MAAE 3004
 Dynamics of Machinery

Lecture Slide Set 8

Force Analysis of Mechanisms

Department of Mechanical and Aerospace Engineering
Carleton University
(C) M.J.D. Hayes, R.A. Irani, F.F. Afagh and R.G. Langlois

Outline

Preliminaries

Forces Acting on Links

Analytical Force Balances and Matrix Solution

Introduction

In the design of mechanisms and machines, the required motions are often specified first. The dynamics task is essentially determining those forces that must be applied and/or those forces that accompany the motions

The required process is to:

1. Determine masses, centres of mass, and mass moments of inertia, I_{G}, of the links
2. Perform kinematic analysis to determine linear and angular accelerations of all links (evaluate \vec{a}_{G} at the centre of mass for all links as well as $\vec{\alpha}$)
3. Perform force analysis either by:

- graphical analysis and superposition, or by
- analytical force balances and matrix solution

Preliminaries

Newton's Laws

For each link in a mechanism, \vec{a}_{G} and $\vec{\alpha}$ are found from kinematics where G indicates the centre of mass

Newton's laws state:

- The actions of two bodies on each other are always equal and directly opposite
- The change in motion of a body is proportional to the moving force impressed upon it and occurs in the direction of the impressed force

$$
\begin{equation*}
\sum \vec{F}=m \vec{a}_{G} \quad \text { (translation) } \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underbrace{\sum \vec{M}_{G}}_{\substack{\text { net moment } \\ \text { bout } \mathrm{CM}}}=\underbrace{I_{G} \vec{\alpha}}_{\text {mass moment }} \text { (rotation) } \tag{2}
\end{equation*}
$$

Newton's laws are vector equations implying both magnitude and direction.

D'Alembert's Principle

D'Alembert's principle states
The vector sum of all external forces and inertia forces acting on a system of rigid bodies is zero.

$$
\begin{equation*}
\sum \vec{F}_{a p p l i e d}-m \vec{a}_{G}=0 \tag{3}
\end{equation*}
$$

The vector sum of all external moments and inertia moments acting on a system of rigid bodies is also separately zero

$$
\begin{equation*}
\sum \vec{M}_{\text {Gapplied }}-I_{G} \vec{\alpha}=0 \tag{4}
\end{equation*}
$$

The inertia force \vec{F}_{l} and inertia moment \vec{M}_{l} are defined such that

$$
\begin{align*}
\sum \vec{F}+\vec{F}_{I}=0 & \Rightarrow \vec{F}_{I}=-m \vec{a}_{G} \tag{5}\\
\sum \vec{M}+\vec{M}_{I}=0 & \Rightarrow \overrightarrow{M_{I}}=-I_{G} \vec{\alpha} \tag{6}
\end{align*}
$$

Therefore

$$
\begin{align*}
\sum \vec{F} & \left.=0 \quad \text { (including } \vec{F}_{l}\right) \tag{7}\\
\sum \vec{M} & \left.=0 \quad \text { (including } \vec{M}_{l}\right) \tag{8}
\end{align*}
$$

D'Alembert's principle allows dynamic problems to be treated similarly to static problems (i.e., quasi-static)

Combining \vec{F}_{I} and \vec{M}_{l} into One Offset Force

The combined effect of all forces and moments acting on a rigid body can be represented by a single equipollent force and a single equipollent moment acting about the centre of mass

The equipollent force and moment can be replaced by a single offset force \vec{F}_{o} that has the same magnitude and direction as $\Sigma \vec{F}$ but is shifted by h to cause the same effect as \vec{M}_{G}

$$
\begin{equation*}
h=\frac{\left|\vec{M}_{G}\right|}{\left|\vec{F}_{O}\right|} \tag{9}
\end{equation*}
$$

The offset direction is chosen such that the offset force results in the same moment direction as \vec{M}_{G}

Mass and Weight

- Mass
- Defines the inertia of a system
- Is unrelated to gravity
- Should be considered when large mass and or accelerations (related to operating speeds) cause significant inertia forces
- Weight
- Defines the force exerted by gravity such that $W=m g$ where m is the link mass and $|g|=9.8 \mathrm{~m} / \mathrm{s}^{2}=32.2 \mathrm{ft} / \mathrm{s}^{2}$
- Is a static load
- Should be considered when it is significant and acts in a relevant direction

Forces Acting on Links

Two-Force Members

A two-force member has only 2 significant forces acting on it

- m and I often may be ignored due to small values
- the two forces must be colinear to satisfy $\sum \vec{M}=0$ and must act along the line joining their points of application
- the two forces must have equal magnitudes but opposite directions to satisfy $\sum \vec{F}=0$
- One of the two forces could be the inertia force.

Other examples of two-force members:

Three-Force Members

A three-force member has three significant forces acting on it:

- the lines of action of all three forces must intersect at a point (necessary to satisfy $\sum \vec{M}=0$)
- the sum of the applied forces must balance (i.e., $\sum \vec{F}=0$ including the inertia force)

For the system shown below

$$
\begin{equation*}
\sum \vec{F}=\vec{F}_{A}+\vec{F}_{B}+\vec{F}_{C}=0 \tag{10}
\end{equation*}
$$

- two unknown force magnitudes can be solved for, provided the magnitude and direction of one force (e.g., the inertia force) and directions of the other two forces are known.

Example 8.1

Offset-Crank Engine

Determine the output torque τ that can be developed by the offset-crank engine in the configuration shown using graphical force analysis. Ignore the inertia force and moment acting on the connecting rod and crank.

1. Piston (three-force member)

$\left|\vec{F}_{\text {I }}\right|=m a_{G}=(1.5 \mathrm{~kg})\left(2744 \mathrm{~m} / \mathrm{s}^{2}\right)=4116 \mathrm{~N}$
$\left|\overrightarrow{F_{P}}\right|=P A=\left(1.0 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)\left(\frac{\pi(0.1)^{2}}{4}\right)=7854 \mathrm{~N}$
since two known applied forces can be combined into a single force, then piston becomes a three-force member
$\left.\sqrt{ } \sqrt{ } \sqrt{ } \sqrt{ } \stackrel{\circ \vee}{ }_{\left(\vec{F}_{I}\right.}+\vec{F}_{P}\right)+\vec{F}_{W}+\sqrt{ } \sqrt{ }$
A
then from the force polygon $\left|\vec{F}_{A}\right|=3860 \mathrm{~N}$; direction as shown
2. Connecting Rod (two-force member neglecting inertia)

- $\left|\overrightarrow{F_{B}}\right|=3860 \mathrm{~N}$; direction as shown

3. Crank

- $\Sigma \vec{F}=m \vec{a} \Rightarrow \Sigma \vec{F}=0$
$\overrightarrow{F_{C}}=-\overrightarrow{F_{B}}$
- $\Sigma \vec{M}_{C}=I_{G} \vec{\alpha}=0$
$\tau-d F_{B}=0$
where d is the perpendicular distance from F_{B} to a parallel line passing through point C, then
$\tau=d F_{B}=(35 \mathrm{~mm})(3860 \mathrm{~N})=135.1 \mathrm{Nm} \mathrm{ccw}$

Analytical Force Balances and Matrix Solution

The general procedure with this approach is to:

1. Draw free body diagrams for each link;
2. Generate equilibrium equations for each link;
3. Assemble all equilibrium equations into a single linear matrix equation; and
4. Solve the matrix equation for all unknown force components.

Note that for static moment equilibrium, any point can be used as the reference point; with dynamic equilibrium, in general, moments should be summed about the link centres of mass.

Example 8.3

Outline how the matrix solution method can be used to determine the required applied driving torque \mathbf{T}_{s} and corresponding joint reaction forces in the four-bar mechanism for a set of specified linear and angular accelerations of each of the links determined by a previous kinematic analysis of the linkage.

Solution Method:

1. Draw free-body diagrams
2. Write equilibrium equations
3. Form matrix equation
4. Solve

$\mathbf{r}_{i j}$ vector from CG of link i to joint j
$F_{i k}$ force link i exerts on link k
g_{i} CG of link i
$\mathrm{A}_{g_{i}}$ acceleration of CG g_{i}
α_{i} angular acceleration of link i
M_{i} mass of link i
I_{i} mass moment of inertia of link i about g_{i}
T_{s} driving torque applied to link 2

- $\mathbf{F}_{i k}=-\mathbf{F}_{k i}$
- An independent set of solution variables must be chosen.
- $\mathbf{F}_{14}, \mathbf{F}_{21}, \mathbf{F}_{32}$, and \mathbf{F}_{43} are selected as solution variables in this example.
- Other selections are possible.

Equilibrium equations are written for link 2.

$$
\begin{gathered}
F_{32 x}-F_{21 x}=M_{2} A_{g_{2} x} \\
F_{32 y}-F_{21 y}=M_{2} A_{g_{2 y}} \\
r_{22 x} F_{32 y}-r_{22 y} F_{32 x}-r_{21 x} F_{21 y} \\
+r_{21 y} F_{21 x}+T_{s}=I_{2} \alpha_{2}
\end{gathered}
$$

Equilibrium equations are written for link 3.

$$
\begin{gathered}
F_{43 x}-F_{32 x}=M_{3} A_{g_{3 x}} \\
F_{43 y}-F_{32 y}=M_{3} A_{33 y} \\
r_{33 x} F_{43 y}-r_{33 y} F_{43 x}-r_{32 x} F_{32 y} \\
+r_{32 y} F_{32 x}=I_{3} \alpha_{3}
\end{gathered}
$$

Equilibrium equations are written for link 4.

$$
\begin{gathered}
F_{14 x}-F_{43 x}=M_{4} A_{g 4 x} \\
F_{14 y}-F_{43 y}=M_{4} A_{44 y} \\
\\
r_{44 x} F_{14 y}-r_{44 y} F_{14 x}-r_{43 x} F_{43 y} \\
+r_{43 y} F_{43 x}=I_{4} \alpha_{4}
\end{gathered}
$$

Each of the nine equilibrium equations are combined into a single 9 by 9 matrix equation where the unknowns are the eight unknown joint reaction force components and the applied torque \mathbf{T}_{s}.

$$
\left[\begin{array}{ccccccccc}
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
r_{21 y} & -r_{21 x} & -r_{22 y} & r_{22 x} & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & r_{32 y} & -r_{32 x} & -r_{33 y} & r_{33 x} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & r_{43 y} & -r_{43 x} & -r_{44 y} & r_{44 x} & 0
\end{array}\right]\left\{\begin{array}{c}
F_{21 x} \\
F_{21 y} \\
F_{32 x} \\
F_{32 y} \\
F_{43 x} \\
F_{43 y} \\
F_{14 x} \\
F_{14 y} \\
T_{s}
\end{array}\right\}=\left\{\begin{array}{c}
M_{2} A_{g_{2} x} \\
M_{2} A_{g_{22} y} \\
I_{2} \alpha_{2} \\
M_{3} A_{g_{3} x} \\
M_{3} A_{g_{3} y} \\
I_{3} \alpha_{3} \\
M_{4} A_{g_{4} x} \\
M_{4} A_{g_{4} y} \\
I_{4} \alpha_{4}
\end{array}\right\}
$$

This equation can be solved either numerically or symbolically as it is in the familiar form for simultaneous linear equations

$$
[A]\{x\}=\{b\}
$$

and

$$
\{x\}=[A]^{-1}\{b\}
$$

