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Introduction

Position specifies the location of a point relative to a selected reference
coordinate system defined by:

1. an origin (labelled O)

2. coordinate axes

3. scale

• R⃗A and R⃗B : absolute position vectors

• R⃗B/A: a relative position vector

• By applying vector addition

R⃗B = R⃗A + R⃗B/A

or, R⃗A = R⃗B + R⃗A/B

Note: R⃗A/B = -R⃗B/A
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• The absolute coordinates of point
A are conveniently expressed as
the position vector starting at the
origin of the coordinate system
and terminating at point A in
component form

R⃗A = Rx
A î + Ry

A ĵ + Rz
Ak̂

• R⃗A is an absolute position vector

• Rx
A î , R

y
A ĵ , R

z
Ak̂ are the x , y , and z

vector components (distances) in
the directions of the î , ĵ , k̂ unit
basis vectors.
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• The magnitude of position vector
R⃗A (the relative distance of point
A from the origin O) is

RA =
∣∣∣R⃗A

∣∣∣ =

√
R⃗A·R⃗A

=
√

(Rx
A)

2 + (Ry
A)

2 + (Rz
A)

2

• The unit vector in the direction of
R⃗A is

R̂A =
R⃗A

RA
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• Application of vector addition around closed loops results in the Loop
Closure Equation that models a mechanism. e.g

loop 1: R⃗B/A + R⃗C/B + R⃗D/C + R⃗A/D = 0

loop 2: R⃗E/D + R⃗F/E + R⃗D/F = 0

• Note that various relative position equations can be written. e.g.
R⃗F = R⃗D + R⃗E/D + R⃗F/E = R⃗A + R⃗B/A + R⃗C/B + R⃗E/C + R⃗F/E
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• We will occasionally use more than
one coordinate system to describe
the relative position of a system of
points.

• Consider the two coordinate
systems with origins O1 and O2.

• We may find it convenient to
describe point P relative to both
coordinate systems where it may
be that point P moves relative to
O1 but is stationary relative to O2.

• That is coordinate system 2 moves
with point P relative to coordinate
system 1.
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• Clearly

R⃗P/O1
̸= R⃗P/O2

• Rather, we can express this
situation with relative position
vectors as

R⃗P/O1
= R⃗O2/O1

+ R⃗P/O2

• To express the position of point P
relative to coordinate system 1
given the position and orientation
of coordinate system 2 relative to
1 and the position of P in 2, we
must first transform the
coordinates of point P from
coordinate system 2 to the
corresponding coordinates in 1.
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Graphical and Trigonometric Solution of Vector Equations

• Vector equations contain two types of information:
1. magnitude
2. direction

• A planar vector equation results in 2 scalar equations corresponding to the
x and y coordinate directions. e.g.

R⃗C = R⃗A + R⃗B

RCX î + RCY ĵ = RAX î + RAY ĵ + RBX î + RBY ĵ
RCX = RAX + RBX

RCY = RAY + RBY

∴ we can solve for 2 unknowns.

• Using graphical and trigonometric solution methods it is possible to solve
equations containing up to 2 unknowns.

Symbology:
√

known quantity
o unknown quantity

Magnitude status ←□□→ direction status

R⃗A

e.g.
o
√

R⃗ A ⇒ magnitude unknown, direction known
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Graphical Solution of Vector Equations

Consider the three vectors A⃗, B⃗, and C⃗ :

Four cases of two unknowns among three
planar vectors can be identified

CASE 1: Magnitude and direction of the
same vector unknown:

oo

C⃗ =

√√

A⃗ +

√√

B⃗

Solve by vector addition:
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CASE 2: Magnitude of one & direction of other unknown:

√√

C⃗ =
o
√

A⃗ +

√
o

B⃗

1. Draw C⃗

2. Draw direction of A⃗ passing through O

3. Draw arc with radius equal to the magnitude of B⃗ centred on the tip of C⃗

4. Identify A⃗ & B⃗ from intersection

Note: Two solutions are possible
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CASE 3: Magnitude of two vectors unknown:

√√

C⃗ =
o
√

A⃗ +
o
√

B⃗

1. Draw C⃗

2. Draw direction of A⃗ passing through O

3. Draw direction of B⃗ passing through the tip of C⃗

4. Intersection identifies A⃗ & B⃗

Note: The solution is distinct
unless vectors are collinear when
an infinite number of solutions
are possible
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CASE 4: Direction of the two vectors unknown:

√√

C⃗ =

√
o

A⃗ +

√
o

B⃗

1. Draw C⃗

2. Draw arc with magnitude of A⃗ centered at O

3. Draw arc with magnitude of B⃗ centered on the tip of C⃗

4. Identify A⃗ & B⃗ from intersections

Note: Two solutions are possible
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Example 5.1

Given: Slider crank mechanism where only link lengths and the position
of the slider are known.

Determine: The mechanism configuration

Solution: Lengths of O⃗A & A⃗B are

known, i.e, we have

√
o

R⃗ A and

√
o

R⃗ B/A, we

also know position of B, i.e,

√√

R⃗ B

The loop-closure equation may be
written as:

R⃗A/O + R⃗B/A + R⃗O/B = 0

R⃗O/B = −R⃗B/O

∴

√√

R⃗ B =

√
o

R⃗ A +

√
o

R⃗ B/A
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This is a problem of type 4,
therefore solve as before
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A Note on the Axes of R- and P-pairs (joints)

• The axis of an R-pair is a line through the
invariant centre point of rotation
perpendicular to the plane of motion.

• But it does not make sense to speak about
the axis of a P-pair in the same way, as no
real points in E2 are invariant under a
translation.

• The translation τ moves every point in the
plane in the direction of the arrow by the
amount equal to its length.

• The axis of a P-pair could be described as
the line at infinity, N∞, of all planes
normal to the direction of τ .

• Σ is the plane containing the P-pair, τ is a
particular translation effected by the
P-pair, N1 and N2 are normal to Σ, and Ω
represents the plane at infinity.



Introduction Loop Closure Relative Position Graphical and Analytic Solution of Vector Equations Synthesis



Introduction Loop Closure Relative Position Graphical and Analytic Solution of Vector Equations Synthesis

• The two planes Σ and Ω intersect in L∞.

• Lines in the direction of τ intersect L∞ in
point P1.

• Lines normal to τ in Σ, indicated by η,
intersect L∞ in P2.

• The line N∞ is the intersection of all
planes normal to Σ and parallel to η.

• All normals to Σ, N1, and N2 being two of
them, intersect N∞ in the point P3.

• The join of P2 and P3 is N∞, which is the
axis of the particular prismatic joint.
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• In other words, the axis of a P-pair is the absolute polar line to the point
at infinity of the direction of translation.

• What that means is (recall MAAE 2001, Engineering Graphical Design):
the P-pair axis is a line at infinity perpendicular to the plane of
translation, located where all the lines perpendicular to the direction of,
and in the same plane as, the translation intersect the plane at infinity.

• A translation is therefore an arc length of an infinitely large circle where
the change in angle generating the arc length is infinitely small.
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• The axis of a P-pair is NOT its longitudinal axis of symmetry.

• Regardless, P-pairs would be impossible to manufacture if they had no
longitudinal axis of symmetry to establish the direction of translation, i.e.
the longitudinal centreline.

• But one must not confuse this centreline with the joint axis, which is, for
mechanical reasons, inaccessible.
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Trigonometric Solution of Vector Equations

• The graphical solution method is elegant and useful for visualisation, but
unless using a CAD system, may not yield solutions that are sufficiently
precise for analysis and synthesis.

• Most CAD systems transform the elements of the screen image into the
underlaying trigonometric relationships imposed by the drawing elements.

• Hence, we will now examine the trigonometric approach.

• Consider the slider crank in the image.

3

1

2

4

x

y r

r
O

B
e

2

3

2

3

2

Bx

A
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• Note that by making the offset
distance e equal to zero the same
equations can be used for
symmetric versions where the
ground-fixed and slider R-pair
centres are collinear on the x-axis.

• Two configuration analysis
problems occur for planar slider
cranks.

1. Given ϑ2 determine ϑ3 and xB .
• This is known as the forward

kinematics problem: given the
input determine the output.

2. Given xB determine ϑ2 and ϑ3.
• This is known as the inverse

kinematics problem: given the
output determine the input.
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Given ϑ2 determine ϑ3 and xB

• Identify the location of point A:

xA = r2 cosϑ2, yA = r2 sinϑ2.

• Next, note that

r2 sinϑ2 = r3 sinϑ3 − e,

• so that

sinϑ3 =
1

r3
(e + r2 sinϑ2). (1)

• Furthermore we see that

xB = r2 cosϑ2 + r3 cosϑ3. (2)
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• Now we use the trigonometric
identity

cosϑ3 = ±
√

1− sin2 ϑ3

• which gives us from Equation (1)

cosϑ3 = ± 1

r3

√
r 23 − (e + r2 sinϑ2)2.

• Now we can compute the values of
ϑ3 and xB using Equation (2) as

ϑ3 = tan−1

(
sinϑ3

cosϑ3

)
,

xB = r2 cosϑ2 +
√

r 23 − (e + r2 sinϑ2)2.

• Note that we use positive value of
cosϑ3 so that the slider will be on
the right of the crank.

3

1

2

4

x

y r

r
O

B
e

2

3

2

3

2

Bx

A



Introduction Loop Closure Relative Position Graphical and Analytic Solution of Vector Equations Synthesis

Given xB determine ϑ2 and ϑ3

• Since we know the lengths of r2 and
r3 we can write

xB = r2 cosϑ2 + r3 cosϑ3.

• Solving this for ϑ2 yields

ϑ2 = cos−1

(
1

r2
(xb − r3 cosϑ3)

)
.

• To determine ϑ3 we determine the
quantities ψ, dB/O2

, and ϕ.

• Clearly

ψ = tan−1

(
e

xB

)
, and

dB/O2
= (e2 + x2

B)
1/2.

3

1

2

4

x

y r

r

O

B
e

2

3

2

3

2

Bx

A

dB/O2



Introduction Loop Closure Relative Position Graphical and Analytic Solution of Vector Equations Synthesis

• We can use the cosine law to determine ϕ

r 22 = d2
B/O2

+ r 23 − 2r3dB/O2
cosϕ

giving

ϕ = cos−1

(
d2
B/O2

+ r 23 − r 22

2r3dB/O2

)
.

• Finally

ϑ3 = π − (ϕ+ ψ).

• These equations are also consistent when
the offset distance e = 0.
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Planar 4R Linkage

• The law of cosines can be used to
determine the configuration of the planar
4R when the input angle, ϑ2, and four link
lengths ri are known.

• The distance between points A and O4 is
given by

dO4/A =
(
r 21 + r 22 − 2r1r2 cosϑ2

)1/2
• Knowing dO4/A we can now determine the

three angles

β = cos−1

(
r 21 + d2

O4/A
− r 22

2r1dO4/A

)
,

ψ = cos−1

(
r 23 + d2

O4/A
− r 24

2r3dO4/A

)
,

λ = cos−1

(
r 24 + d2

O4/A
− r 23

2r4dO4/A

)
.
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Planar 4R Linkage

• If ϑ2 is in the range 0 ≤ ϑ2 ≤ π then

ϑ3 = −β ± ψ,
ϑ4 = π − β ∓ λ.

• If ϑ2 is in the range π ≤ ϑ2 ≤ 2π then

ϑ3 = β ± ψ,
ϑ4 = π + β ∓ λ.

The upper signs correspond to the convex
quadrangle configurations and the lower
signs correspond to the concave
quadrangle configurations.
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Mechanical Advantage

• Mechanical advantage represents the ability of a of a particular mechanism
to transmit force or torque from the actuated driver link to the output link
via the coupler.

• Recall that the dot products of torque and angular velocity as well as force
and linear velocity both represent power.

• In a conservative mechanical system where energy losses due to
misalignment, friction, heat, etc. are negligible compared to the total
energy transmitted by the system we can write

Pin = T⃗in · ω⃗in = T⃗out · ω⃗out = Pout

or,
Pin = F⃗in · v⃗in = F⃗out · v⃗out = Pout

• This allows us to write the convenient ratios

Tout

Tin
=

ωin

ωout
and

Fout

Fin
=

vin
vout
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Mechanical Advantage

• Mechanical advantage is quantified as the
ratio

M.A. =
Fout

Fin
.

• Since torque is the product of force and
radius we can also write

M.A. =
Tout

rout

rin
Tin

=
rin
rout

Tout

Tin
=

rin
rout

ωin

ωout
.

• Note the difference in the indices for the
last product of ratios.

• The angle γ between the coupler and
follower is the transmission angle.
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Mechanical Advantage

• The mechanical advantage can also be
expressed as

M.A. =
r4 sin γ

r2 sinα

• As the transmission angle decreases the
mechanical advantage decreases.

• At very small transmission angles even a
very small amount of friction or
misalignment of the joint axes might cause
the mechanism to lock.

• A design rule of thumb, which goes back
to antiquity and was used by the likes of
Archimedes, is that a 4R linkage should
not be used to overcome a load when
γ < 45◦.

• The transmission angle varies
continuously over the range of
motion of the linkage, and is most
favourable when γ = 90◦.

• If the purpose of the mechanism is
to transmit force or torque, then
by design, the transmission angle
should stay in the range 90◦ ± 45◦.
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Mechanical Advantage

• The extreme values for γ occur when the
input link aligns with the line joining the
ground-fixed R-joints.

• Since the mechanical advantage is

M.A. =
r4 sin γ

r2 sinα

we can see that the magnitude of the
angle α also has an effect.

• When sinα = 0 the mechanical advantage
is infinite!

• In this case, an infinitesimally small input
torque will produce a very large output
torque.
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Mechanical Advantage
• The extreme values for α occur when the input link aligns with the

coupler, i.e. α = 0 or 180◦.

• This mode is called a toggle or limit configuration.

• Of course, both angles α and γ, and hence the mechanical advantage,
continuously change as the linkage moves.

• A double rocker 4R has a configuration called dead-centre when links 3
and 4 lie on the same line.

• At the dead-centre γ = 0◦, or 180◦ and the mechanical advantage is 0.

• Since the linkage is locked, dead-centre should be avoided, or a spring
should be added to make link 4 move through the dead-centre.
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Complex Algebra Solution of Vector Equations
• For planar kinematics it is possible to solve problems using complex

algebra.
• In component form a two dimensional vector is

R⃗ = Rx î + Ry ĵ .

• It has two rectangular component magnitudes

Rx = R cosϑ and Ry = R sinϑ,

• where

R =
√

(Rx)2 + (Ry )2 and ϑ = tan−1 Ry

Rx
.

sin

cos

Imaginary
axis

Real
axis
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• Be careful to note the signs of Rx and Ry when evaluating the direction of
R⃗.

• The angle ϑ is defined as positive in the counterclockwise sense from the
positive x-axis.

• The signs, positive or negative, of Rx and Ry determine the quadrant in
which the position vector R⃗ resides.

(-2,1)

(2,-1)

III

III IV

Sign Rx Sign Ry Quadrant

+ + I

- + II

- - III

+ - IV



Introduction Loop Closure Relative Position Graphical and Analytic Solution of Vector Equations Synthesis

Complex Polar Algebra Solution of Vector Equations
• A planar vector can be expressed in polar notation by specifying its

magnitude and orientation

R⃗ = R∠ϑ.

• In 2D kinematic problems one can use the complex plane by selecting an
origin and by equating the x basis vector direction the real axis and the y
basis vector direction the imaginary axis by scaling it with the unit
imaginary number i , where

i =
√
−1.

• Hence, a planar vector can be represented by

R⃗ = R∠ϑ = R cosϑ+ iR sinϑ.

• Using the Euler trigonometric identity we can express the direction of R⃗
very efficiently as

e iϑ = cosϑ+ i sinϑ.

• A planar vector can thus be represented in complex polar form

R⃗ = Re iϑ.
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• Any planar vector equation involving sums such as

C⃗ = A⃗+ B⃗

can be compactly expressed as

Ce iϑC = Ae iϑA + Be iϑB . (3)

• From our graphical analysis we identified four pertinent cases for vector
equations.

Case Unknowns

1 C , ϑC

2 A, ϑB

3 A, B

4 ϑA, ϑB
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Case 1: unknowns C and ϑC

• Substitute the Euler identity into Equation (3) to get

C(cosϑC + i sinϑC ) = A(cosϑA + i sinϑA) + B(cosϑB + i sinϑB).

• Equate the real and imaginary terms to obtain a system of two
independent equations

C cosϑC = A cosϑA + B cosϑB , (4)

C sinϑC = A sinϑA + B sinϑB . (5)

• The unknown angle ϑC can be eliminated from the two equations by
squaring and adding them yielding

C = ±
√

A2 + B2 + 2AB cos(ϑB − ϑA).

• Using the negative root would point C in the opposite direction and rotate
ϑC by π.

• The unknown angle ϑC can be determined by dividing Eq (5) by (4)

ϑC = tan−1

(
A sinϑA + B sinϑB

A cosϑA + B cosϑB

)
,

where the signs of the numerator and denominator must be considered to
place the vector in the correct quadrant.



Introduction Loop Closure Relative Position Graphical and Analytic Solution of Vector Equations Synthesis

Case 2: unknowns A and ϑB

• This can be approached by dividing Equation (3) by e iϑA giving, after
some algebra

Ce i(ϑC−ϑA) = A+ Be i(ϑB−ϑA).

• The effect of dividing Equation (3) by the complex unit vector represented
as e iϑA is to rotate the real and imaginary axes clockwise by ϑA.

Imaginary
axis

Real
axis

Real
axis

Imaginary
axis

-

-

(a) (b)
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• Now we use the Euler identity to separate the real and imaginary
componenets

C cos (ϑC − ϑA) = A+ B cos (ϑB − ϑA), (6)

C sin (ϑC − ϑA) = B sin (ϑB − ϑA). (7)

• The solutions are then directly obtained from Equation (7) and (6),
respectively, yielding:

ϑB = ϑA ± sin−1

(
C sin (ϑC − ϑA)

B

)
,

A = C cos (ϑC − ϑA)− B cos (ϑB − ϑA).

• The solutions must be obtained in this order since the value for A is a
function of ϑB .

• The first equation contains a sin−1 term which has positive and negative
values, hence there are two distinct solutions.
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Case 3: unknowns A and B

• We can begin to identify a solution by aligning the real axis with one of
the vectors, A⃗ for instance, by dividing Equation (3) by e iϑA .

• After using the Euler identity again, we separate the real and imaginary
components and obtain the magnitude of B from Equation (7) and of A
from Equation (6) respectively to obtain

B = C
sin (ϑC − ϑA)

sin (ϑB − ϑA)

A = C cos (ϑC − ϑA)− B cos (ϑB − ϑA)

• As expected, the solution is unique.

• It is important to remember that the angles are defined relative to the real
axis which is aligned with vector A⃗ since we divided Equation (3) by e iϑA .
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Case 4: unknowns ϑA and ϑB

• We can identify a solution by aligning the real axis with vector C⃗ for this
last case, giving

C = Ae i(ϑA−ϑC ) + Be i(ϑB−ϑC ). (8)

• We use the Euler identity again and separate the real and imaginary
components and obtain

A cos (ϑA − ϑC ) = C − B cos (ϑB − ϑC ), (9)

A sin (ϑA − ϑC ) = −B sin (ϑB − ϑC ). (10)

• Squaring and adding these two equations gives

A2 = C 2 + B2 − 2BC cos (ϑB − ϑC ).

• Note that this equation is the law of cosines for the vector addition
triangle, and we solve it for ϑB :

ϑB = ϑC ± cos−1

(
C 2 + B2 − A2

2BC

)
.
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• We can rewrite Equation (9) as

A cos (ϑA − ϑC )− C = −B sin (ϑB − ϑC )

then square this equation and add to the square of Equation (10) to
obtain another form of the law of cosines:

A2 − B2 + C 2 = 2AC cos (ϑA − ϑC ).

• Now, solve for ϑA yielding

ϑA = ϑC ± cos−1

(
A2 − B2 + C 2

2AC

)
.

• The positive and negative values for the inverse cosine terms gives us two
distinct solutions, as revealed by the graphical solution.
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Displacement Analysis using the Six Algebraic vi -vj IO Equations

• The algebraic IO equations can also be used, very efficiently, to determine
unknown angles given a set of link lengths and one specified variable
parameter.

• The efficiency reveals itself when you realise that when the input or output
variables are specified, the IO equations are quadratic in the other
unknown value.

• If the linkage has two assembly modes, the two solutions of the quadratic
equation represent the unknown value for both assembly modes of the
linkage!

60.00000000°

-56.67905738°

-147.53825503°

35.78268759°

103.50550627°

60.00000000°

131.04376130°

147.53825503°
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The Six vi -vj IO Equations

• Recall the algebraic IO equation for a planar 4R linkage:

Av 2
1 v

2
4 + Bv 2

1 + Cv 2
4 − 8a1a3v1v4 + D = 0, (11)

where

A = A1A2 = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4),

B = B1B2 = (a1 − a2 + a3 + a4)(a1 + a2 + a3 + a4),

C = C1C2 = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4),

D = D1D2 = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4),

v1 = tan θ1
2
, v4 = tan θ4

2
.
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The Six vi -vj IO Equations

The remaining five 4R IO equations are:

A1B1v
2
1 v

2
2 + A2B2v

2
1 + C1D2v

2
2 + 8a2a4v1v2 + C2D1 = 0, (12)

A2B1v
2
1 v

2
3 + A1B2v

2
1 + C1D1v

2
3 + C2D2 = 0, (13)

B1C1v
2
2 v

2
3 + A1D2v

2
2 + A2D1v

2
3 − 8a1a3v2v3 + B2C2 = 0, (14)

A1C1v
2
2 v

2
4 + B1D2v

2
2 + A2C2v

2
4 + B2D1 = 0, (15)

A2C1v
2
3 v

2
4 + B1D1v

2
3 + A1C2v

2
4 − 8a2a4v3v4 + B2D2 = 0. (16)
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Example 5.2
• Consider a planar 4R linkage with lengths a1 = 5cm, a2 = 6cm, a3 = 8cm,

and a4 = 2cm, with an input angle of θ1 = 60◦. Determine θ2, θ3, and θ4
using the appropriate vi -vj equation.

• We can start with determining θ2 by substituting the lengths and
v1 = tan 60◦/2 into Equation (12) and solve for v2 revealing the values in
both assembly modes, illustrated by the figure on the following page.

θ2 =
(
2 tan−1(v2)

)
180◦

π
= −56.6791◦, 103.5055◦

• Now determine both values for θ3 using Equation (13), which yields

θ3 =
(
2 tan−1(v3)

)
180◦

π
= −147.5383◦, 147.5383◦

• Finally, determine both values for θ4 using Equation (11), which yields

θ4 =
(
2 tan−1(v4)

)
180◦

π
= 131.0438◦, 35.7827◦

• It is similarly straightforward to perform displacement analysis for the
planar RRRP linkage.
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Example 5.2 Continued

60.00000000°

-56.67905738°

-147.53825503°

35.78268759°

103.50550627°

60.00000000°

131.04376130°

147.53825503°
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Type, Number, and Dimensional Synthesis

The subject of linkage synthesis for motion generation contains three steps:
type; number; and dimensional synthesis.

1. Type synthesis involves selecting the general topology of the mechanical
system.

• It might only contain a certain types of joints such as a slider crank.

• It might contain gears, belts or chains, pulleys, or cams, etc.

2. Number synthesis concerns the numbers of links and/or joints that are
required to obtain a desired mobility.

3. Dimensional synthesis involves determining the lengths of the links in the
mechanical system, or the distance between adjacent joint axes.
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Standard Synthesis Problems

There are several types of synthesis problems.

1. Guiding a point along a specific curve in the plane or in space.

2. The function generation problem, which we have already considered:
designing a linkage to correlate the poses of the input and output links in
a functional relationship that may also have some timing requirements.

3. The rigid body guidance problem: designing a linkage that can move a line
on a rigid link through a finite number of poses in sequence.

4. Trajectory generation: position, velocity, and/or acceleration must be
correlated along a specific curve.

5. We will only consider graphical methods to solve the rigid body guidance
problem.
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The Rigid Body Guidance Problem

• Guiding a rigid body through a finite set of
positions and orientations.

• A good example is a landing gear mechanism
which must retract and extend the wheels, having
down and up locked poses with specific
intermediate poses for collision avoidance.

• The rigid body guidance problem is also known as
the Burmester problem.

• Many algebraic and trigonometric methods for the
Burmester problem exist, but examining these
methods is better suited to a graduate level course
in kinematics or kinetics.

• We will restrict ourselves to graphical methods of
synthesis to solve the rigid body guidance problem.

Ludwig Burmester
(1840-1927), German
mathematician and geometer
whose research on kinematics
greatly influenced the history
of mechanism and machine
science!
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Right (Perpendicular) Bisector

• Given two points P1 and P2, construct the right (perpendicular) bisector of
the line passing through the two points.

• Construct two circles with the same radii which is greater than one half of
the distance between P1 and P2.

• Join the points of intersection of the two identical circles.

• This line right bisects the line joining P1 and P2.
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Pole of a Displacement

• A general planar displacement of
the link CD consists of a
translation of point C from pose 1
to 2 and a rotation about C2

• There always exists a unique and
instantaneously invariant point in
the plane that is the centre of a
single rotation that takes the link
from pose 1 to pose 2, called the
pole of the displacement.

• Extend the centre lines of link CD
in each pose to find their point of
intersection Q.

• Determine the circle on the points
Q, C1, and C2.

1
1

2

2
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Pole of a Displacement

• Extend the right bisector of C1C2

to intersect the circle.

• The point P12 is the pole of the
displacement.

• The angle of rotation about point
P12 is ϑ12.

1
1

2

2
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Alternate Pole Construction

• There is another way to
graphically determine the pole of
the general plane displacement of
Link CD from pose 1 to 2.

• Construct the right bisectors of
line segments C1C2 and D1D2 and
locate their point of intersection:
the pole point P12 as before.

• Note that all points on CD are
rotated about the pole P12

through the same angle ϑ12.

1C
1D

2C

2D

P12

12
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Exact Synthesis for Two Accuracy Poses

• If we are given only two distinct
poses of a line segment in the
plane it is a simple matter to
determine a 4R linkage that will
have the coupler, which contains
the line segment, move exactly
through the two poses.

• The moving revolute joint centres
C and D must be connected to
ground-fixed revolute joints via the
input and output links,
respectively.

• To identify the revolute joint
centre locations fixed to ground,
construct the right bisectors of line
segments C1C2 and D1D2.

2C

2D

1C

1D
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• The ground-fixed R-pair centres
O2 and O4 may be placed
anywhere on the right bisectors of
C1C2 and D1D2, respectively.

• There are ∞2 possible real
solutions.

2C

2D

1C

1D

2O 4O
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• The ground-fixed R-pair centres
O2 and O4 may be placed
anywhere on the right bisectors of
C1C2 and D1D2, respectively.

• There are ∞2 possible real
solutions.

2C

2D

1C

1D

2O

4O
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Exact Synthesis for Three Accuracy Poses

• If we are given three distinct poses
of a line segment in the plane it is
a simple matter to determine a 4R
linkage that will have the coupler,
which contains the line segment,
move exactly through the three
poses.

• The moving revolute joint centres
C and D are connected to
ground-fixed revolute joints via the
input and output links,
respectively.

• To identify one revolute joint
centre fixed to ground, construct
the right bisectors of line segments
C1C2 and C2C3 and locate their
point of intersection, which we will
call O2.

1C 1D

2C

2D

3C

3D

2O
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• Locate O4 by finding the point of
intersection of the right bisectors
of line segments D1D2 and D2D3.

• The input and output link lengths
and the distance between O2 and
O4 are now determined.

• Points C and D now move on two
circles centred at O2 and O4.

1C 1D

2C

2D

3C

3D

2O
4O
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Synthesis for Three Constrained Accuracy Poses

• Suppose now that the locations of
the ground-fixed R pairs are
required to be in different
locations O ′

2 and O ′
4.

• This means that points C and D
will not move on circles centred at
O ′

2 and O ′
4 and the three required

poses are not possible to reach
with these R pair locations.

• This additional constraint means
that points C and D are no longer
the centres of the moving R pairs,
rather they are two points with
coordinates in a coordinate system
that moves with the coupler.

1C 1D

2C

2D

3C

3D

O2

O4

O'2 O'4
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The following algorithm may be used to determine the linkage.

1. Consider the following example:
the line segment CD must be
moved through the three poses
relative to O2 and O4.

2. Double-label points O2 and O4 as
E1 and F1 then draw arcs of
lengths C2O2 and D2O2 centred at
C1 and D1, respectively and
identify their point of intersection
closest to O2 and label it E2.

3. Repeat this process drawing arcs
of lengths C2O4 and D2O4 centred
at C1 and D1, respectively and
identify their point of intersection
closest to O4 and label it F2.

4. Repeat steps 2 and 3 for points C3

and D3 and identify points E3 and
F3, and construct line segments
E1E2, E2E3, F1F2, and F2F3.

1C
1D 2C 2D

3C
3D

2O 4O

2E

1E

3E

1F2F
3F
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5. Bisect line segments E1E2, E2E3,
F1F2, and F2F3 and label the
points of intersection of the right
bisectors of E1E2 and E2E3 as G
and that of the right bisectors of
F1F2 and F2F3 as H.

6. A particular line on the coupler of
the desired linkage is the line
joining points G and H.

7. The input link is represented by
the line between G and O2 while
the output link is represented by
the line joining H and O4.

8. The actual shape of the coupler is
arbitrary, as long as it contains line
segments GH and C1D1.

9. Using the geometry of the coupler
shape you choose, construct the
linkage in poses 2 and 3.
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Note on Rigid Body Guidance
• Consider five specified poses of a coordinate system that moves with the

coupler.

S

E
P1

P2
P3

P4

P5
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Note on Rigid Body Guidance
• Burmester theory states that as many as six different linkages can move a

coordinate system that moves with the coupler through the five specified
poses.

• These results were obtained using kinematic mapping, see
https://carleton.ca/johnhayes/wp-content/uploads/CCToMM04.pdf for
details

S

E
P1

P2
P3

P4

P5
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Note on Rigid Body Guidance
• Burmester theory states that as many as six different linkages can move a

coordinate system that moves with the coupler through the five specified
poses.

• These results were obtained using kinematic mapping, see
https://carleton.ca/johnhayes/wp-content/uploads/CCToMM04.pdf for
details
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