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Abstract. Atlas is a novel six degree of freedom vehicle simulator motion platform where ori-
enting is decoupled from positioning, and unbounded rotation is possible about any axis. Angular
displacements are achieved by manipulating the spherical exterior of the cockpit with three omni-
wheel actuators. A significant challenge to practical implementation of the design is dynamic slip
at each omniwheel-sphere interface. The dynamic slip renders the velocity level constraints non-
holonomic, in turn meaning that the position level kinematics are undefined. This paper proposes a
numerical integration algorithm to provide an estimate of the platform orientation. The algorithm
is based on solving the associated quaternionic differential equation given constant omniwheel an-
gular rates. For sufficiently small time intervals of changing omniwheel rates, the algorithm can be
applied recursively to estimate the sphere position level kinematics given omniwheel angular ve-
locity as input. Experimental results suggest that dynamic slip may be identified and compensated.

Key words: Unbounded angular displacement; position and velocity level kinematics; quater-
nionic differential equation; nonholonomic constraints.

1 Introduction

The Atlas motion platform [1] was introduced as a practical alternative to the
Stewart-Gough hexapod [2, 3], used principally for motion simulator platforms. A
table top technology proof-of-concept demonstrator is illustrated in Figure 1. The
Atlas concept consists of a cockpit encased in a sphere which rests on three om-
nidirectional wheels. The three omnidirectional wheels are arranged on the edges
of an equilateral triangle giving an angular separation of 120◦ in the XY -plane, see
Figure 2(b). The elevation angle of each omnidirectional wheel relative to the XY -
plane is 40◦. The reason for the equilateral configuration is to achieve even force
and torque distribution on the omnidirectional wheels, however the elevation angle
of 40◦ was selected for ease of manufacturing and assembly. The sphere/omniwheel
assembly is connected to three independent linear motion stages. The omniwheels
control the orientation of the sphere, while the linear stages provide for the transla-
tion of the platform along all three linear axes. This allows for a full six degree of
freedom (DOF) motion with unbounded rotation about any axis.
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Fig. 1 The Atlas table-top 6-DOF demonstrator highlighting the omnidirectional wheel actuation
concept.

The Atlas motion platform is not unique in its ability to provide unbounded angu-
lar displacement. For example, the Eclipse II architecture [4] possesses this ability.
However, uniqueness of the Atlas platform lies in its kinematic model, which leads
to remarkably simple, closed form velocity closure equations. Moreover, its orien-
tation workspace is not constrained by structural interferences, or rotation limits of
the spherical joints, compared to the Eclipse II.

One of the principal challenges for the Atlas concept is that the kinematics have
so far only been defined at the velocity level [5]. The position level kinematics are
undefined because the velocity constraints are nonholonomic due to the presence
of dynamic slip at the omniwheel-sphere interface [6]. This paper presents an ap-
proach to estimate the Atlas platform orientation, starting from the velocity level
kinematics derived in [5]. The approach consists of integrating the quaternionic
differential equation [7, 8] assuming constant omniwheel angular velocity inputs.
Measurements obtained from experiments yield information on how well the the
quaternion solution estimates the orientation of the sphere for constant omniwheel
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Fig. 2 Configuration of the original Atlas spherical platform: (a) front view; (b) bottom view.

speeds. A simple recursive algorithm for estimating orientation given nonconstant
velocity inputs is also put forward.

2 Atlas Velocity Level Kinematic Model

The velocity level kinematic model of the Atlas platform is derived in detail in [5],
and is briefly summarized in what follows. The translational displacements gen-
erated with the XY Z linear platform are completely decoupled from the rotational
displacements of the sphere. Modelling the linear velocity of the geometric centre
of the sphere is straightforward and typically represented as a simple linear term
which must be added to the more demanding spherical kinematic model. Therefore,
without loss in generality, only the spherical kinematics need be considered here.

It is convenient to perform velocity analysis of a manipulator with its Jacobian. It
is, by definition, a mapping between time rates of change. By convention, in robotics
it is the mapping between the time rates of change of the joint variables to the time
rates of change of the position and orientation of the end effector [9].

Changes in orientation of the Atlas motion platform are achieved with three ac-
tive omnidirectional wheels arranged on the edges of an equilateral triangle giving
an angular separation of 120◦ in the XY -plane, see Figure 2(b). The elevation angle
of each omnidirectional wheel relative to the XY -plane is θ = 40◦. The radius of the
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table top demonstrator sphere is R = 10.16 cm, while the radius of each omniwheel
is r = 2.00 cm.

For this configuration of omnidirectional wheels the resulting mapping between
the velocities in joint space and those in Cartesian space is:

Ω = Jω =
r
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where Ω is the angular velocity vector of the sphere expressed in the inertial sphere
coordinate system illustrated in Figure 2, J is the Jacobian of the manipulator, and ω
is the array of angular rates of the three actuating omniwheels, r represents the radius
of the omniwheel (assuming all three to be equal), R is the external radius of the
sphere, and θ is the elevation angle of each omniwheel. Substituting the numerical
values for r, R, and θ leads to

J =



−0.2042 0.1021 0.1021

0 0.1768 −0.1768
−0.0856 −0.0856 −0.0856


 . (2)

Inspection of the system Jacobian expressed by either Equation (1) or Equa-
tion (2) reveals that, unlike typical manipulator Jacobians, J is time invariant and
depends only on design constants. These constants can be chosen such that the
Jacobian will possess full rank and that the orienting workspace of the sphere is
configurationally singularity free. Moreover, because the sphere can have any ori-
entation about any point within reach of the sphere centre, the reachable workspace
is fully dexterous.

Because the Jacobian of the system is time invariant and constant, once the con-
figuration has been determined, acceleration-level kinematics can be obtained by
simple differentiation of the expression, yielding:

Ω̇ = Jω̇ . (3)

3 Atlas Position Level Kinematic Model

Obtaining the expression for the orientation of the platform, however, is not as sim-
ple. In this work quaternions are employed because the unbounded and singularity-
free nature of the design calls for a singularity-free representation. Integration of the
quaternionic differential equation is required [8]:

q̇ =
1
2

Ω ◦q, (4)

where q is the unit quaternion describing the orientation of the system, and Ω ◦q is
a quaternion product.
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The quaternion product can be expressed as a matrix product [7]:

dq
dt

= Fq(Ω)q, (5)

where Fq(Ω) is a skew symmetric matrix of the sphere angular velocities expressed
in the sphere inertial coordinate system, and is defined to be:

Fq(Ω) =
1
2




0 −Ωx −Ωy −Ωz
Ωx 0 Ωz −Ωy
Ωy −Ωz 0 Ωx
−Ωz −Ωy −Ωx 0


 . (6)

Equation (5) yields a set of four simple ordinary differential equations. If the angular
velocity Ω is constant and the initial conditions q(t0) are known, then the solution
to Equation (6) can be written as [10]

q(t) = φ q(t0, t,Ω)q(t0), (7)

such that the transition matrix is

φ q(t0, t,Ω) = eFq(Ω )∆ t = cos(‖Ω‖∆ t/2)I+2
sin(‖Ω‖∆ t/2)

‖Ω‖ Fq(Ω), (8)

with ∆ t = t− t0, and ‖Ω‖=
√

Ω 2
x +Ω 2

y +Ω 2
z .

The solution represented by Equation (7) can be expressed as the quaternion
product

q(t) = q(t0)◦φ q(t0, t,Ω), (9)

or

q(t) =
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. (10)

Given the magnitudes of the three omniwheel angular rates, the corresponding
angular velocity of the sphere is determined using Equation (1). The subsequent
orientation of the sphere at any time t after an initial time t0 is then estimated using
Equation (10), ignoring the effects of dynamic slip.
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4 Experimental Validation

To validate the solution provided by integrating the quaternionic differential equa-
tion, several simple cases were examined where omniwheel constant angular rates
were specified and the corresponding sphere angular velocity was measured. For
the first three, each angular velocity was selected such that it caused the sphere to
spin about one of its inertial axes according to Equation (1). The resulting motion
of the table top demonstrator (Figure 1) observed appeared to be consistent with the
model.

To validate Equation (10) an arbitrary axis for the rotation of the sphere was
selected using arbitrary constant angular velocities for each omniwheel. The sphere
motion predicted by Equation (10) was compared to motion data recorded. The
measurement system consists of a three axis gyroscope (MicroStrain 3DM-GX1)
mounted inside the sphere and a camera-based external motion system that tracks
the relative displacement of markers on the surface of the sphere, see Figure 3.
Ideally, the nondeterministic gyroscope drift is zeroed with data from the external
camera-based system and the internal sensor data are fused using unscented Kalman
filter techniques [11]. However, the vision system is not functioning reliably yet and
only gyroscope data is currently available.

Several experiments were run where omniwheel angular rates were specified and
the resulting motion of the sphere was tracked and recorded as output from the three
axis gyroscope. The time history of the angular displacements about the sphere in-
ertial axes that was predicted is in the same ball park as those measured for all runs.
Results, comparing predicted and measured orientation about the inertial coordinate
system, from a run where the three omniwheel angular velocities were prescribed
as [ω1,ω2,ω3] = [5,−5,5] rads/s are illustrated in Figure 4. The relatively large
tracking drift in yaw, pitch, and roll is likely due to the nondeterministic drift of the
gyroscopes. However, it may also be partly due to random errors associated with dy-

Fig. 3 Sphere orientation measurement system.
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namic slip and variation in omniwheel angular velocities. Nevertheless, the results
suggests that position level kinematics modelled by Equation (10) are representative
of the physical system if the dynamic slip is identified with the measurement system
and compensated.

Fig. 4 Predicted and measured sphere angular velocities.

5 Orientation Estimate For Nonconstant Velocity Inputs

The solution determined with the integration of the quaternionic differential equa-
tion is only valid for constant omniwheel angular velocities. Regardless, this solu-
tion can be used in a numerical integration algorithm to provide an estimate of the
sphere orientation for a general trajectory. The relation expressed by Equation (9)
can be used to construct a recursive estimate. Consider

q(k) = q(k−1)◦φ q(∆ t,ω(k−1)), (11)

where k is a time index and ∆ t is the time interval between omniwheel velocity
measurements.

The solution is therefore a recursive estimate where the orientation is an ex-
trapolation given the previous angular velocities of the omniwheels and previous
orientation at time k− 1. For sufficiently small ∆ t, the assumption that the motion
between time steps is linear may be used and a reasonable estimate of the sphere
orientation can be obtained for any general set of omniwheel angular velocities over
an arbitrary trajectory.
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6 Conclusions

Because of the presence of dynamic slip at each sphere-omniwheel interface, the
velocity level kinematic constraints of the Atlas sphere are nonholonomic. The ori-
entation of the sphere at any time t given constant omniwheel angular velocity inputs
can be predicted using the solution to a quaternion based differential equation. The
predicted time history of the change in orientation of the sphere possesses the same
tendencies as the measured change in orientation, however measured values tend
to drift, and there appears to be some bias about some inertial coordinate system
axes. The drift may give an indication of error imposed by the dynamic slip, and
could possibly be used for error correction, however the gyroscope drift must first
be zeroed.

This solution can also be adapted to a numerical integration algorithm which can
effectively be used as a general solution to the platform kinematics, providing an
estimate of the platform orientation for any set of varying omniwheel input. This
may allow for a good estimate of the orientation that could, in combination with the
measurement system, be used in the control algorithm for the platform. Future work
will focus on experimental validation of the constant angular velocity solution as
well as validation of the proposed numerical solution.
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