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Introduction
• While all real mechanical systems have some damping, it is often

neglected to simplify the analysis and to gain some insight into a
complicated system.

• When a linear, constant-coefficient dynamic system is disturbed by certain
types of exciting forces, the response consists of the sum of two distinct
components

1. The forced response, which resembles the excitation force in mathematical
form.

2. The free (or natural) response, which does not depend on the
characteristics of the excitation function, but only on the physical
parameters of the system. This is the response that is induced by initial
conditions, regardless of the excitation function.

• These two components are obtained separately and consist of

1. The particular solution, which is due to the excitation force, and is typically
transient.

2. The homogeneous solution, which is due to the system physical parameters
and initial conditions, and is what typically remains when the transient
particular response decays.

• The sum of the two solutions is referred to as the total response of the
system.
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Excitation Due to an Unbalanced Rotating Mass
• Unbalanced rotating masses in machines and mechanisms that subject

them to periodic harmonic forces are very common sources of excitation.

• Consider a machine that has a total mass m consisting of a translating
mass M to which is attached, by a slender rod of negligible mass, a mass
m0 which is rotating about an axis through 0.
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Excitation Due to an Unbalanced Rotating Mass

• The total mass of the mechanical system is

m = M +m0

• Since the centre of gravity of m0 is offset by radial distance r from its
centre of rotation 0, it acts as a unbalanced rotating mass.

• The spring and dashpot have coefficients k and c and represent the
stiffness and damping of the machine’s mounting system.
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Excitation Due to an Unbalanced Rotating Mass

• The positive sense for x , ẋ , and ẍ is up, and x is the displacement of M
from its static equilibrium position (SEP).

• The total acceleration of m0 is the vector sum of its normal acceleration
rω2, directed towards its centre of rotation 0 and the acceleration ẍ of
mass M.

• The spring force is kx −W because in the SEP the spring is compressed
under the action of W .
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Excitation Due to an Unbalanced Rotating Mass

• The positive sense for x , ẋ , and ẍ is up, and x is the displacement of M
from its static equilibrium position (SEP).

• The total acceleration of m0 is the vector sum of its normal acceleration
rω2, directed towards its centre of rotation 0 and the acceleration ẍ of
mass M.

• Using d’Alembert’s principle, sum the forces and inertia effects to zero:∑
Fx = 0 = −W − (kx −W )− cẋ − (M +m0) +m0rω

2 sin (ωt) (1)

• Letting m = M +m0 and F0 = m0rω
2, we can rewrite Equation (1) as

ẍ +
c

m
ẋ +

k

m
x =

F0

m
sin (ωt) (2)

where the compressive spring force W = mg cancels out.
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Excitation Due to an Unbalanced Rotating Mass

• We can rewrite Equation (2) in terms of the damping ratio ζ and
undamped natural circular frequency ωn as

ẍ + 2ζωnẋ + ω2
nx =

F0

m
sin (ωt) (3)

where 2ζωn =
c

m
and ω2

n =
k

m
.

• Equation (3) is the general form of the mathematical model of any single
degree of freedom (DOF) system subject to any sinusoidal excitation force
F0

m
sin (ωt).

• The total response of the system is the sum of a homogeneous solution xh
and a particular solution xp

x = xh + xp
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Excitation Due to an Unbalanced Rotating Mass

• The homogeneous solution (the free, or transient solution of Equation (3)
if ζ < 1) is, as we have seen

xh = e−ζωnt (A cos (ωd t) + B sin (ωd t)) (4)

where ωd = ωn

√
1− ζ2.

• The particular solution (the free, or steady-state response) is usually
determined using complex numbers

• Using Euler’s equation

e iωt = cos (ωt) + i sin (ωt)

where e iωt is a complex unit vector, we can write

cos (ωt)
R
= e iωt and sin (ωt)

I
= e iωt

where R means “the real part of” and I means “the imaginary part of”.
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Excitation Due to an Unbalanced Rotating Mass

• With this in mind, we can write the right hand side of Equation (3) as

F0

m
sin (ωt) =

F0

m
e iωt (5)

with the provision that only the imaginary part will be used in the solution
process

• Then we assume a particular solution having the form

xp = Xe iωt (6)

where X is an imaginary constant to be determined so that it satisfies
Equation (3)

• Successive time derivatives of Equation (6) give

ẋp = iωXe iωt and ẍp = −ω2Xe iωt (7)
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Excitation Due to an Unbalanced Rotating Mass
• Substituting Equations (5), (6), and (7) into Equation (3) yelds(

−ω2 + iω2ζωn + ω2
n

)
Xe iωt =

F0

m
e iωt

• Dividing this equation by ω2
n and noting that mω2

n = k we can write[
1−

(
ω

ωn

)2

+ i2ζ
ω

ωn

]
X =

F0

k
(8)

• We can rewrite the bracketed term in the complex plane as1−
(

ω

ωn

)2

︸ ︷︷ ︸
Real

+ i2ζ
ω

ωn︸ ︷︷ ︸
Imaginary

 =

√√√√[
1−

(
ω

ωn

)2
]2

+

[
2ζ

ω

ωn

]2

e iϕ (9)

where, as can be seen in the following figure

ϕ = tan−1

[
2ζ(ω/ωn)

1− (ω/ωn)2

]
(10)
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Excitation Due to an Unbalanced Rotating Mass

• Substituting the right-hand side of Equation (9) into Equation (8) gives

X =
(F0/k)e

−iϕ√
[1− (ω/ωn)2]

2 + [2ζ(ω/ωn)]
2

= |X |e−iϕ (11)

where the absolute value |X | is the amplitude of the steady-state response

|X | =
(F0/k)√

[1− (ω/ωn)2]
2 + [2ζ(ω/ωn)]

2
(12)
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Excitation Due to an Unbalanced Rotating Mass

• Hence, the particular solution of Equation (3) is

xp = |X |e−iϕe iωt = |X |e i(ωt−ϕ) (13)

• Finally, using only the imaginary part of e i(ωt−ϕ) we obtain

xp = |X | sin (ωt − ϕ) (14)

• The complex excitation force F0e iωt and the complex
steady-state response |X |e i(ωt−ϕ) are rotating complex
vectors, called phasors, in the complex plane

• Their magnitudes are F0 and |X |, and their directions

are given by e iωt and e i(ωt−ϕ), respectively

• They both rotate with angular velocity ω

• The phase angle, ϕ, between them is the angle by
which the steady-state displacement lags the oscilating
excitation force
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Excitation Due to an Unbalanced Rotating Mass

• Adding the transient homogeneous solution xh to the steady-state solution
xp gives the complete solution of Equation (3)

x = e−ζωnt (A cos (ωd t) + B sin (ωd t)) + |X | sin (ωt − ϕ) (15)

• The combined transient and steady-state response is shown for
ω < ωn

√
1− ζ2, and recall that ωd = ωn

√
1− ζ2



Rotating Unbalance Steady-state Characteristics Critical Speed of Rotating Shafts Flow-induced Vibration

Excitation Due to an Unbalanced Rotating Mass

• The transient vibration portion of the complete response decays
exponentially with time, until it disappears completely, leaving only the
steady-state vibration

• The coefficients A and B of the transient vibration depend on initial
conditions while the steady-state vibration depends only upon the forcing
function and the physical parameters of the system
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Excitation Due to an Unbalanced Rotating Mass

• To illustrate how to use the real part of e iωt , consider the horizontal mass
M rolling on a horizontal surface that is excited by a rotating unbalanced
mass m0

• The differential equation of motion of this system is

ẍ + 2ζωnẋ + ω2
nx =

F0

m
cos (ωt)

where m = M +m0
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Excitation Due to an Unbalanced Rotating Mass

• The excitation term includes cos (ωt), which is the real part of e iωt

• The steady-state solution is

xp = |X | cos (ωt − ϕ)

The steady-state amplitude |X | and phase angle ϕ are the same as
Equations (12) and (10)
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Steady-state Vibration Characteristics

• Equations (12) and (10) describe the steady-state behaviour of a system
subjected to a harmonic excitation force F0 sin (ωt) or F0 cos (ωt)

• Excitation forces of this type arise from unbalanced rotating masses, or
vortex shedding in systems subjected to a flow of gas

• It is obvious from Equation (12) that the amplitude of vibration increases
with F0

• To investigate how, we can rewrite Equation (12) in dimensionless form:

|X |
F0/k

=
1√

[1− (ω/ωn)2]
2 + [2ζ(ω/ωn)]

2
(16)

• The static displacement that the system would have if the force F0 were
applied very slowly is F0/k, and |X | is the amplitude of the steady-state
vibration

• The ratio in Equation (16), known as the magnification factor, is a
function of ζ and ω/ωn
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Steady-state Vibration Characteristics

• When ω/ωn ≪ 1, the magnification factor |X |/(F0/k) approaches 1

• When ω/ωn approaches 1 and ζ ≪ 1, the magnification factor |X |/(F0/k)
can become very large
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Steady-state Vibration Characteristics
• When ω/ωn = 1, the magnification factor |X |/(F0/k) reduces to

|X |
F0/k

=
1

2ζ
(17)

which is the magnification factor at resonance

• This is one reason it is very important to be able to determine the
approximate natural frequencies of systems
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Steady-state Vibration Characteristics

• Equation (10) reveals that the phase angle ϕ is also a function of ζ and
ω/ωn

• When ω/ωn ≪ 1 the phase angle is small, and the excitation force
F0 sin (ωt) is nearly in phase with the response since x = |X | sin (ωt − ϕ)
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Steady-state Vibration Characteristics

• When ω/ωn = 1 the phase angle is 90◦, and the excitation force
F0 sin (ωt) is in phase with the velocity since

ẋ = |X | cos
(
ωt − π

2

)
= |X | sin (ωt)
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Steady-state Vibration Characteristics

• When ω/ωn ≫ 1 the phase angle approaches 180◦, and the sense of the
excitation force F0 sin (ωt) is nearly completely out of phase (opposite) to
that of the displacement since

x ≈ |X | sin (ωt − π) = −|X | sin (ωt)
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Example 2.1
A small wind turbine is rigidly mounted to a cantilevered vertical steel pole
having a torsional stiffness of k [Nm/rad] and a torsional damping coefficient of
c [Nms/rad].

The centre of gravity of the rotor blade assembly having a total mass of m0 is
displaced by an eccentric distance e from the axis of rotation.

The mass moment of inertia about the
z-axis of the complete turbine, rotor
assembly, housing pod, and contents, is
I z [kgm2].

The total mass of the mechanical
system is m [kg].

The plane in which the blades rotate is
located a distance d [m] from the z-axis.



Rotating Unbalance Steady-state Characteristics Critical Speed of Rotating Shafts Flow-induced Vibration

Determine the following. (a) The differential equation of motion of the
torsional vibration system about the z-axis.

(b) The steady-state torsional response (the particular solution) of the system
using complex algebra.

Neglect the following.

1. The effects of the mass and
bending of the pole on the torsional
response.

2. The gyroscopic effects of the
rotating blades.
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Solution

(a) The moment of the unbalanced
rotating mass m0 of the rotor blades
about the z-axis is

M(t) =
(
m0eω

2 cos (ωt)
)
d

or

M(t) = M0 cos (ωt)

where M0 = m0eω
2d .

The vertical pole also exerts a restoring
torque of kθ, and a torsional damping
moment of c θ̇.

Considering the moments about the z-axis, we can write∑
Mz = I z θ̈ = −kθ − c θ̇ +M0 cos (ωt)
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Dividing by I z and collecting terms containing the dependent variable θ yields

θ̈ +
c θ̇

I z
+

kθ

I z
=

M0

I z
cos (ωt)

Finally, let c/I z = 2ζωn and k/I z = ω2
n, leading to the differential equation of

torsional vibration of the system about the z-axis

θ̈ + 2ζωnθ̇ + ω2
nθ =

M0

I z
cos (ωt) (18)

(b)

Using complex algebra to obtain the steady-state solution of this differential
equation of motion, cos (ωt) is replaced by the real part of e iωt , and we assume
a solution of the form

θp = Θe iωt (19)

in which Θ is the complex constant to be determined such that it satisfies
Equation (18), understanding that only the real part of e iωt will be used in
determining this complex constant Θ
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Taking successive time derivatives of Equation (19) we obtain

θ̇p = iωΘe iωt and θ̈p = −ω2Θe iωt (20)

Substitute Equations (19) and (20) into Equation (18), and replace cos (ωt)
with e iωt to get (

−ω2 + iω2ζωn + ω2
n

)
Θe iωt =

M0

I z
e iωt

Dividing both sides of this equation by ω2
n, and recalling that I zω

2
n = k one

obtains [
1−

(
ω

ωn

)2

+ i2ζ
ω

ωn

]
Θ =

M0

I zω2
n

=
M0

k
(21)
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In the complex plane we can rewrite the bracketed term as[
1−

(
ω

ωn

)2

+ i2ζ
ω

ωn

]
=

√√√√[
1−

(
ω

ωn

)2
]2

+

[
2ζ

ω

ωn

]2

e iϕ

where

ϕ = tan−1

[
2ζ(ω/ωn)

1− (ω/ωn)2

]
(22)
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Making this substitution in Equation (21), we can isolate Θ to obtain

Θ =
(M0/k)e

−iϕ√
[1− (ω/ωn)2]

2 + [2ζ(ω/ωn)]
2

= |Θ|e−iϕ (23)

where the absolute value |Θ| is the amplitude of the steady-state torsional
response

|Θ| =
(M0/k)√

[1− (ω/ωn)2]
2 + [2ζ(ω/ωn)]

2
(24)

• The phase angle ϕ is the constant angle by which the response angular
amplitude |Θ| lags the excitation moment amplitude M0 and is given by
Equation (22), which, as you can see is the same as Equation (10)

• Thus, the complex form of the steady-state solution is

θp = |Θ|e i(ωt−ϕ)

• Taking only the real part of e i(ωt−ϕ) we obtain the steady-state solution:

θp = |Θ| cos (ωt − ϕ)
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Steady-state Vibration Characteristics
• It’s important to note that the torsional and linear magnification factors

are identical in form, and yield the same curves.

|X |
F0/k

=
|Θ|

M0/k
=

1√
[1− (ω/ωn)2]

2 + [2ζ(ω/ωn)]
2
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Critical Speed of Rotating Shafts

• When a shaft that is rotating about its
longitudinal axis deforms about that
axis, line AB in the figure, the deformed
shaft will whirl about its original axis of
rotation as well as continuing to rotate
about its longitudinal axis

• Unbalanced disks, loose or worn
bearings, and gyroscopic effects can,
among other things, cause rotating
shafts to whirl

• Consider the steady-state motion of the
shaft in the figure, which is whirling
because the disk attached to it is not
balanced.

• Because of machining error, the mass
centre G of the disk is eccentric by
distance e from the geometric centre C .
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Critical Speed of Rotating Shafts

• Let the disk centre C be located at
the origin of the stationary xyz
coordinate system when the shaft is
aligned with the line AB passing
through the bearing centres

• When the shaft deforms laterally, the
shaft deflection at the disk centre is
r = OC

• The deflected shaft and line AB
form a rotating plane that makes an
angle θ with the x-axis

• The angular velocity of the
shaft-and-disk system with respect
to the longitudinal axis of the shaft
is ω

• The angular velocity of the plane
formed by the shaft and line AB is θ̇
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Critical Speed of Rotating Shafts

• The phase angle ϕ is the angle
between the position vector r and
the eccentricity vector e (whose
magnitude is e)

• The shaft deflection r can become
appreciable when the angular
velocity ω approaches the natural
circular frequency ωn

• The critical speed ω occurs when

ω

ωn
= 1 (25)

• Synchronous whirl occurs when
θ̇ = ω, implying that the magnitude
of r is constant



Rotating Unbalance Steady-state Characteristics Critical Speed of Rotating Shafts Flow-induced Vibration

Critical Speed of Rotating Shafts

• Assume the weight of the shaft is
small compared to that of the disk

• The coordinates of the mass centre
G are

xG = x + e cosωt

yG = y + e sinωt

}
(26)

where x and y are the coordinates of
the disk centre C with respect to the
stationary xyz coordinate system

• Taking successive time derivatives of
Equation (26) we obtain the
acceleration components of the disk
centre of mass

ẍG = ẍ − eω2 cosωt

ÿG = ÿ − eω2 sinωt

}
(27)



Rotating Unbalance Steady-state Characteristics Critical Speed of Rotating Shafts Flow-induced Vibration

Critical Speed of Rotating Shafts

• For a circular-cylindrical shaft of uniform density, it is safe to assume that
the stiffness and damping of the shaft are uniform regardless of the shaft
orientation, which means

k = kx = ky

and

c = cx = cy

• With this assumption, we can use the acceleration components of
Equation (27) and apply Newton’s second law to obtain the differential
equations of motion

−kx − cẋ = m
(
ẍ − eω2 cos (ωt)

)
and

−ky − cẏ = m
(
ÿ − eω2 sin (ωt)

)
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Critical Speed of Rotating Shafts

• These two equations can be rewritten in the now familiar form of

ẍ + 2ζωnẋ + ω2
nx = eω2 cos (ωt)

ÿ + 2ζωnẏ + ω2
ny = eω2 sin (ωt)

}
(28)

where

2ζωn =
c

m
and ωn =

√
k

m

• Again, we can assume complex steady-state solutions for Equations (28) as

x = Xe iωt and y = Ye iωt

• We proceed as before to obtain the complex form of the steady-state
response

X = Y =
e(ω/ωn)

2e iϕ√
[1− (ω/ωn)2]

2 + [2ζ(ω/ωn)]
2

(29)
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Critical Speed of Rotating Shafts

• Where the amplitudes are

|X | = |Y | =
e(ω/ωn)

2√
[1− (ω/ωn)2]

2 + [2ζ(ω/ωn)]
2

(30)

and the phase angle between position vectors r and e is again the same as
Equation (10)

ϕ = tan−1

[
2ζ(ω/ωn)

1− (ω/ωn)2

]
• The real displacement components of the disk centre C are then

x = |X | cos (ωt − ϕ)

y = |Y | sin (ωt − ϕ)

}
(31)

• Squaring, and adding the two components gives

r =
√

x2 + y 2 =

√
(|X | cos (ωt − ϕ))2 + (|Y | sin (ωt − ϕ))2



Rotating Unbalance Steady-state Characteristics Critical Speed of Rotating Shafts Flow-induced Vibration

Critical Speed of Rotating Shafts

• Since |X | = |Y | we can conclude that the constant shaft deflection at the
disk centre is

r = |X | = |Y |

• Using the expressions for x and y in Equation (31) we obtain

tan θ =
y

x
=

|Y | sin (ωt − ϕ)

|X | cos (ωt − ϕ)
= tan(ωt − ϕ)

which shows that

θ = ωt − ϕ

and

θ̇ = ω

t

r

e
G

C

shaft centre
y

x

xG

yG

0
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Critical Speed of Rotating Shafts

• The plot of the dimensionless ratio |X |/e versus the frequency ratio ω/ωn

reveals some familiar information
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Critical Speed of Rotating Shafts

• The effective shaft spring constant k not only depends on the nature of
the shaft, but also on the bending constraint imposed by the bearings

• For example, if the bearings are attached to a rigid support that prevents
rotation of the bearings about any axis perpendicular to the line AB, the
stiffness k would be that of a fixed-fixed beam

• If the bearings were self-aligning (free to rotate), the k used would be that
of a pinned-pinned beam

• In starting and stopping rotating machines that may operate at speeds
greater than their natural circular frequencies, such as gas turbines, large
amplitudes of vibration can build up as the machine passes through the
critical speed ω = ωn

• These can be reduced by passing through the critical speed as quickly as
possible since the amplitude buildup occurs over time

• However, the problem can be avoided if it is possible to design the system
with a natural circular frequency ωn that is much greater than the
maximum operating circular frequency ω, meaning that ω/ωn ≪ 1
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Example 2.2

• Consider a shaft-and-disk system that is supported by self-aligning
bearings; the steel shaft can be considered as a simply supported beam
(pinned-pinned) for purposes of selecting a spring constant k for design
purposes.

• The rotating disk is midway between the bearings A and B.

y

x
m

l
l/2

BA

m

y=A sin x
l
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Example 2.2

For this system:

m = 12 kg (mass of disk)

l = 0.5 m (length of shaft)

d = 25.4 mm (diameter of shaft)

ρ = 7843 kg/m3 (density of shaft)

E = 206.8 GPa ((Young’s) modulus of elasticity of shaft)

y

x
m

l
l/2

BA

m

y=A sin x
l
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Example 2.2

• The system to be designed is intended to operate over a range of speeds
varying from 2400 to 3600 rpm and there is concern that the bearing
reaction forces RA and RB could be dangerously large at the critical speed
if the disk is not balanced.

• Manufacturing experience suggests that even with precise machining and
homogeneous material, the eccentricity e of the disk can be kept to, at
most, 0.05 mm

• Determine the following

(a) The critical speed ωn of the shaft-and-disk system including the
distributed mass of the shaft

(b) The maximum bearing reaction forces RA and RB that could be
anticipated over the range of 2400 to 3600 rpm, with e = 0.05
mm and 2% damping (ζ = 0.02)



Rotating Unbalance Steady-state Characteristics Critical Speed of Rotating Shafts Flow-induced Vibration

Solution

(a) The critical speed ωn

Since the distributed mass of the shaft is part of the system, the most
straightforward approach is to use an energy method, known as Rayleigh’s
energy method

Considering the shaft as a simply supported (pinned-pinned) beam, the shape
function

y = A sin
(πx

l

)
satisfies the conditions of zero deflection and zero moment at its ends

With the disk located at the centre of the shaft, parameter A refers to the
displacement of both the shaft and disk centres
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It can be shown that the maximum kinetic energy of the shaft and disk is

Tmax =
γ

2

∫ l

0

(yωn)
2 dx +

m

2
(Aωn)

2

where

γ = mass per unit length of shaft [kg/m]

γl = ρ
(
πd2/4

)
l = mass of shaft [kg]

m = mass of disk [kg]

Substituting the shape function gives

Tmax =
γA2ω2

n

2

∫ l

0

sin2
(πx

l

)
dx +

mA2ω2
n

2

Integrating and substituting the limits yields

Tmax =
A2ω2

n

2

(
γl

2
+m

)
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The mass of the shaft is

γl = ρ
(
πd2/4

)
l = 7843 kg/m3 π

4
(0.0254 m)2(0.5 m) = 1.987 kg

Substituting this value and the mass of the disk into the maximum kinetic
energy equation gives

Tmax =
A2ω2

n

2
(12.99 kg)

Since y is measured from the static equilibrium position of the system, the
maximum change in potential energy from its potential energy in the static
equilibrium position is given by the unfortunate equation

Umax =
EI

2

∫ l

0

(
d2y

dx2

)2

dx

Fortunately, however, since the inertia effect due to the eccentricity of the
mass centre of the disk has the same effect as a concentrated load at the shaft
centre, the maximum strain energy can be determined more simply using

Umax =
1

2
kA2
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The spring constant of a simply supported beam loaded at its centre is

k =
48EI

l3

where

I =
πd4

64
=

π(0.0254 m)4

64
= 2.043(10)−8 m4

E = 206.8(10)9 Pa

l = 0.5 m

Substituting these values into the maximum strain energy equation gives

Umax =
A2

2
(1.622 N/m)(10)6

According to Rayleigh’s energy method, Tmax = Umax = constant, therefore

A2ω2
n

2
(12.99 kg) =

A2

2
(1.622 N/m)(10)6



Rotating Unbalance Steady-state Characteristics Critical Speed of Rotating Shafts Flow-induced Vibration

Solving for ωn reveals that

ωn = 353.4rad/s

so that the critical speed of the shaft-and-disk system is

Ncrit =
353.4 rad/s(60 s/min)

2π rad/rev
= 3374.7 rpm

(b) Since the critical speed is within the operating range of 2400-3600 rpm,
maximum displacement of the whirling shaft at the location of the disk will
occur when ω/ωn = 1, hence using Equation (30) we obtain

r = |X | =
e

2ζ
=

0.05 mm

2(0.02)
= 1.25 mm
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Considering the shaft as a spring of stiffness k and deflection r , the dynamic
bearing reaction forces at resonance are

RA = RB =
kr

2
=

(1.622 N/m)(10)6(0.00125 m)

2
= 1013.8 N

Hence, it is clear that even a very small eccentricity, such as e = 0.05 mm in
this example, can cause appreciable bearing reaction forces

F

R A R B

r = |X| = 1.25 mm

RA = RB = 1013.8 N 
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Flow-induced Vibration

• Vibration caused by fluid flowing around or through objects is referred to
as flow-induced vibration

• The catastrophic failure of the Tacoma Narrows bridge in 1940 is a well
known example of the results of wind-induced oscillation

• Vibration caused by fluid flow through structures has been observed in
pipelines, tubing in pumping systems, air compressors, et c.
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Flow-induced Vibration

• There is a broad variety of flow-induced vibration

• Aircraft are designed to avoid the following aeroelastic problems:

1. Divergence where the aerodynamic forces increase the angle of attack of a
wing which further increases the force

2. Control reversal where control activation produces an opposite aerodynamic
moment that reduces, or in extreme cases, reverses the control effectiveness

3. Flutter which is the uncontrollable vibration that can lead to the destruction
of an aircraft

• Aeroelasticity problems can be prevented by adjusting the mass, stiffness,
or aerodynamics of structures which can be determined and verified
through the use of calculations, ground vibration tests and flight flutter
trials

• Low frequency galloping in transmission lines occurs when lift and drag
forces caused by air flowing over ice formations on the lines

• High frequency singing in transmission lines occurs due to vortex-shedding
exciting the higher harmonics of the lines
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Vortex-shedding

• When fluid flows past a right-circular cylinder with sufficient velocity,
vortices are formed in the fluid wake

• Such vortices are typically referred to as Kármán vortices, and shed in a
regular pattern over a wide range of Reynolds numbers

R =
vdρ

µ
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Vortex-shedding

• The vortices shed alternately from opposite sides of the cylinder with a
frequency f

• This causes an alternating pressure on each side of the cylinder, which
acts as a sinusoidally varying force F which is perpendicular to the velocity
of the fluid before the flow is disturbed

• The object will tend to move toward the low-pressure zone
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Vortex-shedding
• The force is given by

F =
Cρv 2A

2
sin (2πft)

where

C = drag coefficient (dimensionless), C ≈ 1 for a cylinder

v = fluid velocity [m/s]

A = projected area of cylinder perpendicular to flow velocity v [m2]

ρ = mass dendity of fluid [kg/m3]

• Experiments confirm that the vortex shedding frequency is given by

f =
Sv

d

where

S = Strouhal number (dimensionless)

d = cylinder diameter [m]

v = fluid velocity [m/s]
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Vortex-shedding

• If the fluid flow velocity is not
perpendicular to the structure
interrupting the flow has an angle
of inclination θ, the vortex
shedding frequency becomes

f =
Sv sin θ

d

in which v sin θ is the orthogonal
component of the velocity
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Vortex-shedding

• The destruction of the Tacoma Narrows bridge was caused by vortex
shedding

• A steady wind of approximately 65 km/h resulted in a vortex shedding
frequency at the natural torsional frequency of the bridge H-shaped deck

• This resonant condition caused torsional displacements (twist angle θ)
along the bridge that reached amplitudes of more than 45◦
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Vortex-shedding

• The bridge replacing the destroyed one was built with open sided trusses
between the bridge deck and the open bottom truss

• This rectangular section is many times stiffer in torsion than the H-shaped
one

• Because it is stiffer, the natural frequency of the replacement bridge is
considerably higher than any vortex shedding frequency that might be
encountered
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