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Abstract— An approximate synthesis method is pre-
sented that takes a given set of n desired poses of the cou-
pler of a four-bar planar mechanism and finds the “best”
mechanism that can achieve them. This is accomplished by
solving an equivalent unconstrained non-linear minimiza-
tion problem. The hyperboloids of one sheet or hyperbolic
paraboloids that minimize the distance between the given
n poses in the kinematic mapping image space and n cor-
responding points that belong to the quadric surfaces, rep-
resent the “best” mechanism that can achieve the desired
poses. The procedure is tested successfully on an RRRR
mechanism.

Keywords: kinematic mapping; quadric surface fitting; approxi-
mate dimensional synthesis.

I. Introduction

Kinematic synthesis of planar four-bar mechanisms for
rigid body guidance was first proposed by Burmester [1].
Burmester theory states that five finitely separated poses
(positions and orientations) of a rigid body define a pla-
nar four-bar mechanism that can guide a rigid body exactly
through those five poses. Burmester showed that the prob-
lem leads to at most four dyads that, when paired, determine
at most six different four-bar mechanisms that can guide the
rigid body exactly through the poses.

Although the solution to the five-pose Burmester prob-
lem yields mechanisms that have no deviation from the pre-
scribed poses, a major disadvantage is that only five posi-
tions and associated orientations may be prescribed. The
designer has no control over how the mechanism behaves
for any intermediate pose. This can be a difficult challenge
in confined and crowded operating spaces. To gain a mea-
sure of control over the intermediate poses it is necessary
to have a means by which to synthesize a mechanism that
guides a rigid body through n prescribed poses, with n > 5.
In general, an exact solution does not exist to this problem.
The problem is known as approximate synthesis, where the
mechanism determined to be the solution will guide a rigid-
body through the prescribed poses with the smallest error,
typically in a least-squares sense. The approximate solu-
tion will be unique up to the error minimization criteria.
The literature is rich with a large variety of numerical ap-
proaches to pure approximate kinematic synthesis of this
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type, see [2], [3], [4], [5] for example.
A possibly much more intuitive approach is to build the

approximation algorithm in the kinematic mapping image
space introduced simultaneously, but independently in 1911
in [6] and [7]. In this paper, a novel approach to approxi-
mate kinematic synthesis for rigid body guidance is pre-
sented that uses the geometry of the image space to fit a set
of points, representing desired positions and orientations,
to quadric surfaces representing mechanism dyads. It is
important to note that the optimization considers only kine-
matics. Dynamics and static force issues such as transmis-
sion angle and mechanical advantage are not considered.
Such a restriction still applies to a vast array of planar four
bar mechanism applications [8]. A very detailed summary
of the geometry on the kinematic mapping image space can
be found in [9], but a brief description of properties ger-
mane to algorithm presented in this paper is presented be-
low.

II. Kinematic Mapping

One can consider the relative displacement of two rigid-
bodies in the plane as the displacement of a Cartesian ref-
erence coordinate frame E attached to one of the bodies
with respect to a Cartesian reference coordinate frame Σ
attached to the other. Without loss of generality, Σ may be
considered fixed with E free to move.

The homogeneous coordinates of points represented inE
are given by the ratios (x : y : z). Those of the same points
represented in Σ are given by the ratios (X : Y : Z). The
position of a point (X : Y : Z) in E in terms of the basis
of Σ can be expressed compactly as

 X
Y
Z

 =

 cosϕ − sinϕ a
sinϕ cosϕ b

0 0 1

 x
y
z

 , (1)

where the pair (a, b) are the (X/Z, Y/Z) Cartesian coordi-
nates of the origin of E expressed in Σ, and ϕ is the orien-
tation of E relative to Σ, respectively.

The essential idea of kinematic mapping is to map the
three homogeneous coordinates of the pole of a planar dis-
placement, in terms of (a, b, ϕ), to the points of a three di-
mensional projective image space. The image space coor-
dinates are defined as:
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X1 = a sin (ϕ/2)− b cos (ϕ/2); X3 = 2 sin (ϕ/2)

X2 = a cos (ϕ/2) + b sin (ϕ/2); X4 = 2 cos (ϕ/2). (2)

The mapping is injective, not bijective: there is at most
one pre-image for each image point. Any image point on
the real line l, defined by the intersection of the coordinate
planes X3 = X4 = 0, has no pre-image and therefore does
not correspond to a real displacement of E. See [9], for a
detailed analysis of the geometry of the image space.

To be practical, we can remove the one parameter fam-
ily of image points for coupler orientations of ϕ = π, and
normalize the image space coordinates by setting X4 =
1. Conceptually, this implies dividing the Xi by X4 =
2 cos (ϕ/2) giving

X1 =
1
2

(a tan (ϕ/2)− b) ; X3 = tan (ϕ/2)

X2 =
1
2

(a+ b tan (ϕ/2)) ; X4 = 1. (3)

Since each distinct displacement described by (a, b, ϕ)
has a corresponding unique image point, the inverse map-
ping can be obtained from Eqs. (3): for a given point of the
image space, the displacement parameters are

tan (ϕ/2) = X3,

a = 2(X1X3 +X2)/(X2
3 + 1),

b = 2(X2X3 −X1)/(X2
3 + 1). (4)

By virtue of the relationships expressed in Eqs. (3), the
transformation matrix from Eq. (1) may be expressed in
terms of the homogeneous coordinates of the image space.
After setting z = 1, which is done because no practical
coupler will have a point at infinity, one obtains a linear
transformation to express a displacement of E with respect
to Σ in terms of the coordinates of the image point:

[
X
Y
Z

]
=

[
1−X2

3 −2X3 2(X1X3 +X2)
2X3 1−X2

3 2(X2X3 −X1)
0 0 X2

3 + 1

][
x
y
1

]
.

(5)

A. Planar Constraint Equations

Corresponding to the kinematic constraints imposed by
RR- and PR-dyads are quadric constraint surfaces in the
image space. A general equation is obtained when (X : Y :
Z) from Eqs. (5) are substituted into the general equation
of a circle, the form of the most general constraint, [10]:

K0(X2 + Y 2) + 2K1XZ + 2K2Y Z +K3Z
2 = 0. (6)

The result is that the constraint surfaces corresponding to
RR, andPR-dyads can be represented by one equation (see
[10], for how to includeRP - and PP -dyads as well). After
re-arranging in terms of the constraint surface shape param-
eters K0, K1, K2, K3, x, and y, treating the image space
coordinates X1, X2, and X3 as constants yields Eq. (7).

[
1
4 (X2

3 + 1)x2 + (X2 −X1X3)x+ 1
4 (X2

3 + 1)y2−
(X1 +X2X3)y +X2

2 +X2
1

]
K0+[

1
2 (1−X2

3 )x−X3y +X1X3 +X2

]
K1+[

X3x+ 1
2 (1−X2

3 )y −X1 +X2X3

]
K2+

1
4 (X2

3 + 1)K3 = 0. (7)

For a particular dyad the associated [K0 : K1 : K2 : K3],
along with the design values of the coordinates of the cou-
pler attachment point (x, y), expressed in reference frame
E, are substituted into Eq. (7) revealing the image space
constraint surface for the given dyad. The Ki in Eqs. (6)
and (7) depend on the constraints imposed by the dyad.

For RR-dyads K0 = 1 and the surface is a hyperboloid
of one sheet, when projected into the hyperplane X4 = 1,
that intersects planes parallel to X3 = 0 in circles, [11].
The Ki are termed circular coefficients and are defined as:

[K0 : K1 : K2 : K3] = [1 : −Xc : −Yc : (K2
1 +K2

2 − r
2)], (8)

where the ungroundedR-pair in anRR-dyad is constrained
to move on a circle of constant radius, r, and fixed centre
coordinates in Σ, (Xc, Yc).

Linear constraints result when PR-dyads are employed.
In this case K0 = 0 and the constraint surface is an hy-
perbolic paraboloid, when projected into the hyperplane
X4 = 1, with one regulus ruled by skew lines that are all
parallel to the plane X3 = 0, [11]. The linear coefficients
are defined as

[K0 : K1 : K2 : K3] = [0 : 1
2L1 : 1

2L2 : L3], (9)

where the Li are line coordinates obtained by Grassmann
expansion of the determinant of any two distinct points on
the line, [12]. We obtain

[K0 : K1 : K2 : K3] =

[0 : − 1
2

sinϑΣ : 1
2

cosϑΣ : FX/Σ sinϑΣ − FY/Σ cosϑΣ] (10)

where ϑΣ is the angle the direction of translation makes
with respect to the X-axis, expressed in Σ, FX/Σ, FY/Σ,
represent the homogeneous coordinates (X : Y : 1), ex-
pressed in reference frame Σ, of a point on the line that is
fixed relative to Σ.
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III. Fitting Displacements (Image Space Points) to Con-
straint Surfaces

To use kinematic mapping for approximate synthesis re-
quires the best approximation, in a least squares sense, of
the constraint surface coefficients K0, K1, K2, K3, x, and
y given a suitably over constrained set of image space co-
ordinates X1, X2, X3, and X4 which represent the desired
set of positions and orientations of the coupler. The given
image space points are on some space curve. The points
on this curve must be projected onto the best fourth order
curve of intersection of two constraint surfaces correspond-
ing to two possible dyads from which a mechanism can be
constructed which possesses motion characteristics closest
to those specified. The solution to this problem is the solu-
tion to the approximate synthesis problem using kinematic
mapping for rigid body guidance.

We may begin the search for a solution by generating a
set of image space points that satisfy a known image space
constraint hyperboloid. If the cardinality of the set of points
is much larger than the number of constants required to de-
fine the hyperboloid then we should be able to fit the points
to the surface. In other words, identify the equation, in a
least squares sense, that the points satisfy.

One possibility is to identify the implicit quadric surface
equations in the nullspace of the set of equations. That is, an
arbitrary quadric surface has the following implicit second
order equation:

c0X
2
4 + c1X

2
1 + c2X

2
2 + c3X

2
3 + c4X1X2 + c5X2X3+

c6X3X1 + c7X1X4 + c8X2X4 + c9X3X4 = 0. (11)

Given a sufficiently large set of points, one may be able to
identify the 10 coefficients c0 . . . c9 that define the quadric
surface that is closest, in some sense, to the given points.
But, two surfaces are required, one for each of the two
dyads comprising the mechanism.

Fig. 1. Intersection curve of two RR hyperboloids of one sheet.

Fig. 2. Intersection curve of one RR hyperboloid of one sheet and one
RP hyperbolic paraboloid.

The best four bar mechanism will be composed of RR,
PR or RP -dyads. Due to their motion constraints, RR-
dyads map to hyperboloids of one sheet, while PR and
RP -dyads map to hyperbolic paraboloids in the image
space [9], [11]. The two constraint surfaces that intersect in
the curve closest to the reference curve will yield the best
mechanism for the given set of desired poses in some sense.
The curve of intersection of the quadric surfaces of the dyad
pairs for RRRR, RRRP and PRRP mechanisms are il-
lustrated in Figures 1, 2, and 3. Considering that the curve
closest, in the least squares sense, to the reference curve
must be the intersection of two quadric surfaces as shown
above, it is obvious that the curve belongs to each of those

Fig. 3. Intersection curve of two PR hyperbolic paraboloids.
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two quadric surfaces. Thus the solution to the approximate
synthesis problem is finding the best two quadric surfaces
(hyperboloid of one sheet or hyperbolic paraboloid) that
contain a curve that is closest to the reference curve, in a
least squares sense.

Fig. 4. Points on 4th-order curve of intersection of two image space
quadric constraint hyperboloids.

Fig. 5. The mechanism used to generate the poses.

IV. Example

The way the algorithm will be described is through an
example. To generate a set of points that lie exactly on
one of these constraint surfaces a parametric equation of
the surface is required. It is a simple matter to parametrize
Eq. (7), see [11]. Note the typo in this paper in Eq. (7):

the − signs should be replaced by + signs so that it
reads K0(X2 + Y 2) + 2K1XZ + 2K2Y Z + K3Z

2. The
parametrization is

[
X1

X2

X3

]
= 1

2

[
([x−K1]t+K2 + y) + (r

√
t2 + 1) cos ζ

([y −K2]t−K1 − x) + (r
√
t2 + 1) sin ζ

2t

]
,

ζ ∈ {0, . . . , 2π},
t ∈ {−∞, . . . ,∞}, (12)

where x and y are the coordinates of the moving revolute
centre expressed in the moving frame E, K1 and K2 are
the coordinates of the fixed revolute centre expressed in Σ
multiplied by −1 (i.e., K1 = −Xc and K2 = −Yc), r is
the length between the moving and fixed revolute centres,
while t and ζ are free parameters. To simplify the coef-
ficients begin with the surface having the following shape
parameters: K0 = X4 = z = 1, K1 = K2 = x = y = 0,
r = 2, K3 = −4 (recall that K3 = K2

1 + K2
2 − r2). A set

of 40 image space points, shown in Figure 4 was generated
by the linkage geometry, illustrated in Figure 5

Using the general quadric surface equation, Eq. (11), the
image space coordinates of the 40 poses generate a set of 40
synthesis equations in terms of the 10 surface shape param-
eters {c0, c1, · · · , c9}. The two quadric surfaces that best fit
the given points lie in the null space of the synthesis ma-
trix A, whose same numbered elements in each row are the
terms of the Xi, i ∈ {1, 2, 3, 4} scaled by the surface shape
parameters, ci, i ∈ {0, 1, · · · , 9}. The two surfaces clos-
est, in a least squares sense, to the null space of A can be
identified using singular value decomposition (SVD). Ap-
plying SVD to the overconstrained set of synthesis equa-
tions Ac = 0 reveals that the matrix A is rank deficient by
two. That is, two of its singular values are zero, or compu-
tationally close to zero. In this case the two smallest sin-
gular values are 1.0 × 10−15, and 3.0 × 10−15. Hence,
the two smallest singular values may be considered to be
effectively zero, and near the numerical resolution of the
computer. The next smallest singular value is 6.5 × 10−3,
which is five orders of magnitude smaller than the largest
singular value of 88.8. It is a simple matter to identify the
array of surface shape parameters, c, that correspond to the
two smallest singular values of the synthesis matrix A [13].
The coefficients are listed as Surfaces M , N and O in Ta-
ble I, with M corresponding to the smallest, N the second
smallest, and O the third smallest singular value.

The quadric surface type information is embedded in its
coefficients. The implicit equation of the quadric surface
can be classified according certain invariants of its discrimi-
nant and quadratic form [14]. Written in discriminant form,
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Surface c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
M 1.0000 0.1380 0.0738 -0.3967 -0.0962 0.1201 0.0473 0.8249 -0.3372 -0.2950
N 1.0000 0.2603 0.5297 2.1392 0.0424 -0.0456 0.0145 0.7035 -1.0782 3.9373
O 1.0000 -0.3583 -0.3583 -0.0271 0.0000 -0.4448 0.1494 -0.9881 0.1732 0.0509

TABLE I. The surface shape parameters identified with SVD.

Surface rank(D) rank(Q) sign of det(Q) sign of T1 sign of T2 Quadric surface
M 4 3 + + - Hyperboloid of one sheet
N 4 3 - + + Hyperboloid of two sheets
O 3 3 + - + Hyperboloid of one sheet

TABLE II. Quadric constraint surface type.

Eq. (11) becomes:
X1

X2

X3

X4


T 

c1
1
2c4

1
2c6

1
2c7

1
2c4 c2

1
2c5

1
2c8

1
2c6

1
2c5 c3

1
2c9

1
2c7

1
2c8

1
2c9 c0



X1

X2

X3

X4

 = (13)

XTDX.

The associated quadratic form is:

Q =

 c1
1
2c4

1
2c6

1
2c4 c2

1
2c5

1
2c6

1
2c5 c3

 . (14)

Both the discriminant, D, and the quadratic form, Q,
are square symmetric matrices. It can be shown [14] that
quadric surfaces can be classified by conditions on the rank
of the discriminant, rank(D), the rank of the quadriatic
form, rank(Q), the sign of the determinant of the discrim-
inant, det(D), the sign of the product of det(Q) with the
trace of Q (indicated by T1), and the sign of the sum of the
two-rowed principal minors of Q (indicated by T2). This
last invariant is more precisely defined as

T2 =
3∑

i=1,j=2,i<j

∣∣∣∣ qii qij
qij qjj

∣∣∣∣ , (15)

where the qij are the elements of Q.
A quadric surface is an hyperboloid of one sheet if

rank(D) = 4, rank(Q) = 3, det(D) > 0, and either
T2 ≤ 0, or both T1 ≤ 0 and T2 > 0. A quadric surface is an
hyperboloid of two sheets if all the above conditions on the
invariants are met, with the exception that det(D) < 0. A
quadric surface is an hyperbolic paraboloid if rank(D) = 4
and rank(Q) = 2. The values of these parameters for each
of Surfaces M , N , and O are listed in Table II.

Surfaces M and O are two hyperboloids of one sheet,
while Surface N is a hyperboloid of two sheets. Since a
hyperboloid of two sheets does not represent a planar dyad
constraint surface, the conclusion is that the quadric sur-
faces that best fit the reference curve, in the least squares

sense, are two hyperboloids of one sheet. Despite the fact
that the second RR-dyad constraint surface is far removed
from the null space of the synthesis matrix, it nevertheless
indicates that an RRRR mechanism will best approximate
the desired coupler poses.

A. Minimization

Points on a hyperboloid of one sheet can be obtained us-
ing Eq. (12), where K1, K2, K3, x, and y are the con-
straint surface shape parameters described in Section II-A.
The approximate synthesis problem can be solved using an
equivalent unconstrained non-linear minimization problem.
This problem can be stated in the following way: find the
set of surface shape parameters (K1, K2, K3, x, y) that
minimize the total spacing between all 40 points on the ref-
erence curve and 40 points that lie on the surface of a hy-
perboloid of one sheet where t = X3 = X3ref

:

d =
40∑

i=1

√
(X1refi

−X1i
)2 + (X2refi

−X2i
)2. (16)

The two sets of parameters that minimize d represent the
two best constraint surfaces that intersect closest to the ref-
erence curve. Therefore, they represent the best dyad pair
that approximate the desired 40 poses. This formulation
results from the fact that t = X3 is a free parameter in
the parametric equation for the hyperboloid of one sheet,
Eq. (12). Thus, for any hyperboloid of one sheet there exist
40 points with the same t = X3 coordinates as the 40 points
on the reference curve. Furthermore X1 and X2 have the
same form in Eq. (12), so the distance between each point
on the reference curve and each corresponding point on the
quadric surface in the hyperplane t = X3 can be simply
measured on the X1X2 hyperplane. Hence, d can be de-
fined.

The second free parameter, ζ, in Eq. (12) is found by a
minimization sub routine, which runs for each correspond-
ing point generated on the quadric surface with the same
t = X3 coordinate as a point on the reference curve. This
simply implies that for a constraint hyperboloid of one sheet
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cut by a plane corresponding to t = X3 there is only one
point on the circular trace of the hyperboloid of one sheet
in that hyperplane that is closest to the corresponding point
on the reference curve and that the (X1, X2) coordinates
of the closest point are only a function of ζ. Another im-
plication is that the distance between the point generated
with coordinates (X1, X2) and the corresponding point on
the reference curve is only dependent on the surface shape
parameters K1, K2, K3, x, and y.

B. Initial Guesses

In order for the algorithm to converge to the solution that
minimizes d, decent initial guess for the shape parameters
are required. While initial guesses may be good or bad, the
minimization algorithm above allows for each of them to
converge to the best solution and to quantify the deviation
of the poses generated by the identified mechanism. Out of
the 40 points on the reference curve five points spaced rel-
atively widely apart are arbitrarily chosen giving five equa-
tions in the five unknown surface shape parameters, after
setting K0 = 1 in Eq. (7), knowing that the surface should
be a hyperboloid of one sheet. Seven initial guesses are
tabulated in Table III.

The idea behind this technique is that the curve that is
closest to the reference curve is by definition also closest to
the points on the reference curve and thus a curve that ex-
actly passes through five of the points may also be relatively
close to the best curve being sought. The minimization
algorithm will iteratively jump to the closest curve from
curves that may be close to the reference curve by mini-
mizing d. Furthermore, the initial guess procedure could
be repeated for a different set of points on the reference
curve and more initial guesses can be found. Statistics and
heuristics could be used to actually narrow down the initial
guesses. For the sake of testing this approximate synthesis
method, this is not done, and all initial guesses are consid-
ered equal and all resulting solutions are evaluated.

C. Minimization Results

Non-linear unconstrained programming methods such as
the Nelder-Mead simplex method [15] and the Hookes-
Jeeves method [16] have been used with similar outcomes.
The results of the minimization corresponding to each ini-
tial guess can be observed in Figures 6-12.

In each figure, the solid dots represent the desired 40
poses in the projection of the kinematic mapping image
space into the hyperplane X4 = 1. These 40 reference
points lie on the solid reference curve. The small circles are
the corresponding 40 points generated by the mechanism
identified from the minimization algorithm. These points
lie on the surface of a constraint hyperboloid of one sheet
that the algorithm converged to starting from the particular
initial guess. The results can now be visually compared. In
each figure, the images on the left are the results and refer-
ence curve projected onto the plane X3 = 0.

Fig. 6. Graphical results for Initial Guess 1.

Fig. 7. Graphical results for Initial Guess 2.

Fig. 8. Graphical results for Initial Guess 3.

Fig. 9. Graphical results for Initial Guess 4.

6



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-23 June, 2011 A7-561

Guess K1 K2 K3 x y
1 -73.59218 -21.00890 5467.99420 23.99357 56.20798
2 -7.08742 -5.53320 46.84468 -1.58544 -3.19723
3 9.75170 5.29780 27.84599 -2.29188 -7.86290
4 -5.00000 0.00000 21.00000 3.00000 -2.00000
5 1.00000 -1.00000 -23.00000 -1.00000 -2.00000
6 -20.98570 -14.15501 297.79812 -1.28879 0.56361
7 -3.05304 -6.54866 48.44514 -3.82887 -1.05131

TABLE III. Initial Guesses.

Parameter Guess 1 Guess 2 Guess 3 Guess 4 Guess 5 Guess 6 Guess 7
K1 -97.720 -18.202 888.914 -5.000 1.000 -25.445 -1.398
K2 -57.463 -12.363 432.395 0.000 -1.000 -17.073 -6.191
K3 1491.757 261.650 -2374.375 21.000 -23.000 390.531 36.554
x -1.133 -1.287 -0.894 3.000 -1.000 -1.309 -4.388
y 0.534 0.889 -5.375 -2.000 -2.000 1.030 -2.361

Iterations 450 623 718 101 176 745 436
d 1.1132 1.9333 6.726 0.0004 0.0010 1.5746 4.8138

TABLE IV. Results.

Fig. 10. Graphical results for Initial Guess 5.

Fig. 11. Graphical results for Initial Guess 6.

Fig. 12. Graphical results for Initial Guess 7.

The numerical results are tabulated in Table IV. The val-
ues of d that resulted from the minimization algorithm can
now be compared. These values indicate how close the par-
ticular hyperboloid of one sheet obtained is to the reference
curve. It is evident that Initial Guesses 4 and 5 generate the
best hyperboloids of one sheet that intersect closest to the
40 points on the reference curve. The geometry of the best
generating RRRR mechanism can now be extracted using
this pair of RR-dyads and their surface shape parameters.

Fig. 13. Curve of intersection of best hyperboloids of one sheet.

It is to be noted that these are exactly the RR-dyads that
were originally used to construct the initial given 40 poses,
and hence the approximate synthesis was indeed successful.
It should also be noted that the initial guess values for the
shape parameters listed in Table III are completely different
from the shape parameters that resulted from the minimiza-
tion algorithm with the corresponding initial guess with the
exception of Initial Guesses 4 and 5. This is not the case
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for the other initial guesses because, even though the cor-
responding hyperboloid of one sheet fit the five arbitrarily
chosen points on the reference curve well, the quadric sur-
faces very poorly fit the 40 points on the reference curve
and the algorithm converged to a different, better solution.
The curve of intersection of the best hyperboloids of one
sheet corresponding to Initial Guesses 4 and 5 can be seen
in Figure 13.

D. What Happens When Specified Poses are Not Perfect?

Arguably the example was contrived to be successful, but
is also very illustrative of the importance of good initial
guesses. The specified 40 poses lie exactly on the curve of
intersection of two constraint hyperboloids of one sheet. To
introduce poses that do not lie perfectly on such a 4th order
curve which lies exactly on two constraint hyperboloids of
one sheet, the initial specified 40 poses were truncated to 2
decimal places to introduce error, and the approximate syn-
thesis algorithm was rerun. The results obtained are listed
in Table V.

Parameter Truncated Guess 4 Truncated Guess 4
K1 -5.01374158 1.00543179
K2 0.00000497 -0.99534789
K3 21.12526403 22.98658405
x 3.00653176 -1.00047287
y -1.98696494 -2.01010896

Iterations 134 329
d 0.1194434 0.0740493

TABLE V. Truncated Results.

It is to be seen that the fit is worse than that for the mech-
anism identified from the results in Table IV, still the min-
imization converged to similar results in terms of the best
RR-dyad pair.

V. Conclusions

Kinematic mapping of distinct displacement poles to dis-
tinct points in a 3D projective image space was successfully
used for approximate kinematic synthesis for rigid body
guidance. A new approximate synthesis method was devel-
oped and successfully tested, and could have a wide range
of applications as it has been presented in a general way
which can be further expanded or simplified.

For the case of a mechanism containing a PR-dyad, the
same method can be used with the exception that the con-
ditions on the identified quadratic form of the quadric that
best satisfied the specified poses will indicate that the spec-
ified image space points best fit a constraint hyperbolic
paraboloid. No heuristics are necessary and given the ini-
tial desired poses, the entire approximate synthesis can be
carried out using software to return a list of the best gen-
erating mechanisms ranked according to d, their closeness

to the given poses. The unconstrained non-linear program-
ming problem developed has only five variables and is eas-
ily solved by several methods. A minimization algorithm
could actually be further customized to “jump” from lo-
cal minima to other local minima depending on the desired
closeness to the given poses. Furthermore some relation-
ships between the variables could be built in to the algo-
rithm so it recognizes undesirable solutions from the per-
spective of surface shape parameters and avoids iterations
in those directions.

The method developed drives the solution mechanism to
achieve exactly the desired poses but not necessarily a line
of best fit through the poses. This may be desirable for
a mechanism designer who wants a point on the coupler
to go through exactly some specified poses but does not
care about the path in between them. If this is not satisfac-
tory then the designer can simply specify more points where
the path is not well defined and the approximate synthesis
method will yield a more desirable solution.
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Wiss. Wien, 120: 677-741, 1911.

[8] A.G. Erdman, G.N. Sandor and S. Kota Mechanism Design: Analy-
sis and Synthesis, 4th Ed. Prentice Hall, 2001

[9] O. Bottema and B. Roth. Theoretical Kinematics. Dover Publica-
tions, Inc. New York, NY, U.S.A., 1990.

[10] M.J.D. Hayes, P.J. Zsombor-Murray, and C. Chen. “Kinematic Anal-
ysis of General Planar Parallel Manipulators”. ASME, Journal of
Mechanical Design, 126(5): 866-874, 2004.

[11] M.J.D. Hayes, M.L. Husty. “On the Kinematic Constraint Surfaces
of General Three-Legged Planar Robot Platforms”. Mechanism and
Machine Theory, 38(5): 379-394, 2003.

[12] M.J.D. Hayes, T. Luu, X.-W. Chang. “Kinematic Mapping Applica-
tion to Approximate Type and Dimension Synthesis of Planar Mech-
anisms”. 9th Advances in Robotic Kinematics, eds. Lenarčič, J. and
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