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Linear Acceleration

Linear Acceleration

For change of velocity of point A:

△V⃗A = V⃗A′ - V⃗A

We define

average acceleration = △V⃗A
△t

and, instantaneous acceleration or
simply the acceleration as:

A⃗ = lim△t→0
△V⃗A
△t

= dV⃗A
dt

As with velocity: -linear acceleration is defined at a point
-depends on the motion of the observer’s coordinate
system but not its position
-is absolute only if observed in an absolute i.e.,inertial
coordinate system
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Acceleration Components
s : distance traveled by point A along the path in

time increment ∆t
ṡ : instantaneous speed of point A along its path
τ⃗ : unit vector locally tangent to the path and

directed toward increasing s
n⃗ : unit vector normal to τ⃗ and directed toward

the instantaneous centre of rotation
between point A and the body on which the path
is defined

y

xO

Path of point A

C

A

n

Then the velocity of point A is

V⃗A = ṡ τ⃗ (1)

From Equation (1)

A⃗A =
d

dt
V⃗A =

d

dt
(ṡ τ⃗) = s̈ τ⃗︸︷︷︸

Change in magnitude

+ ṡ
d τ⃗

dt︸︷︷︸
Change in direction

(2)

where, d τ⃗

dt
=

d τ⃗

dϕ

dϕ

ds

ds

dt
(3)
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Consider each derivative in the R.H.S. of Equation (3)

d τ⃗

dt
=

d τ⃗

dϕ

dϕ

ds

ds

dt
(3)

• Over △t the direction of τ⃗
changes from τ⃗ to τ⃗+△τ⃗

Starting from a common origin we have:

| △τ⃗ |= 2(1) sin

(
△ϕ

2

)
△τ⃗ must be ⊥ to τ⃗ ,i.e., ∥ to n⃗, therefore:

△τ⃗ = 2(1) sin

(
△ϕ

2

)
n⃗

Then for small △ϕ,

d τ⃗

dϕ
= lim

△ϕ→0

△τ⃗

△ϕ
= lim

△ϕ→0

2 sin
(△ϕ

2

)
n⃗

△ϕ
= n⃗

n

sin(        )
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• Next note that in Equation (3)
dϕ
ds
≡ rate of change of the direction of the path with distance travelled ≡

curvature of path (κ) ≡ the reciprocal of the radius of curvature = 1
ρ

∴
dϕ

ds
=

1

ρ

• Also in Equation (3) ds

dt
= ṡ

Hence Equation (3) becomes

d τ⃗

dt
=

d τ⃗

dϕ

dϕ

ds

ds

dt
= (n⃗)(ṡ)

(
1

ρ

)
=

ṡ

ρ
n⃗ (4)

Using (3) and (2):

A⃗A = s̈ τ⃗ + ṡ2

ρ
n⃗

↓ ↓
tangential normal
component component
↓ ↓

or, A⃗A = A⃗t
A + A⃗n

A

y

xO

Path of point A

C

A

n
AA

AA
t

n

A⃗t
A: has magnitude s̈ and is directed along the tangent to the path

A⃗n
A: has a magnitude ṡ2

ρ
and is directed towards the centre of curvature
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Angular Acceleration

• Applies to motion of a rigid body.

• The change in angular velocity over time increment △t is :

△ω⃗ = ω⃗′ − ω⃗

then the angular acceleration
α⃗ ≡ time rate of change of the angular velocity of a rigid body
and,

α⃗ = lim
△t→0

△ω⃗

△t
=

dω

dt
= ⃗̇ω
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Acceleration Difference Vector
Consider planar analysis

Position: R⃗P = R⃗Q + R⃗P/Q

Velocity: V⃗P = d
dt
(R⃗p) =

⃗̇RQ + ⃗̇RP/Q

V⃗P = V⃗Q + V⃗P/Q

↓
velocity difference = ω⃗ × R⃗P/Q

(rel. velocity of P wrt Q)

Acceleration: A⃗P = dV⃗P
dt

= ⃗̇VQ + ⃗̇ω × R⃗P/Q + ω⃗× ⃗̇RP/Q

↓ ↓ ↓
A⃗Q α⃗ V⃗P/Q = ω⃗ × R⃗P/Q

∴ A⃗P = A⃗Q + α⃗× R⃗P/Q + ω⃗ × (ω⃗ × R⃗P/Q) (5)
where,

• A⃗P is the absolute linear acceleration of point P

• A⃗Q is the absolute linear acceleration of point Q

• α⃗× R⃗P/Q ≡ tangential component of acceleration difference

| α⃗× R⃗P/Q | = αRP/Q
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• To calculate ω⃗ × (ω⃗ × R⃗P/Q) : recall that for three vectors we have

A⃗× (B⃗ × C⃗) = (A⃗ · C⃗)B⃗ - (A⃗ · B⃗)C⃗

then for A⃗ = ω⃗, B⃗ = ω⃗ & C⃗ = R⃗P/Q

we get ω⃗ × (ω⃗ × R⃗P/Q) = (ω⃗ · R⃗P/Q)ω⃗ - (ω⃗ · ω⃗)R⃗P/Q

where

(ω⃗ · R⃗P/Q) = 0, because ω⃗ ⊥ R⃗P/Q

(ω⃗ · ω⃗) = ω2

∴ | ω⃗ × ω⃗ × R⃗P/Q | = - ω2R⃗P/Q

↓
normal component of the acceleration difference

Thus for two points on the same rigid body:

A⃗P = A⃗Q + α⃗×R⃗P/Q + ω⃗ × ω⃗×R⃗P/Q

↓ ↓
A⃗t

P/Q A⃗n
P/Q︸ ︷︷ ︸

A⃗P/Q

or , A⃗P = A⃗Q + A⃗P/Q (6)
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Example 7.1

Consider a simple pendulum at the instant shown,
Determine A⃗A.

Solution:

A⃗A = A⃗B︸︷︷︸
0

+ A⃗A/B

= A⃗n
A/B + A⃗t

A/B

=−ω2R⃗A/B + α⃗×R⃗A/B

⇓ ⇓
| ω2R⃗A/B |↖ ↙ | αR⃗A/B |

R

A

B

| A⃗A/B | =
√

(An
A/B)

2 + (At
A/B)

2

=
√

ω4RA/B
2 + α2RA/B

2

= RA/B

√
ω4 + α2
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Acceleration Polygons

Acceleration polygons can be constructed in a manner similar to velocity
polygons.

• The acceleration difference (relative acceleration) between two points P
and Q on the same rigid body consists of two orthogonal components
A⃗n

P/Q and A⃗t
P/Q . The normal component, (−ω2R⃗P/Q), is completely

determined from the velocity analysis.

• The orientation of the acceleration image depends on the angular
accelerations and velocities of the link, i.e., the velocity image of the link
is a constant rotation angle of ±90◦ from the link geometry.

• Whereas the rotation angle of the acceleration image is

δ = 180o − tan−1
( α

ω2

)
where the positive sense of δ is counter-clockwise.

• The acceleration image is scaled from the geometry of the linkage by the
factor

√
ω4 + α2 (see Example 7.1).

• The other properties of acceleration polygons remain the same as those for
velocity polygons.
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Example 7.2

For the slider crank mechanism determine the linear velocities and accelerations
of points C & D and the angular acceleration of link 3 at the instant shown.

O2B = 2.5 in
BC = 6.0 in
ω⃗2 = 1800 rpm
(constant)

1

1

1
1

4

32

2

2

Velocity analysis:

ω2 = (1800 rev/min)(2πrad/rev)(1min/60sec) = 188.5 rad/sec cw

V⃗B = V⃗O2 + V⃗B/O2
= ω⃗2 × R⃗B/O2

= (188.5 rad/sec)(2.5 in/12 in/ft)
= 39.3 ft/s↘ (⊥ to O2B)

o
√

V⃗ C =

√√

V⃗ B +
o
√

V⃗ C/B
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o
√

V⃗ C =

√√

V⃗ B +
o
√

V⃗ C/B

From velocity polygon:
V⃗C = 2.7 in(10ft/s/in) = 27 ft/s →

The velocity of D can be obtained by
forming the image of link 3 by:

-measuring ϑBC/BD & ϑCD/CB and
drawing

link 3’s image
-using the direction of V⃗D/B & V⃗D/C

to draw the image.

From polygon:
VD = (2.1in)(10ft/s) = 21 ft/s (↘ 27.5o)

For ω3:

V⃗C/B = ω⃗3 × R⃗C/B

∴ ω3 =
VC/B

RC/B
= 3.44in(10ft/s/in)

6.0in
12in/ft

= 68.8 rad/s ccw

1

1

1
1

4

32

2

2
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Acceleration Analysis:

A⃗B = A⃗O︸︷︷︸
0

+ A⃗B/O = A⃗n
B/O + A⃗t

B/O ,

A⃗B = −ω2R⃗B/O + α2 × R⃗B/O︸ ︷︷ ︸
0

A⃗B= (188.5rad/s)2( 2.5in
12in/ft

)

A⃗B = 7403ft/s↙

A⃗C = A⃗B + A⃗C/B

or,
o
√

A⃗ C=

√√

A⃗ B +

√√

A⃗n
C/B +

o
√

A⃗t
C/B

where,

A⃗n
C/B = −ω2R⃗C/B = (68.8rad/s)2(0.5ft)

= 2367 ft/s2 ↖ (∥ to R⃗C/B)

A⃗t
C/B = α⃗3 × R⃗C/B (⊥ to R⃗C/B)

From the diagram,

A⃗C = (4in)(2000ft/s2/in)
= 8000 ft/s2 ←

1

1

1
1

4

32

2

2
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By using

A⃗t
C/B = α⃗3 × R⃗C/B

⇒ α3 =
At
C/B

RC/B

= 1.66in(2000ft/s2/in)
0.5ft

= 6640 rad/s2 ccw

To determine A⃗D :
either,

1

1

1
1

4

32

2

2

• Write A⃗D = A⃗B + A⃗D/B and calculate components of A⃗D/B and add to
acceleration diagram;

or,

• Draw acceleration image of link 3 using
angles ϑBC/BD & ϑCD/CB (this is what
has been done here)
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Determine the angle of rotation of
BCD by:

δ = 180− tan−1
( α

ω2

)
Then from the diagram we get:

| A⃗D |= 4.13in(2000ft/s2/in) = 8260ft/s2

1

1

1
1

4

32

2

2
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Acceleration Analysis Using Complex Polar Notation

• Consider a general crank-slider
linkage (RRRP).

• The loop closure equation can be
expressed as

r2e
jϑ2 + r3e

jϑ3 = r1e
j3π/2 + r4e

j0

• After using the Euler identity

e jϑ = cosϑ+ j sinϑ

separate the real (x) and imaginary
(y) components leading to

r2 cosϑ2 + r3 cosϑ3 = r1 cos 3π/2 + r4 cos 0 = r4

r2 sinϑ2 + r3 sinϑ3 = r1 sin 3π/2 + r4 sin 0 = −r1

• Given r1, r2, r3, and input angle ϑ2, it is a simple matter to determine r4
and ϑ3.
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• Differentiating the loop closure
equation with respect to time
determines the velocity level
kinematics with the substitutions

ϑ̇2 = ω2,

ϑ̇3 = ω3,

ṙ4 = v4

giving

jr2ω2e
jϑ2 + jr3ω3e

jϑ3 = v4 (7)

• Apply the Euler identity to obtain

jr2ω2(cosϑ2 + j sinϑ2) + jr3ω3(cosϑ3 + j sinϑ3) = v4

• Separate into real and imaginary components to reveal

−r2ω2 sinϑ2 − r3ω3 sinϑ3 = v4,

r2ω2 cosϑ2 + r3ω3 cosϑ3 = 0 ⇒ ω3 = − r2ω2 cosϑ2

r3 cosϑ3



Linear Acceleration Angular Acceleration Acceleration Difference Acceleration Polygons Apparent Acceleration Algebraic IO Acceleration Equations

• Differentiating the velocity closure equation, Equation (7), with respect to
time determines the acceleration.

• Proceeding as for the velocity equation, after separating the result into
real and imaginary components yields two linearly independent equations
that can be solved for two unknowns, typically the coupler angular and
slider linear accelerations α3 and a4:

α3 =
r2ω

2
2 sinϑ2 − r2α2 cosϑ2 + r3ω

2
3 sinϑ3

r3 cosϑ3
,

a4 = −r2ω2
2 cosϑ2 − r2α2 sinϑ2 − r3ω

2
3 cosϑ3 − r3α3 sinϑ3



Linear Acceleration Angular Acceleration Acceleration Difference Acceleration Polygons Apparent Acceleration Algebraic IO Acceleration Equations

4R Complex Polar Acceleration Analysis

• The same procedure can be carried
out for planar 4R linkages.

• Start with the loop closure
equation in any convenient form:

r2e
jϑ2 + r3e

jϑ3 = r1e
j0 + r4e

jϑ4

1r

2
4

3

2r

3r

4r

x

y
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Example 7.3

Consider the 4-bar linkage as shown.
Determine the acceleration of points
E and F, and angular accelerations
of links 3 and 4.

J J.Uicker.Theory of Machines and Mechanisms. Oxford
University Press Inc., New York, New York, United States, 3rd

edition, 2003.

The velocities were analyzed in Examples 6.1 and 6.2, where the velocity
polygon was developed as shown below from which we had:

V⃗B = 31.4 ft/s

V⃗C = 46.6 ft/s

V⃗E = 27.6 ft/s

V⃗F = 31.8 ft/s
ω⃗2 = 94.2 rad/s ccw
ω⃗3 = 25.5 rad/s ccw
ω⃗4 = 49.6 rad/s ccw
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Now the acceleration equation is:

√√

A⃗ B =

0︷︸︸︷
A⃗A + A⃗B/A = A⃗n

B/A +

0(α=0)︷ ︸︸ ︷
A⃗t

B/A = -ω2R⃗B/A;

∴ A⃗B = -(94.2 red/s2)(4/12ft) = 2958 ft/s2 ↘
Now,

A⃗C = A⃗B + A⃗C/B = A⃗B + A⃗n
C/B + A⃗t

C/B

Also,

A⃗C = A⃗D︸︷︷︸
0

+ A⃗C/D = A⃗n
C/D + A⃗t

C/D

∴

√√

A⃗ B +

√√

A⃗n
C/B +

o
√

A⃗t
C/B =

√√

A⃗n
C/D +

o
√

A⃗t
C/D

where,

An
C/B = ω3

2RC/B = (25.6)2(18/12) = 983 ft/s2 ↙
An

C/D = ω4
2RC/D = (49.6)2(11/12) = 2255 ft/s2 ↙

By using,

A⃗t
C/B = α⃗× R⃗C/B

⇒ α3 =
At

C/B

RC/B
= 160ft/s2

18/12ft

α3 = 107 rad/s2 ccw

J J.Uicker.Theory of Machines and Mechanisms.
Oxford University Press Inc., New York, New York,

United States, 3rd edition, 2003.
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Similarly:

α⃗4 =
At

C/D

RC/D
= 1670ft/s2

11/12ft
= 1822 rad/s2 cw

The linear accelerations at E and F can be
determined in one of three ways:

1. Apply the same method used for
evaluating A⃗C above; e.g.,
A⃗E = A⃗B + A⃗E/B = A⃗C + A⃗E/C

2. Evaluate A⃗E and A⃗F analytically
knowing α⃗3, α⃗4 (and ω⃗3 and ω⃗4)

3. From the acceleration images of links 3
and 4 as shown below

Scaling from acceleration image, we read:
A⃗E = 2580 ft/s2

A⃗F = 1960 ft/s2

J J.Uicker.Theory of Machines and Mechanisms.
Oxford University Press Inc., New York, New York,

United States, 3rd edition, 2003.
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Apparent Acceleration of a Point in a Moving Coordinate System
Consider a rigid body with attached x2y2z2 coordinate system that is moving
relative to the fixed x1y1z1. The x2y2z2 is fixed to the body, whereas x1y1z1
system is fixed in space.

Recall that the general expression
for the derivative of a vector
r⃗ = x2 i⃗ + y2 j⃗ in a moving coordinate
system with unit vectors i⃗ and j⃗ ,
that is also rotating with an ωk⃗, so
we must account for change in both
magnitude and direction, i.e.,

d

dt
(r⃗) =

d

dt
(x2 i⃗ + y2 j⃗) = (ẋ2 i⃗ + ẏ2 j⃗) + (x2

di⃗

dt
+ y2

dj⃗

dt
) (8)

= ⃗̇r + (x2ω⃗ × i⃗ + y2ω⃗ × j⃗) = ⃗̇r + ω⃗ × (x2 i⃗ + y2 j⃗) = ⃗̇r + ω⃗ × r⃗

Then in the figure above assume that motion of B relative to A,
i.e.,“apparent” motion is possible, i.e.,

R⃗B = R⃗A + r⃗B/A
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R⃗B = R⃗A + r⃗B/A

∴ V⃗B = d
dt
(R⃗B) =

⃗̇RA + ⃗̇rB/A︸︷︷︸
∆ magnitude

+ ω⃗ × r⃗B/A︸ ︷︷ ︸
∆ direction

= V⃗A + V⃗rel︸︷︷︸
velocily

+ ω⃗ × r⃗B/A

of B as measured

from x2y2 frame

and:

A⃗B = d
dt
(V⃗B) =

⃗̇VA + ⃗̇Vrel + ω⃗ × ⃗̇rB/A + ⃗̇ω × r⃗B/A + ω⃗ × (⃗ṙB/A + ω⃗ × r⃗B/A)

A⃗B = d
dt
(V⃗B) =

⃗̇VA + ⃗̇Vrel + ω⃗× V⃗rel + ⃗̇ω× r⃗B/A + ω⃗× V⃗rel + ω⃗× (ω⃗× rB/A)

A⃗B = ⃗̇VA︸︷︷︸
A⃗A

+ ⃗̇Vrel︸︷︷︸
A⃗rel

+ ⃗̇ω︸︷︷︸
α⃗

×r⃗B/A + ω⃗ × (ω⃗ × rB/A) + 2ω⃗ × V⃗rel

⇒ A⃗B = A⃗A + A⃗rel + α⃗× r⃗B/A︸ ︷︷ ︸
A⃗t
B/A

+ ω⃗ × (ω⃗ × r⃗B/A)︸ ︷︷ ︸
A⃗n
B/A

+2ω⃗ × V⃗rel︸ ︷︷ ︸
A⃗c
B/A

(9)
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A⃗B = A⃗A + A⃗rel + α⃗× r⃗B/A︸ ︷︷ ︸
A⃗t
B/A

+ ω⃗ × (ω⃗ × r⃗B/A)︸ ︷︷ ︸
A⃗n
B/A

+2ω⃗ × V⃗rel︸ ︷︷ ︸
A⃗c
B/A

where,
A⃗B = absolute acceleration of point B relative to the fixed frame
A⃗A = absolute acceleration of point A relative to the fixed frame
A⃗rel = acceleration of B relative to A in the moving frame
α⃗× r⃗B/A = tangential acceleration due to angular acceleration of moving frame
ω⃗ × (ω⃗ × r⃗B/A) = normal acceleration due to angular velocity of the moving

frame
2ω⃗ × V⃗rel = Coriolis acceleration; this component of acceleration results from

change in length of ω⃗ × r⃗B/A and change in direction of ⃗̇rB/A

• it depends on quantities obtained from velocity analysis

• it is rotated 90o from V⃗rel in the direction of ω⃗
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x

y

r s

O

B,P

1

A

1

1

x2

y
2

RA

B/An

t

A rel
t

A rel
n

rB/A

rB/A

Vrel

Vrel2

A⃗B = A⃗A + α⃗× r⃗B/A + ω⃗ × (ω⃗ × r⃗B/A) + 2ω⃗ × V⃗rel + A⃗rel (10)

As observed from a non-rotating frame at A:

| α⃗× r⃗B/A | = αrB/A is perpendicular to r⃗B/A in the direction of α with centre at A
| ω⃗ × (ω⃗ × r⃗B/A) | = ω2rB/A is directed from B to A

∴ in terms of the coincident point P we can interpret:

α⃗× r⃗B/A : as the tangential component of A⃗P/A of point P in its circular
motion about A

ω⃗ × (ω⃗ × r⃗B/A) : normal component of A⃗P/A of point P in its circular motion
about A
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x

y

r s

O

B,P

1

A

1

1

x2

y
2

RA

B/An

t

A rel
t

A rel
n

rB/A

rB/A

Vrel

Vrel2

| (A⃗rel)t | = s̈ : change of speed of B relative to A or P

| (A⃗rel)n | = V⃗ 2
rel
ρ

towards the centre of the path

2ω⃗ × V⃗rel : Coriolis acceleration: this is the difference between the A⃗B/P as
measured from non-rotating axes and from rotating axes. It is

always perpendicular to V⃗B/A and its direction is rotated 90o

from V⃗rel in the direction of ω⃗ according to the right-hand-rule.
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x

y

r s

O

B,P

1

A

1

1

x2

y
2

RA

B/An

t

A rel
t

A rel
n

rB/A

rB/A

Vrel

Vrel2

Hence

A⃗B = A⃗A+ α⃗× r⃗B/A + ω⃗ × (ω⃗ × r⃗B/A)︸ ︷︷ ︸
A⃗P/A

+ 2ω⃗ × V⃗rel + A⃗rel

= A⃗A + A⃗P/A︸ ︷︷ ︸
A⃗P

+ 2ω⃗ × V⃗rel + A⃗rel

∴ A⃗B = A⃗P + 2ω⃗ × V⃗rel + A⃗rel (11)

Note that the apparent acceleration expression reduces to the acceleration
differences expression if A & B are points on the same rigid body,
i.e., ⃗̈rB/A = ⃗̇rB/A = 0.
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Example 7.4

Given the rod with slider as shown. Determine acceleration of the slider at the
instant shown.

Solution: Apply Equation (10):

A⃗A = A⃗O + A⃗rel + α⃗× r⃗A/O + ω⃗ × (ω⃗ × r⃗A/O) + 2ω⃗ × V⃗rel

where,

A⃗O = 0

A⃗rel = 0
α⃗× r⃗A/O = 0

ω⃗ × (ω⃗ × r⃗A/O) = −ω2 r⃗A/O = (50rad/s)2(0.5m) = 1250 m/s2 ↙
2ω⃗ × V⃗rel = 2(50 rad/s)(30 m/s) = 3000 m/s2 ↖
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Note that ω⃗ × (ω⃗ × r⃗A/O) may be thought of differently in terms of the
coincident point P that is attached to the rod and the rotating coordinate
system xy. Then we have : ω⃗ × r⃗P/O = V⃗P/O and ω⃗ × (ω⃗ × r⃗P/O) = (A⃗P/O)n

Acceleration Polygon:

Scale 1000 m/s2 = 10 units

The resultant acceleration A⃗A can
be scaled or calculated and found to
be 3250 m/s2 and at 22.4o with the
horizontal ↖

2

A/OA

x

y

n

A0
A/OA c

AA

scale

10 units = 1000 m/s
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Example 7.5

Given the inverted slider-crank mechanism as shown below.
Where AE = 3.0 in, ED = 14.0 in, AB = 2.0 in and ω2 = 36 rad/s cw constant.
Determine the angular acceleration of link 4 at the instant shown.

Solution:
Let point Q be coincident with point A but attached to link 3, which has the
same angular acceleration as link 4.
The velocity analysis was performed in Example 6.3 with the results:

V⃗A = 9 ft/s ↘ ⊥ to AE

V⃗Q/D = 7.24 ft/s ↙ ⊥ to QD

V⃗A/Q = V⃗rel = 5.52 ft/s, ∥ to FC ↘
ω⃗2 = 36 rad/s cw (constant)
ω⃗3 = ω⃗4 = 7.55 rad/s ccw

J J.Uicker.Theory of Machines and Mechanisms. Oxford
University Press Inc., New York, New York, United States, 3rd

edition, 2003.

Continuing with acceleration analysis, we apply Equation (10) to links 3 & 4:

∴ A⃗A = A⃗Q + 2ω⃗4 × V⃗rel + A⃗rel (E1)
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Where from link 2:

A⃗A = A⃗E + A⃗A/E = O⃗ + A⃗A/E

A⃗A = A⃗t
A/E + A⃗n

A/E = O⃗ + A⃗n
A/E

J J.Uicker.Theory of Machines and Mechanisms.
Oxford University Press Inc., New York, New York,

United States, 3rd edition, 2003.

A⃗A = −ω2
2R⃗A/E = −(36)2(3/12) = 324 ft/s2, ∥ to AE ↙ (E2)

and from link 4:

A⃗Q = A⃗D + A⃗Q/D = O⃗ + A⃗n
Q/D + A⃗t

Q/D

⇓ ⇓
= −ω4

2R⃗Q/D ↘ + α4R⃗Q/D ↙↗
= −(7.55)2(11.5/12) ↘ + α4R⃗Q/D ↙↗

Or, A⃗Q = -54.6 ↘ (∥ to QD) + α4R⃗Q/D ↙↗ (⊥ to QD) (E3)

2ω4 × V⃗rel = 2(7.55)(5.52) = 83.4 ft/s2 ↗ (⊥ to QD) (E4)
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substitute E2, E3, E4 into E1 to get:

A⃗A = A⃗n
Q/D + A⃗t

Q/D + 2ω4 × V⃗rel + A⃗rel

324 = 54.6 + α⃗4 × R⃗Q/D + 83.4 + A⃗rel

↙(∥ to AE) ↘(∥ to QD) ↙↗(⊥ to QD) ↗(⊥ to QC) ↖(∥ to QC)
or

A⃗A — 2ω4 × V⃗rel — A⃗rel = A⃗n
Q/D + A⃗t

Q/D

324 — 83.4 — A⃗rel = 54.6 + α⃗4 × R⃗Q/D

↙(∥ to AE) ↙(⊥ to QD) ↘↖(∥ to QD) ↘(∥ to QD) ↙↙↗(⊥ to QD)

x

y

30°

3.0

14.0

C
82.5053°

B
A, Q

2.0

11.5

DE

The acceleration polygon scale is
1 drawing unit = 50 ft/s2:

(A⃗t
Q/D) = 274 ft/s2

∴ | α⃗4 | = 274
11.6/12

= 283 rad/s2,
ccw

x

y

C

C

AA

AQ/D
n

Vx rel

-Arel

AQ/D
t

4

1 unit



Linear Acceleration Angular Acceleration Acceleration Difference Acceleration Polygons Apparent Acceleration Algebraic IO Acceleration Equations

Apparent Angular Acceleration

Let
α2 : angular acceleration of link 2
α3 : angular acceleration of link 3

then, we define
α3/2 = α3 – α2 : “apparent” angular acceleration of link 3 w.r.t. link 2
Alternatively:

α3 = α2 + α3/2 (12)

This concept is rarely used in solving problems.
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Apparent Acceleration at a point of Rolling Contact

Recall “Rolling Contact” implies no slip between links in contact.

• Points P2 and P1 are coincident points on the disc and ground

• The path of P2 relative to link 1 is a cycloid of the disc

• When P2 and P1 are coincident, the tangent of the cycloid is perpendicular
to both surfaces at the point of contact

• Since the path of P2 is known, we have:

A⃗P2 = A⃗P1 + 2ω⃗ × V⃗rel + A⃗rel (13)

where:
2ω⃗ × V⃗rel = 0 (rolling contact

& no slipping, V⃗rel = 0)

C

1

2

A C

P , P1 2

2

2

Path of
on link 1

P2

A⃗rel ≡ A⃗P2/P1
= A⃗n

P2/P1
+ A⃗t

P2/P1
=

V⃗ 2
P2/P1
ρ

+ A⃗t
P2/P1

= 0 + A⃗t
P2/P1



Linear Acceleration Angular Acceleration Acceleration Difference Acceleration Polygons Apparent Acceleration Algebraic IO Acceleration Equations

A⃗t
P2/P1

is the acceleration component tangent to the path, i.e., ⊥ to the
contact surface. To avoid confusion, it is called rolling acceleration and

denoted as A⃗r
P2/P1

hence Equation (13) becomes:

A⃗P2 = A⃗P1 + A⃗r
P2/P1

(14)
C

1

2

A C

P , P1 2

2

2

Path of
on link 1

P2

On the other hand from the disc:

A⃗P1 = A⃗C + A⃗P1/C = A⃗C + A⃗n
P1/C + A⃗t

P1/C (15)

From Equations (14) & (15) we can write

o
√

A⃗r
P2/P1

=

√√

A⃗C +

√√

A⃗n
P1/C +

o
√

A⃗t
P1/C

P /CA n

CA

1

P /CA t
1

P /PA r
2 1
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Instantaneous Centres of Acceleration (ICA)

• Defines as the instantaneous location of a pair of coincident points of two
different links where absolute accelerations of the two points are equal

• ICAs are: at different locations than ICVs
more difficult to locate than ICVs
not useful in analysis
not discussed further

• We will instead briefly turn our attention toward the algebraic
input-output (IO) angular acceleration equations, in particular determining
the configurations of a planar 4R linkage possessing angular acceleration
extreme values for a constant angular velocity input
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• The time derivative of the six angular velocity IO equations yields the six
angular acceleration IO equations.

• Using these equations we can directly determine all the unknown angular
accelerations occurring in a planar 4R linkage if one angular velocity and
one angular acceleration are specified along with the configuration of the
linkage at the instant considered.

• The parameter names and definitions in the figure are used in these
equations where the coefficients are

A = A1A2 = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4),

B = B1B2 = (a1 − a2 + a3 + a4)(a1 + a2 + a3 + a4),

C = C1C2 = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4),

D = D1D2 = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4),

v1 = tan θ1
2
, v4 = tan θ4

2
.
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First, recall the six algebraic IO equations for a planar 4R linkage:

Av 2
1 v

2
4 + Bv 2

1 + Cv 2
4 − 8a1a3v1v4 + D = 0, (16)

A1B1v
2
1 v

2
2 + A2B2v

2
1 + C1D2v

2
2 + 8a2a4v1v2 + C2D1 = 0, (17)

A2B1v
2
1 v

2
3 + A1B2v

2
1 + C1D1v

2
3 + C2D2 = 0, (18)

B1C1v
2
2 v

2
3 + A1D2v

2
2 + A2D1v

2
3 − 8a1a3v2v3 + B2C2 = 0, (19)

A1C1v
2
2 v

2
4 + B1D2v

2
2 + A2C2v

2
4 + B2D1 = 0, (20)

A2C1v
2
3 v

2
4 + B1D1v

2
3 + A1C2v

2
4 − 8a2a4v3v4 + B2D2 = 0. (21)
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The six algebraic IO angular velocity ratio equations for a planar 4R linkage are

θ̇4

θ̇1
= − ((Av 2

4 + B)v1 − 4a1a3v4)(1 + v 2
1 )

((Av 2
1 + C)v4 − 4a1a3v1)(1 + v 2

4 )
. (22)

θ̇2

θ̇1
= −

(
(A1B1v

2
2 + A2B2)v1 + 4a2a4v2

)
(1 + v2

1 )(
(A1B1v

2
1 + C1D2)v2 + 4a2a4v1

)
(1 + v2

2 )
, (23)

θ̇3

θ̇1
= −

(
(A2B1v

2
3 + A1B2)v1

)
(1 + v2

1 )(
(A2B1v

2
1 + C1D1)v3

)
(1 + v2

3 )
, (24)

θ̇3

θ̇2
= −

(
(B1C1v

2
3 + A1D2)v2 − 4a2a4v3

)
(1 + v2

2 )(
(B1C1v

2
2 + A2D1)v3 − 4a2a4v2

)
(1 + v2

3 )
, (25)

θ̇4

θ̇2
= −

(
(A1C1v

2
4 + B1D2)v2

)
(1 + v2

2 )(
(A1C1v

2
2 + A2C2)v4

)
(1 + v2

4 )
, (26)

θ̇4

θ̇3
= −

(
(A2C1v

2
4 + B1D1)v3 − 4a2a4v4

)
(1 + v2

3 )(
(A2C1v

2
3 + A1C2)v4 − 4a2a4v3

)
(1 + v2

4 )
, (27)
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The six algebraic angular acceleration IO equations for a planar 4R are

((Av2
4 + B)v1 − 4a1a3v4)v̈1 + ((Av2

1 + C)v4 − 4a1a3v1)v̈4+

(Av2
4 + B)v̇2

1 + (Av2
1 + C)v̇2

4 + (4Av1v4 − 8a1a3)v̇1v̇4, (28)

((A1B1v
2
2 + A2B2)v1 + 4a2a4v2)v̈1 + ((A1B1v

2
1 + C1D2)v2 + 4a2a4v1)v̈2+

(A1B1v
2
2 + A2B2)v̇

2
1 + (A1B1v

2
1 + C1D2)v̇

2
2 + (4A1B1v1v2 + 8a2a4)v̇1v̇2, (29)

(A2B1v
2
3 + A1B2)v1v̈1 + (A2B1v

2
1 + C1D1)v3v̈3+

(A2B1v
2
3 + A1B2)v̇

2
1 + (A2B1v

2
1 + C1D1)v̇

2
3 + 4A2B1v1v3v̇1v̇3, (30)

((B1C1v
2
3 + A1D2)v2 − 4a1a3v3)v̈2 + ((B1C1v

2
2 + A2D1)v3 − 4a1a3v2)v̈3+

(B1C1v
2
3 + A2D1)v̇

2
2 + (B1C1v

2
2 + A2D1)v̇

2
3 + (4B1C1v2v3 − 8a1a3)v̇2v̇3, (31)

(A1C1v
2
4 + B1D2)v2v̈2 + (A1C1v

2
2 + A2C2)v4v̈4+

(A1C1v
2
4 + B1D2)v̇

2
2 + (A1C1v

2
2 + A2C2)v̇

2
4 + 4A1C1v2v4v̇2v̇4, (32)

((A2C1v
2
4 + B1D1)v3 + 4a2a4v4)v̈3 + ((A2C1v

2
3 + A1C2)v4 + 4a2a4v3)v̈4+

(A2C1v
2
4 + B1D1)v̇

2
3 + (A2C1v

2
3 + A1C2)v̇

2
4 + (4A2C1v3v4 + 8a2a4)v̇3v̇4. (33)
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It is important to remember that for the i th link, v̇i ̸= θ̇i and v̈i ̸= θ̈i since
vi = tan (θi/2)

For angular velocity

v̇i =
θ̇i (1 + v 2

i )

2
, (34)

and

θ̇i =
2v̇i

(1 + v 2
i )

. (35)

For angular acceleration

v̈i =
1

2

(
θ̈i + θ̇2i vi

)
(1 + v 2

i ), (36)

and

θ̈i =
2v̈i

(1 + v 2
i )
− θ̇2i vi . (37)
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Example 7.6

Consider a planar 4R linkage similar to the one in the figure whose
configuration is

a

X

Y
1

a2

a3

a4

1
4

2

O

w1

a1

1 O4

B

A

'

2

Given

Parameter Dimension

a1 8

a2 14

a3 9

a4 17

θ1 60◦

θ̇1 10 rads/sec

θ̈1 100 rads/sec2

Determine

θ2 θ′2 θ4

θ̇2 ω2 θ̇4

θ̈2 α2 θ̈4
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Example 7.6 Solution
• To determine θ′2 we can start by determining θ2 using Equation (17), the

v1-v2 equation.

• Maple provides the following solution:

v2 = −0.4840, −1.8988 ⇒ θ2 = −51.6569◦, −124.4528◦

• We can choose to represent θ2 as a positive value, so we can add 360◦ to
the negative angles giving

θ2 = 308.3430◦, 235.5472◦

• Let’s select the first value for θ2 and construct a scaled drawing for
reference, which looks like

8.34304241°

308.34304241°

60°

84.56889541°

120°

-51.65695759°

a

a a

a

1

2

3

4

2

2
''

2
'

• To compute θ′2, consider the figure which is drawn to scale.



Linear Acceleration Angular Acceleration Acceleration Difference Acceleration Polygons Apparent Acceleration Algebraic IO Acceleration Equations

Example 7.6 Solution

• The interior angle between a1 and a2 is 128.3430◦.

8.34304241°

308.34304241°

60°

84.56889541°

120°

-51.65695759°

a

a a

a

1

2

3

4

2

2
''

2
'

• We additionally observe that the angle between a1 and horizontal reference
line from which θ′2 is measured, is 120◦.

• Hence,
θ′′2 = 308.3430◦ − 180◦ = 128.3430◦,
θ′2 = 128.3430◦ − 120◦ = 8.3430◦
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Example 7.6 Solution

• To determine θ4 we can use Equation (16), the v1-v4 equation.

• Maple provides the following solution:

v4 = −2.7989, 0.9094 ⇒ θ4 = −140.6787◦, 84.5689◦

• Since we have chosen the upper assembly mode then θ4 must be the
second value

θ4 = 84.5689◦.

8.34304241°

308.34304241°

60°

84.56889541°

120°

-51.65695759°

a

a a

a

1

2

3

4

2

2
''

2
'
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Example 7.6 Solution

• To determine θ̇4 we can use Equation (22), the θ̇1-θ̇4 angular velocity ratio.

• After substituting all known quantities we directly obtain

v̇4 = 6.5574 ⇒ θ̇4 = ω4 = 7.1781 rad/s

• Compare this to the traditional trigonometric method for determining ω4

with an observer attached to the coupler a2 at Point A who only translates
with a2, but does not rotate.

a

X

Y
1

a2

a3

a4

1
4

2

O

w1

a1

1 O4

B

A

'

2

V⃗B = ω⃗4 × a⃗3 = V⃗A + V⃗B/A

V⃗B/A = ω⃗2 × a⃗2

The x and y components of the vectors
yield two linearly independent equations in
terms of ω⃗2 and ω⃗4 which can be solved
simultaneously giving

ω2 = −2.4463 rad/s, ω4 = 7.1781 rad/s
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Example 7.6 Solution

• To determine θ̇2 we can use Equation (23), the θ̇1-θ̇2 angular velocity ratio.

• After substituting all known quantities we directly obtain

v̇2 = −7.6811 ⇒ θ̇2 = −12.4463 rad/s

and ω2 = θ̇2 + θ̇1 = −2.4463 rad/s

• Compare this to the traditional trigonometric method for determining ω4

with an observer attached to a1 at Point A who translates and rotates
with a1, and observes the motion of a2 who perceives the effects of the
angular velocity of a1 as a component of the angular velocity of a2, but in
the opposite sense.

a

X

Y
1

a2

a3

a4

1
4

2

O

w1

a1

1 O4

B

A

'

2

V⃗B = ω⃗4 × a⃗3 = V⃗A + V⃗B/A

V⃗B/A = Ω⃗1 × a⃗2 +
⃗̇
θ2 × a⃗2

The x and y components of the vectors
yield two linearly independent equations in
terms of θ̇2 and ω4 which can be solved
simultaneously giving

θ̇2 = −12.4463 rad/s, ω4 = 7.1781 rad/s
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Example 7.6 Solution

• To determine θ̈4 we can use Equation (28), the v̈1-v̈4 angular acceleration
parameter equation.

• After substituting all known quantities we directly obtain

v̈4 = 157.4654 ⇒ θ̈4 = α4 = 125.5109 rad/s2

• Compare this to the traditional trigonometric method for determining α4

using a translating observer attached to Point A on the coupler a2

A⃗B = A⃗A + A⃗B/A,

ω⃗4 × V⃗B + α⃗4 × a⃗3 = ω⃗1 × V⃗A + α⃗1 × a⃗1 + ω⃗2 × V⃗B/A + α⃗2 × a⃗2

• The x and y components of the vectors yield two linearly independent
equations in terms of α⃗2 and α⃗4 which can be solved simultaneously
yielding the angular accelerations relative to the non-moving coordinate
system:

α2 = −3.5916 rad/s2, α4 = 125.5109 rad/s2
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Example 7.6 Solution
• To determine θ̈2 we can use Equation (29), the v̈1-v̈2 angular acceleration

parameter equation.

• After substituting all known quantities we directly obtain

v̈2 = −110.2051 ⇒ θ̈2 = −103.5916 rad/s2

and α2 = θ̈2 + θ̈1 = −3.5916 rad/s2

• Compare this to the traditional trigonometric method for determining α2

using a translating and rotating observer attached to Point A on a1

A⃗B = A⃗A + A⃗B/A,

(ω⃗4 × V⃗B + α⃗4 × a⃗3) = (ω⃗1 × V⃗A + α⃗1 × a⃗1) + ω⃗1 × (ω⃗1 × a⃗2) +

2(ω⃗1 × (⃗̈θ2 × a⃗2)) +
⃗̇
θ2 × (⃗̇θ2 × a⃗2) +

⃗̈
θ2 × a⃗2

• The x and y components of the vectors yield two linearly independent
equations in terms of α⃗2 and α⃗4 which can be solved simultaneously
yielding the angular accelerations relative to the non-moving coordinate
system:

θ̈2 = −103.5916 rad/s2, α4 = 125.5109 rad/s2
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Computing Extreme Angular Accelerations and Critical Input Angles

• Now we will compute the critical values of the input angle required for the
extreme values of output angular accelerations given a specified set of
feasible link lengths and specified constant value for the input angular
velocity θ̇i .

• This method works for any of the six IO angular acceleration equations,
but we will illustrate the method using the v1-v4 equation listed as
Equation (16). However, as for computing extreme values of the output
angular velocity, the equations become quite large so some computational
software, like Maple, is needed.

1. Convert the two variable angle parameters v1 and v4 to angles as
vi = tan θi/2 and solve for θ4, there will be two solutions.

2. Substitute each expression for θ4 into the θ̇1-θ̇4 equation and solve the
resulting for θ̇4.

3. Substitute the expressions for θ4 and θ̇4 into the v̈1-v̈4 equation after you
have substituted vi = tan (θi/2) and Equations (34) and (36).

4. Solve the resulting equation for θ̈4 and substitute the specified value for
θ̇1. You now have an equation for θ̈4 in terms of θ1 as the only variable.
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Computing Maximum Angular Accelerations and Critical Input Angles

5. Because θ̇1 is constant means that θ̈1 = 0, so the equation determined in
Step 4 is

θ̈4 = f (θ1)

6. To determine the critical values of the input angle θ1crit where the output
angular acceleration is an extreme value, either the greatest positive or
negative value, determine the derivative of θ̈4 = f (θ1) with respect to θ1.

7. The extreme values of θ̈4 occur at the values of θ1crit that cause the
following equation to be satisfied:

d
(
θ̈4 = f (θ1)

)
dθ1

= 0.

8. If you obtain the solution using Maple, you will be faced with four real
values for θ1crit , and 18 complex solutions.

9. Determine the corresponding values for θ̈4max/min
and you should see that

there are only two distinct values, one corresponding to a pair of values for
θ1crit , the other pair corresponding to the other extreme value of θ̈4.
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Example 7.7

• We will now continue with Example 6.9 in Lecture Slide Set 6

• Consider a planar 4R mechanisms where the following has been specified

a1 = 2

a2 = 6

a3 = 7

a4 = 5

θ̇1 = 10 rad/sec, constant

Determine θ1crit and the extreme values of θ̈4 in both assembly modes of
the mechanism.

SOLUTION

1. The specified link lengths mean that the mechanism is a Grashof
crank-rocker.

2. When the substitution vi = tan θi/2 has been made in Equation (16) the
resulting θ1-θ4 equation is(

−36
(
tan

θ4

2

)2

+160

)(
tan

θ1

2

)2

−
(
112 tan

θ1

2
tan

θ4

2

)
−20

(
tan

θ4

2

)2

+64=0. (38)
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Example 7.7 Continued

3. Solve Equation (38) for θ4 and substitute into the θ̇1-θ̇4 equation, then
solve this equation for θ̇4 leading to the angular velocity profile as
θ̇4 = f (θ1)

.

4. We can see that the velocity profile curve for Assembly Mode 2, plotted
with the dashed line-type, is reflected in the vertical θ̇4-axis.

5. There are only two distinct real critical values for θ1 and corresponding
extreme values for θ̇4 in Assembly Modes 1 and 2:

θ1crit1 = 2.6810◦, θ̇4min = -6.6959 rad/s

θ1crit2 = 138.9638◦, θ̇4max = 3.2493 rad/s
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Example 7.7 Continued

6. Using Equation (28), the v̈1-v̈4 equation, we similarly obtain the angular
acceleration profile in both assembly modes as θ̈4 = f (θ1) with θ̈4 in the
vertical axis and θ1 on the horizontal axis in radians

...

..

7. We now follow the same method as for the extreme values of θ̇4.

8. Substitute the following into the v̈1-v̈4 equation in the order given

θ̇i =
2v̇i

(1 + v 2
i )

, θ̈i =
2v̈i

(1 + v 2
i )
− θ̇2i vi , vi = tan (θi/2).
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Example 7.7 Assembly Mode 1

9. Solve the resulting equation for θ̈4 giving θ̈4 = f (θ1)

10. Take the derivative of this equation with respect to θ1 and solve for the
critical values of θ1crit that cause the following to be true

d
(
θ̈4 = f (θ1)

)
dθ1

= 0.

11. The resulting equation in Maple has degree 22, leading to four real values
for θ1crit , but as for the extreme values of the output angular velocity, only
two of the solutions correspond to the largest positive and negative values
of θ̈4 for Assembly Mode 1:

θ1crit1 = 24.6475◦, θ̈4max = 68.7731 rad/s2

θ1crit2 = 326.1382◦, θ̈4min = -87.9671 rad/s2

θ1crit3 = -33.8618◦, θ̈4min = -87.9671 rad/s2

θ1crit4 = -335.3525◦, θ̈4max = 68.7731 rad/s2
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Example 7.7 Assembly Mode 1

11. It is clear that two of the four real solutions are repeated. This is an
artifact of the range selected for the input angle, and the fact that the
θ̇4 = f (θ1) equation is periodic.

...

..

12. There are only two distinct real critical values for θ1 and corresponding
extreme values for θ̈4 in Assembly Mode 1:

θ1crit1 = 24.6475◦, θ̈4max = 68.7731 rad/s2

θ1crit2 = 326.1382◦, θ̈4min = -87.9671 rad/s2
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Example 7.7 Assembly Mode 2

13. There are only two distinct real critical values for θ1 and corresponding
extreme values for θ̈4 in Assembly Mode 2:

θ1crit1 = 33.8616◦, θ̈4max = 87.9671 rad/s2

θ1crit2 = 335.3525◦, θ̈4min = -68.7731 rad/s2

14. The amplitude of the angular velocity profile has been magnified and
superimposed on the angular acceleration profile.

15. It is to be seen that at extreme values of θ̇4 we have θ̈4 = 0.
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Example 7.7 Continued

16. It is not clear why the values of θ1crit or the extreme values of θ̈4 occur in
the identified configurations.

17. More research here is required to fully understand these new results.
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