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ABSTRACT
Conventional training simulators commonly use the hexapod configuration to provide motion cues. While
widely used, studies have shown that hexapods are incapable of producing the range of motion required to
achieve high fidelity simulation required in many applications. Atlas is a six degree of freedom vehicle op-
erating training simulator motion platform where orienting is decoupled from positioning, and unbounded
rotation is possible about any axis. Angular displacements are achieved by manipulating the cockpit con-
tained in a 2.9 metre (9.5 foot) diameter sphere with three Mecanum wheel actuators. The angular velocity
Jacobian, Jω, maps the desired angular velocity of the sphere to the required speeds of the three Mecanum
wheels, while the static force Jacobian, Jτ , maps the static moment vector required to statically orient the
sphere to the static torques required by the three Mecanum wheels. In this paper, the two Jacobians are
derived independently, and it is confirmed that Jω = JTτ , as it must. The implications on the required normal
forces at the interface between the sphere and three Mecanum wheel contact patches are discussed.

Keywords: unbounded angular displacement; velocity and static force Jacobians; normal forces.

MATRICE JACOBIENNE DES ROUES MECANUM SIMULATOUR DE MOUVEMENT ATLAS
DANS LES DOMAINES DE FORCE DE VITESSE ET STATIQUE

RÉSUMÉ
Les simulateurs d’entraînement conventionnels utilisent souvent la configuration hexapode pour générer une
perception de mouvement. Bien que largement utilisés, des études montrent que les robots hexapodes sont
incapables de produire l’amplitude de mouvement nécessaire pour atteindre le niveau de fidélité requis dans
plusieurs applications de simulation. Atlas est un véhicule à six degrés de liberté qui utilise une plateforme
de mouvement d’entraînement simulé où l’orientation de la platforme est découplée de son positionnement
et où des rotations illimitées sont possibles sur tous les axes. Les déplacements angulaires sont obtenus en
manipulant la cabine de pilotage, qui est contenue dans une sphère de 2.9 mètres (9.5 pieds) de diamètre, à
l’aide de trois actionneurs en forme de roues mecanum. La matrice jacobienne associée à la vitesse angulaire,
Jω, transforme la vitesse angulaire désirée de la sphère aux vitesses requises des trois roues mecanum. La
matrice jacobienne associée aux efforts statiques, Jτ , pour sa part, transforme le vecteur du couple statique
requis pour maintenir la sphère dans une orientation donnée aux couples statiques correspondants fournis par
les trois roues mecanum. Dans cet article, les deux matrices jacobiennes sont développées indépendamment
l’une de l’autre et il est démontré que, tel que prévu, Jω = JTτ . Les répercussions sur les forces normales
requises à l’interface entre la sphère et les surfaces de contact des trois roues mecanum sont discutées.

Mots-clés : déplacement angulaire illimité; matrice jacobienne de vitesse et de forces statique; forces
normales.
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1. INTRODUCTION

Research has been conducted suggesting appropriate minimum levels of motion required for achieving dif-
ferent levels of training fidelity [1]. However, it is widely accepted that the availability of larger ranges of
motion, over what is commonly available with conventional hexapod-based simulators, may provide op-
portunities for improvements in the immersivity of resulting simulations through less aggressive washout
filtering. The challenge with conventional Gough–Stewart platform hexapods, that are most often used for
land, sea, and air vehicle simulation, is that the six actuator motions and resulting six degree-of-freedom
platform motions are all very tightly coupled. As a result, the platform workspaces are generally small rel-
ative to the overall platform size, have intricate shape, and are subject to numerous singularities. Further,
greater range of angular motion than the typical 20-50 degrees afforded by Gough–Stewart platforms pro-
vides improved capability for continuity of motion in directions (such as yaw) in which washout is known
to be marginally effective.

Relatively few motion simulators are available that are designed to provide large ranges of both transla-
tional and rotational motion. Three existing large motion simulator facilities are Desdemona [2], Eclipse
II [3], and CyberMotion [4]. An alternative novel motion platform concept called Atlas [5] has also been
developed within the Carleton University Simulator Project (CUSP) [6]. CUSP is one of several capstone
design projects run within the Department of Mechanical and Aerospace Engineering at Carleton Univer-
sity. It began in 2002, and since that time has been incrementally developing the Atlas simulator. Figure 1
illustrates the current detail design, and production of a full scale prototype is well underway. Atlas con-
sists of a spherical capsule in which the trainee or equipment under test is placed. The capsule partially
rests on a series of three omni-wheels (alternatively referred to as omni-directional wheels) or Mecanum
wheels1 symmetrically arranged on one side of the equator of the spherical capsule. Actively controlling
the angular speed of each of the three wheels allows the sphere to be rotated in an unbounded manner about
a continuously-variable axis of rotation at continuously-variable angular speed. Alternatively stated, the
sphere (capsule) has an unbounded orientation workspace. This rotational stage is mounted on a hexapod,
used as a translational stage using only its three linear degrees of freedom.

The benefits of this arrangement are that it provides unbounded rotational motion of the spherical capsule,
translational motion is bounded only by the designer-controlled limitations of the translational stage, and the
entire workspace is singularity free and dexterous meaning that any configuration within the bounds of the
motion envelope can be easily achieved. Also, rotational motions are decoupled from translational motions
thereby not limiting motions due to coupling during operation.

1.1. Atlas Translational Actuation
Due to the prohibitive cost of an adequately sized gantry system to provide the translations, a Moog MB-
EP-6DOF 2800KG Gough–Stewart hexapod has been acquired for the purpose. The platform has a payload
capacity of 2800 kilograms, and the estimated total weight of the upper Atlas platform is less than 1400 kilo-
grams. This component has been purchased and installed in the Atlas lab. While Gough–Stewart hexapods
are capable of providing both translational and rotational actuation, the Atlas platform will decouple the
translational and rotational actuation by using the hexapod for purely translational displacements.

1.2. Atlas Rotational Actuation
Three active Mecanum wheels are used to change the sphere orientation. These wheels offer suitable load-
carrying capacity and can provide omnidirectional rotation of the sphere while introducing negligible vi-
bration. Developing Mecanum wheels in-house allowed the weight to be reduced by half and the cost to

1Mecanum wheels are similar to omni-wheels except that the castor axles are rotated 45 degrees relative to the circumferential
direction of the wheels.
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Fig. 1. Atlas motion platform.
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be reduced by two thirds compared to commercially-available wheels. It also allowed for control over the
characteristics of the interface between the Mecanum wheels and the sphere surface. Urethane roller ma-
terial and finish has been selected to provide a contact patch of 1290 square millimetres (2 square inches),
approximately,2 and a minimum coefficient of friction of 0.6. Moreover, the roller profiles are elliptical
thereby enhancing the transition between rollers as the Mecanum wheel rotates, further reducing vibration.

In addition to the active Mecanum wheels, two rings of smaller passive Mecanum wheels, each containing
12 passive wheels, will be used to help constrain translation of the sphere relative to the support structure,
and to ensure sufficient normal force at the contact patch of the driven wheels to prevent slip in the driving
direction, see Fig. 1. Production of both passive and active wheels is currently ongoing.

2. OBJECTIVES

The main objectives of the work presented in this paper are to establish the relations between desired sphere
angular velocities and the corresponding Mecanum wheel speeds required, as well as the relations between
a desired sphere orientation and the corresponding static torques required. These relations are conveniently
expressed in the form of a Jacobian. It is, by definition, a mapping between time rates of change. By
convention, for velocity-level serial robot kinematics it is the mapping between the time rates of change of
the joint variables to the time rates of change of the position and orientation of the end effector [7, 8]. The
transpose of the velocity-level Jacobian is the same as the mapping of the static forces acting at the end
effector into equivalent joint torques [7, 8].

At first glance, the Atlas motion platform kinematic architecture appears to be parallel. However, the
motion control strategy decouples orientation from translation of the sphere centre: orientation of the sphere
is controlled by three linearly independent Mecanum wheel actuators; translation is controlled using only
the three linear degrees of freedom of the hexapod. Hence, the angular velocity Jacobian maps the linearly-
independent angular rates of the three active wheels to the three linearly-independent components of the
sphere angular velocity vector. The Jacobian formulation for specific parallel kinematic architectures pre-
sented in [8], for example, is not required. It is additionally important to note that both active and passive
Mecanum wheel design has included attention to rolling resistance and friction. It is expected that the fric-
tion forces will be negligible compared to the orientation actuation forces, and therefore are not modelled.
The degree to which this is true will be investigated empirically when the first full-scale prototype is in
operation. This is the case for a half-scale prototype already in operation for technology development and
demonstration.

The velocity level Jacobian for spheres manipulated using omni-wheels was presented in [9]. However,
the geometry for the rollers on Mecanum wheels is different, and additional kinematic parameters must
be accounted for. Hence, in this paper the Jacobian will be derived in two independent ways. First, the
Jacobian used to compute the magnitude and direction of the torque created in rotating the sphere based on
the torque applied to the Mecanum wheels, Jτ , will be derived. Next, a Jacobian will be derived for mapping
the desired angular velocity of the sphere to the required angular rates of the mecanum wheels, Jω. This
derivation is intended to serve as a verification of the previous one, since it must be that Jω = JTτ , thereby
providing concomitant evidence that the Jacobian is indeed valid.

3. STATIC FORCE–TORQUE JACOBIAN

In this section the Jacobian to be used to determine the magnitude and direction of the torque created by
rotating the sphere, based on the torque applied to the Mecanum wheels, is derived. Required variables are

2Please note that the use of dual metric and Imperial dimensioning reflects the reality of design in Canada: the standard is metric;
however, many stock components are sized in Imperial units.
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Fig. 2. Configuration of three driven wheels for Atlas.

defined in Fig. 2. The total torque M created by the Mecanum wheels acting on the sphere is given by

M=
[
MX MY MZ

]T
, (1)

where Mi are the torque components expressed in the inertial xyz coordinate system. Position vectors of
the idealized Mecanum wheel contact points Ai relative to the centre of the sphere G are given by

RAi/G = R
[
CφiCθi SφiCθi Sθi

]T
. (2)

where R is the sphere radius, φi is the counterclockwise rotation of wheel i about the Z axis measured
relative to the X axis, and S and C are abbreviations for sine and cosine respectively. The torque vector
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Fig. 3. Mecanum wheel roller forces.

generated by each wheel is defined as τ i , with the Mecanum wheel having the following radial vector of
point Ai relative to point Bi, the centre of the respective Mecanum wheel, opposite in direction to RAi/G, or
equivalent to

rAi/Bi = r
[
−CφiCθi −SφiCθi −Sθi

]T
, (3)

where r is the radius of the mecanum wheel. The Mecanum wheels have tractive force vectors along the
roller axes that are given by

FAi = FAi

[
−CφiSγiSθi−SφiCγi −SφiSγiSθi+CφiCγi SγiCθi

]T
, (4)

where γi is the angle of the Mecanum wheel roller axis relative to the plane of the wheel, and

FAi =
τi

rCγi
, (5)

as shown in Fig. 3. The contribution of the force FAi to the overall torque applied to the sphere is then
calculated as follows:

Mi = RAi/G×FAi =
τiR

rCγi

[
−CφiCγiSθi+SφiSγi −SφiCγiSθi−CφiSγi CγiCθi

]T
. (6)

Summing the three sphere torque vectors together results in the total torque applied to the sphere

M=
∑

Mi =M1+M2+M3. (7)

where

M=
R

r


−Cφ1Sθ1+Sφ1T γ1 −Cφ2Sθ2+Sφ2T γ2 −Cφ3Sθ3+Sφ3T γ3

−Sφ1Sθ1−Cφ1T γ1 −Sφ2Sθ2−Cφ2T γ2 −Sφ3Sθ3−Cφ3T γ3

Cθ1 Cθ2 Cθ3

τ , (8)

τ represents the magnitudes for the three Mecanum wheel torques, and T is the abbreviation for tangent.3

This expression defines the Jacobian Jτ between driven wheel torque and sphere activation torque

M= Jττ , (9)

3Note that in this case T−1 is referring to the cotangent as opposed to the arctangent.
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Fig. 4. Schematic of Mecanum wheel velocity vectors.

where the Jacobian is given by

Jτ =
R

r


−Cφ1Sθ1+Sφ1T γ1 −Cφ2Sθ2+Sφ2T γ2 −Cφ3Sθ3+Sφ3T γ3

−Sφ1Sθ1−Cφ1T γ1 −Sφ2Sθ2−Cφ2T γ2 −Sφ3Sθ3−Cφ3T γ3

Cθ1 Cθ2 Cθ3

 . (10)

4. ANGULAR VELOCITY JACOBIAN

As a means of verifying the results of Section 3, a Jacobian was derived for mapping the angular rates of the
wheels to the angular velocity of the Atlas sphere. First, let the sphere have the following angular velocity
about the centre of the sphere G,

�=
[
�X �Y �Z

]T
, (11)

each Mecanum wheel having an angular velocity given by

ωi =

ωiXωiY
ωiZ

= ωi
CφiSθiSφiSθi
−Cθi

 . (12)

Each Mecanum wheel will have a unit vector along the roller axis, shown in Fig. 4, that has the following
form:

r̂dui =

−CφiSγiSθi−SφiCγi−SφiSγiSθi+CφiCγi
SγiCθi

 . (13)

The kinematics at point Ai can now be evaluated with respect to both the sphere and the Mecanum wheel
i. The velocity of point Ai on the sphere side of the Mecanum wheel/sphere interface is

VAi =�×RAi/G = R

 �YSθi−�ZSφiCθi
�ZCφiCθi−�XSθi

�xSφiCθi−�YCφiCθi

 , (14)

while the velocity of point Ai on the Mecanum wheel side of the Mecanum wheel/sphere interface is a result
of the wheel rotating about the wheel axis

vAi = ωi× rAi/Bi = ωir

−SφiCφi
0

 . (15)
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From Fig. 4, VAi is the vector sum of vAi and vri , which is the velocity vector of the Mecanum wheel roller.
Furthermore, assuming no slip, VAi and vAi must create the same projection, which gives the following
result:

VAi · r̂dui = vAi · r̂dui , (16)

where the left-hand side is

VAi · r̂dui = R

 SφiSγi−CφiSθiCγi
−CφiSγi−SφiSθiCγi

CθiCγi

T �X�Y
�Z

 , (17)

and the right-hand side is
vAi · r̂dui = ωirCγi . (18)

Equating these two results and solving for the signed magnitude of the angular velocity for Mecanum wheel
i results in

ωi =
R

r

 SφiT γi−CφiSθi
−CφiT γi−SφiSθi

Cθi

T �X�Y
�Z

 . (19)

Gathering the set of linear equations for all three driven Mecanum wheels on Atlas results in the following
equation: ω1

ω2

ω3

= R
r

Sφ1T γ1−Cφ1Sθ1 −Cφ1T γ1−Sφ1Sθ1 Cθ1

Sφ2T γ2−Cφ2Sθ2 −Cφ2T γ2−Sφ2Sθ2 Cθ2

Sφ3T γ3−Cφ3Sθ3 −Cφ3T γ3−Sφ3Sθ3 Cθ3

�X�Y
�Z

 . (20)

The relationship between the magnitudes of the angular velocities of the Mecanum wheels and the angular
velocity of the sphere can be summarized by the following equation:

ω = Jω�, (21)

where ω represents the magnitudes of the angular velocities of the Mecanum wheels, and the corresponding
Jacobian is defined as

Jω =
R

r

Sφ1T γ1−Cφ1Sθ1 −Cφ1T γ1−Sφ1Sθ1 Cθ1

Sφ2T γ2−Cφ2Sθ2 −Cφ2T γ2−Sφ2Sθ2 Cθ2

Sφ3T γ3−Cφ3Sθ3 −Cφ3T γ3−Sφ3Sθ3 Cθ3

 . (22)

At this point it can be observed that
Jω = JTτ , (23)

which is as expected.

5. ATLAS TORQUE ANALYSIS

Having now derived a Jacobian for torques and another Jacobian for angular velocities, the following sec-
tions describe how the Atlas dynamic model can be used in sizing the motors for driving the Mecanum
wheels as well as determining the normal force that the driven wheels must apply to the sphere in order to
maintain sufficient traction.
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5.1. Sphere Torque
The first step in determining the maximum wheel torque is to determine the maximum torque that must be
applied to the sphere during operation. The sphere torque is found using the generalized moment balance
equation

M= Isα+�× Is�. (24)

where Is is the mass moment of inertia matrix of the Atlas sphere with respect to its geometric centre, and
the vectors α and � are found using user-defined magnitudes as follows:

α = |α|
[
SθαCφα SθαSφα Cθα

]T
. (25)

�= |�|
[
Sθ�Cφ� Sθ�Sφ� Cθ�

]T
. (26)

where θi and φi represent similar angles to those representing wheel position in Fig. 2, and are all indepen-
dent. The process involves iterating Eq. (24) through different values of θα, φα, θ� and φ� between –180
degrees and +180 degrees. The maximum norm of M is taken to be the maximum torque experienced by
the sphere.

5.2. Wheel Torque
The process to determine the maximum wheel torque is similar to the process for finding the sphere torque.
Iteration is performed for different directions for the sphere torque vector

M= |M|
[
SθMCφM SθMSφM CθM

]T
. (27)

The torque applied in the driving direction of each wheel is then found using Eq. (8) found in Section 3.
Iteration of Eq. (8) is performed for different values of θM and φM between -180 degrees and +180 degrees
and the maximum wheel torque τ is taken to be the maximum component of τ encountered after all the
iterations, because each element of τ is the signed magnitude of the input torque supplied by each of the
three Mecanum wheels.

5.3. Normal Force
The offset angle of the Mecanum wheel roller results in a similar offset between the force caused by the
wheel torque and the resultant force along the roller axis. The maximum tangential force will be the result
of the maximum wheel torque, and can be calculated as follows:

Ft =
τ

rCγ
. (28)

which was previously defined in Section 3. To effectively turn the sphere, this tangential force must be less
than the force required to overcome friction. This gives the following relation for the normal force:

N ≥
Ft

µ
=

τ

rµCγ
. (29)

where µ is the friction coefficient.

6. APPLICATION

The Atlas motion platform will be constructed with a 2.9 metre (9.5 foot) external diameter sphere and
three 381 millimetre (15 inch) diameter Mecanum wheels. The design calls for the wheels to be positioned
45 degrees below the sphere equator, and the wheels are to be separated by 120 degrees around the z axis,
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Fig. 5. Required applied wheel normal force for different directions of maximum sphere torque.

with the x axis oriented such that it is aligned with the first wheel. Given these parameters, the static
force-torque Jacobian is evaluated as

Jτ =


5.374 3.895 −9.269

−7.600 8.454 −0.854

5.374 5.374 5.374

 . (30)

In the final stages of development, the fully-loaded Atlas sphere had inertia estimated as

Is =

941.129 0.477 0.061
0.477 864.456 43.457
0.061 43.457 918.303

kg ·m2, (31)

with intentions of achieving a maximum angular acceleration of α = 350 degrees per second squared and a
maximum angular velocity of ω = 35 degrees per second. Applying the techniques from Section 5 to these
parameters, it was determined that the sphere would be expected to require a maximum torque of close to
5200 Newton metres, with the wheels required to apply a maximum torque of roughly 540 Newton metres
under an applied normal force of approximately 6700 Newtons. The results of the analysis are further shown
in Fig. 5 which emphasizes the requirement for applying the analysis to different directions, as application of
the maximum required sphere torque in the wrong direction would result in underestimating the maximum
required wheel torques and forces by nearly 50 percent.

7. CONCLUSIONS

In this paper, novel generalized kinematic and static force models for the Atlas spherical platform, actuated
with Mecanum wheels, has been presented. The model was first formulated at the static force level leading
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to an expression for Jτ , and verified by the model formulated at the velocity level, leading to Jω. The
results confirm that Jω = JTτ , as it must. This paper further described how the kinematic and static force
models are required for accurate control of the rotational actuation for the Atlas platform, as well as being
essential in determining the mechanical requirements of the actuation system. This analysis was applied to
the design specifications for the platform, with the results demonstrating the need for the rigorous steps that
were suggested for the analysis.
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