# MAAE 3004 Dynamics of Machinery 

Lecture Slide Set 4<br>Machines and Mechanisms

Department of Mechanical and Aerospace Engineering
Carleton University
(C) M.J.D. Hayes, R.A. Irani, F.F. Afagh, and R.G. Langlois

## Outline

## Definitions

## Categorisation

Mobility

Kinematic Inversion

Grashof

Function Generation Synthesis

## Definitions

a) Machine:

- "A combination of resistant bodies so arranged that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motions."
F. Reuleaux (1829-1905)-grand father of systematic treatment of kinematics.
- "an arrangement of parts for doing work, a device for applying power or changing its direction."
Shigley and Uicker; The theory of machines and mechanisms; $5^{\text {th }}$ edition, Oxford, 2017.

Key concepts:
power (work,energy and force)
bodies (physical parts)
motion (kinematics)
Conclusion:
Machines are closely associated with Kinetics.
b) Mechanism:

- "An assemblage of resistant bodies, connected by moveable joints to form a closed kinematic chain with one link fixed and having the purpose of transforming motion."
F. Reuleaux
- "The predominant idea in the mind of the designer is one of achieving a desired motion."
Shigley and Uicker; The theory of machines and mechanisms; $3^{\text {rd }}$ edition, Oxford, 2017.

Key concept: motion
Conclusion: Mechanisms are closely associated with Kinematics

All machines are mechanisms, but not all mechanisms are machines.
c) Link:

A single rigid body linked to two or more rigid bodies by kinematic pairs (joints) maintaining a fixed geometric relationship between the rigid bodies


1

d) Kinematic Pairs (Joints):

Form the attachment between two bodies. The purpose is to constrain the allowable relative motion between connected links.


Lower pairs


Higher pair

Pair variables: The variables used to measure relative motions.


Six lower pairs

| Name | Description | Number of pair <br> variables (ndof) |
| :--- | :--- | :--- |
| Revolute / Turning / Pin <br> R-pair | permits rotation about 1 <br> axis | 1 Rotary |
| Prismatic / Sliding | permits translation in 1 <br> direction | 1 Prismatic |
| P-pair | permits 1 coupled trans. <br> and rotation; related by <br> helix angle | 1 Rotary OR <br> Helical / Screw <br> H-pair |
| Cylindrical | permits 1 rotation and <br> translation along 1 <br> rotation axis | 1 Rotary AND |
| Spherical | permits general rotation <br> about a fixed point | 3 Rotary |
| S-pair | permits general planar <br> translation and rotation | 1 Rotary 2 Prismatic |
| Planar |  |  |

## Six lower pairs


(a)

(d)

(b)

(e)

(c)

(a) R-pair (revolute); (b) P-pair (prismatic); (c) H-pair (helical screw); (d)C-pair (cylindrical); (e) S-pair (spherical); and (f) E-pair (planar)

## TABLE 1.2 Examples of Higher-Pair Joints

| Connectivity |
| :---: |
| (Number of |
| Degrees of |
| Freedom) |

Names
Cam pair
Rolling ball
Ball in cylinder
Spatial point
contact
K.J.Waldron.Kinematics Dynamics and Design of Machinery. John Wiley and Sons Inc., United States, 2th edition, 2004.

## Higher Pair Joint Examples

The cam in (a) is bounded by a curve of constant width. See for example https://www.youtube.com/watch?v=g7SYvLCR3Rk and https://www.youtube.com/watch?v=quuw4HC96bE

e) Kinematic chain:

Kinematic chains can be open (serial) or closed (parallel)

## Kinematic chain



## Recall Reuleaux's definition:

When one body in the closed kinematic chain is fixed such that motion of any link will result in definite predictable motion of all other links, the kinematic chain is considered a mechanism.

The fixed link is called 'the ground link', 'base link', or 'frame'.

## Geometric Categorisation

- Based on range of possible relative motions within the mechanism.
a) Planar:

All particles describe plane curves in space and all these curves lie in parallel planes

$$
\text { Plane motion } \Rightarrow \text { Translation }+ \text { Rotation }
$$


R.G. Langlois. Preview control algorithms for the active suspension of an off-road vehicle. Master's thesis, Queen's University at Kingston, Kingston, Ontario, Canada K7L 3N6, August 1991.
b) Spherical:


The R-pair axes on each link all intersect at the centre of the sphere on which the circular arc links move.

The sphere centre is the mutual stationary point of each link.
c) Spatial:

A spatial mechanism has one link that moves with 6-DOF in the sense that six parameters are needed to specify its position and orientation, such as the RSSR mechanism.
The vast majority of in-service mechanisms are planer because:

- All links can be represented in true size and shape on paper;
- Well developed graphical and algebraic analysis can be applied;
- Operation can be readily visualised;
- Design requirements can be satisfied using straightforward methods;
- Significantly more sophisticated methods are needed for spherical and spacial mechanism design and manufacture.



## Mobility (m):

The number of degrees of freedom (DOF) in a mechanism, i.e; the number of kinematic pair variables that must be specified to determine the configuration of a mechanism

Kutzbach criteria for planer mobility:

$$
\begin{equation*}
m=3(n-1)-2 j_{1}-j_{2}-\zeta \tag{1}
\end{equation*}
$$

where,
$n: \quad$ number of links (including the ground link)
$3 n$ : DOF of mechanism (before connecting links)
$3(n-1)$ : -1 is to account for the ground link
$j_{1}$ : number of pairs with 1 DOF (2 constraints)
$j_{2}: \quad$ number of pairs with 2 DOF (1 constraint)
$\zeta$ : represents the number of idle DOF of the kinematic chain (always occurs in SS dyads)
$\mathrm{m}>0 \Rightarrow \mathrm{~m}$ is \# of DOF for the mechanism $=$ number of independent inputs
$\mathrm{m}=0 \Rightarrow$ system is a determinate structure with no rigid body motion
$\mathrm{m}<0 \Rightarrow$ structure is statically indeterminate

## Chebyshev-Grübler-Kutzbach (CGK) Mobility Formula

Another way to determine the mobility of a mechanical system of rigid bodies is as follows.

- Clearly, $n$ unconstrained rigid links have $d(n-1)$ relative DOF, given that one of the links is designated as a non-moving reference link, where $d$ can be described as the dimension of the space of the motion.
- In general for planar mechanisms $d=3$ and for spatial mechanisms $d=6$, but as we will see this mobility model leads sometimes to inconsistencies mostly because distances between the joints is not considered.
- Any joint connecting two neighboring rigid bodies removes at least one relative DOF.
- If the joint removes no DOF then the bodies are not connected.
- If the joint removes 3 DOF in the plane, or 6 DOF in $E_{3}$ the two bodies are a rigid structure.


## Chebyshev-Grübler-Kutzbach (CGK) Mobility Formula

Summarising this discussion, the DOF, or mobility of a kinematic chain, relative to one fixed link in the chain, can be expressed as:

$$
\begin{equation*}
m=d(n-1)-\sum_{i=1}^{p} \mu_{i}-\zeta \tag{2}
\end{equation*}
$$

where,
$n$ : $\quad$ number of links (including the ground link)
$d$ : dimension of the motion space
( $\mathrm{n}-1$ ): $\quad-1$ is to account for the ground link
$\mu_{i}: \quad$ is the number of constraints imposed by the $i^{t h}$ joint (pair)
$p: \quad$ is the number of joints (pairs)
$\zeta$ represents the number of idle DOF of the kinematic chain
$\mathrm{m}>0 \Rightarrow \mathrm{~m}$ is \# of DOF for the mechanism $=$ number of independent inputs
$\mathrm{m}=0 \Rightarrow$ system is a determinate structure with no rigid body motion
$\mathrm{m}<0 \Rightarrow$ structure is over constrained and statically indeterminate

## Example 1.1

a)

$$
\begin{aligned}
& \mathrm{n}=3, j_{1}=3, \zeta=0, \\
& \mathrm{~m}=3(3-1)-2(3)=0 \\
& n=3, p=3, u_{i}=2, \zeta=0, \\
& m=3(3-1)-2(3)=0 .
\end{aligned}
$$

b)

$$
\begin{aligned}
& \mathrm{n}=4, j_{1}=4, \zeta=0, \\
& \mathrm{~m}=3(4-1)-2(4)=1 . \\
& n=4, p=4, u_{i}=2, \zeta=0, \\
& m=3(4-1)-2(4)=1 .
\end{aligned}
$$

$$
\text { c) } \quad \begin{aligned}
& \mathrm{n}=5, j_{1}=6, \zeta=0, \\
& \mathrm{~m}=3(5-1)-2(6)=0 . \\
& n=5, p=6, u_{i}=2, \zeta=0, \\
& m=3(5-1)-2(6)=0 .
\end{aligned}
$$


d)

$$
\begin{aligned}
& \mathrm{n}=6, j_{1}=8, \zeta=0 \\
& \mathrm{~m}=3(6-1)-2(8)=-1 \\
& n=6, p=8, u_{i}=2, \zeta=0 \\
& m=3(6-1)-2(8)=-1
\end{aligned}
$$

e)

$$
\begin{aligned}
& \mathrm{n}=5, j_{1}=5, \zeta=0 \\
& \mathrm{~m}=3(5-1)-2(5)=2 \\
& n=5, p=5, u_{i}=2, \zeta=0 \\
& m=3(5-1)-2(5)=2
\end{aligned}
$$

f)

$$
\begin{aligned}
& \mathrm{n}=4, j_{1}=4, \zeta=0 \\
& \mathrm{~m}=3(4-1)-2(4)=1 \\
& n=4, p=4, u_{i}=2, \zeta=0 \\
& m=3(4-1)-2(4)=1
\end{aligned}
$$


g)

$$
\begin{aligned}
& \mathrm{n}=3, j_{1}=2, j_{2}=1, \zeta=0 \\
& \mathrm{~m}=3(3-1)-2(2)-1=1 \\
& n=3, p=3, u_{1,3}=2, u_{2}=1, \zeta=0 \\
& m=3(3-1)-2(2)-1(1)=1
\end{aligned}
$$


h)

$$
\begin{aligned}
& \mathrm{n}=5, j_{1}=6, \zeta=0 \\
& \mathrm{~m}=3(5-1)-2(6)=0 \\
& n=5, p=6, u_{i}=2, \zeta=0 \\
& m=3(5-1)-2(6)=0
\end{aligned}
$$


$m$ is actually 1 !
Some geometric exceptions cause Kutzbach's criterion to produce erroneous results - some caution required
i) Consider a typical bench vice:


At first glance the bench vice is planar, so we immediately set $\mathrm{d}=3$ :

$$
\begin{aligned}
& d=3, n=3, \mu_{i}=2, p=3, \zeta=0 \\
& m=3(3-1)-3(2)-0=0
\end{aligned}
$$



A bench vice has 1 DOF! What gives?
This seeming anomaly is an artifact of representation.
The $R$ - and $H$-axes are parallel while the translation direction of the $P$-pair is also parallel.
The $P$ - and $R$-pairs are kinematically equivalent to a single $C$-pair.
Moreover, the axis of the $H$-pair is parallel to the axis of the $C$-pair.
Therefore, the dimension of the motion sub-group represented by the common bench vice is $d=2$, not $d=3$.


The Kutzbach mobility criterion must used very carefully and the results
considered with healthy suspicion!
j)

$$
\begin{aligned}
\mathrm{n} & =11 \\
\zeta & =0 \\
j_{1} & =13 \\
j_{2} & =1 \\
\mathrm{~m} & =3(11-1)-2(13)-1 \\
& =3
\end{aligned}
$$



## Example 4.2

Determine the simplest possible single DOF mechanisms that use only single DOF kinematic pairs
Solution: $j_{2}=0 \& m=1$

$$
\begin{aligned}
& m=3(n-1)-2 j_{1}-j_{2} \\
& 1=3 n-3-2 j_{1} \\
& 3 n-2 j_{1}=4 \\
& \text { solve for } n ; \\
& n=\frac{4+2 j_{1}}{3}
\end{aligned}
$$

| $j_{1}$ | n |  |
| :---: | :--- | :--- |
| 1 | 2 | Not a mechanism(Kinematic chain not closed) |
| 2 | $8 / 3$ | Not possible (\# of link must be integer) |
| 3 | $10 / 3$ | Not possible (\# of link must be integer) |
| 4 | 4 | First possible condition |

Therefore the simplest mechanism must have 4 links and 4 joints Three configurations possible such that the coupler translates and rotates:


RRRP (Slider-crank)


PRRP (Elliptical trammel)


A similar form of the Kutzbach criterion is available for spatial linkages.

$$
\begin{equation*}
m=6(n-1)-5 j_{1}-4 j_{2}-3 j_{3}-2 j_{4}-j_{5}-\zeta \tag{3}
\end{equation*}
$$

where,

| $n:$ | number of links |
| :--- | :--- |
| $j_{1}:$ | number of pairs with 1 DOF |
| $j_{2}:$ | number of pairs with 2 DOF |
| $j_{3}:$ | number of pairs with 3 DOF |
| $j_{4}:$ | number of pairs with 4 DOF |
| $j_{5}:$ | number of pairs with 5 DOF |
| $\zeta:$ | number of idle DOF |

Consider a spatial SSRC linkage. The bar connecting the two S-pairs can rotate along its axis without affecting the relation between input and output and is therefore an idle DOF. Here we will use the generalised Kutzbach criterion.
k) $d=6$
$n=4$
$j_{1}=1$
$j_{2}=1$
$j_{3}=2$
$\zeta=1$
$m=6(4-1)-5(1)-4(1)-3(2)-1$
$=2$


### 4.5 Kinematic Inversion

A simple closed kinematic chain becomes a mechanism when one link is fixed to the ground.

- Changing the link that is fixed creates kinematic inversions of the mechanism.
- The number of possible kinematic inversions equals the number of links in the mechanism.
- Kinematic inversions of a mechanism have the same relative motions between links.
- But, the absolute motions, i.e. those relative to the fixed link, can be distinctly different.

Four inversions of the slider-crank mechanism


## Evolution Diagrams



(a)

(c)

(b)

(d)

## Evolution Diagrams


(c)

(b)

(d)

(a)

(c)

(b)

(d)

### 4.6 The Grashof Condition

- Important design consideration: condition on link lengths in a planar $4 R$ (4-bar) to have at least one link with the ability to fully rotate through $360^{\circ}$, making it a crank
- To test if continuous relative rotation between two members of a $4 R$ (4-bar) mechanism exists, Grashof's inequality can be used:

$$
\begin{equation*}
s+\mathrm{l}<\mathrm{p}+\mathrm{q} \tag{4}
\end{equation*}
$$

where
$s=$ length of the shortest link
$\mathrm{l}=$ length of the longest link
$p, q=$ lengths of intermediate-length links


It is important to satisfy this condition if the mechanism is to be driven by a unidirectional rotary actuator (i.e. non-reversing motor)

4 possible inversions of the 4-bar linkage satisfying Grashof's inequality:


Four inversions of a Grashof chain: $(a, b)$ crank-rocker mechanisms; (c) drag-link mechanism; (d) double-rocker mechanism.

Naming Convention:

| Name | Condition |
| :---: | :---: |
| Crank-Rocker(a,b) | $s$ jointed to base link |
| Drag link / double crank (c) | $s$ is the base link |
| Double rocker (d) | $s$ is the coupler link |

In all of the above $s$ has a continuous relative rotation

- If $s+l=p+q$ then it can assume a flattened (singular folding) configuration, mechanism is called "Grashof's neutral linkage", "transition linkage", or "folding linkage"

- From the flattened configuration (ignoring inertia) the coupler and output links can randomly switch between either of two modes (generally undesirable in mechanism design)



## The Freudenstein IO Equation

- A trigonometric equation that relates the input and output link angles $\theta_{1}$ and $\theta_{4}$ in terms of the link lengths $a_{1}, a_{2}, a_{3}$, and $a_{4}$ is


$$
\begin{equation*}
k_{1}+k_{2} \cos \theta_{4}-k_{3} \cos \theta_{1}=\cos \left(\theta_{4}-\theta_{1}\right),{ }^{1} \tag{5}
\end{equation*}
$$

where:

$$
\begin{aligned}
& k_{1}=\frac{a_{1}^{2}-a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}{2 a_{1} a_{3}} ; \\
& k_{2}=\frac{a_{4}}{a_{1}} ; \\
& k_{3}=\frac{a_{4}}{a_{3}} .
\end{aligned}
$$

[^0]
## The Six $v_{i}-v_{j}$ IO Equations

- Using relative angles, it is possible to derive an algebraic equation that relates the input and output link angle parameters $v_{1}=\tan \left(\frac{\theta_{1}}{2}\right)$ and $v_{4}=\tan \left(\frac{\theta_{4}}{2}\right)$ in terms of the link lengths $a_{1}, a_{2}, a_{3}$, and $a_{4}$, which is


$$
\begin{equation*}
A v_{1}^{2} v_{4}^{2}+B v_{1}^{2}+C v_{4}^{2}-8 a_{1} a_{3} v_{1} v_{4}+D=0,^{2} \tag{6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& A=\left(a_{1}-a_{2}-a_{3}+a_{4}\right)\left(a_{1}+a_{2}-a_{3}+a_{4}\right)=A_{1} A_{2} ; \\
& B=\left(a_{1}-a_{2}+a_{3}+a_{4}\right)\left(a_{1}+a_{2}+a_{3}+a_{4}\right)=B_{1} B_{2} ; \\
& C=\left(a_{1}-a_{2}+a_{3}-a_{4}\right)\left(a_{1}+a_{2}+a_{3}-a_{4}\right)=C_{1} C_{2} ; \\
& D=\left(a_{1}+a_{2}-a_{3}-a_{4}\right)\left(a_{1}-a_{2}-a_{3}-a_{4}\right)=D_{1} D_{2} ; \\
& v_{1}=\tan \left(\frac{\theta_{1}}{2}\right) ; \quad v_{4}=\tan \left(\frac{\theta_{4}}{2}\right) .
\end{aligned}
$$

[^1]
## The Six $v_{i}-v_{j}$ IO Equations

Since there are six ways to distinctly pair four relative angles in a planar quadrilateral $4 R$ linkage ( $4 R$ means the four links are connected with four R-pairs), there are five additional IO equations:

$$
\begin{equation*}
A_{1} B_{1} v_{1}^{2} v_{2}^{2}+A_{2} B_{2} v_{1}^{2}+C_{1} D_{2} v_{2}^{2}+8 a_{2} a_{4} v_{1} v_{2}+C_{2} D_{1}=0, \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
A_{2} B_{1} v_{1}^{2} v_{3}^{2}+A_{1} B_{2} v_{1}^{2}+C_{1} D_{1} v_{3}^{2}+C_{2} D_{2}=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
B_{1} C_{1} v_{2}^{2} v_{3}^{2}+A_{1} D_{2} v_{2}^{2}+A_{2} D_{1} v_{3}^{2}-8 a_{1} a_{3} v_{2} v_{3}+B_{2} C_{2}=0 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
A_{1} C_{1} v_{2}^{2} v_{4}^{2}+B_{1} D_{2} v_{2}^{2}+A_{2} C_{2} v_{4}^{2}+B_{2} D_{1}=0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
A_{2} C_{1} v_{3}^{2} v_{4}^{2}+B_{1} D_{1} v_{3}^{2}+A_{1} C_{2} v_{4}^{2}-8 a_{2} a_{4} v_{3} v_{4}+B_{2} D_{2}=0 \tag{11}
\end{equation*}
$$

## Planar RRRP Algebraic IO Equation

- Replacing the $4^{\text {th }}$ R-pair in a planar 4R with a P-pair gives a crank-slider, an RRRP mechanism, but the crank isn't always a crank.
- The input link can instead rock somewhere in the range $\pi<\theta_{1}>0$, or it can cross the $x_{0}$-axis through $\pi$ or 0 .
- These are rockers, $\pi$-rockers, and 0 -rockers.

- The IO equation of an RRRP mechanism can be obtained by simply recollecting the terms in Equation (6) of the planar 4R exchanging the now constant variable $v_{4}$ with the now variable slider displacement $a_{3}$ which gives:

$$
\begin{equation*}
v_{1}^{2} a_{3}^{2}+R v_{1}^{2}+a_{3}^{2}-4 a_{1} v_{1} a_{3}+S=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
R & =R_{1} R_{2}=\left(a_{1}+a_{2}+a_{4}\right)\left(a_{1}-a_{2}+a_{4}\right) \\
S & =S_{1} S_{2}=\left(a_{1}+a_{2}-a_{4}\right)\left(a_{1}-a_{2}-a_{4}\right) \\
v_{1} & =\tan \left(\frac{\theta_{1}}{2}\right) ; \quad v_{4}=\tan \left(\frac{\theta_{4}}{2}\right)=\tan \left(\frac{\pi / 2}{2}\right)=1
\end{aligned}
$$

## Planar RRRP Trigonometric IO Equation



- If the RRRP linkage is not given with the reference frame $x$-axis (or $y$-axis) perpendicular to the slider direction of travel, we can always rotate the coordinate system so that it is, but it changes some dimensions.
- Then we can derive a trigonometric $a_{3}=f\left(\theta_{1}\right)$ IO equation (we will in another lecture):

$$
\begin{equation*}
a_{3}=a_{1} \sin \left(\theta_{1}\right) \pm \sqrt{a_{2}^{2}-\left(a_{4}-a_{1} \cos \left(\theta_{1}\right)\right)^{2}} \tag{13}
\end{equation*}
$$

### 4.7 Function Generation

- A planar 4R mechanism can be designed so that the output parameter is a function of the input parameter using either Equation (5) for functions of the form $\theta_{4}=f\left(\theta_{1}\right)$, and Equation (6) for functions of the form $v_{4}=f\left(v_{1}\right)$.
- These are called input-output (IO) equations: Equation (5) is a trigonometric IO equation; and Equation (6) is an algebraic IO equation.
- Without loss in generality the four link lengths of a 4R function generator can be uniformly scaled up or down in length without changing the function.
- We can consider the four $a_{i}$ to be the four homogeneous coordinates of a projective 3-D parameter space.
- As long as $a_{4} \neq 0$ we can abstractly project the values of $a_{1}, a_{2}$, and $a_{3}$ into the special plane $a_{4}=1$ by dividing all four coordinates by the value of $a_{4}$ and impose the Euclidean metric on the 3-D space.
- In this design parameter space every distinct point represents a distinct function generating linkage.
- The location of the point determines the function and the mobility limits, if they exist, on the input and output links.


## Planar 4R Design Parameter Space

- The eight bilinear factors from the coefficients in the IO equation, projected into the special plane $a_{4}=1$ can be thought of as the equations of eight different planes

$$
\begin{aligned}
& A=\left(a_{1}-a_{2}-a_{3}+1\right)\left(a_{1}+a_{2}-a_{3}+1\right)=A_{1} A_{2} ; \\
& B=\left(a_{1}-a_{2}+a_{3}+1\right)\left(a_{1}+a_{2}+a_{3}+1\right)=B_{1} B_{2} ; \\
& C=\left(a_{1}-a_{2}+a_{3}-1\right)\left(a_{1}+a_{2}+a_{3}-1\right)=C_{1} C_{2} ; \\
& D=\left(a_{1}+a_{2}-a_{3}-1\right)\left(a_{1}-a_{2}-a_{3}-1\right)=D_{1} D_{2} ;
\end{aligned}
$$



## Exact Kinematic Synthesis

- Kinematic synthesis of a given type of mechanism involves determining the $a_{i}$ link lengths required to generate a desired motion.
- We will now consider kinematic synthesis for function generation.
- The functions we can generate will be realised by the relative motion of the input and output links.
- For a planar 4R the function that must be realised by the linkage is

$$
\theta_{4}=f\left(\theta_{1}\right), \text { or } v_{4}=f\left(\theta_{1}\right), \text { or } v_{4}=f\left(v_{1}\right)
$$

and the linkage defined by the three ratios of $a_{i}$ link lengths must satisfy both the function and either Equation (5) or Equation (6) over a specified input range.

- For a planar RRRP the function that must be realised by the linkage is

$$
a_{3}=f\left(\theta_{1}\right), \text { or } a_{3}=f\left(v_{1}\right)
$$

and the linkage defined by the three link lengths $a_{1}, a_{2}$, and $a_{4}$ must satisfy both the function and either Equation (12) or Equation (13) over a specified input range $v_{1}=\tan \left(\theta_{1} / 2\right)$, or $\theta_{1}$.

## Example 4.3: Planar 4R Exact Kinematic Synthesis

- Design a planar 4R mechanism that will generate the function

$$
v_{4}=6 \sin \left(\theta_{1}\right)-1
$$

over the input angle range $0 \leq \theta_{1} \leq \pi / 2$

- The IO equation for a planar 4R mechanism is Equation (6)
- It has four unknown link lengths, but only the ratios of the link lengths are needed to identify a mechanism that will approximately generate the desired function
- This is because the function is insensitive to the overall scale of the linkage, so we need only solve for $a_{1}, a_{2}$, and $a_{3}$ in terms of $a_{4}$
- We can specify three pairs of $\theta_{1}$ and $\theta_{4}$ that exactly satisfy the desired function: these are typically called accuracy points.
- Let's choose a uniform distribution of accuracy points over the desired input angle range as

$$
v_{1}=0, \tan \left(\frac{\pi / 4}{2}\right), \tan \left(\frac{\pi / 2}{2}\right)
$$

- The values of the output angle parameter, $v_{4}$, for each of the specified input angle parameters $v_{1}$ as

$$
\begin{aligned}
v_{4_{i}} & =6 \sin \left(2 \tan ^{-1}\left(v_{1_{i}}\right)\right)-1 \\
& =-1,3.242640688,5
\end{aligned}
$$

so that

$$
\begin{aligned}
\theta_{4_{i}} & =\left(2 \tan ^{-1}\left(v_{4_{i}}\right)\right)^{\circ} \\
& =-90^{\circ}, 145.7214555^{\circ}, 157.3801350^{\circ}
\end{aligned}
$$

- Obtain three equations by substituting the IO pairs of each $v_{1_{i}}, v_{4_{i}}$ into Equation (6).
- Solving the three equations for $a_{1}, a_{2}$, and $a_{3}$ in Maple yields three distinct solutions where

$$
\begin{array}{lll}
a_{1}=(1.861308073) a_{4}, & a_{2}=(1.425334098) a_{4}, & a_{3}=(1.135660907) a_{4}, \\
a_{1}=0, & a_{2}=-a_{4}, & a_{3}=0 \\
a_{1}=0, & a_{2}=a_{4}, & a_{3}=0
\end{array}
$$

## Analysis of Synthesised 4R Function Generator

- The function generator identified exactly generates the desired function at the three specified accuracy points uniformly distributed over the specified input range.


Function: $\theta_{4}=6 \sin \left(\theta_{1}\right)-1$
Uniform accuracy point distribution

| $a_{1}=1.861308073$ | Input | Output |
| :--- | :--- | :--- |
| $a_{2}=1.425334098$ | $\theta_{1}=0^{\circ}$ | $\theta_{4}=-90^{\circ}$ |
| $a_{3}=1.135660907$ | $\theta_{1}=45^{\circ}$ | $\theta_{4}=145.7215^{\circ}$ |
| $a_{4}=1.000000000$ | $\theta_{1}=90^{\circ}$ | $\theta_{4}=157.3801^{\circ}$ |

## Analysis of Synthesised 4R Function Generator


$-\cdot-$ Desired Function $—$ Generated Function

- We see that to go from the first IO angle pair $\left(\theta_{1}, \theta_{4}\right)=\left(0^{\circ},-90^{\circ}\right)$, which is $\left(v_{1}, v_{4}\right)=(0,-1)$, to the IO next IO pair $\left(\theta_{1}, \theta_{4}\right)=\left(45^{\circ}, 145.7515^{\circ}\right)$, $\left(v_{1}, v_{4}\right)=(0.4142,3.2426)$, the output first has to pass through the final 10 pair $\left(\theta_{1}, \theta_{4}\right)=\left(90^{\circ}, 157.3801^{\circ}\right)$, $\left(v_{1}, v_{4}\right)=(1,5)$.
- The identified mechanism doesn't generate the desired function in the sense that it can't generate the function in the desired order.
- This order problem can often be resolved by increasing the cardinality of the IO data set: making the number of IO pairs that satisfy the function to be a number $\gg 3$.
- This process is known as approximate synthesis and the solution is obtained with numerical error minimisation.


## Example 4.4: Planar RRRP Exact Kinematic Synthesis

- Design a planar RRRP mechanism that will generate the same function as the planar 4R, but now with

$$
a_{3}=6 \sin \left(\theta_{1}\right)-1
$$

over the same input angle range $0 \leq \theta_{1} \leq \pi / 2$.

- The IO equation for a planar RRRP mechanism is Equation (12) or (13)
- It has three unknown link lengths, $a_{1}, a_{2}$, and $a_{4}$.
- Again, let's choose a uniform distribution of accuracy points over the desired input angle range as

$$
v_{1_{i}}=0, \tan \left(\frac{\pi / 4}{2}\right), \tan \left(\frac{\pi / 2}{2}\right)
$$

- The values of the output angle parameter, $a_{3}$, for each of the specified input angle parameters $v_{1}$ are the same as for the previous example

$$
\begin{aligned}
a_{3_{i}} & =6 \sin \left(2 \tan ^{-1}\left(v_{1_{i}}\right)\right)-1 \\
& =-1,3.242640688,5
\end{aligned}
$$

- Obtain three equations by substituting the IO pairs of each $v_{1_{i}}, a_{3_{i}}$ into Equation (12).
- Solving the three equations for $a_{1}, a_{2}$, and $a_{4}$ in Maple yields two distinct solutions where

$$
\begin{array}{ll}
a_{1}=1.500000000, & a_{2}=4.609772229,
\end{array} \quad a_{4}=-3.000000000, \quad \text { and } 1 .
$$

- Let's select the second solution
- Note that $a_{2}<0$ and $a_{4}<0$, what does this mean?

- We see that in our selected coordinate system where the $x_{0}$ - and $y_{0}$-axes are perpendicular and parallel, respectively, to the slider direction of travel
- $a_{4}<0$ simply means that the slider longitudinal centre line is directed -3 units along the $x_{0}$-axis
- $a_{2}<0$ means the coupler points from $B$ to $A$ instead of from $A$ to $B$.


## Example 4.4: Analysis of Synthesised RRRP Function Generator

- The function generator identified exactly generates the desired function at the three specified accuracy points uniformly distributed over the specified input range.

- It can be shown that the input link is a crank.
- But, can the linkage generate all three IO values without needing to be taken apart and reassembled in a different assembly mode?
- The Circuit Defect (also known as the Branch Defect) refers to a completed linkage design that meets all of the prescribed requirements at all three precision input angles, but cannot be moved continuously between all three prescribed IO values without being taken apart and reassembled in a different assembly mode.


## Example 4.4: Circuit Defect



- The synthesised crank-slider has two assembly modes.
- The first precision input angle function value requires $a_{3}=-1$, which is in the lower assembly mode, while the remaining two are in the upper assembly mode.
- This linkage suffers from the circuit defect.
- One way to overcome this defect is to decrease the desired input angle range from $0^{\circ}-90^{\circ}$ to $10^{\circ}-90^{\circ}$ and recompute the link lengths to see if the circuit defect is adequately resolved.

Example 4.4: Resolving Circuit Defect


-     - Desird finction ——Gemenatd finction
- Here we have reduced the specified input range to $10^{\circ}-90^{\circ}$.
- Solving the three equations for $a_{1}, a_{2}$, and $a_{4}$ in Maple yields two distinct solutions where

$$
a_{1}=2.096134490, \quad a_{2}= \pm 3.066433626, \quad a_{4}=-0.9851803279
$$

- It is clear the circuit defect has been resolved at the expense of a smaller 10 range.


[^0]:    

[^1]:    ${ }^{2}$ M.J.D. Hayes, M. Rotzoll, Q. Bucciol, Z.A. Copeland, 2023, "Planar and Spherical Four-bar Linkage vi-vj Algebraic Input-output Equations", Mechanism and Machine Theory, Vol. 182, April 2023

