassis pitch rate, which can be viewed along with the other results in Appendix C, also

follows the relationship between it and the two walking beams as defined by the rear-
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suspension. Again, Figure 4.35 exhibits the same inaccuracy for pitch rate as Figure 4.32.
Figure 4.36 displays the rover’s overall velocity components for the simulated traverse
for four different slip values. Due to the shape of the inclined terrain and the direction of
travel for the rover (straight line in x-direction), it was expected that the rover would have
velocity components in the longitudinal and vertical directions, or for the world
coordinate frame, in the x and z-directions. The results from the simulation follow the
expected trend, with velocity in the x-direction being larger due to the small angle of the
terrain for this particular test case. Although the values carry some inaccuracy, which
may be due to the systematic error producing the inaccurate pitch rates, the model is
consistent and also displays the correct decrease in both velocities for the increase in slip.
Furthermore, the model is accurate in obtaining the correct translational displacement of

the rover.
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Figure 4.37: Traversed distance in the world x-direction vs simulation time, for different slip values

(inclined terrain).
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Figure 4.38: Displacement in the world z-direction vs simulation time, for different slip values

(inclined terrain).

Examination of Figures 4.37 and 4.38 further demonstrate the model’s accuracy
in driving the rover to the correct displacement given the slip value of the terrain. The
model correctly depicts the correlation between distance travelled and slip, with the no-
slip case (solid line) having the highest slope and thus the largest distance travelled in the
x-direction (7.204 m) and z-direction (1.2635 m). The highest slip value of 0.5 made the
least progress, covering barely over 3m in the x-direction. Comparing the no-slip value to
the expected value that was externally determined, the value is exact, indicating a high
level of accuracy in the model being able to accurately move the rover given the terrain

and its slip value.
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Case 3: Side Slope Terrain

0.15
0.1

w
E 0.05
x
©
14
=
2 or === == Right Walking Beam
a Left Walking Beam
£
©
L
a
2005
=
©
=

01k

05 hmmmEEEEEsmasmsmzagassmssssnasssssssmsssasssssssssssss=messsassapesen ,

0 10 20 30 40 50 60 70 80
Time [s]

Figure 4.39: Walking beam pitch rates vs. time for a slip of 0.1 (side slope terrain).
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Figure 4.40: Rover velocity components over simulated traverse (side slope terrain).
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The next case study was for a lateral or side sloped terrain of 10° where, in the
position analysis of Case 3 in Section 4.2.3, the rover experienced a roll to match the
terrain slope and other angles had a zero value. Simulating a traverse over this terrain for
the chosen simulation time of 75 seconds, the walking beam pitch rates are given in
Figure 4.39. Similar to the position kinematic analysis, the results for the flat and side
slope cases offer identical pitch angles, with the only difference being that the side slope
provides a roll angle to the chassis. As such, it was expected that the velocity analysis
should also have the pitch rates match for both the flat and side slope terrains, since pitch
is not activated on either of these cases. Comparison of Figures 4.39 and 4.32 confirms
the expected match, with the same pitch rate inaccuracy evident. Furthermore, the result
shown in Figure 4.39 is representative of the result obtained for all the slip cases for the
side terrains. Figure 4.40 highlights the translational components of velocity of the rover
for different slip values. With the direction of travel being a straight line in the x-
direction, and no elevation changes along its trajectory, the rover only experiences a
velocity in the global x-direction as shown. Correctly incorporating the impact of slip, it
is observed that the increase in slip decreases the translation velocity of the rover.

Additional results and figures can be viewed in Appendix C.
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Figure 4.41: Traversed distance in the world x-direction vs simulation time, for different slip values

(side slope terrain).

Continuing with the impact of slip, examination of Figure 4.41 shows the
modeling of the expected behaviour of the rover progression in response to slip. The
distance travelled in the global x-direction is accurately computed for the no-slip case as
compared to the expected value determined during the generation of the terrain path
maps. Likewise, the distance travelled for the other values of slip is shown, with the least

amount of progress made on the terrain with the slip value of 0.5.
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Case 4: Sinusoidal Terrain
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Figure 4.42: Walking beam pitch rates vs. time for a slip of 0.1 (sinusoidal terrain).
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Figure 4.43: Rover velocity components over simulated traverse (sinusoidal terrain).
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The final terrain case was a more complicated sine terrain to show the model
coping with the changing slope. Figures 4.42 and 4.43 show some of the results from the
velocity analysis, with more results located in Appendix C. From Figure 4.42 the walking
beam pitch rates can be observed for the simulated traverse. It should be noted that the
result presented in Figure 4.42 for 0.1 slip is representative of the results obtained for the
other values of slip and can be viewed in the Appendix C. As well, the pitch rates are
constant for the traverse and are displaying the same inaccuracy noted in the previous
case studies. Figure 4.43 is interesting as it shows the translational velocity components
of the rover; however, due to the nature of the changing slope of the sine curve, the
velocity values are seen to fluctuate and follow somewhat of a rippling curve, most
notably in the z-direction which is (the z of the terrain) dictated by the sine curve. As slip
increases, each velocity component is reduced as expected; however, it is interesting to
note the increased rippling in the z velocity component as slip increases. The increased
rippling may be due to the cases with increased slip values relying more on interpolation
based on the application of slip to obtain the correct velocity and establish the new set of
wheel-ground contact points for the next time point of the analysis. Interpolation is
smooth and easy on the straight-line slope terrains, however, for more complex terrains
the interpolation may be improved by altering the time step of the simulation or possibly
changing the method of interpolation. Subsequent testing, with time steps ranging from 1
to 7 seconds, revealed that a time step of 4 seconds eliminated the rippling for the sine

function used, at moderate levels of slip. Since the change in time step did not completely
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eliminate the rippling in all slip cases for the sinusoidal terrain, implementation of a non-

linear interpolation function is recommended.
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Figure 4.44: Traversed distance in the world x-direction vs simulation time, for different slip values

(sinusoidal terrain).
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Figure 4.45: Displacement in the world z-direction vs simulation time, for different slip values

(sinusoidal terrain).
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Finally, the distance travelled in the global x-direction over the simulation
time is examined in Figure 4.44, not only as an indication of accuracy in properly moving
the rover along the terrain, but also to check for the correct inclusion of slip. Figure 4.44
shows the correct trends for increasing slip, as the rover makes less progress forward with
higher values of slip. When comparing with the expected value for total distance travelled
in the x-direction for the no-slip case, the model demonstrated an acceptable degree of

accuracy.

The accuracy in total distance travelled is also reflected in Figure 4.45, which
displays the displacement of the rover in the z-direction over the time of the simulated
drive. Examination of Figure 4.45 illustrates a shift to the right of the peak displacement
with an increase in slip. This shift is due to the reduced forward motion in the x-direction,
which results in reduced progress along the sine curve of the terrain, thus affecting the
displacement of the rover in the z-direction. Therefore, as slip increases, the rover reaches

the peak of the sinusoidal terrain at a later time.

Overall, the velocity kinematic analysis model ran smoothly, with no convergence
issues in all simulated traverses. The improvement in convergence is likely due to using
the solution from position analysis for each time step, in addition to an initial guess,
thereby requiring convergence to first occur in solving the inverse position kinematics
problem. The solver had to be tuned to reduce the step tolerance several orders of

magnitude from the default of 1e-6 to le-12, as the fsolve solver would occasionally stall
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for a given time step, although it still reported successfully converging at a solution. All
simulated traverses (all terrains and slip values) were able to be completed in less than a
minute for each case. However, as noted in the aforementioned case studies, there are
some inaccuracies in terms of the pitch rates computed. The model was able to predict the
correct trends for each of the angular rates and velocities, but upon close inspection the
magnitude of the walking beam pitch rates, and subsequently, the chassis pitch rate, were
consistently off by the same inaccuracy across all cases and values of slip. The overall
rover velocity values were also inaccurate, being 0.0245 m/s over the correct value,
which for the flat no-slip case was 0.1 m/s, and this error may have been the result of the
incorrect pitch rates. Yet, even with the presence of systematic errors, the three-
dimensional velocity model was still able to accurately move the rover, incorporating
slip, and to accurately determine its pose. The following tables examine the accuracy and
precision of the model itself more quantitatively. The percentage deviations detailed in
Tables 4.2, 4.3, and 4.4 are based upon Equation 4.20 and notes 1 and 2 beneath each

table.
%Dev = L TxLlat 100 (4.20)

Vx,flat

For further details, refer to the sample calculations provided in Appendix C.
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Table 4.2: Results of rover velocities and deviation with respect to the flat case.!?

Case Slip Rover Vx Rover Vz Percent Deviation
[m/s] [m/s] [%]
0 0.1245 0 -
0.05 0.1195 0 -
Flat 0.1 0.1145 0 =
0.25 0.0995 0 -
0.5 0.0745 0 -
0 0.1226 0 -1.53
0.05 0.1176 0 -1.59
Side Slope 10° 0.1 0.1126 0 -1.66
0.25 0.0976 0 -1.91
0.5 0.0726 0 -2.55
0 0.1171 0.0426 0.09
0.05 0.1122 0.0418 0.20
Incline 10° 0.1 0.1073 0.0409 0.29
0.25 0.0925 0.0383 0.62
0.5 0.0679 0.0339 1.87
0 0.1191 -0.0365 0.05
0.05 0.1151 -0.0325 0.08
Sinusoidal 0.1 0.1103 -0.0313 0.14
0.25 0.0926 -0.0196 -4.87
0.5 0.0742 0.0037 -0.28

1. % deviation is calculated with respect to velocities (or distance travelled as appropriate) having the

same slip on flat terrain.

2. xand z velocity components are combined using Euclidian distance theorem for comparison with

uni-directional values, by magnitude only.

From Table 4.2, the velocity components of the rover are displayed for each

terrain case and values of slip. The percent deviation value is that relative to the flat

terrain case for that particular value of slip. The terrain with the highest percent deviation

is the sinusoidal terrain, with the largest difference being less than 5.00%, which was

observed at the slip case of 0.25. Both the incline and sinusoidal terrains which utilise
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pitch, had small percent deviations at 1.87% and -4.87% respectively, with the largest
values for both occurring for higher slip values. These values are all of a low magnitude
and suggest that even with the inaccuracies occurring in the pitch rates, the model is
accurate for the values it produced for other terrains when compared to the flat terrain
case. It is worthwhile to note that the aforementioned change in time step for the
sinusoidal terrain which eliminated the ripple effect for slip of 0.25, also reduced the
resultant velocity percent deviation from -4.87% to -0.03%. The percentage deviation at
other slip values and for other terrain cases remained relatively unchanged, suggesting
that a nonlinear interpolation function should be implemented. It is expected that upon
resolving the systematic error occurring in the flat case, that these percent deviations will
remain unchanged. These results for percent deviation also indicate that the model is
fairly precise in its computation, as amongst all cases the deviation values listed in Table

4.2 are all small and similar in magnitude, grouping the results.
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Table 4.3: Results of axle velocities and deviation with respect to the flat case.>*

Case Slip Axle Vx [m/s] Axle Vz [m/s] Percent Deviation [%]
0 0.1000 0 -
0.05 0.0950 0 -
Flat 0.1 0.0900 0 -
0.25 0.0750 0 -
0.5 0.0500 0 -
0 0.1000 0 0
0.05 0.0950 0 0
Side Slope
100 P 0.1 0.0900 0 0
0.25 0.0750 0 0
0.5 0.5000 0 0
0 0.0985 0.0174 0.03
0.05 0.0936 0.0165 0.05
Incline 10° 0.1 0.0886 0.0156 -0.04
0.25 0.0739 0.0130 0.05
0.5 0.0492 0.0087 -0.07
Front
) Whes 0.0988 -0.0155 0.01
Rear
— 0.0990 -0.0139 -0.03
Front 0.0940 20.0139 0.02
Wheels
005 po
— 0.0943 -0.0112 -0.04
Front
Wheels 0.0890 -0.0132 -0.03
Sinusoidal 0.1 Rear
—— 0.0894 -0.0104 0.00
Front 0.0745 -0.0083 -0.05
Wheels
025
— 0.0748 -0.0048 -0.06
Front
Wheels 0.0500 0.0000 0.00
0.5 Rear
—— 0.0499 0.0024 -0.08

3. % deviation is calculated with respect to velocities (or distance travelled as appropriate) having the
same slip on flat terrain.
4. xand z velocity components are combined using Euclidian distance theorem for comparison with

uni-directional values, by magnitude only.
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Table 4.3 examines the percent deviation of the axle velocity components and the
corresponding value of slip for all terrain cases simulated. Although not a quantity
directly solved by solving the Jacobian velocity equation set, the velocity kinematic
model involved computation of the axle velocities and incorporated slip to help with
moving the rover to the correct spot for the next time step. The sinusoidal and
longitudinal inclined terrains were naturally noted to have velocity components in the
x and z-directions. However, the sinusoidal terrain has a slope that changes with
one’s position on the curving terrain, thus the analysis was computed for both front
and rear wheels separately. The results of the percent deviation calculation with
respect to the flat case, provide a quantitative indication of the model’s level of
accuracy and precision. The model is accurate in its computation of the velocities in
terms of the individual results with respect to the flat case, with the side slope terrain
performing the best in that no deviation was found. Yet both the inclined and
sinusoidal terrains had very small values of deviation, with the largest value being
-0.08%, again suggesting a high accuracy in comparison to the flat terrain as they’re
close to zero. These numbers are all very close in value, which demonstrates that

amongst all cases there is a good level of precision in the model’s computation.

Upon re-examination of Table 4.2 and its prior discussion, it is apparent that a
large systematic error is included in the results for the rover translational velocities
which are located at the C of G of the vehicle. The rover velocity results shown

appear to be in error by 0.0245 m/s when compared with the commanded velocity of
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or= 0.1 m/s. However, when examining Table 4.3, the translational velocities for the
axles exactly match the expected results at all values of slip. The comparison of the
results of Tables 4.2 and 4.3 therefore indicates that the deviation in translational
velocity for the C of G of the rover is systematic and could potentially be tuned out
when experimentally validating the overall kinematic model. Further investigation of
the rover translational velocity error by reformulation of the system of equations
yielded the same results shown in Table 4.2. As noted in Chapter 1, Objective 2
states that the 3D kinematics model is intended to accurately determine the
progression of the rover on the terrain. The objective is accomplished based on the
wheel axle results and the distance travelled results. The rover (C of G) velocity
results are intended to provide a unified, central equivalent to the axle results and can

be corrected as part of future work on the model.
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Table 4.4: Results of distance travelled and deviation with respect to the flat case.>

Case Slip Rover X Rover Z Percent Deviation
Distance [m/s] Distance [m/s] [%]
0 7.3152 0 _
0.05 6.9494 0 -
Flat 0.1 6.5837 0 =
0.25 5.4864 0 -
0.5 3.6576 0 -
0 7.3152 0 0.00
Side Slope 0.05 6.9494 0 0.00
100 0.1 6.5837 0 0.00
0.25 5.4864 0 0.00
0.5 3.6576 0 0.00
0 7.2041 1.2635 -0.02
0.05 6.8439 1.2000 -0.02
Incline 10° 0.1 6.4837 1.1365 -0.02
0.25 5.4031 0.9459 -0.02
0.5 3.6021 0.6283 -0.03
0 7.3397 0.0842 0.34
0.05 6.9709 0.1408 0.33
Sinusoidal 0.1 6.6074 0.1920 0.40
0.25 5.4966 0.3178 0.35
0.5 3.6228 0.3880 -0.39

5. % deviation is calculated with respect to velocities (or distance travelled as appropriate) having the

same slip on flat terrain.

6. x and z distance components are combined using Euclidian distance theorem for comparison with

uni-directional values, by magnitude only.

Finally, Table 4.4 displays the percent deviations for each value of slip from the flat

terrain case with regards to the distance travelled by the rover. For comparison with the

flat case, the Euclidean distance is computed using the distance components and the
percent deviation for that particular slip value is computed. Similar to the previous

results, the side slope terrain matches the distances travelled by the rover on the flat

terrain for each slip case, and is seen to be the most accurate, with a percent deviation of

zero. The percent deviation for the inclined terrain was also close to zero, with the
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largest percent deviation occurring at 0.5 slip. The percent deviations were larger for the
sinusoidal terrain; however, they were still small in magnitude with the largest value of
0.40% for a slip of 0.1, closely followed by the slip case of 0.5 at -0.39%. Examining the
individual percent deviations for each case relative to the flat terrain, there is a high
accuracy in the distances computed. This level of accuracy was expected as, while
running the model for each terrain and slip value, the results were checked against
manually calculated values for the corresponding no-slip case for that terrain and the
numbers were very exact to four decimal places, which gave confidence in the results
obtained. Likewise, with the results in the other tables, these percent deviations for rover
distance travelled were all very small in magnitude (less than 0.4%) and close to the other
values, which again suggests that the model has a high degree of precision in the

computation of these distances.

4.4 General Comments

Overall the models presented appear to be able to reproduce the Argo J5 in their
own capacity. Although not particularly useful for modeling the rover with respect to
three-dimensional terrain, the planar model initially used still had value in providing
visual insight into how a single side of the rover was likely to move along the terrain in a
constrained setting of all four-wheels on the ground. The three-dimensional model
directly answers objectives 1 and 2 of the research, with the accurate determination of

pose, progression, and motion of the rover in response to the shape of the terrain and its
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slip value. Based on the angles computed for each interval step, one could compare them
to the angle values (if known) that would constitute in the tipping of the rover and ending
the mission. The over-constrained nature of the rover as a parallel manipulator, meant
that convergence was an issue which was resolved by removing orientation equations
based on how the contact points could actually move in relation to each other. The model
was able to accurately generate the pose of the rover, with the exception of the pitch
angle rates, which were consistently off by half of what they should be for any terrain
with a slope. Revisiting the joint coordinate frame assignments and subsequent transform
matrix derivations and formulations yielded the same equation set for solution, so a
correction factor of 2 was applied, as a tuning parameter. Likewise, the velocity
kinematic model also experienced a systematic offset in the pitch rates obtained, which
may have contributed to the rover velocity being a little bit higher than expected.
Convergence was easier to achieve, and all 25 equations could be used, with the only
adjustment to the default fsolve solver settings to lower the step tolerance to limit the
occasional stall (although it still landed on a solution). With regards to the pitch rates and
overall rover velocity being subject to inaccuracy from systematic error, the velocity
kinematic model will require tuning prior to use. Furthermore, the rates determined by
the model are an ideal case and do not take into account the joint friction and damping
which will lower the joint rates from the ideal calculated values. These tuning parameters
must be determined via experimental validation in order to obtain the best accuracy in the

model.
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It should be noted that in using the original D-H convention, the most time
required on the part of the user is in the establishment of the equations for solution
through careful selection of coordinate frames and determination of D-H parameters.
Once the equation set is established, one can easily apply it in other areas beyond pose
and path progression prediction, such as using it to control the rover to stay on its
commanded path. Although both models account for the shape of the terrain, with
velocity incorporating the effects of the terrain’s slip, neither are able to account for other
effects such as the sinkage that occurs in deformable terrain. The conceptualized dynamic

model is intended to account for sinkage and other factors.
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Chapter 5: Dynamic Analysis

While a kinematic analysis can provide useful data on rover progression, path
traversability, and traversability metrics, it can be used as the foundation of a path
following control scheme as demonstrated by Helmick et al [61]. Rover pose relative to
tipping and warning of any joint constraint violations based upon motion and pose only
provide part of the picture. Dynamic models and analysis go beyond pose and motion, to
examine accelerations, forces, and corresponding torques. Depending upon the desired
metrics, dynamic simulations have the potential to provide a more detailed survey
relative to the rover’s interaction with terrain because they can be paired with a wheel-
soil interaction model. There are several methods of modeling the dynamics of a system,
from the purely mathematical formulation of the La Grange and Newton-Euler methods,
to various multibody physics software platforms. In terms of analysing robotic systems
and vehicles, most applications (as noted in Chapter 2) choose to use multibody physics
software due to the potential for higher accuracy combined with relative ease of use
through the graphic user interfaces (GUI’s). However, such elaborate software comes at a
high financial cost due to the years of development to produce a user-friendly interface

with equations and modules applicable to any system (robotic manipulator vs vehicle).

The work presented in this thesis initially began with expansion of the three-
dimensional kinematic analysis of the rover since it was the next logical progression and
continued with the desire to develop the most open-source and least expensive method. In

addition to creating a dynamics model of the J5 rover, a wheel-soil interaction model had
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to be selected for pairing with the dynamic model to demonstrate full capability and

provide more accurate picture of the forces and moments acting on the vehicle.

Terramechanics provides the forces imparted to the vehicle by the terrain and its
specific properties, which can significantly impact the vehicle. Terrain type, as has been
observed from previous and current rover missions, can have quite a significant impact
on the rovers traversability of the extraterrestrial terrain. One of the most infamous
examples being that of the Spirit rover, where it broke through a thin, seemingly solid
crust to sink into the underlying soft sand [15]. Upon examination of the literature, it was
decided to use a semi-empirical approach as the best compromise between the advantages
and disadvantages of empirical and analytical techniques. As a result, it was decided to
use a pre-existing terramechanics model to avoid the months building one from scratch
would require. After consultation of both literature and resident expertise in the area of

terramechanics modeling, the model of Irani et al [37] was selected.

This chapter presents the derivation and development of the dynamic model for
the J5 rover, followed by a review of the terramechanics model used to complete the
conceptual model. Due to the time constraints of the master’s thesis, the combined
dynamic-terramechanic model developed is conceptual due to the added work in tuning
the model to accurately fit the rover, including some experimental work. To make up for
this shortcoming, a sample test case is provided for a single rover wheel, to further

demonstrate the model and the expected outcomes.
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5.1 Dynamic Model Development

The dynamics of the rover were initially developed in terms of the position and
time derivatives of its joint angles using the La Grange formulation [65, 67]. After some
investigation, it was decided to abandon this line of pursuit due to the level of effort and
simplifications required. Based upon recommendations, it was decided to use a different
approach to generate a dynamic model using SimMechanics. However, the La Grange
formulation still provides a sense of how SimMechanics works and the developmental

work accomplished on the dynamic torque equation is provided in Appendix D.

Following the decision to pursue a more efficient means of dynamic modeling,
MATLAB Simulink’s SimMechanics was selected to generate the dynamic model of the
J5 rover. Although not an open source code or method, MATLAB Simulink was selected
due it’s flexibility and compatibility with other platforms, along with its being relatively
inexpensive. Furthermore, SimMechanics enables the user to remain hands-on and has
the potential for interfacing with a previously generated kinematic analysis. In addition,
MATLAB and Simulink are capable of autogenerating C code, which means that the
models and code developed in this thesis could be converted to the programming
language C, making it more open-source so that companies would not be forced to

purchase software.

In order to generate a dynamic model of the rover in SimMechanics, a physical

body of the rover must be generated, either in SimMechanics itself or as an externally
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made computer aided design (CAD) solidmodel of the rover. Although a fully detailed
CAD model of the J5 rover exists, it was not accessible due to it containing proprietary
information. However, using the information provided to the author, such as the mass
information and drawing included in Appendix A, rough estimates for masses could be
assumed and dimensions obtained from the drawing and a determinable scale.
Extrapolating dimensions from measuring the drawing and applying the scale, allowed
components of the rover to be created in CAD software. Solidworks was used to produce
the solid model used in this work; however, it could be easily created in Autodesk’s

Fusion 360 [68] which is very inexpensive.

In modeling the individual components of the J5 rover using CAD, the back
suspension of the rover could easily be included, which is important in providing a
necessary constraint to the system. Since dimensions and mass values were not provided
for the back-suspension components, dimensions were estimated using early rough
measurements of the physical rover and a material of 7075 Aluminum was assumed.
When applied to the components assigned a material density, the mass of each
component was obtained, along with their associated inertia matrices. This method was
more accurate than the oversimplified La Grange attempt. Similarly, equivalent solid
models were generated for the components of the chassis, walking beams, and wheels
using dimensions and masses obtained from the drawing and other information provided
in Appendix A. The wheels modeled are the metal wheels intended for use in planetary
exploration, as illustrated in the drawing in Appendix A. Figure 5.1 presents various

views of the CAD model created by the author.
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Figure 5.1: Isometric and orthographic projection of the JS rover CAD model (isometric (a), top (b),

rear (c), and right (d)).

From Figure 5.1, the rear suspension can easily be spotted in the top and rear views. It
should be noted that more precise details could have been added; however, it would have
been purely for aesthetics as the information important for dynamic modelling had
already been incorporated (ie mass, size, etc). The resultant model was carefully

assembled to properly reflect the degrees of freedom of each joint.
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The solid model was then imported into SimMechanics by exporting the CAD
model assembly into a .xml file which could be read by Simulink and converted into a

rigid body dynamic model.

‘Wheel LR Wheel LF

‘H . (ﬁ B Fd~"B - B F B “)I H~

D o B |

'-< .

Walking Beam L

B F

-

N
. 1 -~
Conn1 B ? F * H.
World Config Chassis1

[++]
%
]

&
%
'4 .

Walking Beam R
Wheel RR Wheel RF
" .
B F/S/B . BN 8 off
‘R F % ‘l\ F |-e~
| s =N |

Figure 5.2: SimMechanics dynamic model of the J5 rover.

The resulting dynamic model of the J5 rover is depicted in Figure 5.2. As observed, the

model is a rigid body representation with rigid components and joints. A world frame is
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present to connect the rover to the world origin frame and provide context for the overall
movement of the rover and its joints. With SimMechanics, rigid bodies are connected via
joints and the appropriate transform blocks, forming pairs around joints, and enabling the
program to determine the pose of each component similar to a 3D position kinematic
analysis. Similarly, it was decided to add a 6 DoF joint to connect the chassis centre of
gravity with the world frame, to allow for actuation and to travel away from the world
frame. Note that although a 6 DoF joint does not exist in the real world, it is a viable tool
in SimMechanics to represent the three possible translations and orientations. To actuate
the model, forces and/or torques are applied to the joints themselves, as opposed to the
rigid bodies. SimMechanics automatically includes the weight of each of the components
in its computations. As such, forces must be applied at each of the wheel axles to provide
a force in opposition to the weight of the rover and keep it from falling in space. The
axles are where the forces from the terramechanics model will need to be applied. It
should be noted that experimental validation with the actual rover would be needed to
provide a more complete dynamic model, as damping would need to be added between
the two walking beams to help conform the rover to its actual behaviour observed. Such
work became beyond the scope of the time constraints of this thesis and is left as future

work in need of completion.

At this point, it is necessary to import the terramechanic model and pair it with the
dynamic model. The terramechanic model selected was Irani et al [37] for a single wheel

testbed and was developed in Simulink.
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5.2 Terramechanics Model

As defined in the literature review of Chapter 2, terramechanics is the study of
forces and moments imparted by the terrain to the vehicle, and is thus dependent on
terrain properties, such as soil cohesion. To understand how the terramechanic model
works on its own and how it is being paired with the dynamic model, the relevant theory
and equations of terramechanics are presented in this section. Figures, notation, and
equations presented are in common use as detailed by Irani et al [37, 38, 39], Wong [29],
Ishigami et al [42], and others (see Chapter 2). Terramechanics is not something a rover
operator or designer should ignore given previous and current rover missions having

demonstrated the effects of different terrain types on rover mobility.

w
World Frame
Coordinates
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“|:,_, Yw
e
XW
/ z
z
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Figure 5.3: Terramechanics model representation of typical forces on the wheel [29, 37, 38].
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Figure 5.3 is a common depiction of the forces and stresses resulting from the
wheel-soil interaction and is reproduced in many textbooks and literature. From Figure
5.3, some of the key parameters involved can be visualised and provide a sense of how
interconnected these values are. Easily identifiable are the translational velocity
component, v,, and the angular wheel velocity, w, which provide direction context for
the other components in the diagram. With most terrain, there is expected to be some
amount of sinkage which, as the name implies, is the amount perpendicular to the surface
that the wheel penetrates (for flat terrain), measured from the undisturbed terrain in front
of the wheel. The depth of the track left behind by the wheel is simply 1z, where the
sinkage value is multiplied by a ratio of track depth to sinkage. In line with sinkage and
track depth, are the wheel sinkage angles listed as various 6, more specifically with 6 as
the forward or entry wheel sinkage angle, 0, as the wheel sinkage rear or exit angle, and
6, denoting the location of the maximum normal stress. Equations 5.1 — 5.3 describe the

relation of these angles to the sinkage and wheel radius, r.

0; = cos™! (1 — E) (5.1
0, = —cos™! ( - %) (5.2)
O = (by + by )y (5.3)

Examination of Equations 5.1 and 5.2 shows the dependence upon the ratio of sinkage to
the wheel radius. Equation 5.3 is one of the Wong-Reece relationships [37], with the
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values of by, b; as constants with values of 0.4 and between 0 and 0.3 respectively. These

angles form the basis of the rest of the terramechanics equations.

Returning to Figure 5.3, the main stresses acting on the wheel are observed to be
the normal and shear stress imparted by the terrain. The normal stress acts normal or
perpendicular to the terrain surface, whereas the shear stress will always be tangential to
the wheel-soil interface and in the opposite direction to the angular velocity of the wheel.

The normal stress equation is given by Equation 5.4.

n
06,
5(8) = rk <cos <9f — (Gm—Gr) (Hf — Hm)> — CoS 9f> (6,20<6,)

. (6m=6<6/)
r"k(cos 6 — cos 6;)

(5.4)

Equation 5.4 shows a strong dependence upon the wheel sinkage angles as mentioned,
along with the wheel radius and terrain parameters, k and n. The variable n represents the

sinkage exponent whereas k is the Bekker coefficient of proportionality.
_ ke
k = " + k¢ (5.5)

Equation 5.5 defines the Bekker coefficient of proportionality, where k. and kg are soil

parameters: the cohesive modulus and frictional modulus of sinkage, respectively, and
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must be determined through testing. For planetary exploration rovers these values are
estimated using an appropriate simulant soil. The parameter b denotes the width of the

rover wheel.

2(6) = (c + (6) tan ) (1 - e—$) (5.6)

Equation 5.6 denotes the relationship for the shear stress at the wheel-soil
interface and is referred to in the literature as the Janosi and Hanamoto equation, as
utilised by Irani et al [37]. It can be observed that not only is the shear stress a function of
the normal stress, and by extension the sinkage angles, but also depends on certain soil
parameters. These include the cohesion, ¢, internal angle of friction, ¢, and the shear
modulus, K. Again, these parameters are estimates for planetary exploration rovers based

on laboratory testing of simulant soils.
j(©) =7[6f —6 — (1 —i)(sin6; —sinb)] (5.7)

The other term in Equation 5.6 is the soil deformation term, given by j(6), and expressed
above as Equation 5.7. From Equation 5.7 it can be seen that it is highly dependent upon
the entry wheel sinkage angle, along with the wheel radius and slip for that terrain.
Although previously defined in Chapter 4, the equation for slip is repeated as Equation

5.8.
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. Wr—vx _ ., Ux
L= T =1 or (58)

Another important relationship in terramechanics is the pressure-sinkage

relationship.

p(z) = kz" (5.9

p(z) = (k. + bk,)(2)" (5.10)

Equation 5.9 is the original pressure-sinkage relationship used by Bekker [27] and early
work of Wong [28, 29], whereas most (such as Irani et al [37]) now use Equation 5.10
which is the modified Reece equation, sometimes referred to in the literature as the

Wong-Reece equation for pressure-sinkage.

With the shear and normal stresses defined, the final elements of Figure 5.3 can
be examined. These are some of the important metrics to be determined from a
terramechanics analysis, which are the vertical force imparted by the terrain, F,, and the
drawbar pull, DP. Equations 5.11 and 5.13 detail the formulation of each respectively.

Equation 5.12 describes the lateral force acting on the wheel.

E, =rb f;rf[rx(e) sin @ + o(8) cos 6]d6 (5.11)
F, = f;’rf [rb 7,,(6) + Ry (r — h(6) cos 0)]d6 (5.12)
DP=F,=7b f:rf[rx(e) cos@ —o(0)sinf]do (5.13)
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Both Equations 5.11 and 5.13 show that the vertical forces and horizontal (or drawbar
pull) forces rely on components of the normal and shear stresses, and consequently, the
wheel sinkage angles. Furthermore, each of the integrals of the stresses is then applied to
the rough contact area of the wheel given by the product of the radius and wheel width.
The vertical force combats sinkage that is due to the pressure imposed by the weight of
the vehicle. As will be seen in the following section, when applied to a dynamic model,
the vertical force has a recursive relationship in that once calculated it also determines the
value of sinkage which then enters the next iteration of the rover as moving along the
terrain. Drawbar pull, as discussed in Chapter 2, is a common performance metric in both
planetary rovers and vehicle performance. The drawbar pull is the horizontal force (along
the direction of motion) which is accessible to the vehicle after overcoming the motion

resistance of the terrain and can be used to pull a load.

5.3 Combined Dynamic and Terramechanics Model

It is advantageous to combine the previously established dynamic model for the
rover with a terramechanics model, incorporating slip, to create a more realistic model of
the rover in motion. Some advantages include determination of wheel sinkage relative to
potential embedding and drawbar pull in terms of a safety margin on traction or potential

towing capacity.
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In the Terra Model:
Fx is the horizontial force (Drawbar Pull)
Fy is the lateral Pressure on the wheel

Fz is the vertical force on the wheel (Normal) s
inkage
Fx >
»Slip
Fy >
i
Vx Table Velocity [ ——»—] »al DL F
. FzI > iz
a
»al
a0 Fx s the horizontial force (Drawbar Pull)
hi—— Fy is the vertical force on the wheel (Normal)
Lambda Fz s the lateral force + towards the chassis of this wheel
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Sinkage Calc Wheel LR

Figure 5.5: Close-up view of the added terramechanics-related blocks.

Figure 5.4 depicts the overall combined dynamic and terramechanic model. In
comparison with Figure 5.2, the dynamic model can be easily identified and is the centre
of the overall model itself. Recalling that the forces must be placed so as to act on the
wheel joints, it is logical that the elements of the terramechanics portion are added to
each of the wheel axles, making for four inputs. A close up of one of the wheels and

terramechanics additions is provided in Figure 5.5, for clarity.

Examination of Figure 5.5 shows that there are three large subsystem blocks
added, along with a smaller external force and torque block, which, as the name implies,
allows for the application of an external force and torque to a subsequent block. The three
subsystem blocks include an initialisation block shown in gold, the blue box containing
the actual terramechanics model, and a white box for the sinkage and slippage

calculations.
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Figure 5.6: Initialisation block subsystem.

lambda

Beginning with the initialisation blocks, the inner workings the subsystem’s

purpose is to initialise certain parameters. Parameter initialisation is accomplished by the

use of step input blocks which provide the signal that SimMechanics can interpret. For

example, the step input of O to 1, simply turns on the signal. To then give each variable a

real value, the step input is multiplied by a gain where the gain is the value of that

variable. For this model, the gains include the wheel rotation or angular velocity of the

wheel, along with model tuning parameters, ap and a;, which were determined by Irani et

al [37] in the development of this terramechanics model and represent the values bo and

b1 from Equation 5.3. Table velocity is included as an artefact of how Irani et al’s

terramechanics model was developed; however, it is irrelevant to the dynamic model of a

rover traversing terrain instead of a table and is therefore not applied in the overall model.
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Lambda requires a different step input from 1 to the value of lambda and is subsequently
multiplied by the gain of the lambda simulation value to provide lambda or the ratio of
the measured sinkage to track depth (7) as was discussed in Section, 5.2. Once initialised,

all four parameters are then exported for use and their signals taken to the next block.

These parameters are then input to the blue terramechanics model block.
However, before examining that block, there are two inputs of slip and sinkage that
should be discussed. Examining the sinkage calculation box, it can be observed from the
overall diagram that the required inputs are the force normal to the terrain and the angular
velocity of the wheel. Figure 5.7 reveals the inner workings of the sinkage calculation

box.
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From Figure 5.7, the first input is the normal or, in the flat terrain case, vertical force.
This force gets passed through a transform sensor block which measures the vertical
location of the wheel axle, along with the force in regard to the world coordinate frame
and the horizontal (x direction) linear translational wheel velocity. The axle location is
sent to a scope box for visualisation and is also compared to the reference or zero location
of the axle, allowing the overall displacement or sinkage to be computed. Meanwhile the
measured horizontal, translational velocity of the wheel is then combined with the
commanded wheel velocity, which is the product of wr, in the block diagram version of
the slip equation. The version presented here is the translation velocity, v,, as the
denominator, hence the addition block where a very small decimal value (1e-6) is added
to prevent a scenario of dividing by zero in the event of 100% slip. This preventative
measure is also why there is a saturation block applied before the output, to effectively
round the slip ratio to the correct value. The slip and sinkage values are then outputs

which are sent directly to the terramechanics model.

The blue box containing the terramechanics model is not a subsystem like the
other blocks, but rather represents the overall MATLAB script and nested scripts which
perform the necessary recursive terramechanics analysis. The terramechanic model script
was provided by the Multi-Domain-Laboratory at Carleton University and the scripts are
based on the work of Irani et al [37]. Following the overview of terramechanics in the
previous section, the analysis begins with computing the wheel sinkage angles as they are

the foundation for the remaining equations. With the angles computed, the
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terramechanics model then proceeds to compute the horizontal longitudinal force or
drawbar pull (F), the lateral force (F,), and the vertical force (F;). Each of these are
computed by calling upon function files for each that compute the corresponding
integrand. These function files for obtaining the integrand each begin by computing the
normal stress imparted by the terrain, using the appropriate case for the given angle of
Equation 5.4. With the normal stress determined, the shear stress may be obtained
following computation of the soil deformation according to the properties of the soil used
and the slip ratio, as noted by Equations 5.6 and 5.7. Once the appropriate normal and
shear stresses have been computed, the integrands for the corresponding force are
obtained, and are then returned to the overall terramechanics model for integration and
multiplication with the wheel radius and width. If torque is desired, it can also be
computed by taking the vertical force and applying it about the radius of the wheel,

provided the model parameter, ayp, matches its simulated value.

These force values then enter the external force and torque block which takes an
output force of the vertical force and applies it to the wheel axle joint, but also as an input
to the sinkage calculation block, to update the sinkage. When the model is fully
functional, it will be necessary to initially run it with an angular velocity of zero to allow
the rover to settle into the terrain and obtain its initial sinkage value. Once the model has
converged on an initial sinkage value, it can then be run for the commanded angular
velocity along the selected path. It should be noted that the soil properties and tuning
parameters are unchanged from Irani et al’s investigation [37], and as such, even using

the same simulant, additional work is needed to fine tune the terramechanics model for
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the J5 rover and its set of wheels. The J5 rover is much larger, with wheels of radius

0.3 m as opposed to the original Irani et al rover of 0.075 m [37]. The configuration
differences require the opportunity to test the real rover in a sandbox of that simulant, or
to at least take a wheel and put it in a single wheel test rig to collect data for validation
and establishment of tuning parameters. Since this additional work is needed to get the
overall model working in a useful way, the full model could not be completed within the
time constraints of this thesis. However, a single wheel model was created using the same
features as the J5 rover and the same terramechanics model and run for a sinusoidal
terrain, in an attempt to further demonstrate how this model would work and what overall

results are likely to occur.

5.4 Terramechanics Model Modifications

Although the previous section has discussed the combination of the
terramechanics and dynamic model and how it would conceptually work, a deeper
understanding can be acquired by examining the application in the context of a single
wheel. Subsequent modifications are proposed for the terramechanics portion in order to
accommodate the effects of non-flat terrain. By limiting the examination to a single
wheel, one can more easily see the impact of the terrain shape in addition to the other
parameters of the terramechanics analysis. One can recall from the classic physics

problem of a box being forced up an inclined plane that the net normal and tangential

164



forces are impacted by the shape, specifically the slope of the incline, thus one would

expect the terrain to affect the force components.

World Frame
Coordinates

Zy

ww

X

w

Figure 5.8: Modified terramechanics model.

Figure 5.8 displays the components of the terramechanics model for a non-flat
terrain. Similar to Figure 5.3, the same parameters are present, however the addition of
non-flat terrain like a sinusoidal function or an incline will affect the values of certain
parameters. From the diagram it can be observed that the wheel is travelling along the
more complicated terrain of a sinusoidal function, where the height and slope of the
terrain are constantly changing with progression in the horizontal (global x) direction.
From Section 5.3 and examination of Figure 5.8, it can be seen that the sinkage (z) is
defined as the vertical distance from the top of the wheel-soil interface at the front of the

wheel and to the bottom of the wheel’s contact point. Subsequently, it must be
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emphasized that the terramechanics formulae require a sinkage input that aligns with the
normal force, as illustrated by z’ in Figure 5.8. Furthermore, for non-flat terrain such as a
sinusoidal curve, as the wheel progresses over the terrain and the terrain height changes,
the sinkage values will be affected. Non-flat terrain will require modification to the
sinkage value prior to computing the terramechanics. From the equations presented in
Section 5.3, one can likewise ascertain that the wheel sinkage values will change as a
result of the modification to sinkage, most notably for the front wheel sinkage angle (6y).
If, for example, the wheel is climbing a sine curve, the increase in modified sinkage as a
result of adding a positive terrain height differential, will cause the ratio of sinkage to

wheel radius will increase, causing the entry wheel sinkage angle to increase (as the ratio

approaches the value of 1, 65 approaches g). With wheel sinkage values such as 6¢

affected, the values determined by subsequent terramechanics equations in the sequence
will also be affected because the wheel sinkage values appear in all remaining equations.
For example, the location of the maximum normal stress will be increased for an increase
in the front wheel sinkage angle, and both of these angles are used in the subsequent soil
deformation, followed by stress computations, and finally in determining the forces.
Sinkage is the value that’s directly affected by terrain and, in turn, also affects the other
quantities computed in a terramechanics analysis, hence sinkage is what needs to be

modified for a non-flat terrain.
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Figure 5.9: Modified single wheel terramechanics testbed model code architecture.

Figure 5.9 presents a visual walkthrough of how the terramechanics model works
when applied to a single wheel and with the modifications added to sinkage. Upon review
of the Figure 5.9, one should note that there are two terramechanics blocks present. These
two blocks indicate that there are essentially two separate phases or applications of the
terramechanics model. The first phase is for a commanded angular velocity of zero. The
rationale is to let the rover wheel to sink into the terrain on account of its own weight as it
would in reality prior to embarking on a traverse and establishes the static sinkage of the
system. The terramechanics model in the second phase involves computing the forces and
sinkage for the rover in motion, and as such is dynamic sinkage. As shown in the code
architecture diagram, the increase in terrain height is added to the sinkage after the

sinkage calculation (involving the vertical terrain force and weight/load on the wheel)
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and prior to its input to the terramechanics model and set of equations. Following the
processes outlined in the flowchart in Figure 5.9, the SimMechanics model would be
initiated through a driver or MATLAB script file and the numerical solution process
would be as follows:

1. SimMechanics model is initiated through the driver file. Constant variables such
as soil properties/characteristics and wheel parameters are loaded into
SimMechanics.

2. Through time delay settings in the step input signal generation blocks in the
initialisation, the step inputs to initialise quantities such as the commanded
angular velocity are delayed for a specified time (t= 3 seconds). This delay allows
the model to initially run for the static case (w = 0). Thus, no slip will be
calculated, and the wheel will remain at its initial coordinates, as the rover wheel
sinks into the terrain as it would naturally, settling on a static sinkage value in
response to the weight as opposed to the normal force imparted by the terrain.

3. Once the rover wheel has reached steady state and converged on a value for static
sinkage, the rest of the input parameters are used at their dynamic value (no
longer 0) and are once again fed into the terramechanics model. However, now
that the velocity of the axle is non-zero, slip is computed as a non-zero input for
the terramechanics equations. Prior to entering the terramechanics model in phase
2 of Figure 5.9, the sinkage (now dynamic sinkage) is calculated based on the
vertical force of the terrain from the previous iteration of the terramechanics
model, along with the weight of the wheel load and any damping terms. It is after

this calculation that the terrain height for the given horizontal location is added to
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the sinkage, in order to account for the change in terrain elevation. The modified
sinkage is then input to the terramechanics model.

4. The terramechanics model computes wheel sinkage values using the modified
sinkage, followed by the normal stress, soil deformation, and shear stress. The
resulting normal and shear stresses are then used to compute the normal and
tangential forces (ie. F;, F, F).

5. Forces, torque (if computed), and sinkage are all outputs that can then be fed into
a dynamic model if one is connected. For the full rover model, these parameters
would be applied at joint blocks for the wheel axles. These values are also
displayed as recorded outputs. Depending upon the dynamic model or user
preference, the forces can be resolved along the terrain or in the global world
frame.

6. The normal (vertical if on flat terrain) force, F,, is then returned to the sinkage
calculator where it is combined with the weight/load on the wheel and any
damping included in the model to produce an updated sinkage value. The velocity
of the axle is obtained and used to update the wheel axle’s location on the terrain,
which allows for the new contact position to be determined. Using the new
location and the terrain function, the height of the terrain that needs to be added to
the next calculation of sinkage is computed.

7. SimMechanics ends upon completing all of the time steps for the simulation.
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With regards to expected results, it was previously mentioned that the increase in the
terrain height (ie. for climbing a sine curve) would increase the sinkage value and
subsequent entry sinkage angle (increases as ratio of sinkage to wheel radius
approaches 1). These changes would also shift the location of the maximum normal
stress, while soil deformation increases. The drawbar pull should increase with slope,
as the resulting increase in entry sinkage value would alter the components of the

integrals of the stress.

5.4.1 Preliminary Test Results for the Argo JS Rover
The single wheel terramechanics model was initially run for the J5 wheel
parameters and the wheel’s mass only. Subsequent test runs used the % vehicle mass
that each wheel was expected to experience. All test results are included in Appendix

D, while test results at the higher mass are included herein, for slip values of 0.05 and

0.25.
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Figure 5.10: Single wheel terramechanics model for Argo J5 at 0.05 slip (flat terrain).
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Figure 5.11: Single wheel terramechanics model for Argo J5 at 0.25 slip (flat terrain).

Figures 5.10 and 5.11 illustrate the outputs from the terramechanics model over a

total simulation time of 7 seconds. The respective curves for each output parameter are
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similar in shape between the two slip values, with different magnitudes. The initial
settling period corresponds to 3 seconds and represents the static sinkage phase prior to
motion. Following the settling period, the commanded angular velocity of the wheel

initiates a transient startup, prior to reaching a steady state for each individual parameter.

Table 5.1: Terramechanics output parameters for various slip values for the Argo J5 rover (flat

terrain).
Slip, i F. IN] F.[N]  Static Sinkage [mm] Dy“a'?li:ls]i“kage T[‘l’\?:}l‘]‘e
0.05 401.2 1128 2735 42.26 338.4
0.1 517.1 1128 27.35 42.66 338.4
0.25 726.0 1128 27.35 43.39 338.4
0.5 845.0 1128 27.35 44.06 338.4

Table 5.1 summarises the output of the single wheel terramechanics model for the
Argo J5 rover over different slip values. The normal force, F, static sinkage, and torque
values remain constant as expected since these results depend on the terrain properties
and the weight of the vehicle, which do not change. With regards to dynamic sinkage,
one can observe that this value increases with slip, as is typical of the slip-sinkage effect.
The drawbar pull also increases with slip as expected, noted by Wong [29]. It should be
noted that similar effects were produced for the original wheel that the model was built
for. The current results require experimental validation to determine whether any tuning

parameters are necessary.
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The modifications proposed in Section 5.5 were implemented for a sinusoidal
terrain, matching the sine function used in Chapter 4, Sections 4.2 and 4.3. Sample results

for the Argo J5 rover are illustrated in Figures 5.12 and 5.13.
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Figure 5.12: Modified single wheel terramechanics model for Argo JS at 0.05 slip (sinusoidal terrain).
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Figure 5.13: Modified single wheel terramechanics model for Argo JS at 0.25 slip (sinusoidal terrain).

Examination of Figures 5.12 and 5.13 reveal similar results between slip values of
0.05 and 0.25 for a total simulation time of 7 seconds. Again, there is a 3 second static
sinkage phase to allow the rover to settle into the terrain as it would in reality, followed
by the step change to the dynamic sinkage phase where the rover begins to move. It is
noted that the static to dynamic transient of the curves is significantly different in the
modified model as compared to the unmodified model. The modified model appears to

illustrate a transient zone with less damping and a higher initial overshoot.

It should be noted that the results illustrated in Figures 5.12 and 5.13 only cover the first

4 seconds of motion (dynamic phase). These figures have the appearance of flat curve

results, in spite of a sinusoidal terrain input.
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Figure 5.14: Dynamic phase of modified single wheel terramechanics model for Argo J5 at 0.25 slip

(sinusoidal terrain), extended to 100 seconds.

A supplemental examination of the 0.25 slip case for the modified terramechanics
model, as shown in Figure 5.14, extended the traverse duration to 100 seconds.
Neglecting the static phase and the transition to the dynamic phase, Figure 5.14 illustrates
the full effect of the input terrain. As expected, the sinkage varies with the shape of the
terrain which, in turn, propagates through the terramechanics formulations to affect the

resulting torque and forces.
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Table 5.2: Modified terramechanics output parameters for various slip values for the Argo JS rover

(sinusoidal terrain).

Slip,i  Fx[N]

0.05 416.7
0.1 535.5
0.25 748.7
0.5 868.9

Static Fz  Dynamic F. Static Sinkage Dynamic Sinkage

[N]

1128.2

1128.2

1128.2

1128.2

[N] [mm]
1156.8 27.35
1156.8 27.35
1156.7 27.35
1156.7 27.35

[mm]

43.00

43.41

44.14

44.82

Torque
[Nm]

347.0

347.0

347.0

347.0

Table 5.2 summarises the resulting output from the modified terramechanics

model. Similar to the unmodified model, the drawbar pull and dynamic sinkage increase

with slip. However, the magnitude of these parameters with respect to the same slip case

for the unmodified model is slightly higher. This shift is due to the upward slope of the

terrain which, from the proposed modification, adds to the sinkage.
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Figure 5.15: Drawbar pull vs slip.
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Figure 5.15 depicts the relationship between drawbar pull and slip for both the
modified and unmodified models. The curves illustrated are characteristic for drawbar
pull with respect to slip and widely noted in the literature [19, 34, 42, 58]. It is noted that
the curve for the modified model is higher than the unmodified model and the difference

between the two increases with slip.

Overall the proposed modification to the terramechanics model of Irani et al [37],
to accommodate for non-flat terrain, demonstrates the trends expected from the analysis
herein. However, additional work is required to validate the modified model
experimentally to incorporate any necessary tuning parameters. It should also be noted
that a major limitation of using a terramechanics model such as this is that it becomes
inaccurate for high levels of slip. Should one wish to model the dynamics of the J5 rover
for high levels of slip, incorporating the forces and moments produced by the wheel-soil
interaction for a given terrain, an alternate method such as DEM or its associated look-up

tables would need to be employed.
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Chapter 6: Conclusions and Future Work

Planetary exploration rovers are designed to traverse a range of terrain conditions
and manage unstructured environments of another world that cannot fully be predicted. In
particular, the more occluded hazards such as slip and sinkage, encompassed by the
unique characteristics of the terrain, are most challenging to anticipate and require
predictive modelling to assess rover capabilities. In this thesis an investigation was
carried out to assess how to develop kinematic and dynamic models for the four-wheel

Argo J5 rover.

The conclusions drawn from this work are organised to address each of the
research objectives from Chapter 1 and are presented below. A selection of general
comments are also included. It should be noted that the Maple files referred to in
Chapters 4 and 5 are not included in this document due to file size limitations. They can

be made available upon request.

6.1 Objective 1
Produce a model to determine the pose of the rover in response to terrain geometry (ie.

slopes & bumps, etc).

Objective 1 was accomplished for varying terrain geometry, as outlined in

Chapter 4, Sections 4.1 and 4.2. Due to the nature of the three-dimensional velocity
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analysis and how it directly utilises the pose generated from solving the inverse three-
dimensional position kinematics analysis, it was also achieved as part of the velocity
kinematics model. Similarly, the dynamic model can provide information regarding the

pose of the rover.

However, while the planar position model (Section 4.1) was able to visually
model the pose of the J5 rover and conform to the terrain function, it is limited in
application as it is planar and not suitable for actual, three-dimensional terrains without

significant modifications. As such, it does not capture the full behaviour of the rover.

The three-dimensional position kinematics was used to model the full rover and
demonstrate the interdependence of some joints in response to terrain disturbance input.
The results obtained showed good agreement with expected trends (ie. chassis angles
with respect to the terrain) and accurately predicted the total distance the centre of the
chassis travelled with respect to manually calculated estimates for the selected step
intervals. Other manual calculations of joint positions also showed agreement. The results
of the model show agreement to within 3% for the speeds and distances on various
terrains relative to the flat terrain case, for all values of slip studied. However, for best
accuracy the model would need to be validated experimentally for the entire rover. Once
determined, the pose for each step interval on various terrains can then be compared with
the joint displacements for the specific rover that could result in tipping or exceed other
functional limitations. A sub-objective was also achieved in this model as its executed

code, although written in MATLAB, can be fairly easily transferred to another
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programming language of choice. There were some limitations in achieving this objective
as the accuracy is limited to that of manually estimated joint displacements for a given
terrain. Subsequently, this limitation makes the more complex terrains harder to compute
and estimate accuracy. Furthermore, it was noted that convergence was initially difficult
to achieve due to the number of joints and equations causing the problem to be over
constrained, requiring careful thought as to which equations could be safely removed.
Finally, another limitation with regards to the solver used for this method is that the
Jacobian of the system will never be square. Thus, a solver that utilises an algorithm
capable of handling non-square Jacobians is required or further manipulation of the

Jacobian matrix would be necessary.

6.2 Objective 2
Produce a three-dimensional velocity kinematics model incorporating predicted slip to

accurately determine the progression of the rover on the terrain.

Building on the application of the original D-H convention [66] and the
determined equation sets capable of describing the rover’s pose, the velocity Jacobians
were generated for each wheel-ground contact point, providing the equation sets required
to analyse the velocity of the J5 rover as it travels over the terrain. The resulting equation
sets were successfully combined with the results from the position analysis using the
inputs of terrain path coordinates, along with the inclusion of slip read from the terrain

path data. The model was able to simulate traverses along different test case terrains for
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varying slip values, with results displaying the expected trends. Incorporating slip, the
model was able to accurately drive the rover over the terrain with higher slip values
resulting in less overall ground being covered, as expected. The pose was again
determined to a high degree of accuracy, whereas the individual joint rates were less
accurate, requiring experimental validation. Again, the program was written and executed
in MATLAB, making the code flexible and more accessible. Also, the computational

time is generally under a minute per time step.

However, although the objective was achieved, there are some limitations to
address. As with the 3D position kinematic analysis, the solver used must be capable of
handling non-square Jacobians which limits the choice of solver employed. As previously
noted, the number of joints and kinematic pathways of the rover creates an over-
constrained system of nonlinear equations, making convergence more difficult to achieve
and resulting in some inaccuracies in the joint rates computed. The 3D velocity kinematic
model requires experimental validation and tuning to account for friction and damping
occurring between the joints. The actual joint rate will differ from those predicted by the

3D velocity kinematic model. Forces and accelerations are not addressed by Objective 2.
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6.3 Objective 3
Produce a dynamic model, incorporating slip and terrain geometry as inputs, allowing

for other traversability metrics, such as torques and drawbar pull, to be determined.

The original method of continuing with mathematical models built upon the D-H
convention for describing the transformation between kinematic pairs, to include
acceleration and the dynamic torque equation proved to require too many simplifications.
In addition, the complexities of accurately determining the kinetic energy terms without
accurate inertia information, made this method not worth pursuing. Also, the
complexities would not make it user friendly in analysing the potential path for particular
metrics. SimMechanics’ easier generation of a dynamic model from a solid model CAD
file, enables flexibility in changing the rover design and makes it easier for a generic
operator to visually understand it, as opposed to complicated mathematical terms.
SimMechanics also automatically generates a three-dimensional visual animation which
can be manipulated for different viewpoints so there is no need to code for visualisation.
The dynamic model for the J5 was able to be paired with a terramechanics model and was
applied to each wheel axle, and it allowed for further inputs from the terrain geometry, or

the potential to actuate other joints.

Unfortunately, Objective 3 was not fully achieved because significantly more
work was needed to get the fully combined model running for inputs on all four wheels.
The additional time required to troubleshoot the model, demands experimental work to

determine the tuning for the correct amount of damping while also accounting for the
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friction in the joints. Likewise, the terramechanics model must also be tuned for the J5
rover model (ie. wheel dimensions) and the terrains over which it will be traveling. These

are direct limitations on the current model.

6.4 General Comments

Overall, the use of the D-H convention in describing the transformation between
kinematic pairs, and subsequently using the transformations to build models describing
the pose and motion of the rover proved to be a valid and fairly accurate approach.
Although the D-H method has shown to be fairly accurate in producing three-dimensional
position and velocity models that account for slip and the geometry of the terrain, this
approach does require a significant time investment in the establishment of the D-H
parameters to obtain the correct equation set. However, once the position-related equation
set has been correctly established, these equations can be used to provide prediction of
pose and progression traversability metrics to aid in path selection. They could also be
applied to a feedback controller to help with path following. The models developed in
this thesis examined pose, velocity, and dynamics and were developed to work in concert
to provide different aspects of traversability analysis to overall rover simulation on
potential paths. Depending upon the objective, the user could simply run one or more of
the models to obtain the desired information. An alternative development could include

all three aspects within SimMechanics alone.
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6.5 Recommendations for Future Work

Based upon the literature review and work presented in this thesis, the author

offers the following recommendations for possible future work:

1. Experimental validation of the kinematic models to add tuning parameters for

increased accuracy of the simulation.

2. Further investigation to determine appropriate time steps for interpolation
stability, or review of the potential application of non-linear interpolation

techniques.

3. Activation of steering within the kinematic model, in accordance with the skid

steering system of the J5 rover.

4. Perform both kinematic and dynamic simulations with complex steering
maneuvers on varying complexities of terrain, such as turning on a slope, with

different amounts of slip.

5. Extend the study to high values of slip, by running simulations at the higher (i >

0.6) slip and validate with experimental results to best of ability.
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6. Extend the study to more erratic terrain maps, including those with different
terrain types (bedrock vs soft loose sand) and slip values. Also include random

bumps for different sides of the rover.

7. Finalise the fully combined dynamic and terramechanics model of the Argo J5
rover. Finalisation would include the required experimental validation to generate
appropriate tuning parameters, along with expanding the terrain properties in the
terramechanics model to include other terrains likely to be encountered by the

rover.

8. Validate the terramechanics model for the rover wheel with a single wheel testbed
experiment, allowing for comparison with other models. Also generate DEM look

up tables for the higher regions of slip where terramechanics breaks down.

9. Instrument a J5 rover with accelerometers to measure the forces on each wheel

and selected joints during experimental drives over controlled terrain, such as that

of the Canadian Space Agency’s (CSA’s) MarsYard.
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Appendix A - Argo JS Data and Specifications

All rover data provided to the author is collected in this appendix.

A.1  Argo J5 Rover Data Summary

Rover: Argo J5 Rover (also manufactured/sold by Clearpath Robotics)’

Total Mass: 460 kg (1013 1bs) — includes wheels, batteries, mast, sensors.
Total Envelope/Footprint: 1.52 m long x 1.48 m wide
Steering: Skid Steering

Special notes: - back suspension connecting walking beams to chassis (chassis

connection at rear) averages out the pitch of each walking beams to get the pitch of the

chassis.

Main Components

Chassis

e Mass: 200 kg

e Dimensions: 1.30 m long x 0.77 m wide
Walking Beams

e Mass: 50 kg (each) x2

e Dimensions: 1.32 m long x 0.29 m wide
Wheels?:

e Mass: 15 kg (each) x4

e Diameter;: 0.60 m
e Thickness: 0.30 m
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Note: In text of thesis, refer to it as the Argo J5 rover based on the language used by the
company in possession of the rover (Mission Control Space Services) and special advisor

to the project, Dr. M. Faragalli.

For more information, see:
Argo J5XTR website: https://www.argo-xtr.com/index.php/xtr-robots/j5-xtr/

Clearpath Robotics Warthog: https://clearpathrobotics.com/warthog-unmanned-ground-

vehicle-robot/

1. Rover manufacturer spec sheet & drawing attached.
(https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/)
2. Wheels can be either be metal or rubber. Metal tires assumed for the analysis.
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https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/

WARTHOG™ CLEARPATH

AMPHIBIOUS UNMANNED GROUND VEHICLE RoBOTICS™

| 1.52m |
[4.92t]

| 1.34m | | 138 m |
‘ %391 ‘ ‘ 145211 ‘

0.83m
[2.73 ft]

TECHNICAL SPECIFICATIONS

EXTERNAL DIMENSIONS (L x W x H) 1.52x 1.38 x 0.83 m (4.9 x 4.5 x 2.72 ft)

BASE WEIGHT (includes base battery pack) 280 kg (551 Lbs)

GROSS VEHICLE WEIGHT 590 kg (1300 Lbs)

GROUND CLEARANCE 254 mm (10in)

MAX. PAYLOAD 272 kg (600 Lbs)

MAX. INCLINE 35 - 45°

MAX. SPEED 18 km/h (11 mph)

SUSPENSION Geometric Passive Articulation

TRACTION 24" Argo tire (24" Turf tire or 12" wide Quad Track System optional)

BATTERY CHEMISTRY AGM sealed lead acid (Li-ion optional)

CAPACITY 105 Ah at 48 V, expandable to 110Ah with Li-ion option

CHARGE TIME 4 hrs

NOMINAL RUN TIME Lead acid: 2.5 hrs Li-ion: 3 hrs

USER POWER 5V, 12V Fused (24 V, 48 V optionall

CONTROL MODES Remote control, Computer controlled velocity commands (v, 8], Indoor/outdoor autonomy packages
FEEDBACK Battery voltage, motor currents, wheel odometry, control system status, temperature, safety status
COMMUNICATION Ethernet, USB, Remote Control, Wi-Fi

DRIVERS AND APIs Packaged with ROS Indigo (includes RViz, Gazebo support), Matlab APl available

INCLUDED HARDWARE IMU, encoders, Onboard computer, E-Stop (hardware loop), E-Stop [software loop), removable

mounting plates, bilge pumps, brakes

OPERATING AMBIENT TEMPERATURE -20 to 40 °C (-4 to 104 °F)

STORAGE TEMPERATURE -40to 50 °C (-40 to 122 °F)

IP RATING IP65 - Vehicle is designed to float and should not be fully submerged
AMPHIBIOUS Fully amphibious, 4 km/h (2.4 mph) maximum water speed*

Contact us today for pricing and a free 30 minute technical assessment: 1-800-301-3863

© 2016 Clearpath Robotics, Inc. All Rights Reserved. Clearpath Robotics, Warthog, and clearpathrobotics.com are trademarks of Clearpath Robotics
All other product and company names listed are trademarks or trade names of their respective companies. * Warthog is not amphibious with Quad T
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Appendix B - 2D Kinematic Analysis Data

This appendix contains the relevant formulation and results for Chapter 4, Section 4.1.

B.1  Rover Data & Analysis Setup

Rover: Argo JS (4-wheel)

Figure B1: Right-side profile with labelled pivot points and rigid distances between pivot points.

Associated Dimensions:

raB=rcp = 0.254 m rac = 0.90932 m
rag= 0.4653 m rar = 0.632 m
rce= 0.465 m rcr = 0.5088 m
rer= 0.256 m rrG = 0.607 m

Equation Set 1
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Developed from the geometry seen in Figure B.1 and the associated dimensions.

Implemented in MATLAB function file: geomJ5 nosusp.m

(xa —xp)* + (Va — ¥8)* = Tip
(xc —xp)* + e —¥p)* =71ép
(xa = %)% + Ya — ¥c)? = 1ic
(xa = xp)*+ (Va—VE)* =14

(x¢c —xg)* + (e —yp)* =1

ys— f(xg) =0

yp — f(xp) =0
my(ya —yp) + (x4 —xp) =0

my(yc —yp) + (xc —xp) =0

Equation Set 2

Independent equation set developed based on geometry as a means of validating the

results and troubleshooting if need be. Note: ¢, and c¢,, were considered known points. y
represents the slope angle and « is the angle of the walking beam between the link

lengths 145 and 7¢g.

Ay = Cyx + Tyc COSY

ay = Cy + 1y¢siny
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dy = ¢y +1¢cpsSiny

Tcp
dy =cy—
cosy

by = dy + 1yc cOSY

b, = d, + 14 siny

a
€y = Cy + 7¢cg Sin (E—y)

a

ey=cy+rCEcos(§— )
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Terrain Function & Parameters

oo
© 0

[s]

Max run-time
Time step

=10; %

tmax

[s]

o
°

del t

’

tmax

1.6
0.01875*sin (x)
0.12*sin(x terr)

:del t

0
terr=-0.2

t=

o

’

X

Overall terrain function
Flat land test function

o

°
I3
°

’

’

’

0.5*x terr

% y ter
terr=
terr

Yy

[m/s]

Rover nominal speed

N
o
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%% Intitial parameters (initial guess)

% Incl. suspension

% x0 = zeros (13,1);

$ x0(1) = 0.909; x0(8) = 0.254; % Initial coordinates of
joints & contact points

% x0(2) = 0.909; x0(9) = 0; % these will be used as
"guess" for Newton Rhapson

% x0(3) = 0.4545; x0(10) = 0.352;

% x0(4) = 0.358; x0(11l) = 0.8065; % Note that the back wheel
is used as x=0

$ x0(5) = -0.246; x0(12) = 0.747;

$ x0(6) = 0; x0(13) = 0;

$ x0(7) = 0.254;

$Without Suspension

x0=zeros (9,1);

x0(1) = 0.909; x0(6) = 0.254; % Initial coordinates of joints
& contact points

x0(2) = 0.909; x0(7) = 0; % these will be used as "guess"
for Newton Rhapson

x0(3) = 0.4545; x0(8) = 0.352;

x0(4) = 0; x0(9) = 0; % Note that the back wheel is used
as x=0

x0(5) = 0.254;

% Set cx as independent variable to make 13 unknowns for 13 eqgtns.
~51=0; % Initial position of x 7i (x-coordinate of back wheel)

X

o

t2=v _r/x0(2);

f2=y ter(t2); % Elevation of terrain at each contact point
fia=y ter(v_r/x0(4))

fo=y ter(v_r/x0(6))

o

’

oe

’

oe

$ m2=diff (y ter(v_r/x0(2))); % Slope value of tangent at wheel-gnd
contact pt

% m4=diff(y ter(v_r/x0(4)));

% m6=diff(y ter(v r/x0(6)));

o\

% Perform Newton-Raphson (or nonlinear egtn sovler)

% [xnr, iter nr]=feval (NR nlm,x0,y terr,x 8i, 'geomtW', '"Jacobl5');
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[xnr, iter nr]=NR nlm J5(x0,x 5i, 'geomJ5 nosusp', 'Jacob9");

% Fsolve built in function
% xnr=fsolve (geom6W, x0)

% Reassign x variables for ease of plotting

X (t+1l) = xnr(l);
x(t+l) = xnr(2);
x(t+1l) = xnr(3);
x(t+1l) = xnr(4);
x(t+l) = x 5i;

% Reassign x variables (9-16) back to y variables for ease of plotting

Ay (t+l) = xnr(6);
By (t+1) xnr(7) ;
Ey(t+l) = xnr(8);
Fy (t+1l) = xnr(9);
Cy(t+l) = xnr(5);

% plot(x1l,vyl,x2,y2,x7,y7,%x8,vy8)
% legend('a','b','g','h")
figure

$Q=figure;

hold on

$title ('J5 Rover Traversing Terrain')
xlabel ('Horizontal Component, X [m]"'")
ylabel ('Vertical Component, Y [m]'")

splot (y terr)

y_sine=@(x) 0.12*sin(pi*x);

% fplot(y sine, [-0.25 4])

y_terr2= @(x) 0.5*x;

fplot(y terr2, [-0.3 1.5]);

plot ([xnr(l) xnr(3)], [xnr(6) xnr(8)])

% plot([xnr(3) xnr(4)], [xnr(l0) xnr(ll)])
% plot([xnr(4) xnr(5)], [xnr(ll) xnr(l2)])
plot ([xnr(3) x 5i], [xnr(8) =xnr(5)])

oe

% legend('Terrain', 'Link AE', 'Link EF', 'Link FG', 'Link
CE', 'Location', 'east')
legend ('Terrain', 'Link AE', 'Link CE', 'Location', 'southeast')

th = 0:pi/50:2*pi;
r = 0.254;
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x cl = r * cos(th) + xnr(l);
y ¢l = r * sin(th) + xnr(6);
X c2 = r * cos(th) + x 5i;

y €2 = r * sin(th) + xnr(5);

plot(x cl, y cl, x c2, y c2)
axis equal
set(findall (gca, 'Type', 'Line'), 'LinewWidth',?2)

hold off

$saveas (Q, sprintf ('FIGS%d.jpg',t))

saveas (gcf, '"FIG%d.jpg")
00000000000000000000000000000000000000000000000000000000000000000000000

% Update initial guess
x0=xnr;

% Update independent & thereby move further along the terrain
x 51 = x 51 + (v_r*del t);

end

figure

hold on

$title('Elevation of pivot points with respect to terrain traversed')
xlabel ('Horizontal Component, X [m]")

ylabel ('Vertical Component, Y [m]'")

plot (Ax,Ay)
plot (Bx, By)
plot (Ex, Ey)
plot (Cx,Cy)
legend('a', 'B', 'E', 'C','Location', 'southeast')
set (findall (gca, 'Type', 'Line'), 'LinewWidth',?2)
hold off
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B.3 MATLAB Function File: Planar Kinematic Equation Set for J5 Rover
(geomJS_nosusp.m)

function [F] = geomJ5 nosusp( x , x 51 )

%geomd5 Egtn set for based on the geometry of the rover configuration
and

%$the coordinates of each node.

o

% Rover fixed parameters

r ac = 0.9093; % Distance between wheels a & c [m]

r ae = 0.4653; % Link length from wheel e to chassis pivot joint
[m]

r ce = 0.4653; % Link length from wheel e to chassis pivot joint
[m]

r ab = 0.254; % Radius of wheel a. Also distance between wheel

centre and
o
E]

ground contact point. Units: [m]
r cd = 0.254; % Radius of wheel c. Units: [m]

o

% Functions based on terrain
f2=y terr(x(2));
fd=y terr(x(4));

o\°

o\°

oe

£f2=0; % Flat land case

% £4=0;
$ £2=0.5*x(2); % Incline
$ £4=0.5*x(4) ;

£2=0.12*sin(pi*x(2));
f4=0.12*sin(pi*x(4));

o\°

% Slope values
m2=diff (£2);
md=diff (£f4);

o\°

oe

o\°

m2=0; % Flat land case

% m4=0;
% m2=0.5; % Slope case
% m4=0.5;

m2=0.12*pi*cos (pi*x(2));
m4=0.12*pi*cos (pi*x(4));

%% Equation set to be solved

F(1) = ((x(1)-x(2))"2) + ((x(6)-x(7))"2) - r_ab"2;
wheel-gnd

F(2) = ((x_5i-x(4))"2) + ((x(5)-x(9))"2) - r cd"2;

oe

Egtns for

o\°

contact pt

F(3) = ((x(1)-x_51)"2) + ((x(6)-x(5))"2) - r_ac”"2; % Egtns for links
F(4) = ((x(1)-x(3))"2) + ((x(6)-x(8))"2) - r ae”2;
F(5) = ((x 51-x(3))"2) + ((x(5)-x(8))"2) - r ce”2;

209



x(7) - f£2; %

Wheel-terrain
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B.4 MATLAB Function File: Nonlinear multi-variate Newton-Raphson solver

(NR_nlm_JS5.m)

function [x, iter] = NR nlm J5(x0,x 5i,F,J)

%NR nlm Newton-Raphson method for nonlinear multivariate system of

egtns.
% Detailed explanation goes here
N = 100; % Number of iterations
Eps = 1le-10; % Tolerance
Div = 1000; % Divergence value
xx = x0; % Load array of inital guess
s £2=0; % Values for static flat terrain for debugging purposes
% £4=0;
% £6=0;
while N>O0
Jc = feval('Jacob9',xx, x 51);

if abs(det (Jc))<Eps

error ('Jacobian is singular. Change x0'");

abort;
end

Xn = xx - inv(Jc)*feval ('geomJ5 nosusp',xx,x 51i);

if abs(feval('geomJ5 nosusp',Xn,x 5i))<Eps
x = Xn;
iter = 100 - N;
return;

end

if abs(feval('geomJ5 nosusp',xx,x 5i))>Div
iter = 100 - N;

disp(['Iterations = ', num2str(iter)]);
error ('Solution fails to converge');
abort;
end
N =N - 1;
xx = Xn;
end

error ('No convergence after 100 iterations');
abort;

end
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B.S MATLAB Script: Jacobian function file for use in nonlinear, multivariate,
Newton-Raphson function (Jacob9.m)

function [J] = Jacob9(x, x 51i)

%$Jacob9 Evaluates the Jacobian of a 9x9 matrix for a nonlinear system
of

%9 equations

o)

% Detailed explanation goes here

%% NOTE: x 5i is the x-coordinate of point 5(C), however to make the
uare

%% Jacobian, it is defined as an independent variable (as per paper).
Thus,

%% x10 becomes x(5).

0
Q

oe

Extracting f2, f6 from terrain function
f2=y terr(x(2));
fo=y terr(x(4));

o\°

o\°

o° o
Hh Hh
SN
o O

o\°

Slope values for test

m2=0.5; % Flat land case. 0.5 for slope
mé4=0.5;

m2=0.12*pi*cos (pi*x(2));

m4=0.12*pi*cos (pi*x(4));

sx_81i=0;

o\°

oe

J = zeros(9,9); % Initialise matrix of zeroes

J(1,1) = 2*(x(1)-x(2)); J(1,2) = 2*(x(2)-x(1));
J(1,6) = 2*(x(6)-x(7)); J(1,7) = 2*(x(7)-x(6));
J(2,4 2*(x(4)-x 51); J(2,5) = 2*(x(5)-x(9));

J(3,1 2% (x(1)-x_5i); $J(3,5) = 2*(x(5)-x(3));
J(3,5) = 2*(x(5)-x(6)); J(3,6) = 2*(x(6)-x(5));
J(4,1) = 2*(x(1)-x(3)); J(4,3) = 2*(x(3)-x(1));
J(4,6) = 2*(x(6)-x(8)); J(4,8) = 2*(x(8)-x(6));
J(5,3) = 2% (x(3)-x_5i); $J(5,8) = 2*(x _8i-x(5));
J(5,5) = 2*(x(5)-x(8)); J(5,8) = 2*(x(8)-x(5));

J(6,2) = 0.5;
J(6,7) = 1;
% J(6,2)=-0.12*pi*cos (pi*x(2));

J(7,4) = 0.5;
J(7,9) = 1;
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% J(7,4)=-0.12*pi*cos (pi*x(4));

end

J(8,2) = -1;

J(8,7) = -m2;
$J(13,4) =
J(9,9) = -m4;
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B.6

L

Further Results for J5 Rover

Flat Terrain Case

Vertical Component, Y [m]

Vertical Component, Y [m]
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Figure B.2: Planar inclined pose for flat terrain, t=4s.
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Figure B.3: Pivot point traces for flat terrain.
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II.

Inclined Terrain Cases

Terrain Function: y = 0.1x
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Figure B.4: Planar inclined pose for a slope of 5.71°, t=4s.
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Figure B.5: Pivot point traces for inclined terrain with slope of 5.71°.
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Terrain Function: y = 0.5x
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Figure B.6: Planar inclined pose for a slope of 26.57°, t=4s.
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Figure B.7: Pivot point traces for inclined terrain with slope of 26.57°.
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I1I.

Sinusoidal Terrain Cases

Terrain Function: y = 0.03 sin (g x)

Figure B.8: Planar pose for a sine terrain of y = 0.03 sin (TZ—I x), t=17s.
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Figure B.9: Pivot point traces for a sine terrain of y = 0.03 sin (;—t x).

217



Terrain Function: y = 0.12 sin(7x)

Terrain
15} ———Link AE
Link CE

o
o -
T T

Vertical Component, Y [m]
{ o=}
'\
]
/
| @
'\
,’
f/
/
\\

o
[9)]
T

0 0.5 1 1.5 2 2.5 3 3.5 4
Horizontal Component, X [m]

Figure B.10: Planar pose for a sine terrain of y = 0.12 sin(mx), t=12s.
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Figure B.11: Pivot point traces for a sine terrain of y = 0.12 sin(mx).
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B.7  Rover Data & Analysis Setup (from original paper)

Rover: Rocky 7 (6-wheel)

Figure B1: Right-side profile with labelled pivot points.

Associated Dimensions:

I'AB = ICD = IEF = 0.065 m rac = 0.240 m
rag=rcg =0.170 m reg = 0.339 m
rng=0.170 m reg = 0.379 m
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Equation Set 1

Developed from the geometry seen in Figure B.1 and the associated dimensions.

Implemented in MATLAB function file: geom6W.m

(x4 = x5)* + (Va — ¥8)* =1z
(xc = xp)* + e — ¥p)?* = 1ép
(xg = xp)* + (Vg — Y§)* = Tér
(x4 = xc)* + (Va — ¥e)* = 1ic
(x4 = x6)* + (Ya — ¥6)? = 7ig
(xc = %6)* + e —¥6)* =785
(xu —x6)* + (Yn — ¥6)* = Tig
(xg — x6)* + (Vr — ¥6)* = 75

(xg —xu)* + (Vg — yu)? =1y

yg — f(xp) =0
yp — f(xp) =0
yr— f(xp) =0

my(Ya—yp) + (x4 —xp) =0
my(yc —yp) + (xc —xp) =0

me(Yg — Yr) + (xg —xg) =0
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Equation Set 2

Independent equation set developed based on geometry as a means of validating the
results and troubleshooting if need be. Note: e,, was considered to be a known point. y
represents the slope angle and L is the length or distance of wheel E from the start of a
slope.

a, = 1gccos B + (L — x) sin2y + ryccosy
a =rECsin9+(L—x)sin2y+rA—B+rACsiny
Y cosy

b, = 1gccos @ + (L — x) sin 2y + ryp siny + ryc cosy
by, = 1gcsin@ + (L — x) sin 2y +71¢ siny
Cy = TgcCcosO + (L — x) sin 2y

TaB

= rgcsin® + (L — x) sin 2y +
Cy = Tgc Sin (L — x)sin 2y cosy

d, = rgccos O + (L — x) sin 2y + ryg siny
dy, =1gcsin@ + (L — x) sin2y + ryptany siny

Y:
cosy

€y
fx = T4pSinf
fy = Taptanfsiné

Jx = Tgc €os 0 + (L — x) sin 2y + r¢¢ sin(45 — y)
. . TaB
gy = Tecsin@ + (L — x) sin 2y + —— + 1¢g cos(45 — y)
cosy
h, = rgccos B + (L — x) sin 2y + r¢; sin(45 — y) — ryg cosy
. : TaB
hy = 1gcsinf + (L — x) sin 2y + cosy + ¢ cos(45 —y) + ryg cosy
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B.8 MATLAB Script: Planar Kinematic Equation Set for Rocky 7 Rover

(geom6W.m)

function F = geom6oW( x , x 81i)

%$geombW Egtn set for based on the geometry of the rover configuration

and
%$the coordinates of each node.
% Detailed explanation goes here

o

% Rover fixed parameters

r ac = 0.24; % Distance between wheels a & c

r ag = 0.12*sqrt(2); % Length of bogie link [m]

r cg = 0.12*sqrt(2);

r eh = 0.24*sqrt(2); % Link length from wheel e to chassis pivot
joint

r hg = r eh-r ag; % Link length from h to g (rocker)

r eg = sqrt((r_eh”2)+(r _hg"2)); % Distance between wheel e and bogie

pivot joint

r ab = 0.065;
centre and

o

o

o

Radius of wheel c¢. Units: [m]
Radius of wheel e. Units: [m]

r cd = 0.065;
r ef 0.065;

o\°

oe

% Functions based on terrain
f2=y terr(x(2));
fid=y terr(x(4));
f7=y terr(x(7));
£f2=0.1*sin(1.9*pi*x (2));
f4=0.1*sin(1.9*%pi*x (4));
£f7=0.1*sin(1.9%pi*x (7)) ;
£2=0;
£4=0;
£7=0;

o° o

o\°

o° oo

o\°

oe

% Slope values

% m2=0; % Flat land case
% m4=0;
$ m7=0;

m2=0.19*pi*cos (1.9*%pi*x(2));
m4=0.19*pi*cos (1.9%*pi*x(4));
m7=0.19*pi*cos (1.9%pi*x (7)) ;

$x 81 = 0;

%% Equation set to be solved

F(1) = ((x(1)-x(3))"2) + ((x(9)-x(11))"2) - r_ac"2;
links

F(2) = ((x(1)-x(5))"2) + ((x(9)-x(13))"2) - r_ag"2;
F(3) = ((x(3)-x(5))"2) + ((x(11)-x(13))"2) - r_cg"2
F(4) = ((x(6)-x(5))"2) + ((x(14)-x(13))"2) - r_hg"2
F(5) = ((x_81-x(5))"2) + ((x(8)-x(13))"2) - r_eg"2;

ground contact point. Units: [m]

Radius of wheel a. Also distance between wheel

Egtns for

222



F(6) = ((x_81-x(6))"2)
F(7) = ((x(1)-x(2))"2)
wheel-gnd

F(8) = ((x(3)-x(4))"2)

F(9) = ((x 8i-x(7))"2)

F(10) = x(10) - £2;
F(ll) = x(12) - f4;
F(l2) = x(15) - £7;

F(13) = m2.*(x(9)-x(10))
F(l4) = m4.*(x(11)-x(12))
F(15) = m7.*%(x(8)-x(15))

F=F."';
end

o)

$ End of function

Egtns for

contact pt
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B.9

Newton-Raphson function for the Rocky 7 rover (Jacob15.m)

function

system of
%15 equations

o3
o

0
Q

%% Jacobian, it is defined as an independent variable

Rocky 7 Rover

uare

Thus,
%% x16 becomes x(8).

o° d° o° o° o° o°

oe

o od° oe

oe

m2=0.19*pi*cos (1.9*pi*x(2));
m4=0.19*pi*cos (1.9*pi*x(4));
m7=0.19*%pi*cos (1.9%pi*x (7)) ;

(6 wheels)

Extracting f2, f4,

f2=y terr(x(2));
fd=y terr(x(4));
f7=y terr(x(7));
£2=0;
£4=0;
£7=0;

Slope values for
m2=0; % Flat
m4=0;
m7=0;

Tx_81=0;
J = zeros(15,15);

(3,3) = 2% (x(3)-x(5));
(3,11) = 2*(x(11)-x(13));
(4,5) = 2*(x(5)-x

(4,13) = 2*(x(13)

[J] = Jacoblb5(x, x 81)
$Jacobl5 Evaluates the Jacobian of a 15x15 matrix for a nonlinear

NOTE: x 8i is the x-coordinate of point 8(E),

£f7 from terrain function

test

land case

Initialise matrix of zeroes

J(1,3) = 2*(x(3)-x(1));

J(1,11)

J(2,5) =
J(2,13)

J(3,5) =
J(3,13

J(4,6) =
J(4,14

)

)

2% (x(5

2% (x(6) -x(5)
= 2% (x(14)-

= 2% (x_8i-x(5))

2*(x(8)-x(13)

however to make the

(as per paper) .

MATLAB Script: Jacobian function file for use in nonlinear, multivariate,

224



J(8,3) = 2% (x(3)-x(4)); J(8,4) = 2*(x(4)-x(3));
J(8,11) = 2*(x(11)-x(12)); J(8,12) = 2*(x(12)-x(11));
J(9,7) = 2*(x(7)-x_81); $J(9,8) 2% (x_8i-x(7));
J(9,15) = 2*(x(15)-x(8)); J(9,8) 2% (x(8)-x(15));

(10,10) = 1;

J(11,12) = 1;
J

J(12,15) = 1;

J(12,7)=0.19*pi*cos (1.9*pi*x (7))
J(13,1) = 1; J(13,2) = -1;
J(13,9) = m2; J(13,10) = -m2;
J(14,3) = 1; J(14,4) = -1;
J(14,11) = m4; J(14,12) = -m4;
J(15,7) = -1; %J(15,8) = 1;
J(15,15) = -m7; J(15,8) = m7;
end

[

% End of function
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B.10 Further Results for Rocky 7 Rover

Results were generated for the Rocky 7 Rover to confirm correct application and coding

of the process used in the original paper by Parakh et al [50].
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Figure B.12: Planar inclined pose for flat terrain, t=6s.
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Figure B.13: Pivot point traces for flat terrain.
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II. Upslope Case

Terrain Function: y = 0.5x

E
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Figure B.16: Planar inclined pose for a slope of 26.57°, t=8s.
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Figure B.17: Pivot point traces for inclined terrain with slope of 26.57°.
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I1I.

Sinusoidal Terrain

Terrain Function: y = 0.1 sin(2mx)
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Figure B.18: Planar pose for a sine terrain of y = 0.1 sin(2mx), t=4.5s.
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Figure B.19: Pivot point traces for a sine terrain of y = 0.1 sin(2mx).
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V. Sinusoidal Terrain

Terrain Function: y = 0.12 sin(7rx)
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Figure B.20: Planar pose for a sine terrain of y = 0.12 sin(mx), t=11s.
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Figure B.21: Pivot point traces for a sine terrain of y = 0.12 sin(mx).
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Appendix C - 3D Kinematic Analysis Data

Appendix C contains material pertinent to the development of the 3D position and

velocity kinematic models, including additional results.

C.l1 D-H Tables

The following are the full set of D-H parameters describing all four kinematic chains of

the rover.

Table C.1: D-H Parameters for the Kinematic Chain — World Origin Frame to Right Rear Wheel.

n 0 [deg] o [deg] a [m] d [m]

0 +90 +90 0 0

1 - 90 - 90 0 X

2 - 90 + 90 O Ytrans
Z +h

3 O 0 O trans CoG

4 L. - 90 0 0

5 @ +90 +90 0 0

pitch
6 - +90 0 0
- d
8 9wbr B O awb cmwb
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Table C.2: D-H Parameters for the Kinematic Chain — World Origin Frame to Right Front Wheel.

6 [deg] o [deg] a[m] d [m]
0 +90 +90 0 0
1 - 90 - 90 O Xtrans
2 -90 +90 0 Y
Z +h
3 0 0 0 trans CoG
4 L. -90 0 0
5 ® +90 +90 0 0
pitch
6 - +90 0 0
1 +
0 ewbr B 0 awb dcmwb
Table C.3: D-H Parameters for the Kinematic Chain — World Origin Frame to Left Rear Wheel.
0 [deg] o [deg] a [m] d [m]
0 +90 +90 0 0
1 - 90 -90 0 X
2 - 90 +90 0 Y
Z +h
3 0 0 0 trans CoG
4 (Pyaw -90 0 0
S @ +90 +90 0 0
pitch
7 -90 0 0
roll
+
? 9wbl B 0 awb dcmwb
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Table C.4: D-H Parameters for the Kinematic Chain — World Origin Frame to Left Front Wheel.

0 [deg] a [deg] a[m] d [m]
0 +90 +90 0 0
1 - 90 -90 0 X
2 - 90 +90 0 Y
3 Z +h

0 O 0 trans CoG

4 L. - 90 0 0
5 o +90 +90 0 0

pitch
7 . -90 0 0
11 0 - d

wbl B O awb cmwb
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C.2 MATLAB Script File: 3D Position Kinematic Model

(J5_3DPositionKinematics.m)

©
©
©
©
©

99000

o
o

o

o

o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o\

o\
o\

3D Position Kinematics

o° 0 o° oe
o° 0 o° oe

Written by: E. Austen

o
o\

This script solves the inverse position kinematics in 3D for the J5
rover, for a given set of wheel-ground contact positions. These
contact

%% positions can be either obtained from a DEM of the terrain or
extraction

from a specified terrain function. The kinematic equations used were

derived using the original Denavit-Hartenberg convention.

o° oe
o° oe

o° 0O o° oe
o° 0O o° oe

Created on: May 24, 2019

Last Modified:

July 15, 2019 - added chassis angle orientation plot
June 2, 2019 - fixed orientation egtns

May 29, 2019 - egtn set

May 28, 2019 - terrain variables & loop conditions

d° o0 od° od° oe
o° 0 od° od° oe

o\°
o° oP

9900000000000 0000000000000000000000000000000000000000000000000000000000

o\

oe
oe
oe
oe

Initialisation of parameters & importing the terrain path
coordinates

% Establish global wvariables

global X 1r Y 1r 2 1r i 1lr X rr Y rr Z rr 1 rr X 1f Y 1f 72 1f i 1f X rf
Y rf Z rf i rf

global phiX 1lr phiY 1lr phiZ 1lr phiX rr phi¥Y rr phiZ rr phiX 1f phiY 1f
phiZz 1f phiX rf phiY rf phiZz rf

global delta rr delta lr delta rf delta 1f

% Rover speed

w=1/3; % Commanded angular velocity of wheels [rad/s]
w_r=w; % Skid steering, thus assume right wheels have same w, and
likewise
% for left wheels
w_1=w;

Import terrain path map
pathdata=readtable ('FlatTerrain NoSlip Test2.xlsx');
pathdata=readtable ('UpslopeTerrain 10deg NoSlip.xlsx');
pathdata=readtable ('UpslopeTerrain 15deg NoSlip.xlsx'");

o 0O 0P oe
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% pathdata=readtable ('DownslopeTerrain 10deg NoSlip.xlsx');
% pathdata=readtable('SideslopeTerrain 10deg NoSlip.xlsx');
pathdata=readtable ('SineTerrain NoSlip.xlsx');

o

x_ lr=pathdata{1:30,{'x Ir'}}; Terrain path data for left rear wheel
y_lr=pathdata{l1:30,{'y 1r'}};
z lr=pathdata{1:30,{'z 1r'}};

I lr=pathdata{1:30,{'i 1r'}};

o\

x rr=pathdata{1l:30,{'x rr'}};
wheel

y _rr=pathdata{l1:30,{'y rr'}};
z rr=pathdata{1:30,{'z rr'}};
I rr=pathdata{1:30,{'i rr'}};

Terrain path data for right rear

o

x lf=pathdata{1:30,{'x 1f'}};
wheel

y lf=pathdata{1:30,{'y 1f'}};
z lf=pathdata{1:30,{'z 1f'}};
I lf=pathdata{1:30,{'i 1£f'}};

Terrain path data for left front

o

x rf=pathdata{1l:30,{'x rf'}};
wheel

y_rf=pathdata{1:30,{'y rf'}};
z rf=pathdata{1:30,{"'z rf'}};
I rf=pathdata{1:30,{'i rf'}};

Terrain path data for right front

% Initial guess for solver
g0 = zeros(8,1);
% g0=[0; 0; 0; 0; 0.1746; 0; -0.1746; 0.1746];

% Set loop conditions
$x_lrmax=x 1r(10);

%% Start of while loop to solve egtn set for each position
while u<= u max

%$Pose of RR wheel—gnd contact pt
X rr=x rr(u
Y rr=y rr
Z rr=z rr
i rr=I rr

(u
(u) ;
(u) ;
(u) ;
%$Pose of LR wheel-gnd contact pt
X lr=x 1r(u);
Y lr=y lr(u);
Z lr=z 1lr(u);
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i 1r=I 1r(u);

%Pose of RF wheel-gnd contact pt

% Orientation of contact points

if u==
% phiX rf=(pi/2)+asin((z 1f-Z rf)/1.1786); % Roll case
phiX rf=(pi/2);
% phiX rf=0;

phiX 1f=-phiX rf;

phiX rr=(pi/2)+asin((Z lr-z rr)/1.1786);
phiX rr=(pi/2);

phiX rr=0;
phiX lr=-phiX rr;

oe

o

phiY rf=-asin((Z rf-Z rr)/0.9144); % Pitch
% phiY rf=(pi/2)-asin((Z rf-Z rr)/0.9144); % Other
coordinate defn

phi¥ rr=phi¥ rf;

phiY 1f=-asin((z 1f-Z 1r)/0.9144);
% phiY 1f=(pi/2)-asin((Z rf-Zz rr)/0.9144); % Other
coordinate defn

phiY lr=phiY 1f;

oe

phiZz rf=-(pi/2); Yaw

phiZz rf=0; % For other coordinate defn
phiZ rr=phiZz rf;
phiz 1f=(pi/2);

phiz 1£=0; % For other coordinate defn
phiZ lr=phiZz 1f;

oe

oe

o\

delta_rf:asin((Z_rf—Z_rr)/O.9l44); $ Pitch
delta rf=0;
delta rr=delta rf;
delta lf=-asin((Zz 1f-Z 1r)/0.9144);
delta 1f=0;
delta lr=delta 1f;

oe

else
if y rf(u)-y rf(u-1)== $Roll
phiX rf=(pi/2); % Non-side slope
% phiX rf=0;
% phiX rf=(pi/2)+asin((z 1f-7Z rf)/1.1786); % Side slope case
phiX 1f=-phiX rf;
else
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phiX rf=atan2((z rf(u)-z rf(u-1)), (y rf(u)-y rf(u-1))); % Roll
phiX lf=atan2((z_1lf(u)-z 1f(u-1)), (y 1f(u)-y 1f(u-1)));
end
if y rr(u)-y rr(u-1)==0
phiX rr=(pi/2) % Non-slide slope
% phiX rr=0;
% phiX rr=(pi/2)+asin((Z lr-Z rr)/1.1786); % Side slope
phiX lr=-phiX rr;
else
phiX rr=atan2((z _rr(u)-z rr(u-1)), (y rf(u)-y rr(u-1)));
phiX lr=atan2((z_lr(u)-z lr(u-1)), (y_lr(u)-y lr(u-1)));
end
phiY rf=-atan((z rf(u)—z_rf(u—l))/(x_rf(u)—x_rf(u—l))); % Pitch
ple_rr——atan((z_rr(u)—z_rr(u—l))/(x_rr(u)—x_rr(u—l))),
phiY l1f=-atan((z 1f(u)-z 1f(u-1))/(x _1f(u)-x 1f(u-1)));
phiY lr=-atan((z lr(u)-z lr(u—l))/(x_lr(u)—x_lr(u—l)));
% phiY_rfz(pi/Z)—atanZ((z_rf( )—z rf(u-1)), (x rf(u)-x rf (u-
1))); % Pitch for other coordinate defn
% phiY rr=(pi/2)-atan2((z_rr(u)-z rr(u-1l)), (x rr(u)-x rr(u-
1))):
% phiY 1f=(pi/2)-atan2((z 1f(u)-z 1f(u-1)), (x 1f(u)-x 1f (u-
1)));
% phiY lr=(pi/2)-atan2((z_lr(u)-z lr(u-1)), (x lr(u)-x lr(u-
1)));
phiz rf=-(pi/2) % Yaw
% phiZ rf=0; % Other coordinate defn
phiZ rr=phiZz rf;
phiz 1f=(pi/2);
% phiz 1£=0; %0ther coordinate defn
phiZ lr=phiz 1f;
% deltairf=atan((zirf(u)—zirf(u—l))/(xirf(u)—xirf(u—l))); %
Pitch
% delta rr=atan((z rr(u)-z_ rr(u /(X, rr(u)-x rr(u-1)));
% delta lf=-atan((z 1f(u)-z 1f( )/ (x_1f(u)-x 1f(u-1)));
% delta lr=-atan((z lr(u)-z 1lr( ))/(x 1lr(u)-x lr(u-1)));
delta rf=0;
delta rr=delta rf;
delta 1£=0;
delta lr=delta 1f;
end
%% Nonlinear Egtn Solver
optionsl = optimoptions('fsolve');
optionsl.Algorithm = 'levenberg-marquardt';
optionsl.FunctionTolerance = 1le0; %e-4 for flat, e-1 for slope, e-
2 for side slope
gSol=fsolve (@J5posKin3, g0, optionsl)
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% Reassign variables for ease of plotting

01 (u) gSol(l); % Xtrans or distance travelled in global X [m]
Q2 (u) = gSol(2); % Ytrans or distance travelled in global Y [m]
Q3(u) = gSol(3); % Ztrans or distance travelled in global Z [m]
Q4 (u) = gSol(4); % Yaw of the chassis [RAD]

Q5(u) = gSol(5); % Pitch of the chassis [RAD]

Q6 (u) gSol(6); % Roll of the chassis [RAD]

Q7 (u) gSol(7); % Pitch of the right walking beam [RAD]

Q8 (u) = gSol(8); % Pitch of the left walking beam [RAD]

% Q9(u) = gSol(9); % Contact angle right rear wheel [RAD]

$ Q10 (u) gSol (10); % Contact angle left rear wheel [RAD]

% Qll(u) = gSol(11); % Contact angle right front wheel [RAD]
% 012 (u) = gSol(1l2); % Contact angle left front wheel [RAD]
$if u==

gSol (1)=gSol (1)-0Q1(1);

gSol (2)=gSol (2)-Q2(1);
gSol (3)=gSol (3)-03(1);

$ if u==
gSol (5)=2*Q5 (u) ;
gSol (7)=2*Q7 (u) ;

)
qSol (8)=2*0Q8 (u) ;

Q5 (u) =gSol (5) ;
Q7 (u)=gSol (7);
08 (u) =gSol (8) ;
% end

$end

01 (u)=gSol (1) ;
02 (u)=gSol (2);
03 (u)=gSol (3);
gSol

oo 9900000000000 00000000000000000 9900000000000 0000000000000

%% Update parameters prior to exiting the loop

% Upate time step or condition of the loop
% t=t + del t;
u=u+l;

Q

% Update initial guess
g0=gSol;

%% Display outputs
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% Plot terrain as DEM
[X,Y] = meshgrid(-5:0.5:10,-5:0.5:10);
72 = zeros ([31 31]);

figure

%hold on

$title ('Terrain map with the selected path')
xlabel ("X [m]")

ylabel ('Y [m]")

zlabel ('Z [m]")

surf (X,Y,Z2)

% set(findall (gca, 'Type', 'Line'), 'LineWidth',2)

$hold off

% Plot walking beam/bogie angles vs time??

figure

hold on

$title ('Walking Beam Pitch') %Plotted with respect to Xdistance
travelled

xlabel ('X [m]")

ylabel ('Walking Beam Pitch [DEG]'")

plot (Q1l, (Q7*180/pi))

plot (Q1, (08*180/pi))

legend ('Right Walking Beam', 'Left Walking Beam', 'Location', 'east')
set(findall (gca, 'Type', 'Line'), 'LinewWidth',?2)

hold off

[

% Plot chassis angles vs time??

figure

hold on

%title ('Chassis Orientation Angles') %Plotted with respect to Xdistance
travelled

xlabel ("X [m]")
ylabel ('Chassis Orientation Angles [DEG]'")

plot (Q1l, (Q4*180/pi)) % Yaw
plot (Ql, (Q5*180/pi)) % Pitch
plot (Ql, (Q6*180/pi)) % Roll

legend('Yaw', 'Pitch', 'Roll', 'Location', 'east')
set (findall (gca, 'Type', 'Line'), 'LineWidth',?2)
hold off
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C.3 MATLAB Function File: 3D Position Equation Set for Solution
(JSposKin3.m)

function Fval = JbposKin3(q)

%JbposKin This function uses the extracted position kinematics eqtns

for

% the pose of each wheel-gnd contact point to solve for the joint

angles &

displacements.
Each egtn is extracted from the transform or T-matrix for the
corresponding kinematic chain. Details on the derivation of the
T-matrices and subsequent pose egtn sets can be viewed in the
corresponding Maple files. The full eqgtn set for all wheels are
structured in the form F=0,as per the conditions for using fsolve.
Global variables determined in the outer loop are brought in as
additional inputs to the expected
vectors g (joint displacements) and initial guess g0.

d° A o 0° o° o° o° o°

oe

%% Declaration of global variables based on terrain path in main script
global X 1r Y 1r 2 1r X rr Y rr 2 rr X 1f Y 1f 2 1f X rf Y rf Z2 rf
global phiX lr phiY 1r phiZ 1lr phiX rr phi¥Y rr phiZ rr phiX 1f phiY 1f
phiZz 1f phiX rf phiY rf phiZ rf

global delta rr delta 1lr delta rf delta 1f

%% Assignment of constant rover parameters
beta=(71.67*pi/180); % Angle of walking beam, formed btwn the two
wheels [RAD]

h cog=0.4515; % Height to centre of gravity [m].

d comwb=0.5644; % Distance from CoG to centre of walking beam [m].
a wb=0.4816; % Link length from walking beam/bogie pivot pt to
wheel axle [m].

r=0.3; % Wheel radius [m]

%% Assigning joint variables to the vector g
X trans=q(l,1);
Y trans=q(2,1);
Z trans=q(3,1);
phi_yaw=q(4,1);
phi pitch=q(5,1);
phi roll=qg(6,1);
theta wbr=q(7,1);
theta wbl=q(8,1);
$ delta rr=qg(9,1);

delta 1r=qg(10,1);

delta rf=q(l1,1);
delta 1f=g(12,1)
delta rr=0;
delta 1r=0;
delta rf=0;
delta 1f=0;

0 0O o

oe

’

o o° oe

o\
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%% Full set of kinematic egtns to be solved. See Maple for full
derivation

% Back Suspension Egtn

Fval(l,1)=theta wbl-theta wbr-(2*phi pitch);

% Right rear wheel eqgtns
Fval(2,1)=((-cos(phi roll) * (r*cos(beta) *cos(delta rr)-

r*sin(beta) *sin(delta rr)+a wb) *sin(phi pitch)+r*cos(phi pitch) * (cos (be
ta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos(phi yaw) -

sin(phi_ yaw) *sin(phi roll) * (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a _wb)) *cos (-theta wbr+beta)+((-

r*cos (phi _roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr)) *sin(p
hi pitch)-cos(phi pitch) * (r*cos (beta) *cos (delta rr) -

r*sin(beta) *sin(delta rr)+a wb)) *cos (phi_ yaw) -

r*sin(phi yaw) *sin(phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos (del
ta rr)))*sin(-theta wbr+beta)-

sin(phi pitch) *cos (phi_ yaw) *sin(phi roll) *d comwb+sin (phi yaw) *cos (phi
roll)*d comwb+X trans - X rr;

Fval(3,1)=((-cos(phi roll) * (r*cos(beta) *cos(delta rr)-
r*sin(beta) *sin(delta _rr)+a wb) *sin(phi pitch)+r*cos (phi pitch) * (cos (be
ta) *sin(delta_rr)+sin(beta) *cos(delta rr))) *sin(phi yaw)+cos (phi yaw) *s

in(phi roll) * (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a wb)) *cos(-theta wbr+beta)+((-

r*cos (phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr)) *sin(p
hi pitch)-cos(phi pitch) * (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta _rr)+a wb)) *sin(phi yaw)+r*cos(phi yaw) *sin(phi ro

11) * (cos (beta) *sin(delta rr)+sin(beta)*cos(delta rr))) *sin(-

theta wbr+beta)-sin(phi pitch) *sin(phi_yaw) *sin(phi roll) *d comwb-

cos (phi roll) *cos (phi yaw) *d _comwb+Y trans - Y rr;
Fval(4,1)=(-cos(phi roll)* (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a wb) *cos (phi pitch) -

r*sin(phi pitch) * (cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos

(-theta wbr+beta)+ (-

r*cos (phi roll) * (cos (beta) *sin(delta rr)+sin (beta) *cos(delta rr)) *cos (p
hi pitch)+sin(phi pitch) * (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a wb)) *sin(-theta wbr+beta)-

cos (phi pitch) *sin(phi roll) *d comwb+h cog+Z trans - Z rr;

% Fval(6,1)=asin(sin(phi roll))-phiX rr;

Fval(5,1)=(asin( (-

cos (phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos (delta rr)) *cos (phi
_pitch)-sin(phi pitch) * (sin (beta) *sin(delta rr)-

cos (beta) *cos (delta_rr))) *cos (-theta wbr+beta)-sin (-

theta wbr+beta) * (cos (phi _roll) * (sin(beta) *sin(delta rr) -

cos (beta) *cos (delta rr)) *cos (phi pitch)-

sin(phi pitch)* (cos(beta)*sin(delta rr)+sin(beta)*cos(delta rr)))))-
phiY rr;

Fval(6,1)=(asin(((((cos(phi roll)*sin(phi pitch)*sin(beta)+cos(phi pitc
h) *cos (beta) ) *cos (delta rr)+sin(delta rr) * (cos(phi roll) *sin(phi pitch)
*cos (beta) -cos (phi pitch)*sin(beta)))*sin(phi yaw) -

sin(phi roll) *cos (phi yaw) * (cos (beta) *sin(delta rr)+sin(beta) *cos (delta
_rr)))*cos(-theta wbr+beta)-(((cos(phi roll)*sin(phi pitch) *cos (beta) -

cos (phi pitch) *sin(beta)) *cos (delta rr)-

sin(delta rr)* (cos(phi roll) *sin(phi pitch) *sin(beta)+cos (phi pitch) *co
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s (beta))) *sin(phi_yaw)-sin(phi roll) *cos (phi_ yaw)* (-
sin(beta) *sin(delta rr)+cos (beta) *cos (delta rr))) *sin(-
theta wbr+beta))/cos (phi pitch)))-phiZ rr;

% Right front wheel

Fval(6,1)=((-

cos (phi _roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta)*sin(delta rf)+a wb
) *sin (phi pitch)+r*cos (phi pitch) * (cos (beta) *sin(delta rf) -

sin(beta) *cos (delta rf))) *cos (phi yaw) -

sin(phi yaw) *sin(phi roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin (d
elta rf)+a wb)) *cos(theta wbr+beta)+ ((r*cos(phi roll) * (cos (beta) *sin (de
lta rf)-

sin(beta) *cos(delta rf))*sin(phi pitch)+cos(phi pitch)* (r*cos (beta) *cos
(delta rf)+r*sin(beta)*sin(delta rf)+a wb))*cos(phi yaw)+r*sin(phi yaw)
*sin(phi roll) * (cos (beta) *sin(delta rf)-

sin(beta) *cos (delta rf))) *sin(theta wbr+beta)-

sin(phi pitch) *cos (phi_ yaw) *sin(phi roll) *d comwb+sin (phi yaw) *cos (phi
roll)*d comwb+X trans - X rf;

Fval(7,1)=((-

cos (phi _roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta)*sin(delta rf)+a wb
) *sin(phi pitch)+r*cos (phi pitch) * (cos (beta) *sin(delta rf) -

sin(beta) *cos (delta rf))) *sin(phi yaw) +cos (phi_yaw) *sin(phi roll) * (r*co
s (beta) *cos (delta rf)+r*sin(beta)*sin(delta rf)+a wb)) *cos(theta wbr+be
ta)+ ((r*cos (phi roll) * (cos(beta) *sin(delta rf)-

sin(beta) *cos (delta rf)) *sin(phi pitch)+cos(phi pitch) * (r*cos (beta) *cos
(delta rf)+r*sin(beta) *sin(delta rf)+a wb)) *sin(phi yaw) -

r*cos (phi yaw) *sin(phi roll) * (cos (beta) *sin(delta rf)-

sin(beta) *cos (delta rf))) *sin(theta wbr+beta)-
sin(phi yaw) *sin(phi pitch) *sin(phi roll)*d comwb-
cos (phi yaw) *cos (phi roll)*d comwb+Y trans - Y rf;
Fval(8,1)=(-

cos (phi roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta)*sin(delta rf)+a wb
) *cos (phi_pitch)-r*sin(phi pitch) * (cos (beta) *sin(delta rf) -

sin(beta) *cos (delta rf))) *cos (theta wbr+beta)+ (r*cos(phi roll) * (cos (bet
a)*sin(delta rf)-sin(beta) *cos (delta rf)) *cos(phi pitch)-

sin(phi pitch) * (r*cos (beta) *cos (delta rf)+r*sin(beta)*sin(delta rf)+a w
b)) *sin(theta wbr+beta) -

cos (phi _pitch)*sin(phi roll) *d comwb+h cog+Z trans - Z rf;

% Fval(ll,1)=(asin(sin(phi roll)))-phiX rf;

Fval (9,1)=(-asin((cos(phi roll) * (cos (beta) *sin(delta rf)-

sin (beta) *cos (delta rf)) *cos(phi pitch) -

sin(phi pitch) * (sin(beta) *sin(delta rf)+cos(beta)*cos(delta rf))) *cos (t

heta wbr+t+beta)+sin(theta wbr+beta) * (cos (phi_roll) * (sin(beta) *sin (delta_
rf)+cos (beta) *cos (delta rf)) *cos(phi pitch)+sin(phi pitch) * (cos (beta) *s
in(delta rf)-sin(beta)*cos(delta rf)))))-phiY rf;

$ Fval(ll,1l)=(asin(((( (-

cos (phi roll) *sin(phi pitch) *sin(beta)+cos (phi pitch) *cos (beta)) *cos (de
lta rf)+sin(delta rf)*(cos(phi roll) *sin(phi pitch) *cos (beta)+cos (phi p

itch) *sin(beta))) *sin(phi yaw)+sin(phi roll) *cos (phi yaw) * (sin (beta) *co
s(delta rf) -
cos (beta) *sin(delta rf))) *cos (theta wbr+beta)+sin(theta wbr+beta)* (((co

s(phi roll) *sin(phi pitch) *cos (beta)+cos (phi _pitch) *sin(beta)) *cos (delt
a rf)+sin(delta rf)*(cos(phi roll)*sin(phi pitch) *sin (beta) -
cos (phi pitch)*cos (beta))) *sin(phi yaw) -
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sin(phi roll) *cos (phi_yaw) * (sin (beta) *sin(delta rf) +cos(beta) *cos (delta
_rf))))/cos(phi pitch)))-phiZz rf;

$Left rear wheel

Fval (10,1)=((-

cos (phi _roll) * (r*cos (beta) *cos (delta lr)+r*sin(beta)*sin(delta 1lr)+a wb
) *sin(phi pitch)-r*cos (phi pitch) * (cos (beta) *sin(delta 1r)-

sin(beta) *cos(delta 1r))) *cos (phi yaw) -

sin(phi yaw) *sin(phi roll)* (r*cos (beta) *cos(delta 1lr)+r*sin(beta) *sin(d
elta 1lr)+a _wb)) *cos(theta wbl+beta)+ ((r*cos(phi roll) * (cos (beta) *sin (de
lta 1r)-sin(beta) *cos(delta 1lr)) *sin(phi pitch)-

cos (phi _pitch) * (r*cos (beta) *cos (delta 1lr)+r*sin(beta) *sin(delta lr)+a w
b)) *cos(phi yaw)+r*sin(phi yaw) *sin(phi roll) * (cos (beta) *sin(delta 1r)-
sin(beta) *cos(delta 1r))) *sin(theta wbl+beta)+sin(phi pitch)*cos(phi ya
w) *sin (phi _roll) *d comwb-sin (phi yaw) *cos (phi roll) *d comwb+X trans -

X 1r;

Fval (11,1)=((-

cos (phi roll) * (r*cos (beta) *cos (delta lr)+r*sin(beta)*sin(delta 1lr)+a wb
) *sin (phi pitch)-r*cos (phi pitch) * (cos (beta) *sin(delta 1r)-

sin(beta) *cos (delta 1r))) *sin(phi_ yaw)+cos (phi_yaw) *sin(phi roll) * (r*co
s (beta) *cos (delta lr)+r*sin(beta)*sin(delta 1lr)+a wb)) *cos (theta wbl+be
ta)+ ((r*cos (phi roll) * (cos(beta) *sin(delta 1lr)-

sin(beta) *cos (delta 1r)) *sin(phi pitch)-

cos (phi pitch)* (r*cos (beta) *cos(delta 1lr)+r*sin(beta)*sin(delta lr)+a w
b)) *sin(phi yaw)-r*cos (phi yaw) *sin (phi roll) * (cos (beta) *sin(delta 1lr)-
sin (beta) *cos (delta 1lr))) *sin(theta wbl+beta)+sin(phi yaw) *sin(phi pitc
h) *sin(phi roll) *d comwb+cos (phi yaw) *cos (phi roll) *d comwb+Y trans -

Y 1r;

Fval (12,1)=(-

cos (phi roll) * (r*cos (beta) *cos (delta lr)+r*sin(beta)*sin(delta 1lr)+a wb
) *cos (phi _pitch)+r*sin(phi pitch) * (cos (beta) *sin(delta 1r)-

sin (beta) *cos (delta 1lr))) *cos (theta wbl+beta)+ (r*cos(phi roll) * (cos (bet
a)*sin(delta 1r)-

sin(beta) *cos (delta 1r)) *cos(phi pitch)+sin(phi pitch) * (r*cos (beta) *cos
(delta lr)+r*sin(beta) *sin(delta 1lr)+a wb)) *sin(theta wbl+beta)+cos (phi
_pitch)*sin(phi roll)*d comwb+h cog+Z trans - Z 1lr;

% Fval(l6,1)=(asin(sin(phi roll)))-phiX 1r;
Fval(13,1)=(asin((cos(phi roll)* (cos (beta) *sin(delta 1r)-

sin (beta) *cos (delta 1r)) *cos(phi pitch)+sin(phi pitch) *(sin(delta 1lr)*s
in(beta) +cos (beta) *cos (delta 1r))) *cos (theta wbl+beta)+sin(theta wbl+be
ta) * (cos(phi roll)* (sin(delta 1r)*sin (beta)+cos (beta)*cos(delta 1lr)) *co
s (phi _pitch)-sin(phi pitch) * (cos (beta) *sin(delta 1lr)-

sin(beta) *cos(delta 1lr)))))-phiY¥ 1r;

o

Fval(1l6,1)=(asin((

ch) *cos (beta) ) *cos (delta 1r) -

sin(delta 1r)*(cos(phi roll) *sin(phi pitch) *cos (beta) -

cos (phi pitch)*sin(beta))) *sin(phi yaw) -

sin(phi roll) *cos (phi yaw) * (sin (beta) *cos (delta 1r) -

cos (beta) *sin(delta 1r))) *cos(theta wbl+beta) -

sin (theta wbl+beta) * (((cos(phi roll) *sin(phi pitch) *cos (beta) -

cos (phi pitch) *sin(beta)) *cos (delta 1lr)+sin(delta 1lr)* (cos(phi roll) *si
n(phi pitch) *sin(beta)+cos (phi_pitch) *cos (beta))) *sin (phi yaw) -

(((cos(phi roll)*sin(phi pitch)*sin(beta)+cos (phi pit

o~ —
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sin(phi roll) *cos (phi_yaw) * (sin(delta 1lr) *sin(beta) +cos (beta) *cos (delta
~1r))))/cos(phi pitch)))-phiZ 1r;

% Left front wheel

Fval(14,1)=((-cos(phi roll)* (r*cos (beta) *cos (delta 1f)-
r*sin(beta) *sin(delta 1f)+a wb) *sin(phi pitch)-
r*cos (phi pitch) * (cos (beta) *sin(delta 1f)+sin(beta) *cos(delta 1f))) *cos

(phi yaw) -sin(phi yaw) *sin(phi roll) * (r*cos (beta) *cos(delta 1f)-
r*sin(beta)*sin(delta 1f)+a wb)) *cos(-theta wbl+beta)+ ((-

r*cos (phi _roll) * (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f))*sin(p
hi pitch)+cos(phi pitch) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb)) *cos (phi_yaw) -

r*sin(phi yaw) *sin(phi roll) * (cos (beta) *sin(delta 1f)+sin(beta) *cos (del
ta 1f)))*sin(-

theta wbl+beta)+cos (phi yaw) *sin (phi pitch) *sin(phi roll) *d comwb-

cos (phi roll) *sin(phi yaw) *d comwb+X trans - X 1f;
Fval(15,1)=((-cos(phi roll) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb) *sin(phi pitch)-

r*cos (phi pitch) * (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f))) *sin
(phi_yaw) +cos (phi_yaw) *sin(phi roll) * (r*cos (beta) *cos (delta 1f)-
r*sin(beta) *sin(delta 1f)+a wb)) *cos(-theta wbl+beta)+((-

r*cos (phi roll) * (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f))*sin(p
hi pitch)+cos(phi pitch) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb)) *sin(phi yaw)+r*cos(phi yaw) *sin(phi ro
11) * (cos (beta) *sin(delta 1f)+sin(beta) *cos (delta 1f))) *sin(-

theta wbl+beta)+sin(phi yaw) *sin (phi pitch) *sin(phi roll) *d comwb+cos (p
hi yaw) *cos (phi roll)*d comwb+Y trans - Y 1f;
Fval(1l6,1)=(-cos(phi roll) * (r*cos(beta) *cos(delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb) *cos(phi pitch)+r*sin(phi pitch) * (cos (be
ta) *sin(delta 1f)+sin(beta) *cos(delta 1f))) *cos(-theta wbl+beta)+ (-
r*cos (phi roll) * (cos (beta) *sin(delta 1f)+sin (beta)*cos(delta 1f)) *cos (p
hi pitch)-sin(phi pitch) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb)) *sin (-

theta wbl+beta)+cos (phi pitch) *sin(phi roll)*d comwb+h cog+Z trans -

Z 1f;

% Fval(21,1)=(asin(sin(phi roll)))-phiX 1f;

Fval(1l7,1)=(-asin((-

cos (phi roll) * (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f))*cos(phi
_pitch)+sin(phi pitch) * (sin(beta) *sin(delta 1f)-

cos (beta) *cos (delta 1f))) *cos(-theta wbl+beta)-sin (-

theta wbl+beta) * (cos(phi roll) * (sin(beta) *sin(delta 1f)-

cos (beta) *cos (delta 1f)) *cos (phi pitch)+sin(phi pitch) * (cos(beta) *sin(d
elta 1f)+sin(beta)*cos(delta 1f)))))-phiY 1f;

% Fval(21,1)=(-asin(((((cos(phi roll)*sin(phi pitch)*sin (beta)-

cos (phi pitch) *cos (beta)) *cos(delta 1f)+sin(delta 1f)* (cos(phi roll)*si
n(phi pitch)*cos (beta)+cos(phi pitch) *sin(beta))) *sin(phi yaw) -

sin(phi roll) *cos (phi_yaw) * (cos (beta) *sin(delta 1f)+sin(beta) *cos (delta
_1f))) *cos (-theta wbl+beta) -

(((cos(phi roll)*sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos
(delta 1f)-sin(delta 1f)*(cos(phi roll) *sin(phi pitch) *sin (beta) -

cos (phi pitch) *cos (beta))) *sin(phi yaw) -

sin(phi roll) *cos (phi yaw) * (cos (beta) *cos (delta 1f)-

sin(beta) *sin(delta 1f))) *sin(-theta wbl+beta))/cos(phi pitch)))-

phiz 1f;

end
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C.4 MATLAB Script File: 3D Velocity Kinematic Model

(J5_3DVelocityKinematics_v1.m)

oo
oo

3D Velocity Kinematics
Written by: E. Austen

This script solves the inverse velocity kinematics in 3D for the J5
rover, for a given set of wheel-ground contact positions and the

the solution to the inverse kinematics problem. These contact
positions can be either obtained from a DEM of the terrain or
extraction

from a specified terrain function. The kinematic equations used were
derived using the original Denavit-Hartenberg convention.

0° 00 o A A° 0P o° o° o°
0° 00 o A A° o° o° o° o°

o° 0O o° oe
o° 0O o° oe

Created on: June 2, 2019

Last Modified:

Aug 10, 2019 - new plots

Aug 08, 2019 - new Jacobian

July 24, 2019 - added index J

July 01, 2019 - changed parameter update for better interpolation
June 30, 2019 - r

June 21, 2019 - updated velocity

updated outline in script file

d° o0 od° od° oe
o° 0 od° od° oe

o\°
o\°

o° o oe
o o oP
<
c
=}
)
N
(@)
~
N
(@)
pat
Nej
|

9900000000000 0000000000000000000000000000000000000000000000000000000000o

9900000000000 0000000000000000000000000000000000000000000000000000000000

Initialisation of parameters & importing the terrain path
coordinates

% Establish global variables

global X 1r Y 1r Z 1lr i 1lr X rr Y rr 2 rr i rr X 1£f ¥ 1f Z 1f 1 1f X rf
Y rf Z rf i rf

global phiX lr phiY 1lr phiZ 1lr phiX rr phi¥ rr phiZ rr phiX 1f phiY 1f
phiZz 1f phiX rf phiY rf phiZz rf

global delta rr delta 1lr delta rf delta 1f

global Xdot 1r Ydot 1lr Zdot 1lr Xdot rr Ydot rr Zdot rr Xdot 1f Ydot 1f
Zdot 1f Xdot rf Ydot rf Zdot rf

global wX 1r wY 1lr wz 1lr wX rr wY rr wz rr wX 1f wY 1f wz 1f wX rf

wY rf wz rf

global deltadot rr deltadot 1lr deltadot rf deltadot 1f A

% Rover speed
w=1/3; % Commanded angular velocity of wheels [rad/s]
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w_r=w; % Skid steering, thus assume right wheels have same w, and
likewise
% for left wheels

o\

Import terrain path map
pathdata=readtable ('FlatTerrain NoSlip Test2.xlsx');
pathdata=readtable ('FlatTerrain NoSlip.xlsx');
pathdata=readtable ('FlatTerrain 10.5.xlsx");
pathdata=readtable ('SideslopeTerrain 10deg NoSlip.xlsx');
pathdata=readtable ('SideslopeTerrain 10deg 10.5.xlsx'");
pathdata=readtable ('UpslopeTerrain 10deg NoSlip.xlsx');
pathdata=readtable ('UpslopeTerrain 10deg i0.5.xlsx');
pathdata=readtable ('SineTerrain NoSlip2.xlsx');

% pathdata=readtable('SineTerrain i0.5.xlsx'");

o 0P o o°

o

o

oe

x lr=pathdata{1l:31,{'x 1r'}}; % Terrain path data for left rear wheel
y_lr=pathdata{1l:31,{'y 1r'}};

z lr=pathdata{l:31,{'z 1r'}};

I lr=pathdata{1l:31,{'i Ir'}}; %Note: I is slip value

x rr=pathdata{l:31,{'x rr'}}; % Terrain path data for right rear
wheel

y_rr=pathdata{l:31,{'y rr'}};

z rr=pathdata{l:31,{'z rr'}};

I rr=pathdata{l:31,{'i rr'}};

x_ lf=pathdata{l:31,{'x 1f'}}; % Terrain path data for left front
wheel

y lf=pathdata{1l:31,{'y 1f'}};

z 1f=pathdata{l:31,{'z 1f'}};

I 1f=pathdata{l:31,{'i 1f'}};

x_rf=pathdata{l:31,{'x rf'}}; % Terrain path data for right front
wheel

y _rf=pathdata{l:31,{'y rf'}};

z rf=pathdata{l:31,{'z rf'}};

I rf=pathdata{1:31,{"'i rf'}};

% Initial guess for solver
q0 = zeros(8,1);

qdot0 = zeros(8,1);
A=zeros(8,1);

% Set loop conditions, time in secs.
0;

t=

del t=3.048;
tmax=75;
u=1l;

j=(t+del t)/del t;
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tart of while loop to solve egtn sets for position & velocity for
%% time step.

while t<=tmax

% Orientation of contact points
if t==0 && u==

%Pose of RR wheel-gnd contact pt
X rr=x rr(u);
Y rr=y rr(u);
Z rr=z rr(u);
i rr=I rr(u);
x rrt(j)=X rr;
y rrt(j)=Y rr;
z rrt(j)=2 rr;
i rrt(j)=i_rr;

%Pose of LR wheel-gnd contact pt
X lr=x 1lr(u);
Y lr=y lr(u);
Z lr=z 1lr(u);
i 1r=I 1r(u);
x 1lrt(j)=X 1r;
y 1lrt(j)=Y 1r;
z 1rt(j)=2 1r;
i lrt(3)=1i 1r;

%Pose of RF wheel-gnd contact pt
X rf=x rf(u
Y rf=y rf(u
Z rf=z rf(u);
i rf=I rf(u);
x rft(j)=X rf;
y rft(j)=Y rf;
z rft(j)=2 rf;
i rft(j)=i rf;

%Pose of LF wheel-gnd contact pt
X 1f=x 1f(u);
Y 1f=y 1f(u);
Z 1f=z 1f(u);
i 1f=I 1f(u);
x 1ft(j)=x 1f;

)7
)

y 1ft(j)=Y 1f;
z 1ft(j)=2_1f;
i 1ft(3)=1_1£f;
$phiX rf=(pi/2)+asin((z 1f-Z rf)/1.1786); % Roll

phiX rf=(pi/2);

phiX 1f=-phiX rf;

$phiX rr=(pi/2)+asin((3_1lr-2%_rr)/1.1786);
phiX rr=(pi/2);
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phiX lr=-phiX rr;

phiY rf=-asin((z_rf(u)-z rr(u))/0.9144); % Pitch
phiY rr=phiY rf;

phiY 1f=-asin((z_1f(u)-z 1r( y/0.9144) ;

phiY lr=phiY 1f;

phiZz rf=-(pi/2); $ Yaw
phiZ rr=phiZz rf;

phiz 1f= (pi/2);

phiZz lr= phlZ_lf

% delta rf=asin((z rf(u)-z rr(u))/0.9144); % Pitch
delta rf=0;
delta rr=delta rf;
delta 1f=-asin((z 1f(u)-z 1lr(u))/0.9144);
delta 1£=0;
delta lr=delta 1f;

oe

else

if y rft(j)-y rft(j-1)== $Roll

phiX rf=(pi/2);
% phiX rf=(pi/2)+asin((z 1f-z rf)/1.1786); % Side slope case

phiX 1f=-phiX rf;

else

phiX rf=atan((z_rft(j)-z rft(j-1))/(y_rft(j)-y rft(3-1))); =
Roll

phiX lf=atan((z_1lft(j)-z 1ft(j-1))/(y_1lft(j)-y 1ft(3-1)));

end

if y rrt(j)-y rrt(j-1)==

phiX rr=(pi/2);
% phiXirr=(pi/2)+asin((Zilr—Zirr)/l.l786); % Side slope

phiX lr=-phiX rr;

else

phiX rr=atan((z_rrt(j)-z rrt(j-1))/(y_rft(j)-y rrt(3j-1)));

phiX lr=atan((z_lrt(j)-z lrt(j-1))/(y_lrt(j)-y lrt(3-1)));

end

phiY rf=-atan((z_rft(j)-z rft(j-1))/(x rft(j)-x rft(j-1))); %
Pitch

phiY rr=-atan((z rrt(j)-z rrt(j-1))/(x rrt(j)-x rrt(j-1)));

phiY lf=-atan((z 1lft(j)-z lft( ))/(x C1fe(3)-x _1ft(3-1)));

phiY lr=-atan((z_lrt(j)-z_ lrt( )/ (x_1lrt(j)-x_1lrt(3-1)));

phiZz rf=-(pi/2); % Yaw

phiZ rr=phiZ rf;

phiz 1f=(pi/2)

phiZ lr=phiz 1f;
% deltairf=atan((zirft(j)—zirft(j—l))/(xirft(j)—xirft(j—l))); %
Pitch
S delta rr=atan((z rrt(j)-z rrt(j- 1)/ (x rrt(j)-x_rrt(j-1))));
% delta lf=-atan((z 1ft(j)-z 1ft(3-1))/(x 1ft(j)-x 1ft(j-1)));
% delta lr=-atan((z_ lrt(j)-z lrt(j-1))/(x lrt(j)-x lrt(j-1)));

delta rf=0;
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delta rr=0;
delta 1£=0;
delta 1r=0;

delta rft(

delta rrt(

delta 1ft(

delta 1Irt(
end

)
)
)
)

o

delta rf;

=delta rr;

delta 1f;
delta 1r;

% Right rear wheel
Xdot rr=-i rr*w r*r*cos(-phi¥ rr);

Ydot rr=0;

% End effector velocity inputs

Zdot rr=-i rr*w r*r*sin(-phiY¥ rr);

wX rr=0;
wY rr=w_r;
wZ rr=0;

$Left rear wheel

Xdot lr=-i lr*w l*r*cos(-phiY¥ 1r);

Ydot 1r=0;

Zdot lr=-i lr*w l*r*sin(-phiY 1r);

wX 1r=0;
wY lr=w 1;
wz 1r=0;

% Right front wheel
Xdot rf=-i rf*w r*r*cos(-phi¥Y rf);

Ydot rf=0;

Zdot rf=-i rf*w r*r*sin(-phiY¥ rf);

wX rf=0;
wY rf=w r;
wZ rf=0;

% Left front wheel
Xdot 1f=-i 1f*w l*r*cos(-phi¥Y 1f);

Ydot 1£=0;

Zdot 1f=-i 1f*w l*r*sin(-phiY 1f);

wX 1£=0;
wY 1f=w 1;
wZ 1£=0;

% Rate of contact angle change

if t==
deltadot rf=
deltadot rr=
deltadot 1f=
deltadot 1r=
else
deltadot rf=
deltadot rr=
deltadot 1f=
deltadot 1r=
end

0;
0;
0;
0;

(delta rft(
(delta rrt(
(delta 1ft(
( (

)
)
J
delta 1rt(j

)
)
)
)

-delta rft(
delta rrt(
delta 1ft(
-delta lrt(

]
]
]
]

-1))
-1))
-1))
-1))

/del t;
/del t;
/del t;
/del t;
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%% Nonlinear Egtn Solver

optionsl =

optionsl.FunctionTolerance =

gSol=fsolve (@J5posKin3,

displacements

optimoptions ('fsolve');
optionsl.Algorithm

'levenberg-marquardt';

le-3;

g0,

optionsl) %

Q

store solutions for ease of plotting

Solves IK for joint

Ql(j) = gSol(l); % Xtrans or distance travelled in global X [m]
Q2 (3) gSol(2); % Ytrans or distance travelled in global Y [m]
Q3 (3) gSol(3); % Ztrans or distance travelled in global Z [m]
Q4 (3) gSol(4); % Yaw of the chassis [RAD]

Q5(3J) = gSol(5); % Pitch of the chassis [RAD]

Q6 (73) gSol(6); % Roll of the chassis [RAD]

Q7(3) gsSol (7); % Pitch of the right walking beam [RAD]

Q8(J) = gSol(8); % Pitch of the left walking beam [RAD]

% 09(j) = gSol(9); % Contact angle right rear wheel [RAD]

% Q10 (3) gsSol (10) ; % Contact angle left rear wheel [RAD]

% 011(3) = gSol(1ll); % Contact angle right front wheel [RAD]
% Q012(3) = gSol(12); % Contact angle left front wheel [RAD]

% Correction Factors
if j==1
gSol (1)=gSol (1)-01(1);

gSol (2)=gSol (2)-Q2(1);
gSol (3)=gSol (3)-Q03(1);

Q1(3)=gSol(1);
Q2 (j)=gSol (2);
Q3(j)=gSol (3);
end

$ if u==

gSol (5)=2*Q5(3) ;
gSol (7)=2*Q7(3);
8)

gSol (8)=2*0Q8 (7) ;
Q5(3)=9gSol(5);
Q7(3)=aSol(7);
08(J)=gSol(8);

% end

gSol
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A=gSol;

%% Nonlinear Egtn Solver Inverse Velocity
options2 = optimoptions('fsolve');
options2.Algorithm = 'levenberg-marquardt';
options2.FunctionTolerance = le-1;
options2.StepTolerance = le-12;

gdotSol=fsolve (@J5veloKin2, gdot0O, options2) % Solves IK velocity

% Velocity
Qdotl(j) = gdotSol(l); % Xdot or velocity in global X [m/s]
Qdot2(j) = gdotSol(2); % Ydot of velocity in global Y [m/s]
Qdot3(j) = gdotSol(3); % Zdot or velocity in global Z [m/s]
Qdot4 (j) = gdotSol(4); % Yaw rate of the chassis [RAD/s]
Qdot5(j) = gdotSol(5); % Pitch rate of the chassis [RAD/s]
Qdot6(j) = gdotSol(6); % Roll rate of the chassis [RAD/s]
Qdot7(j) = gdotSol(7); % Pitch rate of the right walking beam [RAD/s]
Qdot8(j) = gdotSol(8); % Pitch rate of the left walking beam [RAD/s]
% Qdot9(j) = gdotSol(9); % Contact angle rate right rear wheel [RAD/s]
% Qdotl0(j) = gdotSol (10 % Contact angle rate left rear wheel
[RAD/s]
% Qdotll(j) = gdotSol(1l1l); % Contact angle rate right front wheel
[RAD/s]
% Qdotl2(j) = gdotSol(1l2); % Contact angle rate left front wheel
[RAD/s]

% Plot rover suspension sides for later animation

%% Update parameters prior to exiting the loop

% Upate time step or condition of the loop
t=t + del t;

j=intlé ((t+del t)/del t);

% Update initial guesses

g0=gSol;

gdotO=gdotSol;

% Update position of contact points

%% Right rear wheel

vV _xaxrr=w r*r*(l-i rr)*cos(-phi¥ rr);
v_yaxrr=0;

v_zaxXrr=w_r*r*(l-i rr)*sin(-phi¥Y rr);

x rrt(j)=x rrt(j-1) + (v_xaxrr*del t);
y_rrt(j)=y rrt(j-1) + (v_yaxrr*del t);
%z _rrt(j)=z rrt(j-1) + (v_zaxrr*del t); % Check for even terrain
if x rrt(j)==x_rr(u+l) && y rrt(j)==y rr(u+l)
z rrt(j)=z rr(u+l);
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i rrt(3)=I rr(u+l);
elseif x rr(u+l)>x rrt(Jj)

if x rr(utl)==x rrt(j-1)

1fx=0;
else

ifx=(x_rrt(j)-x rrt(j-1))/(x_rr(u+tl)-x_rrt(j-1));
end
if y rr(utl)==y rrt(j-1)

ify=0;
else

ify=(y rrt(j)-y rrt(j-1))/(y_rr(u+tl)-y rrt(j-1));
end

factor=sqrt ((ifx"2)+(ify"2));

z rrt(j)=(factor*(z rr(u+l)-z rrt(j-1)))+z rrt(j-1);
i rrt(j)=(factor*(I rr(u+l)-i rrt(j-1)))+i rrt(j-1);
else
if x rr(ut2)==x rrt(j-1)
ifx=0;

else

ifx=(x_rrt(j)-x rrt(j-1))/(x_rr(u+2)-x rrt(j-1));
end
if y rr(ut2)==y rrt(j-1)

ify=0;
else

ify=(y_rrt(j)-y_rrt(j-1))/(y_rr(u+t2)-y rrt(j-1));
end

factor=sqgrt ((1fx"2)+(ify"2));

z rrt(j)=(factor*(z rr(u+2)-z rrt(j-1)))+z rrt(j-1);
i rrt(j)=(factor*(I rr(u+2)-i rrt(j-1)))+i rrt(j-1);

end

oe

if x rrt(j)>=x_rr(u+l)
u=u+1l;
end

o°

o\

%% Right front wheel

v_xaxrf=w r*r*(l-i rf)*cos(-phiY rf);
v_yaxrf=0;

v_zaxrf=w r*r*(l-i rf)*sin(-phiY rf);

x rft(j)=x rft(j-1) + (v_xaxrf*del t);
y rft(j)=y rft(j-1) + (v_yaxrf*del t);
$z_rft(j)=z rft(j-1) + (v_zaxrf*del t); % Check for even terrain
if x rft(j)==x rf(u+l) && y rft(j)==y rf (u+l)

z rft(j)=z rf(u+l);

i rft(j)=I rf(u+l);
elseif x rf(u+l)>x rft(j)

if x rf(u+l)==x rft(j-1)
1fx=0;
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else
ifx=(x_rft(j)-x rft(j-1))/(x_rf(u+l)-x rft(j-1));

end
if y rf(utl)==y rft(j-1)
ify=0;
else
ify=(y_rft(J)-y_rft(3-1))/(y_rf(u+l)-y rft(3-1));
end

factor=sqrt ((ifx"2)+(ify"2));

z rft(j)=(factor*(z rf(u+l)-z rft(j-1)))+z rft(j-1);
i rft(j)=(factor*(I_rf(u+l)-i rft(j-1)))+i rft(j-1);

—

else
if x rf(u+2)==x rft(j-1)
1fx=0;

else

ifx=(x_rft(j)-x rft(j-1))/(x_rf(u+2)-x rft(j-1));
end
if y rf(u+2)==y rft(j-1)

ify=0;
else

ify=(y rft(j)-y rft(j-1))/(y_rf(u+2)-y rft(j-1));
end

factor=sqgrt ((1ifx"2)+(ify"2));

z rft(j)=(factor*(z rf(u+2)-z rft(j-1)))+z rft(j-1);

i rft(j)=(factor* (I rf(u+2)-i rft(j-1)))+i rft(j-1);
end

%% Left rear wheel

v_xaxlr=w 1*r*(l-i 1lr)*cos(-phiY 1r);
v_yaxlr=0;

v_zaxlr=w 1*r*(1l-i 1lr)*sin(-phi¥ 1r);

x lrt(j)=x 1lrt(j-1) + (v_xaxlr*del t);
y lrt(j)=y lrt(j-1) + (v_yaxlr*del t);
%z lrt(j)=z lrt(j-1) + (v_zaxlr*del t); % Check for even terrain

if x 1rt(j)==x_1lr(u+l)
z 1lrt(j)=z lr(u+l);
i lrt(3)=I_1lr(u+l);
elseif x lr(u+l)>x 1rt(j)
if x Ir(u+l)==x 1lrt(j-1)

&& y lrt(j)==y 1lr(u+l)

1fx=0;
else
ifx=(x lrt(j)-x lrt(j-1))/(x_lr(u+l)-x lrt(j-1));
end
if y lr(u+l)==y 1lrt(j-1)
ify=0;
else
ify=(y_lrt(J)-y_1lrt(3-1))/(y_lr(u+l)-y lrt(3-1));
end
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factor=sqrt ((ifx"2)+(ify"2));

z lrt(j)=(factor*(z lr(u+l)-z 1lrt(j-1)))+z 1lrt(j-1);

i 1rt(j)=(factor*(I_lr(u+tl)-i_lrt(j-1)))+i_lrt(j-1);

else
if x lr(u+2)==x _1lrt(j-1)
1ifx=0;

else

ifx=(x_lrt(j)-x lrt(j-1))/(x_lr(u+2)-x_lrt(j-1));
end
if y lr(u+2)==y 1lrt(j-1)

ify=0;
else

ify=(y lrt(j)-y lrt(j-1))/(y_lr(u+2)-y lrt(j-1));
end

factor=sqrt ((ifx"2)+(ify"2));

z 1lrt(j)=(factor*(z lr(u+2)-z lrt(j-1)))+z 1lrt(j-1);
i Irt(j)=(factor*(I lr(u+2)-i lrt(j-1)))+i 1lrt(j-1);

end

%% Left front wheel

v_xaxlf=w 1*r*(1-i 1f)*cos(-phiY 1f);
v_yaxlf=0;

v_zaxlf=w 1*r*(1-i 1f)*sin(-phiY 1f);

x 1ft(j)=x 1ft(j-1) + (v_xaxlf*del t);
y 1ft(J)=y 1ft(j-1) + (v_yaxlf*del t);
%z 1ft(j)=z 1ft(j-1) + (v_zaxlf*del t); % Check for even terrain

if X_lft(j)::X_lf(u+l) && y_lft(j)::y_lf(u+l)
z 1ft(j)=z 1f(u+l);
i 1ft(3)=I _1f(u+l);
elseif x 1f(u+l)>x 1ft(j)
if x 1f(u+l)==x 1ft(j-1)

1fx=0;
else

ifx=(x 1ft(j)-x 1ft(j-1))/(x 1f(u+l)-x 1ft(3-1));
end
if y 1f(u+l)==y 1ft(j-1)

ify=0;
else

ify=(y 1ft(3)-y 1ft(3-1))/(y _1f(u+l)-y 1ft(3-1));
end

factor=sqrt ((ifx"2)+(ify"2));

—

z 1ft(j)=(factor*(z 1lf(u+l)-z 1ft(j-1)))+z 1ft(j-1);
i 1ft(j)=(factor* (I 1f(u+l)-i 1ft(j-1)))+i 1ft(j-1);
else
if x 1f(u+2)==x 1ft(j-1)

1fx=0;
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else
ifx=(x_1ft(j)-x 1ft(j-1))/(x_1f(u+2)-x 1ft(j-1));

end
if y 1f(u+2)==y 1ft(j-1)
ify=0;
else
ify=(y_1ft(j)-y_1ft(j-1))/(y_lf(u+2)-y_1lft(j-1));
end

factor=sqgrt ((1fx"2)+(ify"2));

z 1ft(j)=(factor*(z_ 1lf(u+2)-z 1ft(j-1)))+z 1ft(j-1);

i 1ft(j)=(factor*(I 1lf(u+2)-i 1ft(j-1)))+i 1ft(j-1);
end

% Update u when necessary
if x rrt(j)>=x_rr(u+l)
u=u+l;

% Update global variable positions
%Pose of RR wheel-gnd contact pt
X rr=x_rrt(j);
Y rr=y rrt(j);
Z rr=z rrt(j);
i rr=i rrt(j);
%Pose of LR wheel-gnd contact pt
X lr=x _1lrt(j):;
Y lr=y 1lrt(j):;
Z lr=z 1lrt(j);
i 1r=i 1rt(j);
%Pose of RF wheel-gnd contact pt
X rf=x rft(j):;
Y rf=y rft(j);
Z rf=z rft(j);
i rf=1i rft(j);
%Pose of LF wheel-gnd contact pt
X 1f=x 1ft(3);
Y 1f=y 1ft(3);
Z 1f=z 1ft(j);
i 1f=1i 1ft(3J)

’

end % End of loop

%% Display outputs
tplot = linspace (0, (t-1), (3J-1));

% Plot terrain as DEM
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[X,Y] = meshgrid(-5:0.5:10,-5:0.5:10);
72 = zeros([31 31]):

figure

% hold on

% title('Terrain map with the selected path')
xlabel ('X [m]"')
ylabel ('Y [m]")
zlabel ('Z [m]")

surf (X,Y,Z2)

% set(findall (gca, 'Type', 'Line'), 'LineWidth',2)
hold off

[

% Plot walking beam/bogie angles vs distance

figure

hold on

% title('Walking Beam Pitch') %Plotted with respect to Xdistance
travelled

xlabel ('X [m]")

ylabel ('Walking Beam Pitch [RAD]"')

plot (Q1,Q7)

plot (Q1,Q8)

legend ('Right Walking Beam', 'Left Walking Beam', 'Location', 'east')
set (findall (gca, 'Type', 'Line'),'LineWidth', 2)

hold off

[

% Plot walking beam angular rate vs time??

figure

hold on

% title('Walking Beam Pitch Rate') %Plotted with respect to time
travelled

xlabel ('Time [s]')

ylabel ('"Walking Beam Pitch Rate [RAD/s]')

plot (tplot,Qdot7)

plot (tplot,Qdot8)

legend ('Right Walking Beam', 'Left Walking Beam', 'Location', 'east')
set (findall (gca, 'Type', 'Line'),'LineWidth', 2)

hold off

% Plot chassis angles vs time??
figure
hold on

% title('Chassis Orientation Angles wrt Time') %$Plotted with respect to

time travelled
xlabel ('Time [s]'")
ylabel ('Chassis Orientation Angles [RAD]'")

plot (tplot,Q4) $ Yaw
plot (tplot,Q5) % Pitch
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plot (tplot, Q6) $ Roll

legend('Yaw', 'Pitch', 'Roll', 'Location', 'east')
set(findall (gca, 'Type', 'Line'), 'LinewWidth',?2)
hold off

% Plot chassis angles vs time??

figure

hold on

% title('Chassis Orientation Angular Rates wrt Time') %$Plotted with
respect to time travelled

xlabel ('Time [s]'")

ylabel ('Chassis Angular Rates [RAD/s]')

plot (tplot,Qdot4) % Yaw
plot (tplot,Qdotb) % Pitch
plot (tplot,Qdot6) % Roll

legend('Yaw', 'Pitch', 'Roll', 'Location', 'east')

set(findall (gca, 'Type', 'Line'), 'Linewidth',?2)

hold off

% Plot distance travelled vs time

figure

hold on

% title('Rover Distance Travelled') %Plotted with respect to time
travelled

xlabel ("Time [s]")

ylabel ('Rover Distance Travelled [m]')

plot (tplot,Ql)

plot (tplot,Q2)

plot (tplot,Q3)

legend ('Global X-direction', 'Global Y-direction', 'Global Z-
direction', 'Location', 'east')

set (findall (gca, 'Type', 'Line'),'LineWidth', 2)

hold off

% Plot translational velocity vs time

figure

hold on

% title('Rover Translational Velocity') S$Plotted with respect to time
travelled

xlabel ('Time [s]'")

ylabel ('Rover Translational Velocity [m/s]')

plot (tplot,Qdotl)

plot (tplot,Qdot2)

plot (tplot,Qdot3)

legend ('Global X-direction', 'Global Y-direction', 'Global Z-
direction', 'Location', 'east')

set(findall (gca, 'Type', 'Line'), 'Linewidth',?2)

hold off
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C.5 MATLAB Function File: 3D Velocity Equation Set for Solution
(JSveloKin.m)

function V = J5veloKin (gdot)

%J5veloKin This function contains the extracted velocity kinematics for
%each wheel-gnd contact point to enable solution of individual Jjoint
%angle and displacement rates.

% Each egtn is extracted from the velocity kinematics egtn involving
the
% Jacobian matrix. Details on the derivation of the Jacobian and

o

subsequent vector egtn sets can be viewed in the corresponding
Maple

% files. The full eqgtn set for all wheels are structured in the form
% V=0,as per the conditions for using fsolve. Global variables
determined

% in the outer loop are brought in as additional inputs to the
expected

% vectors g (joint angles & displacements) and initial guess gdotO
(joint angular & displacement rates).

o

%% Declaration of global variables based on terrain path in main script
global Xdot 1lr Ydot 1lr Zdot 1lr Xdot rr Ydot rr Zdot rr Xdot 1f Ydot 1f
Zdot 1f Xdot rf Ydot rf Zdot rf

global wX 1r wY 1lr wz lr wX rr wY rr wz rr wX 1f wY 1f wz 1f wX rf

wY rf wz rf

global delta rr delta 1lr delta rf delta 1f

global deltadot rr deltadot lr deltadot rf deltadot 1f A

%% Assignment of constant rover parameters
beta=(71.67*pi/180); % Angle of walking beam, formed btwn the two
wheels [RAD]

h cog=0.4515; % Height to centre of gravity [m].

d comwb=0.5644; % Distance from CoG to centre of walking beam [m].
a wb=0.4816; % Link length from walking beam/bogie pivot pt to
wheel axle [m].

r=0.3; % Wheel radius [m]

%% Assigning joint variables to the vector g
X trans=A(1,1);

Y trans=A(2,1);

Z trans=A(3,1);

phi yaw=A(4,1);

phi pitch=A(5,1);

phi roll=A(6,1);

theta wbr=A(7,1);

theta wbl=A(8,1);

%% Assigning joint variables to the vector gdot
Xdot trans=qdot(l,1);

Ydot trans=qgdot(2,1);

Zdot trans=qdot(3,1);

phidot yaw=gdot (4,1)

14 ’
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phidot pitch=qgdot(5,1);
phidot roll=qgdot (6,1);
thetadot wbr=qgdot(7,1);
thetadot wbl=qgdot (8,1);

%% Full set of kinematic egtns to be solved. See Maple for full
derivation

% Right rear wheel eqgtns

V(1,1)=(1)*Xdot trans + (0)*Ydot trans + (0)*Zdot trans +
(((cos(phi_roll) *(r*cos (beta) *cos (delta _rr)-

r*sin(beta) *sin(delta rr)+a wb) *sin(phi pitch) -

r*cos (phi pitch)* (cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr))) *sin
(phi_yaw) —cos (phi_yaw) *sin(phi roll) * (r*cos (beta) *cos (delta rr) -
r*sin(beta) *sin(delta _rr)+a_wb)) *cos (-

theta wbr+beta)+ ((r*cos (phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *co
s(delta rr))*sin(phi pitch)+cos(phi pitch) * (r*cos(beta) *cos(delta rr) -
r*sin(beta) *sin(delta rr)+a wb)) *sin(phi yaw) -

r*cos (phi_yaw) *sin(phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos (del
ta rr))) *sin(-

theta wbr+beta)+d comwb* (sin (phi yaw) *sin(phi pitch) *sin(phi roll) +cos(
phi yaw) *cos (phi roll))) *phidot yaw + (-

cos (phi_yaw) * ((cos (phi roll) * (r*cos (beta) *cos (delta rr) -

r*sin(beta) *sin(delta _rr)+a wb) *cos (phi pitch)+r*sin(phi pitch) * (cos (be
ta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos (-

theta wbr+beta)+ (r*cos(phi roll) * (cos (beta) *sin(delta rr)+sin (beta) *cos
(delta _rr)) *cos(phi pitch)-sin(phi pitch)* (r*cos (beta) *cos (delta rr)-
r*sin(beta) *sin(delta _rr)+a wb)) *sin (-

theta wbr+beta)+cos (phi pitch) *sin(phi roll) *d comwb)) *phidot pitch +
((cos(phi_yaw) *sin(phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi roll)) * (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta_rr)+a_ wb) *cos (-

theta wbr+beta)+r* (cos(phi yaw) *sin(phi pitch) *sin(phi roll)-

sin(phi yaw) *cos (phi roll)) * (cos (beta) *sin(delta rr)+sin(beta) *cos (delt
a_rr))*sin(-theta wbr+beta)-

d _comwb* (cos (phi yaw) *sin (phi pitch) *cos (phi roll)+sin(phi yaw) *sin (phi
_roll)))*phidot roll + (((r*(-

cos (phi _roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos (de
lta rr)+r*(cos(phi roll)*sin(phi pitch)*sin(beta)+cos(phi pitch) *cos (be
ta)) *sin(delta rr)-

cos (phi roll) *sin(phi pitch) *a wb) *cos (phi yaw)+sin(phi yaw) *sin (phi ro
11) * (r*sin (beta) *sin(delta rr)-r*cos (beta) *cos (delta rr)-a wb)) *sin (-
theta wbr+beta)+ ((r* (cos(phi roll) *sin(phi pitch) *sin (beta)+cos (phi pit
ch) *cos (beta) ) *cos (delta rr)-r* (-

cos (phi roll) *sin(phi pitch) *cos (beta) +cos (phi _pitch) *sin (beta)) *sin (de
lta rr)+cos(phi pitch)*a wb) *cos (phi yaw)+r*sin(phi yaw) *sin (phi roll)*
(cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos (-

theta wbr+beta)) *thetadot wbr

+(((((cos(phi roll) *sin(phi pitch) *sin(beta)+cos (phi pitch) *cos (beta)) *
cos(delta rr)+sin(delta rr)* (cos(phi roll)*sin(phi pitch) *cos (beta) -
cos (phi pitch) *sin(beta))) *cos (phi yaw)+sin(phi yaw) *sin(phi roll) * (cos
(beta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos (-theta wbr+beta) -
(((cos(phi_roll)*sin(phi pitch) *cos (beta) -

cos (phi pitch) *sin(beta)) *cos(delta rr)-
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sin(delta rr) * (cos(phi_roll) *sin(phi pitch) *sin(beta)+cos(phi pitch) *co

s (beta))) *cos (phi_yaw) +sin(phi yaw) *sin(phi roll) * (cos (beta) *cos (delta
rr)-sin(beta) *sin(delta rr))) *sin(-theta wbr+beta)) *r)*deltadot rr -
Xdot rr;

V(2,1)=(0)*Xdot trans + (1)*Ydot trans + (0)*Zdot trans + (((-

cos (phi_roll) * (r*cos (beta) *cos (delta _rr) -

r*sin(beta) *sin(delta _rr)+a wb) *sin(phi pitch)+r*cos (phi pitch) * (cos (be
ta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos(phi yaw) -

sin(phi yaw) *sin(phi roll)* (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a _wb)) *cos (-theta wbr+beta)+((-

r*cos (phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr))*sin(p
hi pitch)-cos(phi pitch) * (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a wb)) *cos (phi yaw) -

r*sin(phi yaw) *sin(phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos (del
ta rr)))*sin(-theta wbr+beta)-

d_comwb* (cos (phi_ yaw) *sin(phi pitch) *sin(phi roll)-

sin(phi_ yaw) *cos (phi_roll))) *phidot yaw + (-

sin(phi_ yaw) * ((cos (phi_ roll) * (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a wb) *cos (phi pitch)+r*sin(phi pitch) * (cos (be
ta) *sin(delta_rr)+sin(beta) *cos(delta rr))) *cos (-

theta wbr+beta)+ (r*cos(phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos
(delta _rr)) *cos(phi pitch)-sin(phi pitch) * (r*cos (beta) *cos (delta rr)-
r*sin(beta) *sin(delta _rr)+a wb)) *sin (-

theta wbr+beta)+cos (phi pitch) *sin(phi roll)*d comwb))*phidot pitch +
((sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos(phi yaw) *cos (phi roll))
* (r*cos (beta) *cos (delta rr)-r*sin(beta) *sin(delta rr)+a wb) *cos (-

theta wbr+beta)+r* (sin(phi yaw) *sin(phi pitch) *sin(phi roll)+cos(phi ya
w) *cos (phi_roll)) * (cos (beta) *sin(delta rr)+sin(beta) *cos (delta rr)) *sin
(-theta wbr+beta)+ (-

sin(phi yaw) *sin(phi pitch) *cos (phi roll)+cos (phi yaw) *sin (phi roll)) *d
_comwb) *phidot roll + (((r*(-

cos (phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos (de
lta rr)+r*(cos(phi roll) *sin(phi pitch) *sin(beta)+cos(phi pitch) *cos (be
ta))*sin(delta rr)-cos(phi roll) *sin(phi pitch)*a wb) *sin (phi yaw) -

cos (phi_yaw) *sin(phi roll) * (r*sin(beta) *sin(delta rr) -

r*cos (beta) *cos (delta rr)-a wb)) *sin(-theta wbr+beta)-cos (-

theta wbrt+beta) * ( (-

r* (cos (phi roll) *sin(phi pitch) *sin (beta)+cos(phi pitch) *cos (beta)) *cos
(delta _rr)+r* (-

cos (phi roll) *sin(phi pitch) *cos (beta) +cos (phi _pitch) *sin (beta)) *sin (de
lta rr)-

cos (phi pitch)*a wb) *sin(phi yaw)+r*cos (phi yaw) *sin (phi roll) * (cos (bet
a)*sin(delta rr)+sin(beta) *cos(delta _rr)))) *thetadot wbr +(-((((-

cos (phi _roll) *sin(phi pitch) *sin (beta) -

cos (phi pitch) *cos (beta)) *cos (delta rr) -

sin(delta rr)* (cos(phi roll) *sin(phi pitch) *cos (beta) -

cos (phi pitch) *sin(beta))) *sin(phi yaw)+sin(phi roll) *cos (phi_yaw) * (cos
(beta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos (-theta wbr+beta) -
sin(-theta wbr+beta)* (( (-

cos (phi roll) *sin(phi pitch) *cos (beta) +cos (phi _pitch) *sin (beta)) *cos (de
lta rr)+sin(delta rr) *(cos(phi roll) *sin(phi pitch) *sin (beta)+cos(phi p
itch) *cos (beta))) *sin(phi yaw)+sin(phi roll) *cos (phi yaw) * (cos (beta) *co
s(delta rr)-sin(beta)*sin(delta _rr)))) *r)*deltadot rr - Ydot rr;
V(3,1)=(0)*Xdot_trans + (0)*Ydot trans + (1)*Zdot trans +

(0) *phidot yaw + ((-cos(phi roll) * (r*sin(beta)*sin(delta rr)-
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r*cos (beta) *cos (delta rr)-a wb) *sin(phi pitch)-

r*cos (phi pitch) * (cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr))) *cos
(_

theta wbr+beta)+ (r*cos(phi roll) * (cos (beta) *sin(delta rr)+sin (beta) *cos
(delta _rr)) *sin(phi _pitch)-cos(phi pitch)* (r*sin(beta) *sin(delta rr)-
r*cos (beta) *cos (delta _rr)-a wb)) *sin(-

theta wbr+beta)+sin(phi pitch) *sin(phi roll) *d comwb) *phidot pitch +
((-sin(phi roll) *(r*sin(beta) *sin(delta rr)-r*cos(beta)*cos(delta rr)-
a_wb) *cos (-

theta wbr+beta)+r*sin(phi roll) * (cos (beta) *sin(delta rr)+sin(beta) *cos (
delta rr))*sin(-theta wbr+beta)-

cos (phi_roll) *d comwb) *cos (phi_pitch)) *phidot roll +

((r*cos(phi roll) * (cos(beta)*sin(delta rr)+sin(beta) *cos(delta rr)) *cos
(phi _pitch)-sin(phi pitch)* (r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta rr)+a wb)) *cos(-theta wbr+beta)-

(cos (phi _roll) *(r*cos (beta) *cos (delta rr)-

r*sin(beta) *sin(delta _rr)+a wb) *cos (phi pitch)+r*sin(phi pitch) * (cos (be
ta) *sin(delta_rr)+sin(beta) *cos(delta rr))) *sin(-

theta wbr+beta)) *thetadot wbr

+(((cos(phi roll) *(cos(beta)*sin(delta _rr)+sin(beta) *cos(delta rr)) *cos
(phi pitch)+sin(phi pitch) * (sin(beta) *sin(delta rr)-

cos (beta) *cos (delta _rr))) *cos (-theta wbr+beta)+sin (-

theta wbr+beta) * (cos (phi roll) * (sin(beta) *sin(delta rr) -

cos (beta) *cos (delta_rr)) *cos (phi pitch)-

sin(phi pitch) * (cos (beta) *sin(delta rr)+sin(beta) *cos(delta rr)))) *r)*d
eltadot rr - Zdot rr;

V(4,1)=(0)*Xdot trans + (0)*Ydot trans + (0)*zdot trans + (-
sin(phi yaw)) *phidot yaw + (cos(phi yaw) *cos (phi pitch)) *phidot pitch +
(_

cos (phi_yaw) *sin(phi pitch) *sin(phi roll)+sin(phi yaw) *cos (phi roll)) *p
hidot roll + (-

cos (phi_yaw) *sin(phi pitch)*sin(phi roll)+sin(phi yaw) *cos(phi roll))*t
hetadot wbr + (-

cos (phi_yaw) *sin(phi pitch) *sin(phi roll)+sin(phi yaw) *cos (phi roll))*d
eltadot rr - wX rr;

V(5,1)=(0) *Xdot trans + (0)*Ydot trans + (0)*Zdot trans +

(cos (phi_yaw) ) *phidot yaw + (sin(phi_ yaw) *cos (phi pitch)) *phidot pitch
+ (-sin(phi_yaw) *sin(phi pitch) *sin(phi roll) -

cos (phi_yaw) *cos (phi roll)) *phidot roll + (-

sin(phi yaw) *sin(phi pitch) *sin(phi roll) -

cos (phi_yaw) *cos (phi roll)) *thetadot wbr + (-

sin(phi_ yaw) *sin(phi pitch) *sin(phi roll) -

cos (phi_yaw) *cos (phi roll)) *deltadot rr - wY rr;

V(6,1)=(0) *Xdot trans + (0)*Ydot trans + (0)*Zdot trans +

(0) *phidot yaw + (-sin(phi pitch)) *phidot pitch + (-

cos (phi pitch) *sin(phi roll)) *phidot roll + (-

cos (phi _pitch)*sin(phi roll)) *thetadot wbr + (-

cos (phi _pitch)*sin(phi roll)) *deltadot rr - wZ rr;

% Right front wheel eqgtns

V(7,1)=(1)*Xdot trans + (0)*Ydot trans + (0)*Zdot trans +
(((cos(phi_roll)*(r*cos (beta) *cos (delta rf)+r*sin(beta)*sin(delta rf)+a
_wb) *sin(phi pitch)-r*cos (phi pitch) * (cos(beta) *sin(delta rf)-

sin (beta) *cos (delta rf)))*sin(phi yaw) -
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cos (phi_yaw) *sin(phi roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(d
elta rf)+a wb)) *cos(theta wbrt+beta)+((-

r*cos (phi roll) * (cos (beta) *sin(delta rf) -

sin(beta) *cos (delta rf)) *sin(phi pitch)-

cos (phi _pitch) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(delta rf)+a w
b)) *sin(phi_ yaw)+r*cos (phi yaw) *sin(phi roll) * (cos (beta) *sin(delta rf)-
sin(beta) *cos (delta rf))) *sin(theta wbr+beta)+d comwb* (sin(phi yaw) *sin
(phi pitch) *sin(phi roll)+cos (phi yaw) *cos (phi roll))) *phidot yaw + (-
cos (phi _yaw) * ((cos(phi roll) * (r*cos (beta) *cos(delta rf)+r*sin(beta) *sin
(delta _rf)+a wb) *cos (phi pitch)+r*sin(phi pitch) * (cos(beta) *sin(delta r
f)-sin(beta) *cos(delta rf))) *cos(theta wbr+beta)+ (-

r*cos (phi roll) * (cos (beta) *sin(delta rf) -

sin(beta) *cos(delta rf))*cos(phi pitch)+sin(phi pitch)* (r*cos (beta) *cos
(delta rf)+r*sin(beta) *sin(delta rf)+a wb)) *sin(theta wbr+beta)+cos (phi
_pitch)*sin(phi roll)*d comwb) ) *phidot pitch +
((cos(phi_yaw) *sin(phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi_roll)) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(
delta rf)+a wb) *cos (theta wbr+t+beta) -

r* (cos (phi_yaw) *sin (phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi _roll)) * (cos (beta) *sin(delta rf)-

sin(beta) *cos (delta rf)) *sin(theta wbr+beta) -

d_comwb* (cos (phi_ yaw) *sin(phi pitch) *cos (phi roll)+sin(phi_ yaw) *sin (phi
_roll)))*phidot_roll +

(((r*(cos(phi roll)*sin(phi pitch) *cos (beta)+cos (phi pitch) *sin(beta))*
cos(delta rf)+r*(cos(phi roll) *sin(phi pitch) *sin(beta) -

cos (phi pitch) *cos (beta) ) *sin(delta rf)+sin(phi pitch) *cos(phi roll) *a
wb) *cos (phi_yaw)+sin(phi yaw) *sin(phi roll) * (r*cos (beta) *cos (delta rf)+
r*sin(beta) *sin(delta rf)+a wb)) *sin(theta wbr+beta) -

cos (theta wbr+beta) * ((r* (cos (phi_roll) *sin(phi pitch) *sin (beta) -

cos (phi pitch) *cos (beta) ) *cos (delta rf)-

r* (cos (phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin(beta)) *sin
(delta rf)-

cos (phi _pitch)*a wb) *cos (phi yaw)+r*sin(phi yaw) *sin(phi roll) * (sin (bet
a) *cos (delta rf)-cos(beta)*sin(delta rf))))*thetadot wbr +(-
((((cos(phi roll)*sin(phi pitch) *sin(beta) -

cos (phi pitch) *cos (beta) ) *cos (delta rf)-

sin(delta rf)* (cos(phi roll) *sin(phi pitch) *cos (beta)+cos(phi pitch) *si
n(beta))) *cos (phi_ yaw)+sin(phi yaw) *sin(phi roll) * (sin(beta) *cos (delta_
rf)-cos(beta) *sin(delta _rf))) *cos (theta wbr+beta)-

(((cos(phi roll)*sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos
(delta rf)+sin(delta rf) *(cos(phi roll) *sin(phi pitch) *sin(beta) -

cos (phi pitch) *cos (beta))) *cos (phi_yaw) +sin(phi yaw) *sin(phi roll)* (sin
(beta) *sin(delta rf)+cos(beta)*cos(delta rf))) *sin(theta wbr+beta)) *r)*
deltadot rf - Xdot rf;

V(8,1)=(0)*Xdot trans + (1)*Ydot trans + (0)*Zdot trans + (((-

cos (phi roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(delta rf)+a wb
) *sin (phi pitch)+r*cos (phi pitch)* (cos (beta)*sin(delta rf)-

sin(beta) *cos (delta_rf))) *cos (phi_ yaw) -

sin(phi yaw) *sin(phi roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin (d
elta rf)+a wb)) *cos (theta wbrt+beta)+ ((r*cos(phi roll) * (cos (beta) *sin (de
lta rf)-

sin (beta) *cos (delta rf)) *sin(phi pitch)+cos(phi pitch) * (r*cos (beta) *cos
(delta _rf)+r*sin(beta) *sin(delta rf)+a wb)) *cos(phi yaw)+r*sin(phi_ yaw)
*sin(phi roll) * (cos (beta) *sin(delta rf)-

sin (beta) *cos (delta rf))) *sin(theta wbr+beta) -
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d _comwb* (cos (phi_ yaw) *sin(phi pitch) *sin(phi roll) -
sin(phi_yaw) *cos (phi roll))) *phidot yaw + (-

sin(phi yaw) * ((cos(phi roll) * (r*cos (beta) *cos(delta rf)+r*sin(beta)*sin
(delta rf)+a wb)*cos(phi pitch)+r*sin(phi pitch) * (cos(beta)*sin(delta r
f)-sin(beta) *cos(delta rf))) *cos(theta wbr+beta)+ (-

r*cos (phi roll) * (cos (beta) *sin(delta rf) -

sin(beta) *cos (delta_rf)) *cos(phi pitch)+sin(phi pitch) * (r*cos (beta) *cos
(delta rf)+r*sin(beta)*sin(delta rf)+a wb)) *sin(theta wbr+beta)+cos (phi
_pitch)*sin(phi roll)*d comwb) ) *phidot pitch +

((sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos(phi_ yaw) *cos (phi roll))
* (r*cos (beta) *cos (delta rf)+r*sin(beta)*sin(delta rf)+a wb) *cos(theta w
br+beta) -

r* (sin(phi yaw) *sin (phi pitch)*sin(phi roll)+cos (phi yaw) *cos (phi roll)
) * (cos (beta) *sin(delta rf) -

sin(beta) *cos (delta rf)) *sin(theta wbr+beta)+d comwb* (-

sin(phi yaw) *sin(phi pitch) *cos (phi roll)+cos (phi_ yaw) *sin(phi roll)))*
phidot roll +

(((r*(cos(phi roll)*sin(phi pitch) *cos (beta)+cos (phi pitch) *sin(beta))*
cos(delta rf)+r*(cos(phi roll)*sin(phi pitch) *sin(beta) -

cos (phi _pitch) *cos (beta) ) *sin(delta rf)+sin(phi pitch) *cos(phi roll) *a
wb) *sin (phi_ yaw) -

cos (phi_yaw) *sin(phi roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(d
elta rf)+a wb))*sin(theta wbr+beta)+ ((-

r* (cos (phi roll)*sin(phi pitch) *sin(beta)-

cos (phi _pitch) *cos (beta)) *cos(delta rf)+r* (cos(phi roll) *sin(phi pitch)
*cos (beta) +cos (phi _pitch) *sin(beta)) *sin(delta rf)+cos (phi pitch) *a wb)
*sin(phi yaw)+r*cos (phi yaw) *sin(phi roll) * (sin (beta) *cos (delta rf)-
cos (beta) *sin(delta rf)))*cos(theta wbrt+beta))*thetadot wbr +(r* ((((-
cos (phi roll) *sin(phi pitch) *sin (beta)+cos (phi pitch) *cos (beta)) *cos (de
lta rf)+sin(delta rf)*(cos(phi roll) *sin(phi pitch) *cos (beta)+cos (phi p

itch) *sin(beta))) *sin(phi yaw) +sin(phi roll) *cos (phi yaw) * (sin (beta) *co
s(delta rf)-cos(beta)*sin(delta rf))) *cos(theta wbr+beta)-
sin(theta wbr+beta) * (((-cos (phi roll) *sin(phi pitch) *cos (beta) -

cos (phi pitch) *sin(beta)) *cos (delta rf)-

sin(delta rf)*(cos(phi roll)*sin(phi pitch) *sin (beta)-

cos (phi pitch) *cos(beta))) *sin(phi_yaw) +sin(phi roll) *cos (phi_yaw) * (sin
(beta) *sin(delta rf)+cos(beta)*cos(delta rf)))))*deltadot rf - Ydot rf;
V(9,1)=(0)*Xdot trans + (0)*Ydot trans + (1)*Zdot trans +

(0) *phidot yaw +

((cos(phi roll)*(r*cos(beta)*cos(delta rf)+r*sin(beta)*sin(delta rf)+a
wb) *sin (phi pitch)+cos (phi _pitch) *r* (sin(beta) *cos (delta rf) -

cos (beta) *sin(delta rf))) *cos(theta wbr+beta)+ (r*cos (phi roll) * (sin (bet
a) *cos (delta rf)-cos(beta) *sin(delta rf)) *sin(phi pitch)-

cos (phi _pitch) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(delta rf)+a w
b)) *sin(theta wbr+beta)+sin(phi pitch) *sin(phi roll)*d comwb) *phidot pi
tch +

((sin(phi roll) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(delta rf)+a
wb) *cos (theta wbrt+beta)+r*sin(phi _roll) * (sin(beta) *cos (delta_ rf) -

cos (beta) *sin(delta rf)) *sin(theta wbr+beta) -

cos (phi roll) *d comwb) *cos (phi pitch)) *phidot roll + ((-

r*cos (phi roll) * (sin(beta) *cos(delta rf) -

cos (beta) *sin(delta rf)) *cos(phi pitch)-

sin(phi pitch) * (r*cos (beta) *cos (delta rf)+r*sin(beta) *sin(delta rf)+a w
b)) *cos (theta wbr+beta)+ (cos(phi roll) * (r*cos (beta) *cos (delta rf)+r*sin
(beta) *sin(delta rf)+a wb) *cos (phi pitch)-
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r*sin(phi pitch) * (sin (beta) *cos (delta rf)-

cos (beta) *sin(delta rf)))*sin(theta wbr+beta)) *thetadot wbr

+(((cos(phi roll)*(cos(beta)*sin(delta rf)-

sin(beta) *cos (delta rf)) *cos(phi pitch)-

sin(phi pitch) * (sin(beta) *sin(delta rf)+cos(beta) *cos(delta rf))) *cos (t

heta wbr+beta)+ (cos(phi_roll) * (sin(beta) *sin(delta rf)+cos (beta) *cos (de
lta rf))*cos(phi pitch)+sin(phi pitch) * (cos(beta) *sin(delta rf) -
sin(beta) *cos(delta rf))) *sin(theta wbr+beta)) *r)*deltadot rf -

Zdot rf;

V(10,1)=(0)*Xdot trans + (0)*Ydot trans + (0)*Zdot trans + (-
sin(phi yaw)) *phidot yaw + (cos(phi yaw) *cos (phi pitch)) *phidot pitch +
(_

cos (phi_yaw) *sin(phi pitch)*sin(phi roll)+sin(phi yaw) *cos(phi roll)) *p
hidot roll + (-

cos (phi_yaw) *sin(phi pitch) *sin(phi roll)+sin(phi yaw) *cos(phi roll))*t
hetadot wbr + (-

cos (phi_yaw) *sin(phi pitch)*sin(phi roll)+sin(phi yaw) *cos(phi roll))*d
eltadot rf - wX rf;

V(11l,1)=(0) *Xdot trans + (0)*Ydot trans + (0)*Zdot trans +

(cos (phi_yaw) ) *phidot yaw + (sin(phi_ yaw) *cos (phi pitch)) *phidot pitch
+ (-sin(phi_yaw) *sin(phi pitch) *sin(phi roll) -

cos (phi_yaw) *cos (phi roll)) *phidot roll + (-

sin(phi yaw) *sin(phi pitch)*sin(phi roll)-

cos (phi_yaw) *cos (phi roll)) *thetadot wbr + (-

sin(phi yaw) *sin(phi pitch) *sin(phi roll)-

cos (phi_yaw) *cos (phi roll)) *deltadot rf - wY rf;

V(12,1)=(0) *Xdot_trans + (0)*Ydot trans + (O)*Zdot_trans +

(0) *phidot yaw + (-sin(phi pitch)) *phidot pitch + (-

cos (phi pitch)*sin(phi roll)) *phidot roll + (-

cos (phi pitch)*sin(phi roll)) *thetadot wbr +(-

cos (phi pitch)*sin(phi roll)) *deltadot rf - wZ rf;

% Left rear wheel eqgtns

V(13,1)=(1)*Xdot trans + (0)*Ydot trans + (0)*Zdot trans +

(((cos(phi roll)*(r*cos (beta) *cos (delta 1lr)+r*sin(beta)*sin(delta 1lr)+
_wb) *sin(phi pitch)+r*cos(phi pitch) * (cos(beta) *sin(delta 1r)-
sin(beta) *cos(delta 1r))) *sin(phi yaw) -

cos (phi_yaw) *sin(phi roll) * (r*cos (beta) *cos (delta lr)+r*sin(beta)*sin(d
elta 1lr)+a wb)) *cos (theta wbl+beta)+( (-

r*cos (phi roll) * (cos(beta) *sin(delta 1r)-

sin (beta) *cos (delta 1r)) *sin(phi pitch)+cos(phi pitch) * (r*cos (beta) *cos
(delta lr)+r*sin(beta)*sin(delta lr)+a wb)) *sin(phi yaw)+r*cos(phi_ yaw)
*sin(phi roll) * (cos (beta) *sin(delta 1lr)-

sin (beta) *cos (delta 1r)))*sin(theta wbl+beta) -

(sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos(phi yaw) *cos (phi roll))*
d comwb) *phidot yaw + (-

cos (phi_yaw) * ((cos (phi_roll) * (r*cos (beta) *cos (delta lr)+r*sin(beta) *sin
(delta 1lr)+a wb) *cos(phi pitch) -

r*sin(phi _pitch) * (cos (beta) *sin(delta 1r)-

sin (beta) *cos (delta 1r))) *cos(theta wbl+beta)+ (-

r*cos (phi roll) * (cos(beta) *sin(delta 1r)-

sin(beta) *cos (delta lr)) *cos(phi pitch)-

sin(phi pitch) * (r*cos (beta) *cos (delta 1lr)+r*sin(beta) *sin(delta lr)+a w
b)) *sin(theta wbl+beta) -
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cos (phi _pitch) *sin(phi roll) *d comwb) ) *phidot pitch +
((cos(phi_yaw) *sin(phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi roll)) * (r*cos (beta) *cos (delta lr)+r*sin(beta) *sin(
delta 1r)+a wb) *cos (theta wbl+beta) -

r* (cos (phi_yaw) *sin (phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi_roll)) * (cos (beta) *sin(delta 1lr)-

sin(beta) *cos (delta lr)) *sin(theta wbl+beta)+d comwb* (cos (phi_ yaw) *sin(
phi pitch) *cos (phi roll)+sin(phi yaw) *sin(phi roll)))*phidot roll +
(((-r* (-

cos (phi _roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos (de
lta 1r)+r*(cos(phi roll)*sin(phi pitch) *sin(beta)+cos(phi pitch) *cos (be
ta))*sin(delta 1lr)+cos(phi roll) *sin(phi pitch)*a wb) *cos (phi_yaw) +sin(
phi yaw) *sin(phi roll) * (r*cos (beta) *cos (delta 1lr)+r*sin(beta)*sin(delta
_1lr)+a wb)) *sin(theta wbl+beta) -

cos (theta wbl+beta) * ((r* (cos (phi_roll) *sin(phi pitch) *sin (beta)+cos (phi
_pitch) *cos (beta)) *cos(delta 1r)+r* (-

cos (phi _roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *sin (de
lta 1r)+cos(phi pitch)*a wb) *cos(phi yaw)+r*sin(phi yaw) *sin(phi roll)*
(sin (beta) *cos (delta 1r)-cos(beta)*sin(delta 1r))))*thetadot wbl +(-
((((cos(phi roll)*sin(phi pitch) *sin(beta)+cos (phi pitch) *cos (beta)) *co
s(delta 1lr)-sin(delta 1lr)*(cos(phi roll) *sin(phi pitch) *cos (beta) -

cos (phi _pitch) *sin(beta))) *cos (phi_yaw) +sin(phi yaw) *sin(phi roll) * (sin
(beta) *cos (delta 1lr)-cos(beta)*sin(delta 1r))) *cos (theta wbl+beta) -
sin(theta wbl+beta) * (((cos(phi roll) *sin(phi pitch) *cos (beta) -

cos (phi pitch) *sin(beta)) *cos(delta 1lr)+sin(delta lr)*(cos(phi roll) *si
n(phi pitch) *sin (beta)+cos (phi pitch) *cos (beta))) *cos (phi yaw)+sin (phi
yaw) *sin (phi roll) * (sin (beta) *sin(delta 1r)+cos(beta) *cos (delta 1lr))))*
r)*deltadot 1r - Xdot 1r;

V(14,1)=(0)*Xdot trans + (1)*Ydot trans + (0)*Zdot trans + (((-

cos (phi roll) * (r*cos (beta) *cos (delta lr)+r*sin(beta)*sin(delta 1lr)+a wb
) *sin(phi pitch)-r*cos (phi pitch) * (cos (beta) *sin(delta 1r)-

sin (beta) *cos(delta 1lr))) *cos (phi yaw) -

sin(phi yaw) *sin(phi roll)* (r*cos (beta) *cos (delta 1lr)+r*sin(beta) *sin (d
elta 1lr)+a wb)) *cos (theta wbl+beta)+ ((r*cos(phi roll) * (cos (beta) *sin (de
lta 1r)-sin(beta) *cos (delta 1lr)) *sin(phi pitch)-

cos (phi pitch) * (r*cos (beta) *cos (delta 1lr)+r*sin(beta) *sin(delta lr)+a w
b)) *cos (phi_yaw)+r*sin(phi yaw) *sin(phi roll) * (cos (beta) *sin(delta 1lr)-
sin(beta) *cos (delta 1r))) *sin(theta wbl+beta)+ (cos (phi yaw) *sin (phi pit
ch) *sin(phi_roll)-sin(phi yaw) *cos (phi_roll)) *d comwb) *phidot yaw + (-
sin(phi yaw) * ((cos (phi roll) * (r*cos (beta) *cos (delta 1lr)+r*sin(beta) *sin
(delta 1r)+a wb) *cos (phi pitch) -

r*sin(phi _pitch) * (cos (beta) *sin(delta 1r)-

sin(beta) *cos (delta 1r))) *cos (theta wbl+beta)+ (-

r*cos (phi roll) * (cos (beta) *sin(delta lr)-

sin (beta) *cos (delta 1r)) *cos(phi pitch) -

sin(phi pitch)* (r*cos (beta) *cos(delta lr)+r*sin(beta)*sin(delta lr)+a w
b)) *sin(theta wbl+beta) -

cos (phi _pitch) *sin(phi roll) *d comwb) ) *phidot pitch +

((sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos(phi yaw) *cos (phi roll))
* (r*cos (beta) *cos (delta 1lr)+r*sin(beta) *sin(delta lr)+a wb) *cos (theta w
bl+beta) -

r* (sin(phi yaw) *sin(phi pitch) *sin(phi roll)+cos (phi yaw) *cos (phi roll)
) * (cos (beta) *sin(delta lr)-

sin(beta) *cos (delta lr)) *sin(theta wbl+beta)-d comwb* (-

sin(phi yaw) *sin(phi pitch) *cos(phi roll)+cos (phi yaw) *sin(phi roll)))*
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phidot roll + (((-r* (-

cos (phi _roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos (de
lta 1r)+r*(cos(phi roll)*sin(phi pitch)*sin(beta)+cos(phi pitch) *cos (be
ta))*sin(delta 1lr)+cos(phi roll) *sin(phi pitch)*a wb) *sin (phi yaw) -

cos (phi_yaw) *sin(phi roll) * (r*cos (beta) *cos (delta lr)+r*sin(beta)*sin(d
elta 1lr)+a wb)) *sin(theta wbl+beta)+cos(theta wbl+beta) * ( (-

r* (cos (phi_roll) *sin(phi pitch) *sin (beta)+cos (phi pitch) *cos (beta)) *cos
(delta 1r)-r* (-

cos (phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *sin (de
lta 1r)-

cos (phi _pitch)*a wb) *sin(phi yaw)+r*cos (phi yaw) *sin(phi roll) * (sin (bet
a) *cos (delta 1lr)-cos(beta) *sin(delta 1lr)))) *thetadot wbl + (((((-

cos (phi roll) *sin(phi pitch) *sin (beta) -

cos (phi pitch) *cos (beta)) *cos(delta 1lr)+sin(delta 1r)*(cos(phi roll) *si
n(phi pitch) *cos (beta) -

cos (phi pitch) *sin(beta))) *sin(phi_yaw)+sin(phi roll) *cos (phi_yaw) * (sin
(beta) *cos (delta 1r)-cos(beta)*sin(delta 1lr))) *cos (theta wbl+beta) -
sin(theta wbl+beta) * (((-

cos (phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos (de
lta 1r)-

sin(delta 1r)* (cos(phi_ roll) *sin(phi pitch) *sin(beta)+cos(phi pitch) *co
s (beta))) *sin(phi_yaw)+sin(phi roll) *cos (phi_ yaw) * (sin (beta) *sin(delta
lr) +cos (beta) *cos (delta 1r)))) *r) *deltadot 1lr - Ydot 1r;
V(15,1)=(0) *Xdot _trans + (0)*Ydot trans + (1)*Zdot trans +

(0) *phidot yaw +

((cos(phi roll) * (r*cos(beta)*cos(delta 1lr)+r*sin(beta)*sin(delta 1lr)+a
wb) *sin (phi pitch)-cos (phi pitch) *r* (sin(beta) *cos (delta 1lr)-

cos (beta) *sin(delta 1r)))*cos(theta wbl+beta)+ (r*cos(phi roll) * (sin (bet
a) *cos (delta 1r)-

cos (beta) *sin(delta 1r)) *sin(phi pitch)+cos(phi pitch) * (r*cos (beta) *cos
(delta lr)+r*sin(beta) *sin(delta 1lr)+a wb)) *sin(theta wbl+beta) -
sin(phi pitch) *sin(phi roll) *d comwb) *phidot pitch +

((sin(phi roll) * (r*cos (beta) *cos(delta lr)+r*sin(beta)*sin(delta 1r)+a
wb) *cos (theta wbl+beta)+r*sin(phi roll) * (sin(beta) *cos (delta 1lr)-

cos (beta) *sin(delta 1lr)) *sin(theta wbl+beta)+cos (phi roll)*d comwb) *cos
(phi pitch)) *phidot roll + ((-r*cos(phi roll)* (sin(beta) *cos(delta 1r)-
cos (beta) *sin(delta 1r)) *cos (phi pitch)+sin(phi pitch) * (r*cos (beta) *cos
(delta 1lr)+r*sin(beta)*sin(delta 1lr)+a wb)) *cos(theta wbl+beta)+sin (the
ta wbl+beta) * (cos (phi_roll) * (r*cos (beta) *cos (delta 1lr)+r*sin(beta) *sin(
delta 1r)+a wb) *cos(phi pitch)+r*sin(phi pitch)* (sin (beta) *cos(delta 1r
) —cos (beta) *sin(delta 1r)))) *thetadot wbl
+(((cos(phi roll)* (cos (beta) *sin(delta 1r)-

sin(beta) *cos(delta lr))*cos(phi pitch)+sin(phi pitch) * (sin(beta) *sin (d
elta 1r)+cos(beta)*cos(delta 1lr))) *cos (theta wbl+beta)+ (cos (phi roll) *(
sin(beta) *sin(delta 1r)+cos (beta)*cos(delta 1r)) *cos(phi pitch)-
sin(phi pitch)* (cos(beta)*sin(delta 1r)-

sin (beta) *cos(delta 1r)))*sin(theta wbl+beta)) *r)*deltadot 1r -

Zdot 1r;

V(16,1)=(0) *Xdot trans + (0)*Ydot trans + (0)*Zdot trans + (-
sin(phi yaw)) *phidot yaw + (cos(phi yaw) *cos (phi pitch))*phidot pitch +
(cos (phi_yaw) *sin(phi pitch)*sin(phi roll) -

sin(phi yaw) *cos (phi_roll)) *phidot roll +

(cos (phi_yaw) *sin(phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi roll)) *thetadot wbl
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+ (cos (phi_yaw) *sin(phi pitch) *sin(phi roll)-

sin(phi yaw) *cos (phi roll)) *deltadot lr - wX lr;

V(17,1)=(0) *Xdot trans + (0)*Ydot trans + (0)*Zdot trans +

(cos (phi yaw)) *phidot yaw + (sin(phi yaw) *cos(phi pitch)) *phidot pitch
+

(sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos (phi_yaw) *cos (phi roll))*
phidot roll +

(sin(phi yaw) *sin(phi pitch)*sin(phi roll)+cos (phi yaw) *cos(phi roll))~*
thetadot wbl

+ (sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos (phi_yaw) *cos (phi roll))
*deltadot 1r - wY 1r;

V(18,1)=(0) *Xdot _trans + (0)*Ydot trans + (0)*Zdot trans +

(0) *phidot yaw + (-sin(phi pitch))*phidot pitch +

(cos (phi pitch)*sin(phi roll)) *phidot roll +

(cos (phi pitch) *sin(phi roll)) *thetadot wbl

+ (cos (phi_pitch) *sin(phi roll)) *deltadot lr - wZ 1r;

% Left front wheel egtns

V(19,1)=(1)*Xdot_trans + (0)*Ydot trans + (0)*Zdot trans +
(((cos(phi_roll)*(r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb) *sin(phi pitch)+r*cos (phi pitch) * (cos (be
ta) *sin(delta 1f)+sin(beta) *cos(delta 1f))) *sin(phi yaw) -

cos (phi_yaw) *sin(phi roll) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb)) *cos (-

theta wbl+beta)+ ((r*cos (phi roll) * (cos (beta) *sin(delta 1f)+sin(beta) *co
s(delta 1f))*sin(phi pitch)-cos(phi pitch) * (r*cos (beta) *cos(delta 1f)-
r*sin(beta) *sin(delta 1f)+a wb)) *sin(phi yaw) -

r*cos (phi yaw) *sin(phi roll) * (cos (beta) *sin(delta 1f)+sin(beta) *cos (del
ta 1f)))*sin(-theta wbl+beta)-

(sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos (phi_yaw) *cos (phi roll))*

d _comwb) *phidot yaw + (- ((cos(phi roll)* (r*cos (beta) *cos(delta 1f)-
r*sin(beta) *sin(delta 1f)+a wb) *cos (phi pitch)-
r*sin(phi pitch) * (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f))) *cos

(_

theta wbl+beta)+ (r*cos(phi roll) * (cos (beta) *sin(delta 1f)+sin (beta) *cos
(delta 1f)) *cos(phi pitch)+sin(phi pitch) * (r*cos (beta) *cos (delta 1f)-
r*sin(beta) *sin(delta 1f)+a wb)) *sin(-theta wbl+beta)-

cos (phi _pitch)*sin(phi roll) *d comwb) *cos (phi_ yaw)) *phidot pitch +
((cos(phi_yaw) *sin(phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi roll)) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb) *cos (-

theta wbl+beta)+r* (cos(phi yaw) *sin(phi pitch) *sin(phi roll) -

sin(phi_ yaw) *cos (phi_roll)) * (cos (beta) *sin(delta 1f)+sin (beta) *cos(delt
a 1f))*sin (-

theta wbl+beta)+d comwb* (cos (phi yaw) *sin(phi pitch) *cos (phi roll)+sin(
phi yaw) *sin(phi roll))) *phidot roll + (((-

r* (cos (phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos
(delta 1f)+r*(cos(phi roll) *sin(phi pitch) *sin (beta) -

cos (phi _pitch) *cos (beta)) *sin(delta 1f)-

cos (phi roll) *sin(phi pitch) *a wb) *cos (phi yaw)+sin(phi yaw) *sin (phi ro
11) *(r*sin(beta) *sin(delta 1f)-r*cos (beta) *cos(delta 1f)-a wb)) *sin (-
theta wbl+beta)+ ((r* (cos(phi roll) *sin(phi pitch) *sin (beta) -

cos (phi_pitch) *cos (beta) ) *cos(delta 1f)+r*(cos(phi roll) *sin(phi pitch)
*cos (beta) +cos (phi_pitch) *sin(beta)) *sin(delta 1f)-

cos (phi pitch)*a wb) *cos (phi yaw)+r*sin(phi yaw) *sin (phi roll) * (cos (bet

266



a)*sin(delta 1f)+sin(beta) *cos (delta 1f))) *cos (-
theta wbl+beta)) *thetadot wbl

+(((((cos(phi roll)*sin(phi pitch) *sin (beta) -

cos (phi pitch) *cos (beta)) *cos(delta 1f)+sin(delta 1f)*(cos(phi roll)*
n(phi pitch) *cos (beta)+cos (phi_pitch) *sin (beta))) *cos (phi yaw)+sin (phi
yaw) *sin(phi roll) * (cos (beta) *sin(delta 1f)+sin(beta)*cos (delta 1f)))~*

s (-theta wbl+beta)-sin(-
theta wbl+beta) * (((cos(phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch
) *sin (beta)) *cos (delta 1f)-
sin(delta 1f)*(cos(phi roll) *sin(phi pitch) *sin(beta)-

cos (phi _pitch) *cos (beta))) *cos (phi_yaw) +sin(phi_ yaw) *sin(phi roll) * (cos
(beta) *cos (delta 1f)-sin(beta)*sin(delta 1f))))*r)*deltadot 1f -
Xdot 1f;

V(20,1)=(0) *Xdot_trans + (1)*Ydot trans + (0)*Zdot trans + (((-

cos (phi _roll) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb) *sin(phi pitch) -

r*cos (phi pitch) * (cos (beta) *sin(delta 1f)+sin(beta) *cos(delta 1f))) *cos
(phi_yaw) -sin(phi yaw) *sin(phi roll) * (r*cos (beta) *cos(delta 1f)-
r*sin(beta) *sin(delta 1f)+a wb)) *cos(-theta wbl+beta)+((-

r*cos (phi roll) * (cos (beta) *sin(delta 1f)+sin (beta)*cos(delta 1f))*sin(p
hi pitch)+cos(phi pitch) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb)) *cos (phi_yaw) -

r*sin(phi yaw) *sin(phi roll) * (cos (beta) *sin(delta 1f)+sin(beta) *cos (del
ta 1f)))*sin(-

theta _wbl+beta) + (cos (phi_yaw) *sin(phi pitch)*sin(phi roll)-

sin(phi yaw) *cos (phi roll)) *d comwb) *phidot yaw + (-

((cos(phi roll) * (r*cos (beta) *cos(delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb) *cos (phi pitch) -

r*sin(phi pitch) * (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f))) *cos
(_

theta wbl+beta)+ (r*cos(phi roll) * (cos (beta) *sin(delta 1f)+sin (beta) *cos
(delta 1f)) *cos(phi pitch)+sin(phi pitch) * (r*cos (beta) *cos (delta 1f)-
r*sin(beta) *sin(delta 1f)+a wb)) *sin(-theta wbl+beta)-

cos (phi _pitch)*sin(phi roll) *d comwb) *sin(phi yaw)) *phidot pitch +
((sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos(phi yaw) *cos (phi roll))
* (r*cos (beta) *cos (delta 1f)-r*sin(beta)*sin(delta 1f)+a wb) *cos (-

theta wbl+beta)+r* (sin(phi yaw) *sin(phi pitch) *sin(phi roll)+cos(phi ya
w) *cos (phi_roll)) * (cos (beta) *sin(delta 1f)+sin(beta) *cos(delta 1f)) *sin
(-theta wbl+beta)-d comwb* (-

sin(phi yaw) *sin(phi pitch) *cos(phi roll)+cos (phi yaw) *sin(phi roll)))*
phidot roll + (((-

r* (cos (phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *cos
(delta 1f)+r*(cos(phi roll) *sin(phi pitch) *sin(beta) -

cos (phi _pitch) *cos (beta)) *sin(delta 1f)-

cos (phi roll) *sin(phi pitch)*a wb) *sin (phi yaw) -

cos (phi _yaw) *sin(phi roll) * (r*sin(beta) *sin(delta 1f)-

r*cos (beta) *cos (delta 1f)-a wb))*sin(-theta wbl+beta)-cos (-

theta wbl+beta) * ((-r* (cos(phi_roll) *sin(phi pitch) *sin(beta) -

cos (phi _pitch) *cos (beta)) *cos (delta 1f)-

r* (cos (phi roll) *sin(phi pitch) *cos (beta)+cos (phi pitch) *sin (beta)) *sin
(delta 1f)+cos(phi pitch)*a wb) *sin(phi yaw)+r*cos (phi yaw) *sin (phi rol
1) * (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f)))) *thetadot wbl + (-
r* ((((=

cos (phi _roll) *sin(phi pitch) *sin (beta)+cos (phi pitch) *cos (beta)) *cos (de
lta 1f)-
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sin(delta 1f)*(cos(phi roll) *sin(phi pitch) *cos(beta)+cos(phi pitch) *si

n(beta))) *sin(phi_yaw)+cos (phi_yaw) *sin (phi_roll) * (cos (beta) *sin (delta_
1f)+sin(beta) *cos (delta 1f))) *cos (-theta wbl+beta)-sin (-
theta wbl+beta) * (((-cos(phi roll) *sin(phi pitch) *cos (beta)-

cos (phi _pitch) *sin(beta)) *cos(delta 1f)+sin(delta 1f)*(cos(phi roll) *si
n(phi pitch) *sin (beta) -

cos (phi _pitch) *cos (beta))) *sin (phi_yaw) +cos (phi_yaw) *sin(phi roll) * (cos
(beta) *cos (delta 1f)-sin(beta)*sin(delta 1f)))))*deltadot 1f - Ydot 1f;
V(21,1)=(0) *Xdot trans + (0)*Ydot trans + (1)*Zdot trans +

(0) *phidot yaw + ((-cos(phi roll)*(r*sin(beta) *sin(delta 1f)-

r*cos (beta) *cos (delta 1f)-

a_wb) *sin (phi _pitch)+r*cos(phi pitch) * (cos (beta) *sin(delta 1f)+sin(beta
) *cos (delta 1f))) *cos (-

theta wbl+beta)+ (r*cos(phi roll) * (cos (beta) *sin(delta 1f)+sin (beta) *cos
(delta 1f))*sin(phi pitch)+cos(phi pitch) * (r*sin (beta) *sin(delta 1f)-
r*cos (beta) *cos (delta 1f)-a wb)) *sin(-theta wbl+beta)-

sin(phi pitch) *sin(phi roll)*d comwb) *phidot pitch + ((-

sin(phi roll) * (r*sin(beta) *sin(delta 1f)-r*cos (beta)*cos(delta 1f)-
a_wb) *cos (-

theta wbl+beta)+r*sin(phi roll) * (cos (beta) *sin(delta 1f)+sin(beta) *cos(
delta 1f))*sin(-

theta wbl+beta)+cos (phi roll) *d comwb) *cos (phi pitch)) *phidot roll +
((r*cos(phi roll) * (cos(beta) *sin(delta 1f)+sin(beta)*cos(delta 1f)) *cos
(phi_pitch)+sin(phi pitch)* (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb)) *cos(-theta wbl+beta)-sin (-

theta wbl+beta) * (cos (phi roll) * (r*cos (beta) *cos (delta 1f)-

r*sin(beta) *sin(delta 1f)+a wb) *cos (phi pitch) -

r*sin(phi pitch)* (cos (beta) *sin(delta 1f)+sin(beta)*cos(delta 1f))))*th
etadot wbl

+(r*((cos(phi roll) *(cos(beta) *sin(delta 1f)+sin(beta) *cos(delta 1f)) *c
os (phi pitch)-sin(phi pitch) * (sin(beta) *sin(delta 1f)-

cos (beta) *cos (delta 1f))) *cos (-theta wbl+beta)+sin (-

theta wbl+beta) * (cos (phi roll) * (sin(beta) *sin(delta 1f)-

cos (beta) *cos (delta 1f)) *cos (phi pitch)+sin(phi pitch)* (cos (beta) *sin(d
elta 1f)+sin(beta) *cos(delta 1f)))))*deltadot 1f - Zdot 1f;

V(22,1)=(0) *Xdot_trans + (0)*Ydot trans + (0)*Zdot trans + (-
sin(phi yaw)) *phidot yaw + (cos(phi yaw) *cos (phi pitch)) *phidot pitch +
(cos (phi_yaw) *sin(phi pitch) *sin(phi roll) -

sin(phi yaw) *cos (phi roll)) *phidot roll +

(cos (phi_yaw) *sin(phi pitch)*sin(phi roll) -

sin(phi yaw) *cos (phi roll)) *thetadot wbl

+ (cos (phi_yaw) *sin(phi pitch) *sin(phi roll)-

sin(phi_ yaw) *cos (phi_roll)) *deltadot 1f - wX 1f;

V(23,1)=(0)*Xdot trans + (0)*Ydot trans + (0)*Zdot trans +

(cos (phi_yaw)) *phidot yaw + (sin(phi yaw) *cos (phi pitch)) *phidot pitch
+

(sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos (phi_yaw) *cos(phi roll))*
phidot roll +

(sin(phi_yaw) *sin(phi pitch) *sin(phi roll)+cos(phi yaw) *cos (phi roll))*
thetadot wbl

+ (sin(phi yaw) *sin(phi pitch)*sin(phi roll)+cos(phi_ yaw) *cos (phi roll))
*deltadot 1f - wY 1f;

V(24,1)=(0) *Xdot _trans + (0)*Ydot trans + (0)*Zdot trans +

(0) *phidot yaw + (-sin(phi pitch)) *phidot pitch +
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(cos (phi_pitch) *sin(phi roll)) *phidot roll +
(cos (phi_pitch) *sin(phi roll)) *thetadot wbl
+ (cos (phi pitch)*sin(phi roll))*deltadot 1f - wz 1f;

End
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C.6  Additional Results — 3D Position Kinematic Analysis

Case 2: Uphill Sloped Terrain

0
Y [m] -5 -5 X [m]

Figure C.1: Uphill 15° inclined terrain digital elevation map.
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Figure C.2: Walking beam pitch vs distance travelled (15° Incline).
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Figure C.3: Chassis orientation angles with respect to distance travelled (15° incline).
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C.7 Additional Results — 3D Velocity Kinematic Analysis

Case 1: Flat Terrain
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Figure C.4: Chassis angles vs time (flat terrain), for slip, i=0.
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Figure C.5: Chassis angle rates vs time (flat terrain), for slip, i=0.
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Figure C.6: Walking beam pitch vs distance (flat terrain), for slip, i=0.
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Figure C.7: Walking beam pitch rates vs time (flat terrain), for slip, i=0.
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Figure C.8: Displacement vs time (flat terrain), for slip, i=0.
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Figure C.9: Rover translational velocities vs time (flat terrain), for slip, i=0.
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II. 0.05 Slip
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Figure C.10: Chassis angles vs time (flat terrain), for slip, i=0.05.
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Figure C.11: Chassis angle rates vs time (flat terrain), for slip, i=0.05.
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Figure C.12: Walking beam pitch vs distance (flat terrain), for slip, i=0.05.
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Figure C.13: Walking beam pitch rates vs time (flat terrain), for slip, i=0.05.
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Figure C.14: Displacement vs time (flat terrain), for slip, i=0.05.
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Figure C.15: Rover translational velocities vs time (flat terrain), for slip, i=0.05
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Figure C.16: Chassis angles vs time (flat terrain), for slip, i=0.1.
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Figure C.17: Chassis angle rates vs time (flat terrain), for slip, i=0.1.
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Figure C.20: Displacement vs time (flat terrain), for slip, i=0.1.
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Figure C.21: Rover translational velocities vs time (flat terrain), for slip, i=0.1.
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IV.

0.25 Slip

Figure C.23: Chassis angle rates vs time (flat terrain), for slip, i=0.25.

Figure C.22: Chassis angles vs time (flat terrain), for slip, i=0.25.
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Figure C.25: Walking beam pitch rates vs time (flat terrain), for slip, i=0.25.
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Figure C.26: Displacement vs time (flat terrain), for slip, i=0.25.
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Figure C.27: Rover translational velocities vs time (flat terrain), for slip, i=0.25.
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V. 0.5 Slip
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Figure C.28: Chassis angles vs time (flat terrain), for slip, i=0.5.
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Figure C.29: Chassis angle rates vs time (flat terrain), for slip, i=0.5.
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015

0.05

""" Right Walking Beam
Left Walking Beam

Walking Beam Pitch Rate [RAD/s]
o
T

01 F

015 L I I )
0 10 20 30 40 50 60 70 80

Time [s]

Figure C.31: Walking beam pitch rates vs time (flat terrain), for slip, i=0.5.
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Figure C.32: Displacement vs time (flat terrain), for slip, i=0.5.
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Case 2: Uphill Sloped Terrain (10°)
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Figure C.34: Chassis angles vs time (10° incline), for slip, i=0.
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Figure C.35: Chassis angle rates vs time (10° incline), for slip, i=0.
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Figure C.37: Walking beam pitch rates vs time (10° incline), for slip, i=0.
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T2 e

0.1F
)
E 008+
>
‘c
% === == Global X-direction
> 0.06 Global Y-direction
= Global Z-direction
c
2
c_(: 0.04 -
=
&
iy
]
Z 0.021
[1'q

0
.0.02 L I I I I I I )
0 10 20 30 40 50 60 70 80

Time [s]

Figure C.39: Rover translational velocities vs time (10° incline), for slip, i=0.
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II. 0.05 Slip
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Figure C.40: Chassis angles vs time (10° incline), for slip, i=0.05.
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Figure C.41: Chassis angle rates vs time (10° incline), for slip, i=0.05.
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Figure C.42: Walking beam pitch vs distance (10° incline), for slip, i=0.05.
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Figure C.43: Walking beam pitch rates vs time (10° incline), for slip, i=0.05.
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Figure C.45: Rover translational velocities vs time (10° incline), for slip, i=0.05
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I1I. 0.1 Slip
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Figure C.46: Chassis angles vs time (10° incline), for slip, i=0.1.
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Figure C.47: Chassis angle rates vs time (10° incline), for slip, i=0.1.
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Figure C.48: Walking beam pitch vs distance (10° incline), for slip, i=0.1.
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Figure C.49: Walking beam pitch rates vs time (10° incline), for slip, i=0.1.
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Figure C.50: Displacement vs time (10° incline), for slip, i=0.1.
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Figure C.51: Rover translational velocities vs time (10° incline), for slip, i=0.1.
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IV.  0.25 Slip

0.02 -

-0.04

-0.06

Yaw
-0.08 |- Pitch
Roll

-01

Chassis Orientation Angles [RAD]

-0.14 |

-0.16

018 I I I I I I I )
0 10 20 30 40 50 60 70 80

Time [s]

Figure C.52: Chassis angles vs time (10° incline), for slip, i=0.25.
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Figure C.53: Chassis angle rates vs time (10° incline), for slip, i=0.25.
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Figure C.54: Walking beam pitch vs distance (10° incline), for slip, i=0.25.
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Figure C.55: Walking beam pitch rates vs time (10° incline), for slip, i=0.25.
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Figure C.56: Displacement vs time (10° incline), for slip, i=0.25.
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Figure C.57: Rover translational velocities vs time (10° incline), for slip, i=0.25.
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V. 0.5 Slip
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Figure C.58: Chassis angles vs time (10° incline), for slip, i=0.5.
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Figure C.59: Chassis angle rates vs time (10° incline), for slip, i=0.5.
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Figure C.60: Walking beam pitch vs distance (10° incline), for slip, i=0.5.
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Figure C.61: Walking beam pitch rates vs time (10° incline), for slip, i=0.5.
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Figure C.62: Displacement vs time (10° incline), for slip, i=0.5.
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Figure C.63: Rover translational velocities vs time (10° incline), for slip, i=0.5.
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Case 3: Side-slope Terrain (10°)
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Figure C.64: Chassis angles vs time (side-slope 10°), for slip, i=0.
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Figure C.65: Chassis angle rates vs time (side-slope 10°), for slip, i=0.
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Figure C.68: Displacement vs time (side-slope 10°), for slip, i=0.
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Figure C.69: Rover translational velocities vs time (side-slope 10°), for slip, i=0.
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II. 0.05 Slip
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Figure C.70: Chassis angles vs time (side-slope 10°), for slip, i=0.05.
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Figure C.71: Chassis angle rates vs time (side-slope 10°), for slip, i=0.05.
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Figure C.72: Walking beam pitch vs distance (side-slope 10°), for slip, i=0.05.
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Figure C.73: Walking beam pitch rates vs time (side-slope 10°), for slip, i=0.05.
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Figure C.74: Displacement vs time (side-slope 10°), for slip, i=0.05.
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I1I. 0.1 Slip
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Figure C.76: Chassis angles vs time (side-slope 10°), for slip, i=0.1.
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Figure C.77: Chassis angle rates vs time (side-slope 10°), for slip, i=0.1.
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Figure C.78: Walking beam pitch vs distance (side-slope 10°), for slip, i=0.1.
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Figure C.79: Walking beam pitch rates vs time (side-slope 10°), for slip, i=0.1.
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Figure C.80: Displacement vs time (side-slope 10°), for slip, i=0.1.
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Figure C.81: Rover translational velocities vs time (side-slope 10°), for slip, i=0.1.
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IV.  0.25 Slip

0.02 -

-0.04

Yaw
-0.08 |- Pitch
Roll

-01

Chassis Orientation Angles [RAD]

-0.14 |

-0.16

018 I I I I I I I )
0 10 20 30 40 50 60 70 80

Time [s]

Figure C.82: Chassis angles vs time (side-slope 10°), for slip, i=0.25.
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Figure C.83: Chassis angle rates vs time (side-slope 10°), for slip, i=0.25.
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Figure C.84: Walking beam pitch vs distance (side-slope 10°), for slip, i=0.25.
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Figure C.85: Walking beam pitch rates vs time (side-slope 10°), for slip, i=0.25.
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Figure C.86: Displacement vs time (side-slope 10°), for slip, i=0.25.
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V. 0.5 Slip
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Figure C.88: Chassis angles vs time (side-slope 10°), for slip, i=0.5.

0.14

012

0.1

0.06 |- Pitch

Chassis Angular Rates [RAD/s]

0.02 -

-0.02 I I I I I I I )
0 10 20 30 40 50 60 70 80

Time [s]

Figure C.89: Chassis angle rates vs time (side-slope 10°), for slip, i=0.5.
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Figure C.90: Walking beam pitch vs distance (side-slope 10°), for slip, i=0.5.
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Figure C.91: Walking beam pitch rates vs time (side-slope 10°), for slip, i=0.5.
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Figure C.92: Displacement vs time (side-slope 10°), for slip, i=0.5.
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Figure C.93: Rover translational velocities vs time (side-slope 10°), for slip, i=0.5.
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Case 4: Sinusoidal Terrain

Sine function: z=0.4sin(0.4x)
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Figure C.95: Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.

Figure C.94: Chassis angles vs time (sinusoidal terrain), for slip, i=0.
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Figure C.96: Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.
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Figure C.97: Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.
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Figure C.98: Displacement vs time (sinusoidal terrain), for slip, i=0.
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Figure C.99: Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.
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II. 0.05 Slip
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Figure C.100: Chassis angles vs time (sinusoidal terrain), for slip, i=0.05.

0.14

0.1

0.08 -

Yaw
0.06 - Pitch

Roll

Chassis Angular Rates [RAD/s]

0.02 -

0.02 | | | | | | | )
0 10 20 30 40 50 60 70 80
Time [s]

Figure C.101: Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.05.
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Figure C.102: Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.05.
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Figure C.103: Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.05.
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Figure C.104: Displacement vs time (sinusoidal terrain), for slip, i=0.05.
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Figure C.105: Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.05.
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I1I. 0.1 Slip
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Figure C.106: Chassis angles vs time (sinusoidal terrain), for slip, i=0.1.
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Figure C.107: Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.1.
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Figure C.108: Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.1.
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Figure C.109: Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.1.
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Figure C.110: Displacement vs time (sinusoidal terrain), for slip, i=0.1.
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Figure C.111: Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.1.
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IV.  0.25 Slip
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Figure C.112: Chassis angles vs time (sinusoidal terrain), for slip, i=0.25.
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Figure C.113: Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.25.
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Figure C.114: Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.25.
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Figure C.115: Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.25.
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Figure C.116: Displacement vs time (sinusoidal terrain), for slip, i=0.25.
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Figure C.117: Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.25.
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V. 0.5 Slip
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Figure C.118: Chassis angles vs time (sinusoidal terrain), for slip, i=0.5.
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Figure C.119: Chassis angle rates vs time (sinusoidal terrain), for slip, i=0.5.
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Figure C.120: Walking beam pitch vs distance (sinusoidal terrain), for slip, i=0.5.
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Figure C.121: Walking beam pitch rates vs time (sinusoidal terrain), for slip, i=0.5.
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Figure C.122: Displacement vs time (sinusoidal terrain), for slip, i=0.5.
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Figure C.123: Rover translational velocities vs time (sinusoidal terrain), for slip, i=0.5.
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C.8 Additional Results — 3D Velocity Kinematic Analysis

A sample calculation for each percent deviation table is detailed below.

l. Percent deviation of rover velocities with respect to the flat case.
Using inclined (10°) terrain at 0.05 slip.
Velocity analysis produces rover velocities for inclined terrain at 0.05 slip of:

m
Vi =0.1122—

m
V, =0.0418 —
s
The corresponding flat terrain rover velocity at 0.05 slip is:
m
Vx,flat = 01195?

For comparison with the flat case, the resultant velocity for the inclined terrain
1s

V. =J(WVZ +V2)
- \/(0.1122?) 2 4 (0.0418?) 2

m
=0.1197 —
s

Comparing with the rover velocity for flat terrain with 0.05 slip, yields

V.=V,
T x,flat "

%Dev = 100

x,flat

0.1197% —~0.1195 %
= * 100
0.1195%

= 0.20%
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1. Percent deviation of rover axle velocities with respect to the flat case.
Using inclined (10°) terrain at 0.05 slip.

Velocity analysis produces rover axle velocities for inclined terrain at 0.05
slip of:

m
Viarie = 0.0936—

m
Vsaxte = 0.0165—

The corresponding flat terrain rover velocity at 0.05 slip is:
m
Vx,flat axle = 0-0950?

For comparison with the flat case, the resultant velocity for the inclined terrain
is

Vr,axle = \/(sz,axle + sz,axle)
_ m, m,
- J(0.0936 S) + (0.0165 S)

m
= 0.09504?

Comparing with the rover velocity for flat terrain with 0.05 slip, yields

Vr,axle x,flat axle

%Dev = * 100

Vx,flat axle

0.09504 7 — 0.0950 2
= S 54100
0.0950

= 0.05%
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Percent deviation of rover displacement with respect to the flat case.
Using inclined (10°) terrain at 0.05 slip.

Velocity analysis produces rover displacement for inclined terrain at 0.05 slip
of:

X =6.8439m

Z =1.2000m

The corresponding flat terrain rover displacement at 0.05 slip is:

Xfiq¢ = 6.9494 m

For comparison with the flat case, the resultant velocity for the inclined terrain
is
D, = (X?+Z?)

= /(6.8439m) 2 + (1.2000 m) 2

=6.9483m

Comparing with the rover velocity for flat terrain with 0.05 slip, yields

D, —X
T flat*

%Dev = 100

flat

_ 6.9483m — 6.9494 m
N 6.9494 m

* 100

= —0.020%
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Percent deviation of rover velocity from expected/commanded velocity.

For flat terrain (i = 0):
Vi flat = 0.1245E
S

Commanded velocity:
wr =0.1000 m/s

Percent Deviation:

%Dev = 24.5%
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C.9 Sample Terrain Maps

Sample terrain maps are attached for each of the four basic terrain cases for a
value of no-slip. It should be noted that to generate the maps for other slip values, one
simply updates the value in the slip column at the appropriate locations for the given
terrain. Also, these terrain maps include extra columns where the expected values were

manually determined and inserted as a means for checking the first simulations.
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Appendix D - Dynamic Analysis and Data

This appendix contains the La Grange formulation along with additional results from

preliminary analysis.
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D.1  La Grange Formulation

The dynamics of the rover are developed in terms of the position and time

derivatives of its joint angles as [65] illustrated by Equation 5.1 in its torque form.

T=JT(q) [Mx(@X + Vx(q,q) + Gx(q)] (5.1)

Examination of Equation 5.1 reveals the different components of a dynamic analysis,
with JT(g) being the transpose of the Jacobian, which is dependent on the joint
displacements and displacement rates, given here as q and §. My (q) represents the mass
matrix with respect to the x coordinate in the world frame and is multiplied by the
acceleration column vector, X. The Coriolis and centrifugal effects are jointly represented
by Vx(q, ¢), whereas the contributions from gravity are given by Gy(q). However, it can
also be used in the expanded version as Equation 5.2, with specific matrices for the

Coriolis and Centrifugal coefficients, given by Byx(q) and Cx(q), respectively.

=" @QU @M@ @IX + Bx(@ld 4] + C(@[4)* + 6@ (5.2)

The two new vectors, [¢ ] and [¢]? are vectors of joint velocity products and joint

velocity, and are defined as follows:

[CI Q]Z[%QZ 4293 - Qn—l%] (5.3)

342



[91* =l4f 4 - 4zl (5:4)

The dynamic torque equation can be derived using either the La Grange or
Newton-Euler method from which the above equations are formed by grouping the
derived terms (ie. group the acceleration terms, group the displacement terms, etc). The
La Grange method, as the name implies, requires that the Lagrangian of the system be
determined and is often referred to as an energy method [67], the Lagrangian being the
difference between the kinetic and potential energy of the system. Not only is this method
built around the concept of energy, it is also advantageous since the inertia parameters
have linearity, along with skew symmetry and passivity characteristics exhibited by the
inertia matrix [67]. These features make this method more suited for application in
feedback control, if one desires to take the work in that direction. It also allows for
deformation to be modeled in this approach. The Newton-Euler method, on the other
hand, has its basis in Newton’s 2" law and, as such the formulation is compiled through
the forces and moments which dynamically describe the system. Unlike the La Grange
method, the links in the Newton-Euler method are all individually analysed for force and
torque balance, from which the resulting equations must be recursively solved. This
involves first determining joint poses, initial velocities and accelerations which enable the
forces and moments to be computed from the resulting angular velocity and accelerations

plus the linear acceleration.

For the work presented in this thesis, the La Grange method was selected for its

advantages and considering the complexity of the system (rover) to be analysed.
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Additionally, the La Grange method is more flexible in allowing the user to choose the
generalised coordinates and doesn’t require all the constraint forces to be accounted for,
which is especially convenient when the problem has a multitude of constraints [67]. As

such, it tends to be more commonly used in multibody dynamic platforms.

In applying the La Grange method, the equation for torque becomes that of
Equation 5.5, wherein the torque can be computed as the difference of the time derivative
of the partial derivative of the Lagrangian with respect to joint velocity rates and the

partial derivative of the Lagrangian with respect to joint displacements.

L dt \dq; aq; )

As shown by Equation 5.5, to obtain the desired equation for torque, the Lagrangian must
be computed. It can also be observed that to obtain Equation 5.5, it is required to have the
complete pose (joint displacements) along with the joint rates from an earlier kinematic
analysis. For this work, both of those were derived and computed in Chapter 4. The next
piece to compute is that of the Lagrangian, for which the formula is given by Equation

5.6.

L =Y}.(K - P) (5.6)
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Equation 5.6 confirms the definition of the Lagrangian as the sum of the differences in
kinetic (K) and potential energy (P) as one goes through the kinematic pairs of the

system.

Beginning with the potential energy term, P, it can be defined in Equation 5.7.

P; =m;gz; (5.7)

Following the standard definition, potential energy is dependent on the vertical

displacement, z, experienced by an object of weight m;g. Note that the displacement

variable depends upon the chosen world coordinate frame definition — whichever
direction corresponds to the vertical displacement is chosen and care is taken to note the
direction of gravity. For the system presented in Chapter 4, the component will remain to
be z with the datum at the world origin frame. These z components were found by
concatenating the homogeneous transform (T) matrices from the world reference frame to
each particular link, and extracting the cell [3, 4] from the resultant matrix. For example,
to obtain the z component of the chassis centre, the concatenation of matrices is as

follows in Equation 5.8.

TY = Ty TPTIT2T TS TS (5.8)
—CPySPpCPr —SPySPr CPyCPp  —CPy SPy SPyr + SPyCPy Xtrans
—SPy SPHCPy + CPy S Py SPyCPy  —SPySPp SPr — CPyCPy Ytrans
—CPpCPy —SPp —CPp S Py Ztrans + hCoG
0 0 0 1
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All symbolic multiplication was performed in Maple. Following the procedure mentioned
above, the z component for the chassis centre is extracted as cell [3, 4] from Equation 5.8

and yields Equation 5.9.

Zchas = Ztrans + hCoG (59)

Therefore, the potential energy is

Popgs = mchasg(ztrans + hCoG) (5.10)

Having generated the kinematic models, the required z components and subsequent

potential energy terms are fairly easily obtained.

Next, the kinetic energy of each link is determined. Similar to the potential

energy, it follows the basic definition as Equation 5.11 [67].

1 - - 1 . . .
K; = Emj(v1 - 1,)?% = Emj(sz + yjz + ij) (5.11)

With Equation 5.11, mass is easily determined, with the velocity components of the end
effector obtained from velocity Jacobians or computing the derivative of the position

equations. Although Equation 5.11 appears in the majority of textbooks and sample
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problems, its popularity is due to the majority of problems applied being those that can be
treated as a point mass. While Equation 5.11 is applicable to simple mechanisms (ie.
pendulums), one cannot justify applying it to a large four-wheel rover, where the inertia
will have an impact on the motion of the system. As such, the kinetic energy equation is

modified to account for inertia, as detailed in Equation 5.12.

K =247 S myl (@) (@) + 5 ;@R LRT (@), (D] (5.12)

1. .
K =34 D(q)q

D(q) is also referred to as the inertia matrix. Attempts were made to obtain the kinetic
energy terms, however the complexity of the rover meant that many assumptions were
made to grossly simplify it, but the terms still were difficult to obtain. After some
investigation, it was decided to drop this line of pursuit due to the level of effort required,
and because the solution obtained would not be accurate. This rationale is why most
companies opt to use some form of multibody software because it’s not only accurate, but
easier to use. Based upon recommendations, it was decided to use a different approach to
generate a dynamic model. The decision made was to use SimMechanics as described in
the next section; however, it is still important to go through La Grange derivation of the
dynamic equation, as this is still applicable as the basis of the multibody physics

platforms.
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D.2 Additional Terramechanics Runs and Simulation Results

It should be noted that prior to running the single wheel terramechanics model of Irani et

al [37], the model was run for the different cases and modifications using the original

model parameters, to serve as a guideline for the trends and expected results.

D.1.1 Unmodified Terramechanics Model Results

Case: Single Wheel Mass (15 ke)

FxN]

Fy [Nl

Fz[N)

Si

Torque [Nm]
: 5

Figure D.1: Unmodified terramechanics single wheel model results for i =0.003.
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Figure D.2: Unmodified terramechanics single wheel model results for i =0.05.
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Figure D.3: Unmodified terramechanics single wheel model results for i =0.1.
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Figure D.4: Unmodified terramechanics single wheel model results for i =0.25.
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Figure D.5: Unmodified terramechanics single wheel model results for i =0.5
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Case: Single Wheel with Y4 Rover Mass (~115 ko)
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Figure D.6: Unmodified terramechanics single wheel model results for i =0.003.
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Figure D.7: Unmodified terramechanics single wheel model results for i =0.05.
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Figure D.9: Unmodified terramechanics single wheel model results for i =0.25.
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Figure D.10: Unmodified terramechanics single wheel model results for i =0.5
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D.1.2 Modified Terramechanics Model Results

Case: Single Wheel Mass (15 kg)
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Figure D.11: Modified terramechanics single wheel model results for i =0.003.
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Figure D.12: Modified terramechanics single wheel model results for i =0.05.
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Figure D.13: Modified terramechanics single wheel model results for i =0.1.
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Figure D.14: Modified terramechanics single wheel model results for i =0.25.
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Figure D.15: Modified terramechanics single wheel model results for i =0.5

Case: Single Wheel with ¥4 Rover Mass (~115 kg)
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Figure D.16: Modified terramechanics single wheel model results for i =0.003.
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Figure D.17: Modified terramechanics single wheel model results for i =0.05.

1500
ol \ i
B
W sge A =
| 1
o L 2 3 s ® 7
'
T T T
05— .|
=4
as- —
. I I
0 E 2 3 A s ® 7

0 1 2 3 4 0 g v
° T T
oo~ \
E b
g0~ —— i
£
= 4
| |
0 1 2 3 5 ® 7
s T
E600 K\
= N
i — . -
¥ —
P —
I I
0 1 z 3 4 5 [3 7
Tme [s]

Figure D.18: Modified terramechanics single wheel model results for i =0.1.
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Figure D.19: Modified terramechanics single wheel model results for i =0.25.
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Figure D.20: Modified terramechanics single wheel model results for i =0.5
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