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Introduction

A new method for deriving the I-O equations of planar 4R mechanisms
was needed for the approximate synthesis of function generators for the
following reasons.

It has been observed that as the cardinality of the prescribed discrete I-O
data set increases the linkages that minimise the 2-norm of the design and
structural errors tend to converge to the same linkage.

The design error indicates the error residual incurred by a specific linkage
regarding the verification of the synthesis equations.

The structural error is the difference between the prescribed linkage output
angle and the generated output angle for a prescribed input angle value.

The important implication of this observation is that the minimisation of
the Euclidean norm of the structural error can be accomplished indirectly
via the minimisation of the corresponding norm of the design error,
provided that a suitably large number of I-O pairs is prescribed.
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Introduction Continued

Minimisation of the Euclidean norm of the design error leads to a linear
least-squares problem whose solution can be obtained directly, while the
minimisation of the same norm of the structural error leads to a nonlinear
least-squares problem, requiring an iterative solution.

All this has suggested the need to develop Continuous Approximate
Synthesis (CAS) as an alternative to discrete approximate synthesis.

CAS involves integrating the synthesis equations between the bounds of
the minimum and maximum input angles.

The resulting need for numerical integrators suggests representing the
transcendental Freudenstein equations as algebraic ones using the
tangent of the half angle substitutions.
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Introduction Continued

We decided to establish a concomitant method for deriving the
Freudenstein equations that can be applied to any kinematic architecture:
planar; spherical; or spatial.

We developed the method for planar 4R function generators so that we
could compare our results to the tangent half-angel substitution in
Freudenstein’s equation for confirmation, which is the material presented
in this paper.

In the paper exact synthesis is performed with multiple sets of three I-O
pairs leading to similar mechanisms, as is reasonably expected.

In this talk discrete approximate synthesis results for 5, 10, 50, 100, and
500 I-O pairs are presented and discussed.
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Freudenstein Planar 4R Function Generator Equation

The Freudenstein equation relates the
input to the output angles of a planar
4R four-bar mechanism:

k1 + k2 cos(ϕi) − k3 cos(ψi)

= cos(ψi − ϕi).

We arbitrarily select ψ as the input
angle and ϕ as the output angle.

The equation is linear in the ki Freudenstein parmeters, which are defined
in terms of the link length ratios as:
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Freudenstein Planar 4R Function Generator Equation

k1 ≡
(a2 + b2 + d2 − c2)

2ab
,

k2 ≡
d
a
,

k3 ≡
d
b
.




⇔




d = 1,

a =
1
k2
,

b =
1
k3
,

c = (a2 + b2 + d2 − 2abk1)1/2.
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Algebraic I-O Equation Derivation

Let Σ be a non moving Cartesian
coordinate system with
coordinates X and Y whose origin
is located at the centre of the
ground fixed link R-pair with
length a.

Let E be a coordinate system that moves with the coupler of length c
whose origin is at the centre of the distal R-pair of link a, having basis
directions x and y.

The displacement constraints for the origin of E can be expressed as

X − a cosψ = 0,
Y − a sinψ = 0.

(1)
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Algebraic I-O Equation Derivation

The displacement constraints for
point F, located at the centre of
the distal R-pair on the output
link with length b are

X − d − b cos ϕ = 0,
Y − b sin ϕ = 0.

(2)

Any displacement in Euclidean space, E3, can be mapped in terms of the
coordinates of a 7-dimensional projective image space using the
transformation

T =



x2
0+x2

1+x2
2+x2

3 0 0 0

2(−x0y1+x1y0−x2y3+x3y2) x2
0+x2

1−x2
2−x2

3 2(x1x2−x0x3) 2(x1x3+x0x2)

2(−x0y2+x1y3+x2y0−x3y1) 2(x1x2+x0x3) x2
0−x2

1+x2
2−x2

3 2(x2x3−x0x1)

2(−x0y3−x1y2+x2y1+x3y0) 2(x1x3−x0x2) 2(x2x3+x0x1) x2
0−x2

1−x2
2+x2

3



.
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Algebraic I-O Equation Derivation

T transforms the coordinates of any point described in a moving 3D
coordinate system E to the coordinates of the same point in a relatively
fixed 3D coordinate system Σ in terms of the coordinates of a point on
the Study quadric, S2

6:

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0.

In order for a point in the image space to represent a real displacement,
and therefore to be located on S2

6, the non-zero condition of
x2

0 + x2
1 + x2

2 + x2
3 , 0 must be satisfied.

The transformation matrix T simplifies considerably when we consider
displacements that are restricted to the plane.

Three degrees of freedom are lost and hence four Study parameters
vanish.

Hayes, Husty, Pfurner I-O Equation ARK 2018 9 / 28



Algebraic I-O Equation Derivation

T transforms the coordinates of any point described in a moving 3D
coordinate system E to the coordinates of the same point in a relatively
fixed 3D coordinate system Σ in terms of the coordinates of a point on
the Study quadric, S2

6:

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0.

In order for a point in the image space to represent a real displacement,
and therefore to be located on S2

6, the non-zero condition of
x2

0 + x2
1 + x2

2 + x2
3 , 0 must be satisfied.

The transformation matrix T simplifies considerably when we consider
displacements that are restricted to the plane.

Three degrees of freedom are lost and hence four Study parameters
vanish.

Hayes, Husty, Pfurner I-O Equation ARK 2018 9 / 28



Algebraic I-O Equation Derivation

T transforms the coordinates of any point described in a moving 3D
coordinate system E to the coordinates of the same point in a relatively
fixed 3D coordinate system Σ in terms of the coordinates of a point on
the Study quadric, S2

6:

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0.

In order for a point in the image space to represent a real displacement,
and therefore to be located on S2

6, the non-zero condition of
x2

0 + x2
1 + x2

2 + x2
3 , 0 must be satisfied.

The transformation matrix T simplifies considerably when we consider
displacements that are restricted to the plane.

Three degrees of freedom are lost and hence four Study parameters
vanish.

Hayes, Husty, Pfurner I-O Equation ARK 2018 9 / 28



Algebraic I-O Equation Derivation

T transforms the coordinates of any point described in a moving 3D
coordinate system E to the coordinates of the same point in a relatively
fixed 3D coordinate system Σ in terms of the coordinates of a point on
the Study quadric, S2

6:

S2
6 : x0y0 + x1y1 + x2y2 + x3y3 = 0.

In order for a point in the image space to represent a real displacement,
and therefore to be located on S2

6, the non-zero condition of
x2

0 + x2
1 + x2

2 + x2
3 , 0 must be satisfied.

The transformation matrix T simplifies considerably when we consider
displacements that are restricted to the plane.

Three degrees of freedom are lost and hence four Study parameters
vanish.

Hayes, Husty, Pfurner I-O Equation ARK 2018 9 / 28



Algebraic I-O Equation Derivation

We arbitrarily select the plane Z = 0 to contain our displacements.

Since E and Σ are assumed to be initially coincident, this means



W
X
Y
0



= T



w
x
y
0



. (3)

This leaves us with the four soma coordinates

(x0 : x3 : y1 : y2). (4)

The non-zero condition reduces to x2
0 + x2

3 , 0.
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Algebraic I-O Equation Derivation

We normalise the coordinates with the nonzero condition giving the
planar kinematic mapping transformation

T =
1

x2
0 + x2

3



x2
0 + x2

3 0 0
2(−x0y1 + x3y2) x2

0 − x2
3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0 − x2

3



. (5)

We can now express a point in Σ in terms of the soma coordinates and
the corresponding point coordinates in E as



1
X
Y



= T



1
x
y



=
1

x2
0 + x2

3



x2
0 + x2

3

2(−x0y1 + x3y2) + (x2
0 − x2

3)x − (2x0x3)y
−2(x0y2 + x3y1) + (2x0x3)x + (x2

0 − x2
3)y



.
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Algebraic I-O Equation Derivation

The novelty of this approach begins with creating two Cartesian vector
constraint equations containing the nonhomogeneous coordinates from
Equations (1) and (2), i.e. the displacement constraints for points E and
F, but substituting the values from the transformation equation for (X, Y).

These two vector equations are:

F1 = 1
x2
0+x2

3



2(−x0y1+x3y2)+(x2
0−x2

3)x−2x0x3y−(a cosψ)(x2
0+x2

3)

−2(x0y2+x3y1)+2x0x3x+(x2
0−x2

3)y−(a sinψ)(x2
0+x2

3)


= 0;

F2 = 1
x2
0+x2

3



2(−x0y1+x3y2)+(x2
0−x2

3)x−2x0x3y−(b cosϕ+d)(x2
0+x2

3)

−2(x0y2+x3y1)+2x0x3x+(x2
0−x2

3)y−(b sinϕ)(x2
0+x2

3)


= 0.
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Algebraic I-O Equation Derivation

The novelty of this approach begins with creating two Cartesian vector
constraint equations containing the nonhomogeneous coordinates from
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F, but substituting the values from the transformation equation for (X, Y).
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Algebraic I-O Equation Derivation

Now we determine equations for
the coupler.

The coordinate system that moves
with the coupler has its origin,
point E, on the centre of the
R-pair, (x, y) = (0, 0).

Point F is on the R-pair centre on
the other end having coordinates
(x, y) = (c, 0).

One more vector equation, H1 is obtained by substituting (x, y) = (0, 0)
in F1, and another, H2 is obtained by substituting (x, y) = (c, 0) in F2.
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Algebraic I-O Equation Derivation

Next H1 and H2, two rational expressions, are converted to factored
normal form.

This is the form where the numerator and denominator are relatively
prime polynomials with integer coefficients.

The denominators for both H1 and H2 are the nonzero condition x2
0 + x2

3,
which can safely be factored out of each equation leaving the following
two vector equations with polynomial elements:

H1 =



−a cosψ (x2
0+x2

3)+2(−x0y1+x3y2)

−a sinψ (x2
0+x2

3)−2(x0y1+x3y2)


=0; (6)

H2 =



−(b cosϕ+d)(x2
0+x2

3)+c(x2
0−x2

3)+2(−x0y1+x3y2)

−b sinϕ (x2
0+x2

3)+2c(x0x3)−2(x0y2+x3y1)


=0. (7)
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Algebraic I-O Equation Derivation

H1 = 0 and H2 = 0 are trigonometric equations.

We convert them to algebraic ones using the Weierstraß (tangent of the
half-angle) substitutions

u = tan
ψ

2
, v = tan

ϕ

2
,

and

cosψ =
1 − u2

1 + u2 , sinψ =
2u

1 + u2 ,

cos ϕ =
1 − v2

1 + v2 , sin ϕ =
2v

1 + v2 .
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Algebraic I-O Equation Derivation

We make the Weierstraß substitutions and convert H1 and H2 to factored
normal form.

The denominators are u2 + 1 and v2 + 1 which can safely be factored out
because they are always non-vanishing.

The resulting four algebraic equations are:

K1 =



(au2−a)(x2
0+x2

3)+2u2 (−x0y1+x3y2)+2(−x0y2+x3y1)

−2au(x2
0+x2

3)−2(1+u2)(−x0y2+x3y1)


=0; (8)

K2 =



(v2 (b−d)+b−d)(x2
0+x2

3)+(cv2+c)(x2
0−x2

3)+

2(1+v2)(−x0y1+x3y2)

2(v2+1)(cx0x3−x0y2−x3y1)−2bv(x2
0+x2

3)



=0. (9)
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Algebraic I-O Equation Derivation

Factoring the resultant of the first and second elements of K1 = 0 with
respect to u, as well as the first and second elements of K2 = 0 with
respect to v yields the two usual displacement constraint equations in the
image space:

a2(x2
0 + x2

3) − 4(y2
1 + y2

2) = 0,

( b2 − c2 − d2)(x2
0 + x2

3) + 2cd(x2
0 − x2

3) + 4c(x0y1 + x3y2)+

4d(−x0y1 + x3y2) − 4(y2
1 + y2

2) = 0.

Inspection of the quadratic forms of these two equations reveals that they
are two hyperboloids of one sheet, which is exactly what is expected for
two RR dyads.

But, these are not the constraints we are looking for!
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I-O Equation Derivation

We want to eliminate the image space coordinates using K1 = 0 and
K2 = 0 to obtain an algebraic polynomial with the tangent half angles u
and v as variables and link lengths as coefficients.

To obtain this algebraic polynomial we start by setting the homogenising
coordinate x0 = 1, which can safely be done since we are only concerned
with real finite displacements.

Observe that the two equations represented by the components of K1 = 0
are linear in y1 and y2, solving leads to:

y1 =
1
2

a(u2 − 2ux3 − 1)
u2 + 1

, (10)

y2 =
1
2

a(u2x3 + 2u − x3)
u2 + 1

. (11)
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Algebraic I-O Equation Derivation

Equations (10) and (11) reveal the common denominator of u2 + 1,
which can never be less than 1, and hence may be factored out.

Now we back-substitute these expressions for y1 and y2 into the array
components of K2 = 0, thereby eliminating these image space
coordinates, and factor the resultant of its elements with respect to x3
which yields four factors.

The first three are
4c2, (u2 + 1)3, (v2 + 1)3.

None of these three factors can ever be zero and at the same time
represent a real displacement constraint, hence they are eliminated.
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Algebraic I-O Equation Derivation

The remaining factor is a polynomial of degree 4 in the variables u and v,
and quadratic in the link length coefficients a, b, c, and d, which is
exactly the constraint equation we desire:

Au2v2 + Bu2 + Cv2 − 8abuv + D = 0; (12)

where

A = (a − b + c + d)(a − b − c + d);

B = (a + b − c + d)(a + b + c + d);

C = (a + b − c − d)(a + b + c − d);

D = (a − b + c − d)(a − b − c − d).
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Algebraic I-O Equation Derivation

As a concomitant check on the validity of Equation (12) we see that the
same equation is obtained using the Weierstraß substitution in the
Freudenstein equation.
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Discrete Approximate Synthesis Example

We illustrate the utility of the algebraic form of the I-O equation to
discrete approximate dimensional synthesis with an example.

The function we wish to approximate is defined for v = f (u) as:

v = 2 + tan
( u
u2 + 1

)
.

The range of the input is −2 ≤ u ≤ 2, and the output v varies according
to the function.

The cardinality of the I-O data sets is m = 5, 10, 50, 100, and 500,
respectively.

We employ Equation (12) as the synthesis equation.

Now we use a Newton-Gauss algorithm to identify the link lengths that
minimise the design error, the residual of the m synthesis equations.
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Discrete Approximate Synthesis Example

Since a function generator is scalable, we only require the ratios of the
link lengths to generate a function.

Hence, we set d = 1 generic unit of length, and identify the a, b, and c
that minimise the residual error in the synthesis equations given an
arbitrary number m > 3 of (um, vm) values of the prescribed function.

We wish to minimise the residual of the synthesis equations with respect
to changes in the unknown link lengths.

The synthesis equation is

Au2v2 + Bu2 + Cv2 − 8abuv + D = 0.
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Discrete Approximate Synthesis Example

We define the ith Jacobian of the synthesis equations to be the m× 3 array

Ji =



∂f
∂ai

(u1, v1) ∂f
∂bi

(u1, v1) ∂f
∂ci

(u1, v1)

∂f
∂ai

(u2, v2) ∂f
∂bi

(u2, v2) ∂f
∂ci

(u2, v2)
...

...
...

∂f
∂ai

(um, vm) ∂f
∂bi

(um, vm) ∂f
∂ci

(um, vm)



.

The design error is the ith residual ri of the synthesis equations for the
current values of ai, bi, and ci.
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Discrete Approximate Synthesis Example

The design error has the form of an m × 1 array

ri =



f (ai, bi, ci, u1, v1)
f (ai, bi, ci, u2, v2)

...

f (ai, bi, ci, um, vm)



.

The Newton-Gauss algorithm iterates until a desired minimum threshold
value is attained.

We define the ith estimate of the link lengths as the parameter vector

xi =



ai

bi

ci


.

Hayes, Husty, Pfurner I-O Equation ARK 2018 25 / 28



Discrete Approximate Synthesis Example

The design error has the form of an m × 1 array

ri =



f (ai, bi, ci, u1, v1)
f (ai, bi, ci, u2, v2)

...

f (ai, bi, ci, um, vm)



.

The Newton-Gauss algorithm iterates until a desired minimum threshold
value is attained.

We define the ith estimate of the link lengths as the parameter vector

xi =



ai

bi

ci


.

Hayes, Husty, Pfurner I-O Equation ARK 2018 25 / 28



Discrete Approximate Synthesis Example

The design error has the form of an m × 1 array

ri =



f (ai, bi, ci, u1, v1)
f (ai, bi, ci, u2, v2)

...

f (ai, bi, ci, um, vm)



.

The Newton-Gauss algorithm iterates until a desired minimum threshold
value is attained.

We define the ith estimate of the link lengths as the parameter vector

xi =



ai

bi

ci


.

Hayes, Husty, Pfurner I-O Equation ARK 2018 25 / 28



Discrete Approximate Synthesis Example

The algorithm iteratively proceeds updating xi as

xi+1 = xi − ri(JT
i Ji)−1JT

i .

The iteration continues until the following condition is met

‖xi+1 − xi‖ ≤ ε .

For the example we set ε = 1 × 10−10.

The initial guess for the link lengths was a = b = c = 1.
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Discrete Approximate Synthesis Example

Link lengths
Sample set cardinality

3 5 10 50 100 500
a 0.2331 0.1991 0.2033 0.2072 0.2077 0.2082
b 1.4879 1.4879 1.4893 1.4836 1.4827 1.4818
c 1.2202 1.2202 1.2249 1.2239 1.2236 1.2233
d 1 1 1 1 1 1
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Conclusions

We have presented a new method for deriving the algebraic form of the
I-O equations of planar 4R function generators employing, then
eliminating appropriate sets of Study’s soma coordinates.

The next step in this work is to generalise this method for any 4-bar
kinematic architecture: planar; spherical; or spatial.

The ultimate goal of this work is to adapt it to use continuous I-O data
sets to synthesise the very best linkage to generate an arbitrary function.

Derivation of the planar algebraic I-O equation presented here is one of
the first steps towards this goal.
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