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Definitions

a) Machine:

• “A combination of resistant bodies so arranged that by their means the
mechanical forces of nature can be compelled to do work accompanied by
certain determinate motions.”
F. Reuleaux (1829-1905)-grand father of systematic treatment of kinematics.

• “an arrangement of parts for doing work, a device for applying power or
changing its direction.”
Shigley and Uicker; The theory of machines and mechanisms; 5th edition, Oxford,
2017.

Key concepts: power (work,energy and force)

bodies (physical parts)

motion (kinematics)

Conclusion: Machines are closely associated with Kinetics.
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b) Mechanism:

• “An assemblage of resistant bodies, connected by moveable joints to form
a closed kinematic chain with one link fixed and having the purpose of
transforming motion.”
F. Reuleaux

• “The predominant idea in the mind of the designer is one of achieving a
desired motion.”
Shigley and Uicker; The theory of machines and mechanisms; 3rd edition, Oxford,

2017.

Key concept: motion
Conclusion: Mechanisms are closely associated with

Kinematics

All machines are mechanisms, but not all mechanisms are machines.
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c) Link:

A single rigid body linked to two or more rigid bodies by kinematic pairs
(joints) maintaining a fixed geometric relationship between the rigid bodies

• Chains and belts are links when in tension

• Binary link: a single link paired with two others

• Ternary link: a single link paired with three others
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d) Kinematic Pairs (Joints):

Form the attachment between two bodies. The purpose is to constrain the
allowable relative motion between connected links.

Pair variables: The variables used to measure relative motions.
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Six lower pairs

Name Description Number of pair
variables (ndof)

Revolute / Turning / Pin permits rotation about 1 1 Rotary
R-pair axis
Prismatic / Sliding permits translation in 1 1 Prismatic
P-pair direction
Helical / Screw permits 1 coupled trans. 1 Rotary OR
H-pair and rotation; related by 1 Prismatic

helix angle
Cylindrical permits 1 rotation and 1 Rotary AND
C-pair translation along 1 1 Prismatic

rotation axis
Spherical permits general rotation 3 Rotary
S-pair about a fixed point
Planar permits general planar 1 Rotary
E-pair translation and rotation 2 Prismatic



Definitions Categorisation Mobility Kinematic Inversion Grashof Function Generation Synthesis

Six lower pairs

(a) R-pair (revolute); (b) P-pair (prismatic); (c) H-pair (helical screw);
(d)C-pair (cylindrical); (e) S-pair (spherical); and (f) E-pair (planar)
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PLANAR LINKAGES ● 7

TABLE 1.2 Examples of Higher-Pair Joints

A common schematic method of representing planar linkages is to represent revolute joints by 
small circles as shown in Table 1.1. Binary links, those that have two joints mounted on them, are 
represented as lines joining those joints. Ternary links, those that have three joints mounted on them, 
are represented as triangles with the joints at the vertices, and so on. Examples of the resulting 
representation are shown in Figures 1.7 through 1.9. The link geometries may then be easily 
reproduced, giving an accurate view of the linkage in a specified position. Alternatively, the 
schematic may be used conceptually without accurate geometric data, to indicate the topology of the 
linkage. Topology is the branch of geometry that deals with issues of connectedness without regard to 
shape. Links with three or more joints should be shaded or crosshatched. Otherwise, the schematic 
for a quaternary link, one with four joints, cannot be distinguished from the schematic for a four-bar 
linkage loop. 

A kinematic chain is any assemblage of rigid links connected by kinematic joints. A closed 
chain is one in which the links and joints form one or more closed circuits. Each closed circuit is a 
loop in which each link is attached to other links by at least two joints. 

Prismatic joints are represented by means of a line in the direction of sliding, representing a 
slide, with a rectangular block placed on it. This produces linkage representations such as those 
shown in Figure 1.9. A frame or base member is a link that is fixed. That is, it has zero degrees of 
freedom relative to the fixed coordinate system. A linkage is a closed kinematic chain with one link 
selected as the frame. 

In cases in which it is necessary to distinguish the base member of a linkage, it is customary not 
to show the base as a link in the normal manner but to indicate joints to base by “mounts,” as shown in 
Figures 1.10 and 1.11. 

Waldron, Kenneth J., et al. <i>Kinematics, Dynamics, and Design of Machinery</i>, John Wiley & Sons, Incorporated, 2016. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/oculcarleton-ebooks/detail.action?docID=4526800.
Created from oculcarleton-ebooks on 2019-08-01 08:33:07.
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K.J.Waldron.Kinematics Dynamics and Design of Machinery. John Wiley and Sons Inc., United States, 2th edition, 2004.
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Higher Pair Joint Examples

The cam in (a) is bounded by a curve of constant width.
See for example https://www.youtube.com/watch?v=g7SYvLCR3Rk
and https://www.youtube.com/watch?v=quuw4HC96bE

J J.Uicker.Theory of Machines and Mechanisms. Oxford University Press Inc., New York, New York, United States, 4th edition, 2011.
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e) Kinematic chain:

Kinematic chains can be open (serial) or closed (parallel)

Recall Reuleaux’s definition:
When one body in the closed kinematic chain is fixed such that motion of any
link will result in definite predictable motion of all other links, the kinematic
chain is considered a mechanism.

The fixed link is called ‘the ground link’, ‘base link’, or ‘frame’.
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Geometric Categorisation

• Based on range of possible relative motions within the mechanism.

a) Planar:
All particles describe plane curves in space and all these curves lie in parallel
planes

Plane motion ⇒ Translation + Rotation

R.G. Langlois. Preview control algorithms for the active suspension of an off-road vehicle. Master’s thesis, Queen’s University at Kingston,
Kingston,Ontario, Canada K7L 3N6, August 1991.
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b) Spherical:

The R-pair axes on each link all intersect at the centre of the sphere on which
the circular arc links move.

The sphere centre is the mutual stationary point of each link.
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c) Spatial:

A spatial mechanism has one link that moves with 6-DOF in the
sense that six parameters are needed to specify its position and
orientation, such as the RSSR mechanism.

The vast majority of in-service mechanisms are planer because:

• All links can be represented in true size and shape on paper;

• Well developed graphical and algebraic analysis can be applied;

• Operation can be readily visualised;

• Design requirements can be satisfied using straightforward methods;

• Significantly more sophisticated methods are needed for spherical and
spacial mechanism design and manufacture.
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Mobility (m):

The number of degrees of freedom (DOF) in a mechanism,
i.e; the number of kinematic pair variables that must be specified
to determine the configuration of a mechanism

Kutzbach criteria for planer mobility:

m = 3(n − 1)− 2j1 − j2 − ζ (1)

where,
n: number of links (including the ground link)
3n: DOF of mechanism (before connecting links)
3(n − 1): -1 is to account for the ground link
j1: number of pairs with 1 DOF (2 constraints)
j2: number of pairs with 2 DOF (1 constraint)
ζ: represents the number of idle DOF of the kinematic chain

(always occurs in SS dyads)
m > 0 ⇒ m is # of DOF for the mechanism = number of independent inputs
m = 0 ⇒ system is a determinate structure with no rigid body motion
m < 0 ⇒ structure is statically indeterminate
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Chebyshev-Grübler-Kutzbach (CGK) Mobility Formula

Another way to determine the mobility of a mechanical system of rigid bodies is
as follows.

• Clearly, n unconstrained rigid links have d(n − 1) relative DOF, given that
one of the links is designated as a non-moving reference link, where d can
be described as the dimension of the space of the motion.

• In general for planar mechanisms d = 3 and for spatial mechanisms d = 6,
but as we will see this mobility model leads sometimes to inconsistencies
mostly because distances between the joints is not considered.

• Any joint connecting two neighboring rigid bodies removes at least one
relative DOF.

• If the joint removes no DOF then the bodies are not connected.

• If the joint removes 3 DOF in the plane, or 6 DOF in E3 the two bodies
are a rigid structure.
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Chebyshev-Grübler-Kutzbach (CGK) Mobility Formula

Summarising this discussion, the DOF, or mobility of a kinematic chain,
relative to one fixed link in the chain, can be expressed as:

m = d(n − 1)−
p∑

i=1

µi − ζ (2)

where,
n: number of links (including the ground link)
d : dimension of the motion space
(n-1): -1 is to account for the ground link
µi : is the number of constraints imposed by the i th joint (pair)
p: is the number of joints (pairs)
ζ represents the number of idle DOF of the kinematic chain

m > 0 ⇒ m is # of DOF for the mechanism = number of independent inputs
m = 0 ⇒ system is a determinate structure with no rigid body motion
m < 0 ⇒ structure is over constrained and statically indeterminate
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Example 1.1

a) n = 3, j1 = 3,ζ = 0,
m= 3(3-1)-2(3) = 0.

n = 3, p = 3, ui = 2, ζ = 0,
m = 3(3-1)-2(3) = 0.

b) n = 4, j1 = 4,ζ = 0,
m = 3(4-1)-2(4) = 1.

n = 4, p = 4, ui = 2, ζ = 0,
m = 3(4-1)-2(4) = 1.

c) n = 5, j1 = 6,ζ = 0,
m = 3(5-1)-2(6) = 0.

n = 5, p = 6, ui = 2, ζ = 0,
m = 3(5-1)-2(6) = 0.
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d) n = 6, j1 = 8,ζ = 0,
m = 3(6-1)-2(8) = -1.

n = 6, p = 8, ui = 2, ζ = 0,
m = 3(6-1)-2(8) = -1.

e) n = 5, j1 = 5,ζ = 0,
m = 3(5-1)-2(5) = 2.

n = 5, p = 5, ui = 2, ζ = 0,
m = 3(5-1)-2(5) = 2.

f) n = 4, j1 = 4,ζ = 0,
m = 3(4-1)-2(4) = 1.

n = 4, p = 4, ui = 2, ζ = 0,
m = 3(4-1)-2(4) = 1.
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g) n = 3, j1 = 2, j2 = 1,ζ = 0,
m = 3(3-1)-2(2)-1 = 1.

n = 3, p = 3, u1,3 = 2, u2 = 1, ζ = 0,
m = 3(3-1)-2(2)-1(1) = 1.

h) n = 5, j1 = 6,ζ = 0,
m = 3(5-1)-2(6) = 0.

n = 5, p = 6, ui = 2, ζ = 0,
m = 3(5-1)-2(6) = 0.

m is actually 1!

Some geometric exceptions cause Kutzbach’s criterion to produce erroneous
results - some caution required
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i) Consider a typical bench vice:

n1

2

3

n

n R = p

P = p

H = p

1

2

3

At first glance the bench vice is planar, so we immediately set d = 3:

d = 3, n = 3, µi = 2, p = 3, ζ = 0,
m = 3(3− 1)− 3(2)− 0 = 0.
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n1

2

3

n

n R = p

P = p

H = p

1

2

3

A bench vice has 1 DOF! What gives?

This seeming anomaly is an artifact of representation.

The R- and H-axes are parallel while the translation direction of the P-pair is
also parallel.

The P- and R-pairs are kinematically equivalent to a single C -pair.

Moreover, the axis of the H-pair is parallel to the axis of the C -pair.

Therefore, the dimension of the motion sub-group represented by the common
bench vice is d = 2, not d = 3.
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n1

2

3

n

n R = p

P = p

H = p

1

2

3

d = 2, n = 3, µi = 1, p = 3, ζ = 0,
m = 2(3− 1)− 3(1)− 0 = 1.

The Kutzbach mobility criterion must used very carefully and the results

considered with healthy suspicion!
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j) n = 11
ζ = 0
j1 = 13
j2 = 1
m = 3(11-1)-2(13)-1

= 3
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Example 4.2

Determine the simplest possible single DOF mechanisms that use only single
DOF kinematic pairs

Solution: j2 = 0 & m = 1

m = 3(n-1)- 2j1 - j2
1 = 3n - 3 - 2j1
3n - 2j1 = 4
solve for n;

n = 4+2j1
3

j1 n
1 2 Not a mechanism(Kinematic chain not closed)

2 8/3 Not possible (# of link must be integer)

3 10/3 Not possible (# of link must be integer)

4 4 First possible condition

Therefore the simplest mechanism must have 4 links and 4 joints
Three configurations possible such that the coupler translates and rotates:

Planar 4R RRRP (Slider-crank) PRRP (Elliptical trammel)
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A similar form of the Kutzbach criterion is available for spatial linkages.

m = 6(n − 1)− 5j1 − 4j2 − 3j3 − 2j4 − j5 − ζ (3)

where,
n: number of links
j1: number of pairs with 1 DOF
j2: number of pairs with 2 DOF
j3: number of pairs with 3 DOF
j4: number of pairs with 4 DOF
j5: number of pairs with 5 DOF
ζ: number of idle DOF
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Consider a spatial SSRC linkage. The bar connecting the two S-pairs can rotate
along its axis without affecting the relation between input and output and is
therefore an idle DOF. Here we will use the generalised Kutzbach criterion.

k) d = 6
n = 4
j1 = 1
j2 = 1
j3 = 2
ζ = 1
m = 6(4− 1)− 5(1)− 4(1)− 3(2)− 1

= 2

S1

S2

R

C
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4.5 Kinematic Inversion

A simple closed kinematic chain becomes a mechanism when one link is fixed
to the ground.

• Changing the link that is fixed creates kinematic inversions of the
mechanism.

• The number of possible kinematic inversions equals the number of links in
the mechanism.

• Kinematic inversions of a mechanism have the same relative motions
between links.

• But, the absolute motions , i.e. those relative to the fixed link, can be
distinctly different.
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Four inversions of the slider-crank mechanism

1.9 GRASHOF’S LAW 33
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Figure 1.27 Four inversions of the slider-crank linkage.

For illustration, consider the slider-crank linkage. Figure 1.27a shows the first
inversion, which is found in most internal combustion engines, where the frame is the
cylinder block, link 1. Link 4, the piston, is driven by the expanding gases, and this
movement provides the input. Link 3, the connecting rod, connects link 2, the crank, which
rotates as the driven output. By reversing the roles of the input and output, this linkage can
be used as a compressor.

Figure 1.27b shows another kinematic inversion, where link 2 is stationary. Link 1,
formerly the frame, now rotates about revolute A. This inversion of the slider-crank linkage
was the basis of the rotary engine found in many early aircraft.

Yet another inversion is shown in Fig. 1.27c; it has link 3, formerly the connecting rod,
as the fixed link. This linkage was used to drive the wheels of early steam locomotives, with
link 2 being attached to a wheel.

The final inversion, shown in Fig. 1.27d, has the piston, link 4, stationary. Although
it is not found in engines, by rotating the figure 90◦ clockwise, this linkage is recognized
as part of a garden water pump. Note in this inversion that the prismatic joint connecting
links 1 and 4 is also inverted—that is, the “inside” and “outside” elements of the joint are
reversed.

1.9 GRASHOF’S LAW

A very important consideration when designing a mechanism to be driven by a motor,
obviously, is to ensure that the input crank can make a complete revolution. Mechanisms
in which no link can make a complete revolution would not be useful in such applications.
For the four-bar linkage, there is a very simple test of whether this is the case.

Grashof’s law states that, for a planar four-bar linkage, the sum of the shortest and
longest link lengths cannot be greater than the sum of the remaining two link lengths if
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Evolution Diagrams
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Evolution Diagrams
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4.6 The Grashof Condition

• Important design consideration: condition on link lengths in a planar 4R
(4-bar) to have at least one link with the ability to fully rotate through
360◦, making it a crank

• To test if continuous relative rotation between two members of a 4R
(4-bar) mechanism exists, Grashof’s inequality can be used:

s + l < p+ q (4)

where
s = length of the shortest link
l = length of the longest link
p,q = lengths of intermediate-length links

It is important to satisfy this condition if the mechanism is to be driven
by a unidirectional rotary actuator (i.e. non-reversing motor)
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4 possible inversions of the 4-bar linkage satisfying Grashof’s inequality:

s

l
p

q

(a)

s

l
p

q

(b)

s

l
p

q

(c)

s

l
p

q

(d)

Four inversions of a Grashof chain: (a,b) crank-rocker mechanisms;
(c) drag-link mechanism; (d) double-rocker mechanism.

Naming Convention:

Name Condition
Crank-Rocker(a,b) s jointed to base link

Drag link / double crank (c) s is the base link
Double rocker (d) s is the coupler link

In all of the above s has a continuous relative rotation
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• If s + l = p + q then it can assume a flattened (singular folding)
configuration, mechanism is called “Grashof’s neutral linkage”, “transition
linkage”, or “folding linkage”

x

y

3

2
A

C

B

D

5

6

x

y

A

C

B
D

• From the flattened configuration (ignoring inertia) the coupler and output
links can randomly switch between either of two modes (generally
undesirable in mechanism design)

x

y

A

C

B

D

x

y

A C

B
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The Freudenstein IO Equation

• A trigonometric equation that
relates the input and output link
angles θ1 and θ4 in terms of the
link lengths a1, a2, a3, and a4 is

x

y

0

0

a

a
a

a

1

2

3

4
1

2

3

4

2'

k1 + k2 cos θ4 − k3 cos θ1 = cos (θ4 − θ1),
1 (5)

where:

k1 =
a21 − a22 + a23 + a24

2a1a3
;

k2 =
a4
a1

;

k3 =
a4
a3

.

1
F. Freudenstein, “An Analytical Approach to the Design of Four-link Mechanisms”, Trans. ASME, vol. 77, pp. 483-492, 1954
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The Six vi -vj IO Equations

• Using relative angles, it is possible
to derive an algebraic equation that
relates the input and output link
angle parameters v1 = tan

(
θ1
2

)
and

v4 = tan
(
θ4
2

)
in terms of the link

lengths a1, a2, a3, and a4, which is

Av 2
1 v

2
4 + Bv 2

1 + Cv 2
4 − 8a1a3v1v4 + D = 0, 2 (6)

where:

A = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4) = A1A2;

B = (a1 − a2 + a3 + a4)(a1 + a2 + a3 + a4) = B1B2;

C = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4) = C1C2;

D = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4) = D1D2;

v1 = tan

(
θ1
2

)
; v4 = tan

(
θ4
2

)
.

2
M.J.D. Hayes, M. Rotzoll, Q. Bucciol, Z.A. Copeland, 2023, “Planar and Spherical Four-bar Linkage vi–vj Algebraic Input-output

Equations”, Mechanism and Machine Theory, Vol. 182, April 2023
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The Six vi -vj IO Equations

Since there are six ways to distinctly pair four relative angles in a planar
quadrilateral 4R linkage (4R means the four links are connected with four
R-pairs), there are five additional IO equations:

A1B1v
2
1 v

2
2 + A2B2v

2
1 + C1D2v

2
2 + 8a2a4v1v2 + C2D1 = 0, (7)

A2B1v
2
1 v

2
3 + A1B2v

2
1 + C1D1v

2
3 + C2D2 = 0, (8)

B1C1v
2
2 v

2
3 + A1D2v

2
2 + A2D1v

2
3 − 8a1a3v2v3 + B2C2 = 0, (9)

A1C1v
2
2 v

2
4 + B1D2v

2
2 + A2C2v

2
4 + B2D1 = 0, (10)

A2C1v
2
3 v

2
4 + B1D1v

2
3 + A1C2v

2
4 − 8a2a4v3v4 + B2D2 = 0. (11)
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Planar RRRP Algebraic IO Equation
• Replacing the 4th R-pair in a planar 4R

with a P-pair gives a crank-slider, an
RRRP mechanism, but the crank isn’t
always a crank.

• The input link can instead rock somewhere
in the range π < θ1 > 0, or it can cross
the x0-axis through π or 0.

• These are rockers, π-rockers, and
0-rockers.

a

a

a

aO

G

1

2

3

4

1

4

x

y
0

0

• The IO equation of an RRRP mechanism can be obtained by simply
recollecting the terms in Equation (6) of the planar 4R exchanging the
now constant variable v4 with the now variable slider displacement a3
which gives:

v 2
1 a

2
3 + Rv 2

1 + a23 − 4a1v1a3 + S = 0, (12)

where

R = R1R2 = (a1 + a2 + a4)(a1 − a2 + a4),

S = S1S2 = (a1 + a2 − a4)(a1 − a2 − a4),

v1 = tan

(
θ1
2

)
; v4 = tan

(
θ4
2

)
= tan

(
π/2

2

)
= 1.
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Planar RRRP Trigonometric IO Equation

a

a

a'

a'

O
G

1

2

3

4

1 4

x'

y'
0

0

' '

a

a

a

aO

G

1

2

3

4

1

4

x

y
0

0

• If the RRRP linkage is not given with the reference frame x-axis (or
y -axis) perpendicular to the slider direction of travel, we can always rotate
the coordinate system so that it is, but it changes some dimensions.

• Then we can derive a trigonometric a3 = f (θ1) IO equation (we will in
another lecture):

a3 = a1 sin(θ1)±
√

a22 − (a4 − a1 cos(θ1))2. (13)
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4.7 Function Generation

• A planar 4R mechanism can be designed so that the output parameter is a
function of the input parameter using either Equation (5) for functions of
the form θ4 = f (θ1), and Equation (6) for functions of the form v4 = f (v1).

• These are called input-output (IO) equations: Equation (5) is a
trigonometric IO equation; and Equation (6) is an algebraic IO equation.

• Without loss in generality the four link lengths of a 4R function generator
can be uniformly scaled up or down in length without changing the
function.

• We can consider the four ai to be the four homogeneous coordinates of a
projective 3-D parameter space.

• As long as a4 ̸= 0 we can abstractly project the values of a1, a2, and a3
into the special plane a4 = 1 by dividing all four coordinates by the value
of a4 and impose the Euclidean metric on the 3-D space.

• In this design parameter space every distinct point represents a distinct
function generating linkage.

• The location of the point determines the function and the mobility limits,
if they exist, on the input and output links.
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Planar 4R Design Parameter Space
• The eight bilinear factors from the coefficients in the IO equation,

projected into the special plane a4 = 1 can be thought of as the equations
of eight different planes

A = (a1 − a2 − a3 + 1)(a1 + a2 − a3 + 1) = A1A2;

B = (a1 − a2 + a3 + 1)(a1 + a2 + a3 + 1) = B1B2;

C = (a1 − a2 + a3 − 1)(a1 + a2 + a3 − 1) = C1C2;

D = (a1 + a2 − a3 − 1)(a1 − a2 − a3 − 1) = D1D2;

a2
a1

a3
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Exact Kinematic Synthesis

• Kinematic synthesis of a given type of mechanism involves determining the
ai link lengths required to generate a desired motion.

• We will now consider kinematic synthesis for function generation.

• The functions we can generate will be realised by the relative motion of
the input and output links.

• For a planar 4R the function that must be realised by the linkage is

θ4 = f (θ1), or v4 = f (θ1), or v4 = f (v1)

and the linkage defined by the three ratios of ai link lengths must satisfy
both the function and either Equation (5) or Equation (6) over a specified
input range.

• For a planar RRRP the function that must be realised by the linkage is

a3 = f (θ1), or a3 = f (v1)

and the linkage defined by the three link lengths a1, a2, and a4 must
satisfy both the function and either Equation (12) or Equation (13) over a
specified input range v1 = tan (θ1/2), or θ1.
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Example 4.3: Planar 4R Exact Kinematic Synthesis

• Design a planar 4R mechanism that will generate the function

v4 = 6 sin (θ1)− 1

over the input angle range 0 ≤ θ1 ≤ π/2

• The IO equation for a planar 4R mechanism is Equation (6)

• It has four unknown link lengths, but only the ratios of the link lengths are
needed to identify a mechanism that will approximately generate the
desired function

• This is because the function is insensitive to the overall scale of the
linkage, so we need only solve for a1, a2, and a3 in terms of a4

• We can specify three pairs of θ1 and θ4 that exactly satisfy the desired
function: these are typically called accuracy points.

• Let’s choose a uniform distribution of accuracy points over the desired
input angle range as

v1 = 0, tan

(
π/4

2

)
, tan

(
π/2

2

)
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• The values of the output angle parameter, v4, for each of the specified
input angle parameters v1 as

v4i = 6 sin
(
2 tan−1(v1i )

)
− 1

= −1, 3.242640688, 5

so that

θ4i =
(
2 tan−1(v4i )

)◦

= −90◦, 145.7214555◦, 157.3801350◦

• Obtain three equations by substituting the IO pairs of each v1i , v4i into
Equation (6).

• Solving the three equations for a1, a2, and a3 in Maple yields three distinct
solutions where

a1 = (1.861308073)a4, a2 = (1.425334098)a4, a3 = (1.135660907)a4,
a1 = 0, a2 = −a4, a3 = 0,
a1 = 0, a2 = a4, a3 = 0.
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Analysis of Synthesised 4R Function Generator

• The function generator identified exactly generates the desired function at
the three specified accuracy points uniformly distributed over the specified
input range.
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Analysis of Synthesised 4R Function Generator

K K K

K

K

K

• We see that to go from the first IO angle
pair (θ1, θ4) = (0◦,−90◦), which is
(v1, v4) = (0,−1), to the IO next IO pair
(θ1, θ4) = (45◦, 145.7515◦),
(v1, v4) = (0.4142, 3.2426), the output
first has to pass through the final IO pair
(θ1, θ4) = (90◦, 157.3801◦),
(v1, v4) = (1, 5).

• The identified mechanism doesn’t generate
the desired function in the sense that it
can’t generate the function in the desired
order.

• This order problem can often be resolved
by increasing the cardinality of the IO data
set: making the number of IO pairs that
satisfy the function to be a number >> 3.

• This process is known as approximate
synthesis and the solution is obtained with
numerical error minimisation.
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Example 4.4: Planar RRRP Exact Kinematic Synthesis
• Design a planar RRRP mechanism that will generate the same function as

the planar 4R, but now with

a3 = 6 sin (θ1)− 1

over the same input angle range 0 ≤ θ1 ≤ π/2.

• The IO equation for a planar RRRP mechanism is Equation (12) or (13)

• It has three unknown link lengths, a1, a2, and a4.

• Again, let’s choose a uniform distribution of accuracy points over the
desired input angle range as

v1i = 0, tan

(
π/4

2

)
, tan

(
π/2

2

)

• The values of the output angle parameter, a3, for each of the specified
input angle parameters v1 are the same as for the previous example

a3i = 6 sin
(
2 tan−1(v1i )

)
− 1

= −1, 3.242640688, 5
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• Obtain three equations by substituting the IO pairs of each v1i , a3i into
Equation (12).

• Solving the three equations for a1, a2, and a4 in Maple yields two distinct
solutions where

a1 = 1.500000000, a2 = 4.609772229, a4 = −3.000000000, and
a1 = 1.500000000, a2 = −4.609772229, a4 = −3.000000000.

• Let’s select the second solution
• Note that a2 < 0 and a4 < 0, what does this mean?

a

O

1

1

x

y
0

0

-a2

= 3.24264069a3

-a4

A

B

-1.12132034=a3

a2

• We see that in our selected
coordinate system where the x0- and
y0-axes are perpendicular and
parallel, respectively, to the slider
direction of travel

• a4 < 0 simply means that the slider
longitudinal centre line is directed -3
units along the x0-axis

• a2 < 0 means the coupler points
from B to A instead of from A to B.
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Example 4.4: Analysis of Synthesised RRRP Function Generator

• The function generator identified exactly generates the desired function at
the three specified accuracy points uniformly distributed over the specified
input range.

• It can be shown that the input link is a crank.

• But, can the linkage generate all three IO values
without needing to be taken apart and
reassembled in a different assembly mode?

• The Circuit Defect (also known as the Branch
Defect) refers to a completed linkage design that
meets all of the prescribed requirements at all
three precision input angles, but cannot be moved
continuously between all three prescribed IO
values without being taken apart and reassembled
in a different assembly mode.
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Example 4.4: Circuit Defect

v1

a3
a3max

-a3max

-a3min

a3min

Upper assembly mode

Lower assembly mode

Desired
function

• The synthesised crank-slider has two assembly modes.

• The first precision input angle function value requires a3 = −1, which is in
the lower assembly mode, while the remaining two are in the upper
assembly mode.

• This linkage suffers from the circuit defect.

• One way to overcome this defect is to decrease the desired input angle
range from 0◦-90◦ to 10◦-90◦ and recompute the link lengths to see if the
circuit defect is adequately resolved.
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Example 4.4: Resolving Circuit Defect

• Here we have reduced the specified input range to 10◦-90◦.

• Solving the three equations for a1, a2, and a4 in Maple yields two distinct
solutions where

a1 = 2.096134490, a2 = ±3.066433626, a4 = −0.9851803279

• It is clear the circuit defect has been resolved at the expense of a smaller
IO range.
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