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Introduction

Objective:

“The theory of machines and mechanisms is an applied science which is used to
understand the relationship between the geometry and motions of the parts of
a machine or mechanism and the forces which produce these motions”

Uicker, Pennock, and Shigley, Theory of Machines and Mechanisms, 5th edition,
Oxford, 2017.
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Evaluation:

All quizzes and Labs must be performed in your registered Lab Section

Homework problems assigned weekly on Brightspace 0%

Math quiz online 5%
Opens Friday, September 22, 8:30 am
Closes Monday, September 25, 12:00 pm

Two course content quizzes:
1. Week of October 16-20, Vibration 10%
2. Week November 27 - December 1, Kinematics 10%
Quizzes will take place in Lab (PA Session)

Lab 1: vibration experiments, in Lab (PA Session) October 2-6 10%
Report due online, Friday October 20, 12:00 pm

Lab 2: kinematics, in Lab (PA Session) October 30 - November 3 10%
Report due online, Friday December 1, 12:00 pm, and
5 minute presentation in Lab (PA session) November 13-17

Final Exam, Exam Period December 10-22, 2023 55%

Total 100%
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Mass, Damper, Coil Spring



Introduction Vibration Undamped Systems Free Vibration with Viscous Damping

Vibration

• Vibration refers to the periodic
motion of a mechanical system of
connected bodies about the
system’s equilibrium position.

• The frequency at which a
mechanical system vibrates when
displaced from it’s equilibrium
position and the released is called
natural frequency.

• All mechanical systems contain
some inherent property that
dissipates energy, referred to as
damping.

• The magnitude of the damping has
no effect on the natural frequency.

m

k
Static equilibrium
reference datum

x(+)



Introduction Vibration Undamped Systems Free Vibration with Viscous Damping

Vibration

Vibrations

Forced Vibrations

Motion is caused by an
external force

Damped Undamped

Free Vibrations

Motion is maintained by
gravity and elastic restoring

forces

Damped Undamped
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Vibration

• As we will see, a general
differential equation of motion for
a system of masses, elastic, and
damping elements is

ẍ + 2ζωnẋ + ω2
nx = 0 (1)

where
m

k

x(+)

Spring
(elastic element)

Dashpot
(damping element)

c

x = displacement of the mass from the static equilibrium position,

ẋ = velocity of the mass,

ẍ = acceleration of the mass,

ζ = the damping ratio,

ωn = the undamped natural circular frequency.

• The damping ratio ζ depends on the damping mechanism(s) and
mechanical system parameters such as mass and geometry.

• The natural circular frequency ωn depends on the mechanical system
parameters mass and stiffness.
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Basic Concepts

k

Static equilibrium
reference datum x(+)

Tension

F = 0

F = kx

Compression

F = kx

x

F Slope = 

F = kx

U

Spring Elements (Linear)

• The restoring force of a spring is
always directed towards the static
equilibrium position.

• Spring constant: k

[
N

m

]
• Force: F = kx [N]

• Work: U = 1
2
kx2 [Nm] or [J]

(work, strain, or potential energy)
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Static Deflection

m

k

x(+)

k

Static equilibrium
position (SEP)

st

k st

mg

l0

m

From the free-body diagram
Newton’s second law gives

mg − kδst = mẍ

At the static equilibrium position
x = 0 the force sum must be zero,
so that

mg − kδst = 0 ⇒ δst =
mg

k

and the equation of motion is

mẍ + kx = 0

which is generally written as

ẍ + ω2
nx = 0, where ωn =

√
k/m.
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Undamped Natural Frequency

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.Fig_8-2

• The undamped natural frequency fn can be approximated empirically, but
what is measured is the damped natural frequency fd , but fn ≈ fd and

fn =
ωn

2π
=

√
k/m

2π

[
rad/s

rad

]
=

[
cycles

s

]
= [Hz]

• The undamped natural period τn is

τn =
1

fn
=

2π

ωn
=

2π√
k/m

[
s

cycle

]
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Equivalent Springs

Springs in parallel

k

x(+)

F

3k2k1

• The springs in a mechanical system can be
in parallel, series, or in combination.

• When springs are in parallel, the
deformation of each spring is the same for
a given applied force.

• The reaction forces of the three springs are

F1 = k1x

F2 = k2x

F3 = k3x

• The sum of these three forces must be equal in magnitude to the applied
force, therefore

F = k1x + k2x + k3x = (k1 + k2 + k3)x = keqx

• For n springs in parallel the equivalent spring constant is

keq =
n∑

i=1

ki



Introduction Vibration Undamped Systems Free Vibration with Viscous Damping

Equivalent Springs

Springs in series

k1

k2

k3

F

x(+)

• When springs are in series, the force in each spring is the
same as the given applied force.

• The total deformation x of the springs is the sum of the
individual deformations.

• Thus, with

F = k1x1 = k2x2 = k3x3

and

x = x1 + x2 + x3

we find that

x = F

(
1

k1
+

1

k2
+

1

k3

)
• The equivalent spring constant for springs in series is

keq =
1∑n

i=1

1

ki

, or
1

keq
=

n∑
i=1

1

ki
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Equivalent Springs

Parallel and series
combination

F

k2k1

k3

k5k4

x(+)

• When springs are in combinations of series and parallel, a
general procedure for determining the equivalent stiffness
is to first determine keq for parallel combinations in the
mechanical system, and then combine them with the series
elements to obtain yet another keq.

• For the parallel/series combination in the figure, the
equivalent spring constant is

1

keq
=

1

k1 + k2
+

1

k4 + k5
+

1

k3
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Elastic Elements as Springs
Cantilevered Elastic Beams

Mg

k

x(+)

l/2 l/2

Mg

x(+)

E, I, A, m

m << M

actual system

δst =
Mg l3

48EI

model

δst =
Mg

k

k =
Mg

δst
=

48EI

l3

Elastic Bars

Mg

k

x(+)

E, A, m

m << M

Mg

x(+)

actual system

δst =
Mg l

AE

model

δst =
Mg

k

k =
Mg

δst
=

AE

l
δst [m]: static deflection
M [kg]: applied mass
m [kg]: beam mass
l [m]: cantilever length

E [Pa]: Young’s modulus of elasticity (σ/ϵ)
I [m4]: second moment of cross-section area
A [m2]: cross-section area
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Elastic Elements as Springs
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Elastic Elements as Springs
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Elastic Elements as Springs
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Elastic Elements as Springs
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Example 1.1
Given the hoisting drum that is mounted at the end of a rectangular
cross-section cantilever beam and carrying a steel wire cable, determine the keq
of the system. The cable length = l and the beam and cable have a Young’s
modulus = E.
For a cantilever beam:

δmax =
Wb3

3EI
⇒ kb =

W

δmax

kb =
3EI

b3
=

3E

b3

(
1

12
at3
)

=
Eat3

4b3

For a cable: kc =
AE

l
=
πd2E

4l

kb and kc are in series,

1

keq
=

1

kb
+

1

kc
=

4b3

Eat3
+

4l

πd2E

Therefore, keq =
E

4

(
πat3d2

πd2b3 + lat3

)
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Example 1.2

Consider the crane as shown.
Boom AB: uniform steel bar (E = 207× 109 Pa) with A2 = 2500 mm2

Cable FCBED: steel (E = 207× 109 Pa), A1 = 100 mm2

Effects of cable CBED: negligible

Determine keq in the vertical direction.
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Use equivalence of potential energy of the actual system and the model

l1
2 = 32 + 102 − 2(3)(10) cos 135o ⇒ l1 = 12.31 m

Also,

102 = (12.31)2 + 32 − 2(12.31)(3) cos θ ⇒ θ = 35.07o

k1 =
A1E1

l1
=

(100× 10−6 m2)(207× 109 N/m2)

12.31 m
= 1.68× 106 N/m

k2 =
A2E2

l2
=

(2500× 10−6 m2)(207× 109 N/m2)

10 m
= 5.175× 107 N/m
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U = Potential Energy of the system for displacement x in the vertical direction

35.07°

l1

l2

35.07°

x1

x

x =     sin( 35.07  )°x1

l1

l2

x

x =     sin( 45  )°x245°

45°

x2

Therefore,

U = 1
2
k1x1

2 + 1
2
k2x2

2 [Nm]

U = 1
2
(1.68× 106)(xsin35.07o)2 + 1

2
(5.175× 107)(xsin45o)2

Also for the model

U = 1
2
keqx

2

keq = 1.68× 106sin235.07o + 5.175× 107sin245o

keq = 26.43× 106 N/m
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Mass or Inertia Elements

Mass and inertia elements are rigid bodies that gain or lose kinetic energy.

• Combination of masses:

• several possible models can
exist

• appropriate model is often
determined by the purpose of
analysis

• equivalent mass, meq , is
determined by equating the
kinetic energy of the actual
system with the model

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New
Jersey, United States, 4th edition, 2004.
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Case 1: Translational masses (connected by a rigid massless bar)

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New Jersey, United States, 4th edition, 2004.

Kinetic energy of the system = T
[Nm]

T = 1
2
m1ẋ1

2 + 1
2
m2ẋ2

2 + 1
2
m3ẋ3

2

Assume we need meq at A; then

T = 1
2
meq ẋ1

2

Then

1
2
meq ẋ1

2 =

1
2
m1ẋ1

2 + 1
2
m2ẋ2

2 + 1
2
m3ẋ3

2

but ẋ2 =
l2
l1
ẋ1 and ẋ3 =

l3
l1
ẋ1

Therefore

meq = m1 + ( l2
l1
)2m2 + ( l3

l1
)2m3
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Case 2: Coupled translational and rotational masses

a) Equivalent translational mass: meq

The rotational mass moment of inertia
is I [Nm]

Actual system: T = 1
2
mẋ2 + 1

2
I θ̇2

Model: T = 1
2
meq ẋ

2

Therefore,

1

2
meq ẋ

2 =
1

2
mẋ2 +

1

2
I θ̇2

but θ̇ =
ẋ

R

Therefore,

meq = m +
I

R2

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New Jersey,
United States, 4th edition, 2004.
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b) Equivalent rotational mass
moment: I eq

Model: T = 1
2
I eq θ̇

2

Therefore,

1
2
I eq θ̇

2 = 1
2
mẋ2 + 1

2
I θ̇2

but ẋ = R θ̇

Therefore,

I eq = mR2 + I

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New
Jersey, United States, 4th edition, 2004.
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Damping Elements
Convert the vibrational energy into heat or sound in a gradual manner.

Damping Models

• Viscous Damping

• when vibrating in a fluid medium
the damping is scaled by the
velocity

• Fd = cv = cẋ

• The viscous damping coefficient

is c

[
Ns

m

]
• examples:

• fluid film between sliding
surfaces

• fluid flow around a piston in a
cylinder

• Coulomb or Dry Friction
Damping

• caused by kinetic friction, µ

• Fd = µmg : constant but
changes direction

m

k

x(+)

Spring
(elastic element)

Dashpot
(damping element)

c

k
m

N=-mgN=-mg

kx kx

x(+)

mgmg

mgmg

Direction of motion Direction of motion

m m
F F



Introduction Vibration Undamped Systems Free Vibration with Viscous Damping

• Hysteretic (Material or Solid) Damping

• due to energy absorbed/dissipated by deforming materials

• caused by friction between the sliding internal planes

• Hysteretic behavior of σ − ϵ

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New Jersey, United States, 4th edition, 2004.
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Undamped Systems

Direct Equilibrium Method

Newton’s 2nd Law states that the rate of change of momentum of any mass m
is equal to the resultant of the forces acting on it:

f⃗ (t) =
d

dt

(
m
dx⃗

dt

)
=

dm

dt

dx⃗

dt
+m

d2x⃗

dt2
(2)

Assuming constant mass, dm
dt

= 0. Therefore,

f⃗ (t) = m
d2x⃗

dt2
= mẍ(t) (3)

or

f⃗ (t)−m⃗̈x(t) = 0 (4)

Recall −m⃗̈x is the inertia force.
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d’Alembert’s Principle states that any mass m subjected to an acceleration
develops an inertia force proportional to its acceleration and opposing the
acceleration.

F (t)−mẍ(t) = 0

This allows equations of motion to be formulated as equations of dynamic
equilibrium. Consider the following system.

k
m

N=-mg

kx

x, x, x(+) mg

m
mx

Dynamic equilibrium: ΣFx = 0 ⇒ F (t) = kx = −mẍ , so

−kx −mẍ = 0, or

mẍ + kx = 0
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Consider the effect of gravity on the spring-mass system shown below where lo
is the free length of the spring

m

k

x(+)

k

Static equilibrium
position (SEP)

st k st

W=mg m

k
SEP

st+ x k (     + x )st

mg

l0

mx

m

m

At static equilibrium position (SEP)

W = mg = kδst

At dynamic equilibrium under d’Alembert’s Principle

mẍ + k(δst + x)−W = 0

mẍ + kδst + kx − kδst = 0

mẍ + kx = 0

Note that the equation of motion expressed with reference to the static
equilibrium position of the dynamic system is not affected by gravitational
forces.
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Solution of the Equation of Motion

• Recall:
mẍ + kx = ẍ + ω2

nx = 0, (5)

where

ωn =

√
k

m
(6)

• The physical significance of this substitution will shortly be made clear.

• In the absence of damping, the displacement x of the mass under the
restoring force of the spring will be a periodic function called simple
harmonic motion.

• The equation for simple harmonic motion is a homogeneous, second-order,
linear differential equation with constant coefficients having the well
known solution:

x = A cos (ωnt) + B sin (ωnt) (7)

• Using the trigonometric identity

sin (θ + ψ) = sin (θ) cos (ψ) + cos (θ) sin (ψ)

Equation (7) can be re-written as

x = C sin (ωnt + ψ) (8)
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• The coefficients of integration A and B from Equation (7), and C and ψ
from Equation (8) are typically determined by specified initial conditions
for displacement and velocity of the mass at time t = 0.

• The first time derivative of Equation (7) is

ẋ = −Aωn sin (ωnt) + Bωn cos (ωnt) (9)

• Evaluating Equations (7) and (9) at time t = 0 leads to

x0 = A and ẋ0 = Bωn

• Substituting these values for A and B into Equation (7) yields

x = x0 cos (ωnt) +
ẋ0
ωn

sin (ωnt) (10)

• The constants C and ψ from Equation (8) can be determined from initial
conditions in a similar way by first determining it’s first time derivative:

ẋ = Cωn cos (ωnt + ψ) (11)

• Evaluating Equations (8) and (11) at time t = 0 leads to

x0 = C sin (ψ) and ẋ0 = Cωn cos (ψ)
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• Solving simultaneously for C and ψ leads, after some algebra, to

C =

√
x2
0 +

(
ẋ0
ωn

)2

and ψ = tan−1

(
xoωn

ẋ0

)
• Comparing these two coefficients to A and B, we immediately see that

C =
√

A2 + B2 and ψ = tan−1

(
A

B

)
• The motion x is seen to be projected onto the vertical axis of the rotating

vector having length C and phase angle ψ with respect to rotating vector
B.

Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.Fig_8-2
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Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.Fig_8-2

• Vectors A, B, and C all rotate with a constant angular velocity which is
called the natural circular frequency having units of radians per second,
again defined to be

ωn =

√
k

m

• Vector C is the amplitude of orthogonal components A and B, and is
therefore the amplitude of the harmonic oscillation.
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Copyright © 2016 John Wiley & Sons, Inc. All rights reserved.Fig_8-2

• The number of complete cycles per unit time is the natural frequency
expressed in hertz (Hz), where 1 Hz = 1 cycle per second:

fn =
ωn

2π

• The time required for C to make one complete rotation is the natural
period and has units of seconds:

τn =
1

fn
=

2π

ωn
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Example 1.3

Given the overhead trolley crane and specified parameters, determine ωn under
the applied load W = mg

W=mg

l /21

2

trolley

girder

cables l

rollerroller

Mass of trolly, cables, etc. is negligible

Girder: Eg , I , l1

Cables: Ec , diameter = d , l2

Applied load: W = mg
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Solution:

The spring constant for the deflection of the centre of a simply supported

(pinned-pinned) beam (girder) under the applied load is: kg =
48Eg I

l31

The spring constant for a cable subjected to axial loading is:

kc =
AEc

l2
=
πd2Ec

4l2

The two cables are arranged in parallel but together are in series with the
girder, and hence

l

keq
=

l

kg
+

l

2kc

Therefore,

keq =
2kckg

kg + 2kc
=

48πd2Eg IEc

96l2Eg I + πd2l31Ec

Then ωn =

(
keq
m

)1/2

=

(
keqg

W

)1/2

W=mg

kc2

kg

kc kc

W=mg

kg

W=mg

keq
= =
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Example 1.4

Given the frictionless pulleys (sheaves), determine ωn and fn. The pulleys have
negligible mass.

The two pulleys are considered
frictionless and massless

There is constant tension in the cable

The cable length is constant

Pulley 1 moves up by a distance:

∆x1 =
2W

k1

Pulley 2 moves down by a distance:

∆x2 =
2W

k2
x(+)

1k

2k

1

2

m
datum

x= 0

D x1

D x2

W=mg

2W

2W
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The cable on either side of the pulley is free to move the mass downward a
distance x .

But the length of cable that rolls over the pulley must be distance x on each
side of the pulley.

Therefore, x = 2∆x1 + 2∆x2 = 2(∆x1 +∆x2) = 2

[
2W

k1
+

2W

k2

]
Then x =

W 4(k1 + k2)

k1k2
=

W

keq

Therefore keq =
k1k2

4(k1 + k2)

ωn =

(
keq
m

)1/2

=
1

2

[
k1k2

m(k1 + k2)

]1/2
rad/s

or

fn =
ωn

2π
=

1

4π

[
k1k2

m(k1 + k2)

]1/2
cycles/s x(+)

1k

2k

1

2

m
datum

x= 0

D x1

D x2

W=mg

2W

2W
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Torsional Stiffness and Viscous Damping

m

k

x(+)

c

l

D

tJ
M

0
t

d

shaft

disc

kt
ct

T,

• Mass, m, is a measure of an object’s resistance to linear acceleration

• Mass moment of inertia, I , is a measure of an object’s resistance to
angular acceleration

• Polar mass moment of inertia, J0, is a measure of an object’s resistance to
torque

I =
∫
r 2dm [kg m2] J0 =

∫
r 2dm [kg m2]
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Torsional Stiffness and Viscous Damping

m

k

x(+)

c

l

D

tJ
M

0
t

d

shaft

disc

kt
ct

T,

• The torsional stiffness and damping are analogous to the linear coefficients

kt =
T

∆θ

[
Nm

rad

]
ct =

T

θ̇

[
Nms

rad

]
• The linear coefficients are

k =
F

∆x

[
N

m

]
c =

F

ẋ

[
Ns

m

]
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Example 1.5

Torsional Vibration: angular oscillation of a rigid body about a specific axis.
What is the natural period, τn, and equation of motion for this system?

l

D

tJ
M

0
t

d

shaft

disc

kt
ct

T,

Displacements: Angular coordinate, θ
Applied moments result from:

i) torsion of an elastic member
ii) inertia moment∑
M⃗0 = 0 (including inertia torque)

or Mt + J0θ̈ = 0
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Torsional Pendulum Solution

J0 =
1

2
mR2 =

1

2

(
π

(
D

2

)2

tρ

)(
D

2

)2

=
ρtπD4

32
= polar mass moment of

inertia of the disc

Mt =
GJθ

l
, where Mt is the torque required to produce θ, G is the shear

modulus, and J is the polar area moment of the shaft

θ = Angular rotation of the disc = angle of twist of the shaft.

By theory of torsion of circular shafts:

J =
πd4

32
= polar area moment of inertia of the cross-section of the shaft

If the disc is displaced by θ from its equilibrium, the shaft acts as a torsional
spring providing a restoring torque of magnitude Mt . Therefore for the
torsional spring constant, we have:

kt =
Mt

θ
=

GJ

l
=
πGd4

32l
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Then by dynamic equilibrium:

Mt + J0θ̈ = 0, where Mt is the shaft restoring torque and J0θ̈ is the inertial
couple

or by virtue of Mt = ktθ

J0θ̈ + ktθ = 0
mẍ + kx = 0 (analogous linear system)

Therefore ωn =

(
kt
J0

)1/2

(natural circular frequency)

and fn =
1

2π

(
kt
J0

)1/2

τn = 2π

(
J0
kt

)1/2

J
M

0
t

T,
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• The general solution of the second-order linear differential equation with
constant coefficients

θ̈ + ω2
nθ = 0

has the well known solution

θ(t) = A cos (ωnt) + B sin (ωnt) (12)

• The constants of integration A and B are determined from initial
conditions at time t = 0

• Evaluating Equation (12) at t = 0 we can immediately see that θ0 = A

• Evaluating the first time derivative of Equation (12) reveals that θ̇0 = Bωn

• The equation of motion for the torsional pendulum is therefore

θ(t) = θ0 cos (ωnt) +
θ̇0
ωn

sin (ωnt)
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Free Vibration with Viscous Damping

Equations of Motion: Direct Equilibrium Method

Consider the following viscously damped linear system

m

k

x, x, x(+)

c

m

kx mx cx

Dynamic Equilibrium:

ΣF = 0 (including the inertia force)
mẍ + cẋ + kx = 0
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Since mẍ + cẋ + kx = 0 is second order linear differential equation with
constant coefficients, it is safe to assume the solution to the equation of
motion to have the form

x(t) = est

Then substitute x(t) = est , ẋ(t) = sest , and ẍ(t) = s2est into the equation of
motion to obtain (

ms2 + cs + k
)
est = 0 (13)

For the assumed solution to satisfy the differential equation, the expression in
parentheses must equal zero since est ̸= 0 for finite values of t.

The expression in parentheses is referred to as the characteristic equation, and
its solution yields the characteristic roots, which are known as eigenvalues

s1,2 =
−c ±

√
c2 − 4mk

2m
= − c

2m
±
√( c

2m

)2
− k

m
(14)

The word eigenvalue comes from the German word Eigenwert, in which Eigen
means characteristic, or intrinsic, and wert means value.



Introduction Vibration Undamped Systems Free Vibration with Viscous Damping

Since two arbitrary constants are required in the solution of a second-order
ordinary differential equation, the general solution is

x(t) = Aes1t + Bes2t (15)

where A and B are constants to be determined from the initial conditions of
the system.

The system response falls in one of three categories depending on the amount
of damping present: critically damped, underdamped, and overdamped.

(i) Critically Damped Systems:

In this case ζ = 1 and√( c

2m

)2
− k

m
= 0

Then, the critical damping value cc is obtained as:

cc = 2m

√
k

m
= 2mωn

define the damping ratio ζ as:

ζ =
c

cc
, Then:

c

2m
=

c

cc

cc
2m

= ζωn
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The eigenvalues can be written as:

s1,2 =
(
−ζ ±

√
ζ2 − 1

)
ωn

At critical damping, i.e. at ζ = 1, we get:

s1,2 = − cc
2m

= −ωn

Because the roots of the characteristic equation are real and repeated for
ζ = 1, the general solution to the differential equation is:

x(t) = (A+ Bt)e−ωnt

Using initial conditions:

for t = 0 x = xo ⇒ A = xo
ẋ = Be−ωnt − ωn(A+ Bt)e−ωnt = ẋo ⇒ B = ẋo + ωnxo

And we have:

x(t) = [xo + (ẋo + ωnxo)t]e
−ωnt (16)

ẋ(t) = (ẋo + ωnxo)e
−ωnt − ωn(xo + (ẋo + ωnxo)t)e

−ωnt (17)
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Hence, for critical damping, the motion is aperiodic; the plot shows the typical
response for initial conditions x0 ̸= 0 and ẋ0 = 0.

Note: cc is the smallest amount of damping for which the free response of the
system is aperiodic.
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Example 1.6: Critically Damped Recoil Mechanism
• Consider a critically damped recoil mechanism in a piece of artillery

• Let the recoil mechanism consist of a spring to store energy during recoil,
and a dashpot damper to provide the critical damping

• When fired, the barrel of the artillery piece instantaneously acquires an
initial velocity ẋ0 ̸= 0 while still in its initial position of x0 = 0

• For these conditions A = 0 while B = ẋ0

• The displacement of the gun is then given by

x(t) = ẋ0te
−ωnt (18)

• The maximum barrel displacement occurs when

d

dt

(
ẋ0te

−ωnt
)

= 0 = ẋ0e
−ωnt − ẋ0ωnte

−ωnt = 1− ωnt

• Therefore

xmax =
ẋ0e

−1

ωn
when t =

1

ωn
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Example 1.6: Critically Damped Recoil Mechanism

For example, let x0 = 0, ẋ0 = 10 m/s, ωn = 1 rad/s, and ζ = 1

We obtain

xmax = 3.68 m when t = 1 s

x   m  a  x = x0e-1  /  wn
.
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(ii) Over-damped Systems:

In this case ζ > 1, which means c > cc and
c

2m
>

√
k

m

then
√
ζ2 − 1 > 0 and s1 and s2 are always real, distinct, and negative, i.e.

s1 =
(
−ζ +

√
ζ2 − 1

)
ωn < 0

s2 =
(
−ζ −

√
ζ2 − 1

)
ωn < 0

and s2 < s1

Then:

x(t) = Aes1t + Bes2t

such that for initial conditions at t = 0: x = x0 and ẋ = ẋ0

A =
−x0s2 + ẋ0

2ωn

√
ζ2 − 1

, B =
−x0s1 − ẋ0

2ωn

√
ζ2 − 1

Motion is aperiodic and since both s1 < 0 and s2 < 0, the response diminishes
exponentially.
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A periodic system response is only possible when ζ < 1 and both roots of the
characteristic equation are complex congugates

When ζ > 1 both eigenvalues are real and aperiodic motion is possible

Note that it was shown that s1,2 =
(
−ζ ±

√
ζ2 − 1

)
ωn

where

ζωn =
c

2m
, and ωn =

√
k

m

The differential equation of motion can thus be expressed in terms of ζ and ωn

as follows:

mẍ + cẋ + kx = 0 ⇒ ẍ +
c

m
ẋ +

k

m
x = 0

Leading to ẍ + 2ζωnẋ + ωn
2x = 0

This form allows direct comparison of the coefficients of a governing differential
equation to efficiently obtain ζ, ωn and ωd , the damped natural circular
frequency
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(iii) Underdamped Systems:

For this case ζ < 1.
Recall the eigenvalues for damped free vibration are

s1,2 = ωn

(
−ζ ±

√
ζ2 − 1

)
The quantity under the square root of the eigenvalue equation can only be
negative if:

ζ < 1, or
c

2m
<

√
k

m
, or , c < cc

Then

s1 =
(
−ζ + i

√
1− ζ2

)
ωn = −ζωn + iωd

s2 =
(
−ζ − i

√
1− ζ2

)
ωn = −ζωn − iωd

where the damped natural circular frequency of the vibration is defined to be

ωd = ωn

√
1− ζ2
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Observations: Complex (imaginary) plane can be used to show the nature of
roots s1 and s2 with respect to ζ > 1, ζ = 1, and ζ < 1, by plotting
s1 = −ζωn + iωd , and s2 = −ζωn − iωd as points.

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New Jersey, United States, 4th edition, 2004.
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The complex eigenvalues lead to the trigonometric functions associated with
oscillatory, periodic vibration: we can re-write Equation (15) as

x(t) = Ae−ζωnt+iωd t + Be−ζωnt−iωd t = e−ζωnt
[
Ae iωd t + Be−iωd t

]
= e−ζωnt [Acosωd t + Bsinωd t]

= Ce−ζωntcos [ωd t − ϕ∗]

= Ce−ζωntsin [ωd t + ϕ]

using initial conditions at t = 0,

x = x0 ⇒ A = x0, ẋ = ẋ0 ⇒ B =
ẋ0 + ζωnx0

ωd
, C =

√
A2 + B2

ϕ = tan−1(A/B) =
x0ωd

ẋ0 + ζωnx0

ϕ∗ = tan−1(B/A) =
ẋ0 + ζωnx0

x0ωd
=
π

2
− ϕ

Therefore:

x(t) = e−ζωnt

[
x0cosωd t +

ẋ0 + ζωnx0
ωd

sinωd t

]
(19)



Introduction Vibration Undamped Systems Free Vibration with Viscous Damping

Observations:

• ωd < ωn

• ωd

ωn
=
√

1− ζ2 plots as a quarter of a unit circle, showing that as damping

increases, the damped natural frequency decreases.

w d/wn

z
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Underdamped system response

• The underdamped case is the only case having oscillatory motion

• In fact x = Ce−ζωntcos[ωd t − ϕ∗] represents a harmonic motion where

ωd = angular frequency, ϕ∗ = the phase angle, and

C = amplitude, which exponentially decreases as e−ζωnt

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New Jersey, United States, 4th edition, 2004.
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• Logarithmic Decrement ≡ δ

The logarithmic decrement, δ, can be used to determine damping factor,
ζ, of a mechanical system experimentally by recording a record of the
system showing how its amplitude varies with time during damped free
vibration of the system

Consider the rate of decrease of x(t) of an underdamped system. For two
successive peaks where t1 is the time of the first peak and

t2 = t1 + τd = t1 +
2π

ωd

is the time of the second peak, the ratio of response amplitudes is

x1
x2

=
Ce−ζωnt1cos(ωd t1 − ϕ∗)

Ce−ζωn(t1+τd )cos(ωd(t1 + τd)− ϕ∗)
= eζωnτd (20)

The logarithmic decrement is defined as the natural logarithm of the ratio
of two successive amplitudes xj and xj+1:

δ = ln
xj
xj+1

= ζωnτd = 2πζ
ωn

ωd
=

2πζ√
1− ζ2

=
2π

ωd

c

2m
(21)
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For low damping, i.e., 0 < ζ < 0.3, we get:

δ ≈ 2πζ (22)

δ can be used to determine the damping ratio ζ of the system. We determine
experimentally xj and some xj+k at tj and tj + tj+k

xj
xj+k

=
xj
xj+1

xj+1

xj+2

xj+2

xj+3
· · · xj+k−1

xj+k
(23)

Therefore:

xj
xj+k

= ekζωnτd = ekδ (24)

And:

δ =
1

k
ln

(
xj
xj+k

)
(25)

Using δ, the damping ratio can then be evaluated.
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Comparison of system responses

S.S. Rao.Mechanical Vibrations. Pearson Education Inc., New Jersey, United States, 4th edition, 2004.



Introduction Vibration Undamped Systems Free Vibration with Viscous Damping

Example 1.7

Design an underdamped shock absorber for a vehicle, such that: x1.5 =
1

4
x1, m

= 500 kg, τd = 1.0 s and the clearance distance is 250 mm. It is required to
find c, k and the minimum initial velocity ẋ0 resulting in bottoming of the
shock absorber.

x1.5 =
1

4
x1 and x2 =

1

4
x1.5 ⇒ x2 =

1

16
x1

δ = ln

(
x1
x2

)
= ln(16) = 2.7726 =

2πζ√
1− ζ2

⇒ ζ = 0.4037

τd =
2π

ωd
=

2π

ωn

√
1− ζ2

= 1

⇒ ωn = 6.868 rad/sec

cc = 2mωn = 2(500)(6.868) = 6868 Ns/m

c = ζcc = (0.4037)(6868) = 2772.5 Ns/m

k = mωn
2 = 500(6.868)2 = 23582.6 N/m

S.S. Rao.Mechanical Vibrations. Pearson
Education Inc., New Jersey, United States, 4th

edition, 2004.
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It is known that for an underdamped system

x(t) = Ce−ζωnt sin(ωd t + ϕ) where ϕ = tan−1

[
x0ωd

ẋ0 + ζωnx0

]
From graph at t = 0

x(0) = x0 = 0 ⇒ ϕ = 0

ẋ(t) = Ce−ζωnt [−ζωn sin(ωd t) + ωd cos(ωd t)]

Therefore at t = 0 ⇒ ẋ(0) ≡ ẋ0 = Cωd

The equation of the envelope passing through the maximum value points is:

x =
√

1− ζ2Ce−ζωnt

Since the maximum displacement x1 will occur at t1, it can be shown that this
happens when sin(ωd t1) =

√
1− ζ2 which means that:

t1 =
sin−1

(√
1− ζ2

)
ωd

= 0.1839s
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Then at x = 250 mm = 0.25 m and t = 0.1839 s:

0.25 m =
√

1− (0.4037)2Ce−(0.4037)(6.868 rad/s)(0.1839 s)

C = 0.455 m

ẋ0 = 0.455ωd = 0.455ωn

√
1− ζ2 = 2.86 m/s
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Example 1.8

Consider the spring, mass, damper system shown. The body is moved 0.2 m to
the right and released from rest. If m = 8 kg, c = 20 Ns/m and k = 32 N/m,
what is the displacement at t = 2 s?

J.L. Meriam.Engineering Mechanics Dynamics. John Wiley and Sons Inc.,United States, 5th edition, 2002.

Solution:
1) Determine the amount of damping: ζ =

c

cc
=

c

2mωn

ωn =

√
k

m
=

√
32 N/m

8 kg
= 2 rad/s

Therefore

ζ =
20 Ns/m

2(8 kg)(2 rad/s)
= 0.625 ⇒ ζ < 1 therefore the system is underdamped
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2) The general solution for underdamped systems is:

x(t) = Ce−ζωnt sin[ωd t + ϕ] = e−ζωnt [A cos (ωd t) + B sin (ωd t)]

The damped natural frequency is ωd = ωn

√
1− ζ2 = 1.56 rad/s

IC’s:

A = x0 = 0.2 m

B =
ẋ0 + ζωnx0

ωd

=
(0.625)(2)(0.2)

1.56
= 0.160 m

C =
√
A2 + B2 = 0.256 m

ϕ = tan−1(A/B) = 0.896 rad

Hence x(t) = 0.256e−1.25t sin(1.56t + 0.896)

at t = 2 s ⇒ x(2) = −0.01616 m = −16.16 mm
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