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Abstract 

Tensegrity systems are made up of extremely lightweight, adaptable structures that can maintain their stiffness 

while being deployed. These characteristics make them ideal for space applications, but they continue to have a 

low technology readiness level because they are more difficult to design than conventional structures. These 

design difficulties manifest themselves during the form finding process, where some geometric parameters for the 

tensegrity system are used to determine the stable con figuration of the resulting tensegrity system. Conventional 

form finding methods have been largely based on trigonometry and algebra, which is arguably more abstract 

than a purely geometric approach. The geometric intersection form finding method presented in this paper can be 

used to simplify the design and optimization of tensegrity systems, by using a purely geometric approach. The 

geometric intersection method uses the lengths of the tensegrity elements as the parameters for three geometric 

shapes. The coordinates of the intersection point between these shapes is the solution to the form finding 

problem. Certain combinations of element lengths will result in a non-stable tensegrity system. The geometric 

intersection method is unique, because it provides an intuitive rational for why these parameters result in non-

real configuration and which element lengths should be altered to correct the problem. The geometric 

intersection method can also be more easily adapted to more complex tensegrity configurations then 

conventional form finding methods. 

Introduction 

Canada has a long history of improving the quality of 

life on Earth by developing unique systems for space 

exploration and development. For example, the 

Synthetic Aperture Radar (SAR) on RADARSAT-1 

and 2 have helped ensure the safety and security of 

Canadians by providing detailed images of Canada’s 

boarders. The sensors aboard the Alouette, ISIS, and 

SCISAT satellites have provided Canadians with 

important data on the ionosphere and atmosphere, 

which paved the way for commercial satellites, and 

have informed environmental policy. The success of 

these missions and payloads have helped bolster 

Canada’s economy by creating high tech jobs, and 

encouraging Canadian companies to advance Canada’s 

lead in niche space markets. One way to further 

Canada’s position in space exploration and utilization 

is to develop a novel mounting platform for the sensors 

and payloads Canada currently provides to the world.    

 

The limitations of current launch systems require many 

payloads and support structure to be lightweight and 

deployable. Most payloads (such as Neptec’s TriDAR 

system and MacDonald Dettwiler and  

Associates’ SAR systems) require precise pointing and 

vibration mitigation, necessitating high stiffness (and 

usually heavy) support structures. A Tensegrity based 

adaptive structure has the potential to increase pointing 

accuracy over the lifetime of the spacecraft, while 

realizing higher strength to weight ratios than 

conventional structures. 

Tensegrity 

Tensegrity systems are made up of compression 

elements (struts) held in place by a network of tension 

elements (cables). The simplest 2D tensegrity is the 2 

strut 4 cable kite (Figure 1). 

 
Figure 1. A tensegrity kite where the 2 struts touch, but 

are not connected. 

 

Tensegrity systems include both tensegrity structures 

and tensegrity mechanisms (or adaptable structures). A 

tensegrity structure can become a tensegrity  
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mechanism if the cable and strut lengths are controlled. 

Tensegrity systems have several advantages over 

conventional deployable structures including high 

strength to weight ratios, low storage volume, good 

stability throughout deployment, excellent scalability, 

and precise control throughout the service life of the 

system (Zhang & Ohsak, 2006). 

Potential Satellite Application 

Both Tibert (2002) and Sultan et al. (1999) proposed 

using tensegrity systems in place of conventional space 

booms, antennas, and telescope bodies. One way to test 

these tensegrity based adaptive structures, and add new 

capabilities to future Canadian spacecraft, is to use 

them as an intermediate platform between a 

conventional spacecraft bus and a payload. Such a 

tensegrity platform could deploy the payload once in 

orbit, and allow ground controllers to fine tune and 

calibrate the orientation of the payload with minimal 

use of the Reaction Control System (RCS). An 

example spacecraft with a 3 strut tensegrity payload 

platform is illustrated in Figure 2. 

 

 
Figure 2. The tensegrity platform in a stowed and 

deployed configuration.  

 

Once the tensegrity platform in Figure 2 is deployed 

the strut and cable lengths can be manipulated to roll 

and pitch the payload until an exact pointing axis is 

achieved. The tensegrity platform can then be stiffened 

by increasing the preload in the tensegrity cables and 

struts. The demand on the spacecrafts RCS is reduced 

by using the tensegrity platform to gimbal the 

relatively light payload instead of the entire spacecraft.  

The RCS must still be used to react the momentum of 

the tensegrity platform and payload, but the amount of 

momentum the RCS must compensate for is much less 

then it would be to maneuver the entire spacecraft.  

Control 

The tensegrity platform in Figure 2 can best be  

thought of as a Stuart 6 Degree Of Freedom (DOF) 

platform, where 3 of the heavy linear actuators have 

been replaced by lightweight cables. In this control 

scheme the 3 remaining struts are linear actuators and 

the lengths of the 3 side cables are controlled by 

motors that wind, unwind, and tension the cables. 

Sultan et al. (1999) proposed using fiber optics as the 

cable material so that the cables could report their own 

length (they also proposed a control methodology for a 

tensegrity space telescope). By eliminating an 

additional sensor system the tensegrity platform 

becomes simpler and lighter. 

 

The tensegrity platform can be further simplified by 

replacing the cables with springs or the struts with leaf 

springs. While this configuration is not ideal for 

transient vibration, it does simplify the platform, and 

still allows the payload pointing axis to be controlled. 

The additional complexity incurred by adding 3 or 

even 6 additional actuators is compensated for by the 

increase in fault tolerance and high degree of control 

over the stiffness and pointing of the payload. The 

tensegrity platform could additionally allow the 

pointing axis to be refined as spacecrafts’ systems 

deteriorate in the space environment. For example, it 

can be used to compensate for a partial failure of the 

RCS. 

Tensegrity Systems and Form Finding   

The advantages of tensegrity systems come at the cost 

of a slight weight and design complexity penalty. 

Unfortunately, tensegrity structures are also difficult to 

design and optimize because it is not always easy to 

determine how they maintain their stability and 

equilibrium as the element lengths are altered. The 

process of determining the stable configuration for a 

set of tensegrity element lengths is known as the form 

finding problem. Several authors have developed 

various form finding methods, but very few of them 

allow the element lengths in the tensegrity system to be 

directly controlled, and none provide much insight into 

the form finding problem. Insight into the form finding 

problem is defined as providing a clear rational for 

how the lengths of the tensegrity elements affect the 

overall shape of the tensegrity system.  

 

One of the only methods that allows the tensegrity 

elements to be directly controlled, is a method 

developed by Connelly and Terrell (1995). Connelly’s 

method was formulated using the height and radius of 

the tensegrity system as input parameters, and used 

trigonometry to calculate the coordinates of the nodes 

between elements. Connelly’s method will always 

yield a solution to the form finding problem, but it does 

not allow the element lengths to be directly controlled.  
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Later this method was altered by Tibert and Pellegrino 

(2003) to determine the height and radius of the 

tensegrity system, based on a set of element lengths. 

Unfortunately, Tibert’s method will fail unexpectedly 

for certain combinations of element lengths. Neither of 

these two methods provides much insight into the form 

finding problem because of their fundamentally 

algebraic nature. A novel geometric form finding 

method needs to be developed to improve the ease with 

which a tensegrity system can be designed and 

optimized.  

 

The geometric intersection method presented in this 

paper reduces the complexity of the form finding 

problem into the simpler problem of determining the 

intersection point between three geometric surfaces. 

This simplification allows the relationship between the 

element lengths and the final shape of the tensegrity 

system to be immediately apparent. It also provides a 

new rational for why some configurations fail using 

Tibert’s method, and allows the elements lengths that 

cause the failure to be identified. 

 

Next, a brief summary of Connelly’s method and 

Tibert’s method will be presented. Then they will be 

compared to the geometric intersection method 

presented in this paper. Finally the applicability of this 

method to a space tensegrity platform will be 

discussed. 

Previous Form Finding Methods 

Connelly and Terrell (1995) developed a form finding 

method for a very specific type of tensegrity system, 

known as a prismatic tensegrity system. Prismatic 

tensegrity systems are highly symmetric structures 

composed of three element groups: lateral struts; lateral 

cables; and horizontal or end cables. Each element in a 

group has the same length, and this arrangement results 

in a structure with a circular cylindrical volume with 

two parallel end planes (Figure 3).  

 
Figure 3. A three strut prismatic tensegrity structure.  

 

Prismatic tensegrity systems are some of the most 

useful tensegrity systems because they are very stable 

and they maintain a specific angle of twist between 

their upper and lower nodes regardless of the element 

lengths (Figure 4). This property creates a stable 

platform, which does not rotate as the height and radius 

of the tensegrity system are altered by changing the  

element lengths. 

 
Figure 4. The angle of twist ( ) is the angle between 

the end nodes of a strut projected into the upper or 

lower node plane.  

 

Connelly proved that the angle of twist is constant if 

the prismatic tensegrity system is in equilibrium, and is 

given by: 

 (1.1)  

Connelly used the angle of twist to calculate the 

coordinates of all the nodes in a prismatic tensegrity 

system. The symmetry of a prismatic tensegrity system 

means that only the coordinates of the nodes connected 

to a single node ( ) by the elements must be 

calculated. Then the rest are determined by reflecting 

these coordinates about the symmetry planes of the 

system (Figure 5). 

 
Figure 5. Nodes pa, pb, pc, and pd are all connected by 

elements to pi, and can be reflected about symmetry 

planes passing through the z-axis to represent all other 

nodes. 

  

Connelly proved that the coordinates of the nodes 

connected to  are given by: 

 
 

 

 

 

(1.2)  
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where  is the radius  and  is the height of the 

tensegrity system;  and  are node connectivity terms; 

and  is the number of struts in the system. 

 

Tibert and Pellegrino (2003) used Equation (1.2) to 

determine the lengths of the elements by taking the 

Euclidean norm of the node coordinates at each end of 

the desired element. The resulting equations for the 

lateral strut length ( ), lateral cable length ( ), and 

horizontal cable (or end cable) length ( ) are: 

 (1.3)  

 (1.4)  

where: 

 
(1.5)  

Geometric Intersection Method 

The geometric intersection method is based in part on 

the work done by Connelly (1995) and Tibert (2003), 

but represents a completely new rational for how the 

structural elements in a prismatic tensegrity are related, 

and why certain combinations of element lengths result 

in a non-real configuration. In the geometric 

intersection method, each set of element lengths define 

a geometric surface. The lateral strut length defines a 

sphere with a radius of whose center is located at . 

The lateral cable length defines a sphere with a radius 

of whose center is located at . Finally the end cable 

lengths define the radius of a circular cylinder (Figure 

6).  

 
Figure 6. The three surfaces of the geometric 

intersection method all intersect at point . 

The intersection point between these three surfaces 

coincides with the location of node and the height of 

the prismatic tensegrity structure. The Cartesian 

equations for these three surfaces are: 

 (1.6)  

 (1.7)  

 (1.8)  

where: 

 (1.9)  

Equations (1.6), (1.7), and (1.8) can be solved 

simultaneously for the intersection coordinates , , and 

as long as the element lengths are known. However 

there are four possible intersection points between the 

three surfaces and only one can have the correct angle of 

twist and a positive  value. Equation (1.9) reduces the 

number of possible solutions from four to two by forcing 

the coordinate of the intersection point to correspond 

to the correct angle of twist . Equations (1.6), (1.7), and 

(1.8) can be rearranged to solve for the output parameters 

of the tensegrity system  and , as well as either or . 

The corresponding input parameters will be or , and 

the end cable length . Next Equations (1.6), (1.7), and 

(1.8) will be rearranged in terms of the desired output 

parameters. 

 

Substituting Equation (1.9) into Equations  (1.8) and 

(1.6): 

 
(1.10)  

Substituting the coordinates from Equation (1.2) into 

Equation (1.10) gives: 

 
(1.11)  

which simplifies to: 

 (1.12)  

and finally: 

 (1.13)  

Similarly, if Equation (1.9) is substituted into Equations  

(1.8) and (1.7): 

 
(1.14)  

Substituting the coordinates from Equation (1.2) into 

Equation (1.14) gives: 

 

 
(1.15)  
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Trigonometric relationships can be used to simplify 

Equation (1.15): 

 
(1.16)  

which can be further simplified to: 

 

 
(1.17)  

and finally: 

 (1.18)  

Equation (1.13) or Equation (1.18) can be used to solve 

for the height of the tensegrity system depending on 

whether or  is used as the input variable. can be 

calculated using the following equation: 

 
(1.19)  

Equations (1.13) and (1.18) are identical to Equations 

(1.3) and (1.4) (because ), but they have been 

derived using completely different methodologies. 

Connelly and Tibert’s method was derived using 

algebra and the Euclidean norm of the end point nodes. 

The geometric intersection method was derived using a 

geometric approach, which is arguably much more 

intuitive. One of the reasons the geometric intersection 

method is more intuitive is that it gives a physical 

explanation for why Tibert’s method will fail for certain 

combinations of element lengths. These boundary 

conditions will be examined next using some examples 

of the geometric form finding method.  

 Examples and Boundary Conditions 

The inputs for the geometric form finding method are 

the end cable length, which determines the radius of the 

tensegrity system and circular cylinder; and either the 

lateral strut length, which determines the radius of the 

sphere centered about point ; or the lateral cable 

length, which determines the radius of the sphere 

centered about point . With these inputs, the 

geometric intersection method will output the radius 

and height of the tensegrity system, as well as the 

missing lateral element length. Table 1 illustrates the 

beginning and end configurations of a 7 and 8 strut 

tensegrity.  is the input variable and is the output 

variable. The output variables ( ) are 

calculated using both Connelly’s method (CON) and 

the geometric intersection method (GEO). The output 

data further confirms the mathematical equivalence of 

the two methods. Both methods fail to find a real 

configuration for the 8 strut system when , 

indicating that a boundary condition has been reached. 

 

Connelly’s method calculates imaginary values for the 

height of the system, because Equation (1.13) 

rearranged for is , which 

becomes imaginary when  . While 

this condition is straightforward, it is not very intuitive 

and it does not give any feedback about which element 

lengths should be changed to correct the problem. The 

geometric intersection method does indicate which 

elements should be altered in this situation, because 

each element is represented by a unique surface, and 

must be selected to maintain a unique intersection point. 

Initial Parameters      Final 

  7 7 7 7 7  

 115.7° 115.7° 115.7° 115.7° 115.7° 

 1.15238 1.15238 1.15238 1.15238 1.15238 

GEO  

0.43778 1.56258 2.27852 2.90545 3.49165 

1.30201 1.98626 2.58752 3.15361 3.70071 

1.00000 1.00000 1.00000 1.00000 1.00000 

CON  

0.43778 1.56258 2.27852 2.90545 3.49165 

1.30201 1.98626 2.58752 3.15361 3.70071 

1.00000 1.00000 1.00000 1.00000 1.00000 

 

 8 8 8 8 8 

 

 112.5° 112.5° 112.5° 112.5° 112.5° 

 1.30656 1.30656 1.30656 1.30656 1.30656 

GEO  

undefined 1.23662 2.06863 2.74394 3.35846 

undefined 1.90706 2.52723 3.10433 3.65881 

1.00000 1.00000 1.00000 1.00000 1.00000 

CON  

0.84899i 1.23662 2.06863 2.74394 3.35846 

1.17766 1.90706 2.52723 3.10433 3.65881 

1.00000 1.00000 1.00000 1.00000 1.00000 
 

Table 1. Initial and final configurations for a 7 and 8 strut tensegrity system with as the input variable. 
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Figure 7 is an illustration of the 8 strut tensegrity 

system approaching a boundary condition. The 

geometric shapes show that as the boundary condition is 

reached, the  sphere becomes completely enveloped by 

the  sphere and no unique intersection point is 

possible. This results in an entirely new way to view the 

boundary conditions of the form finding problem, and 

can be expressed as: 

. (1.20)  

Equation (1.20) is a much more useful boundary 

condition, because it directly indicates which element 

length(s) should be changed to restore the intersection 

point between the three surfaces.  

 

These geometric shapes also make the geometric 

intersection method easier to adapt to more complex 

tensegrity systems. For example the Cartesian equation 

for a cone can be substituted for the circular cylinder to 

find the shape of a prismatic tensegrity structure with 

two different upper and lower radii. While Connelly’s 

method can also be adapted to suit these tapered 

structures it requires the equations for the node 

coordinates to be re-derived. 

Conclusion 

There are many space applications that could benefit 

from the application of tensegrity theory. One way to 

quantify their usefulness while adding value to future 

missions would be to use them as intermediate adaptable 

structures between the spacecraft bus and the payload. 

While tensegrity structures have many advantages they 

are arguably more difficult to design then conventional 

structures. The geometric intersection form finding 

method presented in this paper is a much more intuitive 

method for designing and optimizing prismatic 

tensegrity structures. All form finding methods can fail 

when certain combinations of element lengths are 

specified, but the geometric intersection method 

provides a direct indication of which element lengths 

should be altered to restore the system to a stable 

geometry. The geometric intersection method is also 

easier to adapt to new tensegrity configurations because 

the surfaces used in this method can be exchanged for 

other surfaces that are more closely related to the desired 

final shape. Tensegrity systems could provide unique 

capabilities to future Canadian mission contributions, 

and further strengthen Canada’s position in niche global 

space markets for the direct and indirect benefit of all 

Canadians. 

 
Figure 7. Top and side views of the 8 strut tensegrity system approaching a feasible geometry boundary. 
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