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Principal Coordinates

• Modal analysis involves the decoupling of coupled differential equations of
motion leading to a set of independent equations that can be used to
determine the response of the n-DOF mechanical system

• The independent equations that result from the decoupling process are
expressed in terms the coordinates of a new coordinate system that is
different from the coordinate system that the coupled equations of motion
were derived in

• These new coordinates are referred to as principal coordinates

• The new, independent equations are expressed in terms of the principal
coordinates and in terms of the mormal-mode parameters that include the
n natural circular frequencies and the modal damping properties of the
mechanical system

• The decoupling process leads to one independent differential equation for
each normal mode of vibration which can be solved as if it were the
equation of a single-DOF mechanical system

• The total system response is then obtained by superposition of the
responses of the individual normal modes
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Modal Matrix U
• Although modal analysis is extremely useful in determining the response of

forced n-DOF systems, it can also be used in obtaining the free vibration
response of systems that comes from initial conditions

• The discussion that follows will examine both free and forced n-DOF
vibration response

• The modal matrix, U, is required for the modal analysis and decoupling of
the differential equations of motion

• The modal matrix is a square n × n matrix whose columns correspond to
the n eigenvectors of the mechanical system where column 1 is mode 1,
colum2 is mode 2, et c.

• For example, the 2× 2 modal matrix for Example 3.7 where the two
eigenvectors were found to be

X1 =

[
1.00
0.62

]
, and X2 =

[
1.00
−1.62

]
,

so the corresponding modal matrix is

U =

[
1.00 1.00
0.62 −1.62

]
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Decoupled Equations for Undamped Free Vibration

• The differential equations of motion of an n-DOF mechanical system are
dynamically coupled if the generalised coordinates used lead to a
non-diagonal mass matrix M, and statically coupled if the stiffness matrix
K is non-diagonal

• It is often possible to select generalised coordinates that eliminate dynamic
coupling, but it is generally not possible to select generalised coordinates
that eliminate static coupling

• As a result, as we have seen in all of our examples involving stiffness and
flexibility coefficients, static coupling is typically always present in the
differential equations of motion and the stiffness matrix K is symmetric,
but not diagonal
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Decoupled Equations for Undamped Free Vibration

• To decouple these equations of motion we use the linear coordinate
transformation

X = Uν (41)

from which

Ẍ = Uν̈ (42)

• In these equations X is the vector of xi generalised coordinates, U is the
modal matrix, while ν is the vector of principal coordinates νi

• The νi principal coordinates of points are described in the orthogonal
principal coordinate system, while the modal matrix transforms the
principal coordinate system into the generalised coordinate system, and
the generalised coordinates xi are the coordinates of the same points, but
now described in the orthogonal generalised coordinate system

• The νi are obtained from

ν = U−1X (43)
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Decoupled Equations for Undamped Free Vibration
• A well known theorem in linear algebra states that if D is a n × n, i.e.

square matrix, then the following two statements are always true:

a. D is diagonalisable, and

b. D has n linearly independent eigenvectors

• And hence, the n × n mass M and stiffness K matrices are always
diagonalisable

• This is accomplished for the undamped free n-DOF system by
pre-multiplying M and K by UT and post-multiplying them by U,
respectively

UTMUν̈ +UTKUν = 0 (44)

• This results in the diagonalisation of the mass and stiffness matrices giving
the Mr and Kr elements for r = 1, 2, · · · , n

UTMU =


Mr=1 0 · · · 0
0 Mr=2 · · · 0
...

...
. . .

...
0 0 · · · Mr=n

 , (45)
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Decoupled Equations for Undamped Free Vibration

and

UTKU =


Kr=1 0 · · · 0
0 Kr=2 · · · 0
...

...
. . .

...
0 0 · · · Kr=n

 (46)

• Recalling that
ω2
rMr = Kr , r ∈ {1, 2, · · · , n}

we can rewrite Equation (46) as

UTKU =


ω2
1M1 0 · · · 0
0 ω2

2M2 · · · 0
...

...
. . .

...
0 0 · · · ω2

nMn

 (47)

where ωr = undamped natural circular frequency of the r th mode

Mr =
∑n

i=1 mi (X
2
i )r = r th mode generalised mass for diagonal M

Mr =
∑n

i=1

∑n
j=1 mij (X

2
i )r (X

2
j )r = r th mode generalised mass for non-diagonal M
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Decoupled Equations for Undamped Free Vibration

• Referring to Equations (45) and (47), the decoupled differential equations
of motion for n-DOF free vibration in Equation (44) take on the pleasing
form ↖

Mr

↘

 ν̈ +

↖ω2
rMr

↘

ν = 0 (48)

• Equation (48) shows that the decoupled differential equations of motion
for n-DOF free vibration, in terms of the principal coordinates, are linearly
independent and each has the form

ν̈1 + ω2
1ν1 = 0

ν̈2 + ω2
2ν2 = 0
...

ν̈r + ω2
r νr = 0
...

ν̈n + ω2
nνn = 0


(49)
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Undamped Free Vibration Response

• The solution for any r th mode of Equation (49) is simply

νr = Ar cos (ωr t) + Br sin (ωr t), r ∈ {1, 2, · · · , n} (50)

• Considering Equations (41) and (50), it follows that the response of the
undamped free vibration of an n-DOF mechanical system due to initial
conditions and system properties can be determined using

x1

x2
...

xn

 = U


A1 cos (ω1t) + B1 sin (ω1t)

A2 cos (ω2t) + B2 sin (ω2t)
...

An cos (ωnt) + Bn sin (ωnt)

 (51)

in which the xi are the generalised coordinates used to model the motion
of the system, and hence describe the vibratory motion.

• The constants Ar and Br are determined from the specified initial
conditions

(xi )t=0, displacements at time t = 0

(ẋi )t=0, velocities at time t = 0
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Undamped Free Vibration Response

• For computations involving some initial-condition problems when n is large,
it is often more convenient to write Equation (51) in the following way

x1

x2

...

xn

 = ν1


X1

X2

...

Xn


1

+ ν2


X1

X2

...

Xn


2

+ · · · + νn


X1

X2

...

Xn


n

(52)

where ν1, ν2, · · · , νn are computed according to Equation (50)

• And the Xi column vectors are the n individual eigenvectors contained in U
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Example 3.9

• The undamped natural circular frequencies and modes, and hence modal
matrix U, in Example 3.7 were found to be

ω1 =
√
4049.94 = 63.64 rad/s

ω2 =
√
27758.70 = 166.61 rad/s

and

U =

[
1.00 1.00

0.62 −1.62

]
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Example 3.9

• The desired initial conditions are[
θ1

θ2

]
=

[
10.00◦

−12.00◦

]
t=0

, and

[
θ̇1

θ̇2

]
=

[
0.00 rad/s

0.00 rad/s

]
t=0

• The system is carefully released from rest at time t = 0 with the stated
initial conditions

• Determine the undamped free vibration response of the torsional system as
a function of time
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Example 3.9 Solution

• We will use four decimal place accuracy for the computations, and round
to two in the computed expression of the response

• Using the initial angular displacements converted to radians,
Equation (51) simplifies to[

0.1745

−0.2094

]
= U

[
A1

A2

]

• This matrix equation is a system of two linear equations in two unknowns,
the coefficients A1 and A2

• Because the initial angular velocities are all identically zero, the time
derivative of Equation (51) requires[

ẋ1

ẋ2

]
=

[
θ̇1

θ̇2

]
=

[
0

0

]
= U

[
B1ω1 cos 0

B2ω2 cos 0

]

it must be that B1 = B2 = 0
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Example 3.9 Solution

• Although there a number of methods suited to solving linear systems of
equations, we will use linear algebra and matrix inversion to solve the
system by multiplying both sides of the equation by the inverse of U giving

U−1

[
0.1745

−0.2094

]
= U−1U

[
A1

A2

]
= I

[
A1

A2

]
=

[
A1

A2

]

• The inverse of an n × n matrix is easily computable using a hand
calculator when n ≤ 3, otherwise it is very cumbersome

• For n > 3 numerical methods are more effective using Python, MatLAB,
Maple, et c.
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Example 3.9 Solution

• For reference, the inverse of a 2× 2 matrix is

if A2×2 =

[
a11 a12

a21 a22

]
then A−1

2×2 =
1

det (A2×2)

[
a22 −a12

−a21 a11

]

where det (A2×2) = a11a22 − a21a12

• The inverse of a 3× 3 matrix is

if A3×3 =


a11 a12 a13

a21 a22 a23

a31 a32 a33



then A−1
3×3 =

1

det (A3×3)

 (a22a23 − a32a23) −(a21a33 − a31a23) (a21a32 − a31a22)

−(a12a33 − a32a13) (a11a33 − a31a13) −(a11a32 − a31a12)

(a12a23 − a22a13) −(a11a23 − a21a13) (a11a22 − a21a12)


where
det (A3×3) = a11(a22a33−a32a23)−a12(a21a33−a31a23)+a13(a21a32−a31a22)
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Example 3.9 Solution
• For the problem at hand

U−1

[
0.1745

−0.2094

]
=

[
0.7232 0.4464

0.2768 −0.4464

][
0.1745

−0.2094

]
=

[
0.0327

0.1408

]

• Therefore A1 = 0.0327 rad and A2 = 0.1408 rad

• Meaning that ν1 = 0.0327 cos (63.6391t) and ν2 = 0.1408 cos (166.6094t)

• The undamped free vibration response of the torsional system is given by
Equation (51), X = Uν, giving

x1 = θ1 = 0.0327 cos (63.6391t) + 0.1408 cos (166.6094t)

x2 = θ2 = 0.0203 cos (63.6391t) − 0.2284 cos (166.6094t)

• Rounding to two decimal places yields

x1 = θ1 = 0.03 cos (63.64t) + 0.14 cos (166.61t)

x2 = θ2 = 0.02 cos (63.64t) − 0.23 cos (166.61t)
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Decoupling Damped Free Vibration Equations

• The matrix form of the differential equations of motion for damped free
vibration is

MẌ+ CẊ+KX = 0 (53)

in which C is the damping matrix

C =


c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn


• With inclusion of damping, the equations of motion can also be coupled

by damping in addition to being statically and/or dynamically coupled

• Damping coupling corresponds to C containing non-zero off-diagonal
elements
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Decoupling Damped Free Vibration Equations

• Substituting the modal-matrix transformations into Equation (53) we
obtain

UTMUν̈ + UTCUν̇ + UTKUν = 0 (54)

• The first and last terms are transformed into diagonal matrices because of
the orthogonality relationships between the eigenvectors relative to the
mass and stiffness matrices, respectively

• Unfortunately, the damping term generally does not diagonalise because
there is no such orthogonality relationship

• The way this has been dealt with is using the assumption of proportional
damping

• In proportional damping, the damping matrix C is assumed to be
proportional to either the mass matrix M or the stiffness matrix K
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Decoupling Damped Free Vibration Equations

• If, for example, we assume that C is proportional to M by some constant
of proportionality α then

C = αM

• Then we have

UTCU = αUTMU =

↖αMr

↘


where Mr is the generalised mass of the r th mode

• From this, it is common practise to assume that the proportional modal
damping has the form

2ζrωrMr = αMr (55)
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Decoupling Damped Free Vibration Equations

• Similarly, if we assume that damping is proportional to the stiffness
matrix, then

C = βK

in which β is the proportionality constant, then we obtain

UTCU = βUTKU =

↖βω2
rMr

↘


And in this case, the modal damping can also be expressed as

2ζrωrMr = βω2
rMr (56)
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Decoupling Damped Free Vibration Equations

• With the assumption of proportional damping that leads either to
Equation (55) or (56), the decoupled form of Equation (54) is↖

Mr

↘

 ν̈ +

↖2ζrωrMr

↘

 ν̇ +

↖ω2
rMr

↘

ν = 0 (57)

• Equation (57) is a set of n uncoupled equations of the form

ν̈r + 2ζrωr ν̇ + ω2
r ν = 0, r ∈ {1, 2, · · · , n} (58)

where ζr = modal damping factor of the r th mode

ωr = undamped natural circular frequency of the r th mode

• Each of the decoupled r th modes has the same form as the differential
equation of motion of a single DOF mechanical system, which has the
solution

νr = e−ζrωr t
(
Ar cos

(
ωr

√
1− ζ2r t

)
+ Br sin

(
ωr

√
1− ζ2r t

))
(59)
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Equations of Motion

• Determining the vibration response of n-DOF mass systems that move is a
critical consideration in their analysis, and design

• Time constraints will unfortunately limit our discussion to the equations of
motion and some simple examples

• If you are interested in learning more please register in the 4th year
technical elective course MAAE 4104, Vibration Analysis

• We will now consider n-DOF mechanical systems that are subject to either
excitation forces, or support excitation

• The matrix differential equation of an n-DOF system subjected to
excitation forces and/or moments is

MẌ+ CẊ+KX = F =


F1(t)

F2(t)

...

Fn(t)

 (60)
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Example 3.10

• One cylinder of the engine of a car is misfiring because of a fouled spark
plug, which causes an excitation force F (t) a distance l3 from the mass
centre G of the car

• Determine the elements of the column vector F which represents the
forces and moments caused by the misfiring of the fouled plug
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Example 3.10 Solution

• The standard half-car model is a four-lumped-mass system
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Example 3.10 Solution

• Adding the two forces F (t) that are equal in magnitude but oppositely directed,
we generate an equivalent force system consisting of a force F (t) acting through
the mass centre G and a couple of magnitude F (t)l3

• The elements of F can be determined using the concept of virtual work

• The virtual work done by an excitation force Fi (t) for an arbitrarily small
displacement, δxi is

δWi = Fi (t)δxi

• If we let all but one of the generalised coordinates of a system be held constant
(fixed) and then consider a virtual displacement δxi of the mass with the unfixed
coordinate, the corresponding Fi (t) in vector F will be the sum of all the
excitation forces that do virtual work during that virtual displacement

• The elements of F that are moments are similarly determined using virtual
angular displacements δθi
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Example 3.10 Solution

• The virtual work of the equivalent
force F (t) acting through the
mass centre G due to a virtual
displacement δx1 of m1 is

δW1 = F (t)δx1

which reveals that the first
element of F is simply the force

δF1(t) = F (t)
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Example 3.10 Solution
• Since no external forces are acting on the masses of the wheels, it follows

that

δW2 = 0 ⇒ F2(t) = 0

δW3 = 0 ⇒ F3(t) = 0

• The virtual work of the couple F (t)l3 due to a virtual angular
displacement of δθ of the main mass m1 is

δW4 = F (t)l3δθ

So the fourth element of F is

δW4 = F (t)l3δθ

• Thus, the column vector of forcing functions is

F =


F (t)
0
0

F (t)l3





Modal Analysis Forced Vibration Support Excitation Vibration Absorbtion

Example 3.10 Solution

• While the elements of F could easily have been determined by inspection
of the figure, this simple example provides a good example of how to use
the concept of virtual work for this type of application
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Support Excitation

• Let us now consider an n-DOF system that is attached to a moving
support frame

• The 3-DOF system in the image is excited by the motion of the support
frame, and the generalised coordinates are assigned as

xi = absolute displacement of mass mi

y = absolute displacement of moving support

zi = displacement of mi relative to moving support
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Support Excitation

• The absolute displacements of m1, m2, and m3 with respect to the
relatively non-moving inertial coordinate reference frame are x1, x2, and x3,
respectively

• The displacements of the three masses relative to the moving support are
z1, z2, and z3

• The absolute displacement of the moving support with respect to the
inertial frame is y
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Support Excitation

• With these definitions in mind, for the i th mass we can write that

xi = y + zi
ẋi = ẏ + żi
ẍi = ÿ + z̈i

 (61)

• The only forces acting on the three mi masses are the spring and damping
forces

• The spring forces vary with the zi relative displacements and the damping
forces vary with the żi relative velocities
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Support Excitation
• Since Newton’s second law applies to the absolute accelerations of the

masses ẍ1, ẍ2, and ẍ3, we can write that

M

 ẍ1
ẍ2
ẍ3

+ C

 ż1
ż2
ż3

+K

 z1
z2
z3

 = 0 (62)

• As Equation (61) states, the xi absolute displacements of the mi masses
are the sum of the mi masses relative displacements and the y absolute
displacement of the moving support, hence Equation (62) can be
expressed as

M

 ÿ + z̈1
ÿ + z̈2
ÿ + z̈3

+ C

 ż1
ż2
ż3

+K

 z1
z2
z3

 = 0

• We can rearrange this equation to interpret the forces mi ÿ as excitation
forces, giving

M

 z̈1
z̈2
z̈3

+ C

 ż1
ż2
ż3

+K

 z1
z2
z3

 = −M

 ÿ
ÿ
ÿ

 (63)
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Support Excitation

• Equation (63) expresses the differential equations of motion of the system
in terms of its relative motion and an excitation force proportional to the ÿ
acceleration of the support, and can be written in the compact form

MZ̈+ CŻ+KZ = −MŸ (64)

• The elements of the damping matrix C and stiffness matrix K are
determined as if the moving support were stationary and using the
techniques we have seen earlier In the section on Influence Coefficients in
Part I of Lecture Slide Set 3

• The modeling technique that can be used to obtain solutions to
differential equations such as these will be illustrated with the concept of
vibration absorbtion

• Vibration absorbers can be used to significantly attenuate vibration
amplitudes to nearly undetectable levels in systems where vibration is
undesirable
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Vibration Absorber

• A common type of vibration absorber
consists of a spring-and-mass system
constructed such that its natural frequency
is easily, and precisely varied

• This absorbtion system is rigidly attached
to the principal system that is to have its
vibration reduced, and the frequency of
the absorber system is then adjusted until
the desired result is achieved

• For example, if the circular frequency ω of
the disturbing force F0 sin (ωt) acting on a
system is close to the natural circular
frequency ωn =

√
k/m of the system, the

amplitude of the response could become
very large due to this resonance condition
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Vibration Absorber

• Attaching an auxiliary spring-and-mass
system consisting of k2 and m2, the
vibration response amplitude can be
reduced, essentially to zero, if the natural
circular frequency of the absorber is
adjusted until it equals that of the
disturbing force, i.e., until

√
k2/m2 = ω

• This type of absorber is usually designed
to have little damping and is “tuned” by
varying either m2, k2, or both

• It is important to note that the original
1-DOF system becomes a 2-DOF system
with this type of absorber added as shown
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Vibration Absorber Design

• The stiffness matrix of the 2-DOF system
augmented with the absorber is
determined by inspection, recalling the
definitions of the stiffness coefficients in
Part I of Lecture Slide Set 3

• The virtual work done by the excitation
force F0 sin (ωt) due to the virtual
displacement δx1 is

δW1 = F0 sin (ωt)δx1

and since there is no excitation force
acting on m2 we have

δW2 = 0
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Vibration Absorber
• The statically coupled differential equations of motion are therefore[

m1 0
0 m2

][
ẍ1
ẍ2

]
+

[
(k1 + k2) −k2

−k2 k2

][
x1
x2

]
=

[
F0 sin (ωt)

0

]
(65)

• Next we premultiply Equation (65) by M−1, which gives

ẍ1 +
k1 + k2
m1

x1 −
k2
m1

x2 =
F0

m1
sin (ωt)

ẍ2 −
k2
m2

x1 +
k2
m2

x2 = 0

 (66)

• To determine the steady-state solution of these coupled equations, we let
the imaginary part of (F0/m1)e

iωt represent (F0/m1) sin (ωt) and assume
solutions of the form

x1 = X1e
iωt (67)

and

x2 = X2e
iωt (68)
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Vibration Absorber Design

• Substituting Equations (67) and (68), and their appropriate time
derivatives into Equation (66) leads to two algebraic equations(

k1 + k2
m1

− ω2

)
X1 −

k2
m1

X2 =
F0

m1

− k2
m2

X1 +

(
k2
m2

− ω2

)
X2 = 0

 (69)

• From this pair of algebraic equations in X1 and X2, we can express

X2 =


k2
m2(

k2
m2

− ω2

)
X1 (70)

and
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Vibration Absorber Design

X1 =

F0

m1

(
k2
m2

− ω2

)
(
k1 + k2
m1

− ω2

)(
k2
m2

− ω2

)
− k2

2

m1m2

(71)

• Equation (71) indicates that the amplitude x1 = X1 = 0 when k2/m2 of
the vibration absorber is equal to the square of the circular frequency ω2 of
the excitation force

• If the purpose of the absorber is to perform this amplitude reduction when
the principal system is in resonance with the excitation force F0 sin (ωt),
that is, when k1/m1 = ω2, it then follows that when X1 = 0

k2
m2

=
k1
m1

= ω2 ⇒ X1 = 0 (72)
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Vibration Absorber Design

• The two natural frequencies of the combined system depend upon the
ratio of the absorber mass m2 to the primary mass m1

• Therefore, the mass ratio m2/m1 is an important parameter in the design
of this type of vibration absorber

• To observe its effect on the total response of the system we first transform
Equation (71) into non-dimensional form using the following notation

ω2
22 =

k2
m2

=
k1
m1

µ =
m2

m1
=

k2
k1

 (73)

• Using this notation we can rewrite Equation (71) in the following
non-dimensional way

X1

F0/k1
=

1− (ω/ω22)
2

(ω/ω22)4 − (2 + µ)(ω/ω22)2 + 1
(74)

in which ω is the circular frequency of the disturbing force
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Vibration Absorber Design

• This is a plot of the absolute values of Equation (74),

∣∣∣∣ X1

F0/k1

∣∣∣∣, as a
function of

ω

ω2
22

for the mass ratio µ = 0.2
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Vibration Absorber Design

• The denominator of Equation (74) is an algebraic polynomial of degree 4
having four roots

• Equation (74) is infinite when the denominator vanishes, that is when

(ω/ω22)
4 − (2 + µ)(ω/ω22)

2 + 1 = 0

• This equation has four real roots that depend on the mass ratio µ, which
are

±1

2

(√
4− 2

√
µ2 + 4µ+ 2µ

)
and ± 1

2

(√
4 + 2

√
µ2 + 4µ+ 2µ

)

• For µ = 0.2 the positive roots are

ω

ω2
22

= 0.801, 1.248,

as seen in the graph
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Vibration Absorber Design

• The two natural circular frequencies of the composite system are

ωn1 = 0.801ω22 = 0.801

√
k1
m1

, and ωn2 = 1.248ω22 = 1.248

√
k1
m1

in which k1/m1 = k2/m2
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• Hence, the two natural circular frequencies of the composite 2-DOF

system are 0.801 and 1.248 times the natural circular frequency of the
principal 1-DOF system

• We see that the vibration absorber has been tuned to eliminate vibration
when the disturbing frequency is equal to the natural circular frequency of
the principal system: ω/ω22 = 1



Modal Analysis Forced Vibration Support Excitation Vibration Absorbtion

Vibration Absorber Design

• It can be shown using Equations (70), (73), and (74) that when
ω2
22 = k2/m2 and ω/ω22 = 1 the amplitude X2 of the of the absorber is

180◦ out phase with the disturbance force F0:

X2 = −F0

k2
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• In this case, the principal mass m1 is subjected to both the disturbing
excitation force F0 sin (ωt) and the absorber force −k2X2 sin (ωt)

• The combination of these two forces corresponds to a condition of static
equilibrium at any instant in time with X1 = 0
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