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1 Introduction

1.1 Manipulator Description. The planar manipulator
considered in this paper, shown in Fig. 1, consists of three
closed kinematic chains. The circular disk, with radius r, rolls
without slip on each of the three lines tangent to it. This rolling
system is modelled as a pinion meshing with three racks. We
call the kinematic connection between a rack and the pinion a
gear (G) pair. It is a higher kinematic pair because of the point
(or line) contact between the two links. Moreover, the rolling
constraints are holonomic due to the pure rolling condition and
because the motion is planar. Hence, the constraint equations
can be expressed in terms of displacement, i.e., in integral form.
Each of the three legs, A, B and C, connect a rack to a base
point via two revolute (R) pairs. Each closed loop is an -R-R-
G-G-R-R- kinematic chain. Grounded and floating link lengths
in each leg are indicated by I;, and L, respectively, with i €
(A, B, C}. The leg links are rigid and a rack is rigidly attached
to the disk end of each second link. The R-pairs connecting
two links in a leg shall be referred to as knee joints K, Kj,
K, and are constrained to move on circles centred on the three
points F,, Fg, Fc, which are grounded to a fixed rigid base.
The position and orientation of the pinion end-effector are de-
scribed by reference frame E, which has its origin on the disk
centre and moves with it. Frame X has its origin at the base of
leg A and is fixed. In the home-position, shown in Fig. 1, the
basis directions of E and X are identical.

1.2 Background. In 1965 D. Stewart first suggested the
use of platform type manipulators as flight simulators (Stewart,
1965). In subsequent years such manipulators came to be
known as Stewart platforms. However, a design for a tire test-
stand (Gough, 1956), with the same architecture of a modern
flight simulator, virtually identical to that proposed by Stewart,
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discrete points in a three dimensional image space. Separate motions of each leg
trace skew hyperboloids of one sheet in this space. Therefore, points of intersection
of the three hyperboloids represent solutions to the forward kinematics problem. This
reduces the problem to solving three simultaneous quadratics. Applications of the
platform are discussed and an illustrative numerical example is given.

had already been put forward by V. E. Gough and the staff
at Cornell nine years earlier. We use the term Stewart-Gough
platform (SGP) to correct this historical oversight and are, by
no means, the first to do so. It is quickly becoming standard
terminology in the literature, see Nielsen and Roth (1996),
Husty (1996b), Angeles (1997), and Merlet (1998), for exam-
ple.

The body of literature is thick with investigation on the kine-
matic analysis of SGP in general. In particular, the forward
kinematics (FK) problem of lower-pair-jointed planar SGP has
been given extensive attention. It is established in Hunt (1983)
that planar SGP with 3 RRR (or the kinematically equivalent,
RPR) legs admit at most six real assembly configurations for
a given set of activated joint inputs. General solution procedures
using elimination theory to derive a 6™ degree univariate poly-
nomial, which leads to all assembly configurations, are to be
found in Gosselin and Sefrioui (1991) and Wohlhart (1992).
The FK problem is solved for all permutations of three-legged
planar lower-pair-jointed SGP in Merlet (1996). The univariate
polynomial is again derived in Pennock and Kassner (1992),
but the work is extended to include an investigation of the
workspace in Pennock and Kassner (1993). Earlier work by
Gosselin (1988) provides a useful workspace optimisation
scheme for planar, spherical and spatial platform-type parallel
manipulators. A detailed enumeration of assembly configura-
tions of planar SGP can be found in Rooney and Earle (1983).
Synthesis issues are addressed using a straightforward geomet-
ric approach in Shirkhodaie and Soni (1987), while Murray and
Pierrot (1998) give an extremely elegant n-position synthesis
algorithm, based on quaternions, for the design of planar SGP
with three RPR legs.

The literature, however, appears to be all but devoid of work
investigating fully-parallel planar SGP whose joints include ho-
lonomic higher kinematic pairs. This omission is unfortunate
because such platforms offer distinct advantages over their
lower-pair-jointed cousins in two respects. First, the locations
of the attachment points connecting each of the three legs to
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Fig. 1 A planar platform with three DOF

the platform are continuously variable with respect to each other
during platform motions, i.e., the platform has a continuously
variable geometry. This means that a general procedure for the
kinematic analysis of this type of platform can be applied to
multiple-arm robots because any such procedure is necessarily
dependent on the initial assembly configuration (IAC) of the
platform. This leads directly to the second advantage, in that
these platforms can be designed as fully parallel, cooperating,
or hybrid devices. A good deal of investigation comprises kine-
matic analysis (Salisbury and Roth, 1983; Hui and Goldenberg,
1989; Mimura and Funahashi, 1992) and control (Cole et al.,
1988; Yun et al., 1992) of planar multiple-arm (or, cooperating)
robots. Particular attention is given to grasp and its effect on
the workspace in Chen and Kumar (1995). The common thread
in the multiple arm literature just cited is that the contact be-
tween manipulator and object is pure rolling. Grasp and fine-
motion manipulation by multi-fingered robotic hands are issues
closely connected to contact type. Work in this area is still open,
hence we feel justified in examining the kinematic analysis of
a three-legged planar SGP with holonomic higher pairs. How-
ever, to maintain a reasonable scope for this paper, we will treat
the device as a fully-parallel planar manipulator.

It appears that the only work directly related to fully-parallel
SGP with holonomic higher pairs comprises the following. The
inverse kinematics (IK) problem and workspace of a planar
mechanical system comprising a rolling disk manipulated by
two 2R legs is investigated in Agrawal and Pandravada (1992,
1993). The IK solution procedure assumes that tangential con-
tact between the arms and disk is maintained during a given
motion. Thus, for particular initial and final assembly configu-
rations the mechanical system may be considered as a fully-
parallel platform. The analysis, however, is based on a flawed
interpretation of the IK problem. The angular measure used to
specify the orientation of the disk end-effector must be an abso-
lute quantity in order to have useful meaning in the context of
kinematic analysis. Instead, it is defined as the relative angle
between normals of the two tangent lines of the manipulating
arms. The method, therefore, can not be used for kinematic
analysis in any conventional sense. This issue is addressed in
Hayes and Zsombor-Murray (1996a), but the IK algorithm pre-
sented yields equations that are difficult to solve because they
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depend on a joint parameter which, it turns out, can not be
directly evaluated. A kinematic mapping procedure is used in
Hayes and Zsombor-Murray (1996b) to solve the FK problem
of a three-legged version of the abovementioned platform, but
it assumes a priori knowledge of the platform orientation. This
requirement can render the solution procedure somewhat im-
practical, nevertheless, it was the first step leading directly to
the procedure presented herein. It has also led to the first practi-
cal IK solution procedure (Hayes and Zsombor-Murray, 1998),
which is literally an inverse of the procedure introduced in this
paper.

It is important to emphasise that the pure rolling nature of
the higher pairs make platforms of the type in Fig. 1 markedly
different from lower-pair-jointed SGP. For instance, the pure
rolling condition renders FK solutions completely dependent on
the JAC (Agrawal and Pandravada, 1992, 1993; Hayes and
Zsombor-Murray, 1996b). General planar displacements re-
quire a combination of two distinct types of relative rolling with
respect to the fixed reference frame: racks roll on the pinion,
and the pinion rolls on the racks. There is no obvious way to
determine the proportion, which is something that must be done
because each type of rolling can produce an identical change
in contact point, yet results in an entirely different displacement
(Hayes and Zsombor-Murray, 1996a). Moreover, the FK analy-
sis cannot be directly reduced to the lower pair SGP case be-
cause of the contact point location ambiguity arising from the
rolling constraints. Furthermore, there exists no such equivalent
mechanism which can exactly reproduce a rack-and-pinion mo-
tion (see Hunt, 1978, p. 106). Methods, such as those discussed
in Gosselin and Sefrioui (1991), or Wohlhart (1992), cannot
be used until suitably modified to account for the relative roll-
ing. For example, a computational device such as the virtual
platform (introduced in section 3.1) must be employed. How-
ever, these procedures tend to be poorly suited to this platform
type by virtue of the fact that the platform attachment points,
i.e., the points of contact between the disk and legs, change
relative to each other from pose to pose. This means that many
hundreds of coefficients must be computed for every pose. An
approach that is independent of the geometry of the contact
points would conceivably yield a more elegant procedure.

Recently, it has been shown that kinematic mapping has im-
portant applications in planar robot kinematics. A particular
mapping (Griinwald, 1911; Blaschke, 1911) is used in De Sa
(1979) and De Sa and Roth (1981) to classify one parameter
planar algebraic motions. Ravani (1982) and Ravani and Roth
(1983} employed it to to study planar motion synthesis. In
Husty (1995), the same mapping is utilised in a novel FK
solution procedure for planar three-legged SGP. It is then used
to analyse the workspace of the same type of platform (Husty,
1996a). The particular mapping used is well suited to manipula-
tors of the type discussed in this paper (see Fig. 1) since it is
independent of the geometry of the platform (Husty, 1995).
However, it has never, to the best of our knowledge, been
applied with complete success to the FK problem of our plat-
form. Indeed, no practical solution procedure can be found in
the literature. Thus, the goal of this-paper is to present a practical
solution procedure, that employs kinematic mapping, for the
FK problem of a planar SGP with holonomic higher pairs.

1.3 Applications. The applications of our platform, when
considered as a fully-parallel manipulator, are essentially the
same as those of regular planar SGP, but the variable platform
geometry makes for some interesting additions. For instance, it
can be used in situations requiring adjustable, variable coupler
length four-bar mechanisms that can be changed to Grashof,
change-point, or non-Grashof kinematics. Not only can the cou-
pler curve shape parameters be adjusted, the curve itself can be
made uni- or bicursal, to suit the needs of the design at hand.
This makes for some welcome flexibility regarding function
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generation, rigid body guidance and path generation synthesis
problems.

Since this is a platform with three degrees-of-freedom
(DOF), three motors are required to take full advantage of each
DOF. We elect to actuate the three higher pairs. This gives us
a measure of control over the relative rolling. The racks are
constrained to remain in tangential contact with the pinion.
We can maintdin passive tangential contact mechanically, see
Agrawal and Pandravada (1993) for example. Hence the higher
pairs can be activated via a transmission with no additional
active joints, eliminating the need for redundant force sensors.

Changing the rack tangent ‘angles changes the assembly con-
figuration of the platform. Each distinct set of inputs yields a
distinct set of distances between the knee joints. Referring to
Fig. 1, we can lock the racks in two legs so that there is a
desired distance between corresponding knee joints. With no
loss in generality we can select legs A and B. Since two of the
actuators are locked, the platform loses 2 DOF. Furthermore,
the ungrounded links in legs A and B, together with the pinion
are a temporary rigid body with an effective length correspond-
ing to the distance between the two knee joints, K, and K. The
resulting four-bar mechanism can be driven with rack C. If the
link lengths are suitably chosen, it will be a convertible Grashof-
Change-Point-Non-Grashof mechanism.

Figure 2 illustrates the most general situation, where the
grounded links in legs A and B have different lengths. Cases
(i) through (iii) show the mechanisms that result as the effective
coupler length, given in generic units, varies between 15, 14,
and 12. The sum of the longest (/) and shortest (s) link lengths
is less than, equal to, and greater than the sum of the other
two (a and b) giving Grashof, change-point, and non-Grashof
mechanisms, respectively. Recall the characteristics of these
three variants of a four-bar mechanism. As a reminder, the
excursion arcs and singular positions of the small and large arm
crank pins for each of the three cases are shown on the right.
For this application the link lengths in the driving leg, C, and
the disk radius are unimportant provided they allow for the
desired coupler lengths and output error tolerance.

2 A Kinematic Mapping of Planar Displacements

We now briefly describe the kinematic mapping used in this
paper. Very detailed accounts may be found in De Sa (1979),

(iii)

Fig. 2 Application to planar four-bar mechanisms: (i) Grashof; (ii)
change-point; (iii} non-Grashof

214 / Vol. 121, JUNE 1999

Ravani (1982), Bottema and Roth (1990). It was introduced
in 1911 simultaneously, and independently, by Griinwald
(1911) and Blaschke (1911). We begin by observing that a
general displacement in the plane requires three independent
parameters to fully characterise it. It is convenient to think of the
relative planar motion between two rigid bodies as the motion of
a Cartesian reference coordinate system E attached to one of
the bodies, With respect to the Cartesian coordinate system T
attached to the other. Without loss of generality, £ may be
considered as fixed while E is free to move. Then the position
of a point in E relative to X can be given by the homogeneous
linear transformation

X cosp —sing a x
Yi{=]|singp <cosp b y|., nH
z 0 0 1 2z

where the ratios (x : y : z) represent the homogeneous coordi-
nates of a point in E, while (X : Y: Z) are those of the same point
in Z. The Cartesian coordinates of the origin of E measured in
X are (a, b), while ¢ is the rotation angle measured from the
X-axis to the x-axis, the positive sense being counter-clockwise.
Clearly, in Eq. (1) the three characteristic displacement parame-
ters are (a, b, p).

Any planar displacement can be expressed as the product of
isometries in many ways. In particular, as two reflections whose
mirror lines intersect in a point (Coxeter, 1969). That is, a
single rotation, through twice the angle between the mirrors,
about the point of intersection. This is also true for the product
of two parallel translations, except the corresponding two paral-
lel mirrors, separated by one half the magnitude of the combined
translation, intersect in a point on the line at infinity, and the
rotation angle is infinitesimal. The homogeneous coordinates of
the rotation centre, (X, : Y, : Z,), are called the pole of the
displacement. The coordinates of the pole are the same in both
E and X and are therefore invariant, 1e., (X, : Y, : Z,) =
(% * ¥ = 2,). The pole coordinates of any displacement can be
expressed in terms of the displacement parameters, (a, b, ),
and thus convey sufficient information to characterise it.

To obtain the pole coordinates in terms of (a, b, p) we first
determine the linear algebraic invariants of a general planar
displacement (Salmon, 1885). They are found by determining
the eigenvalues of the 3 X 3 transformation matrix in Eq. (1),
which are

)\1 = 1,
)\2'3 = B:iv.

There is only one real eigenvalue and it is the same for all
displacements. The homogeneous components of the eigenvec-
tor that corresponds to the real eigenvalue yield the desired
expression for the invariant pole coordinates:

X, x, a — b tan (/2)
Y,{=|y| =3 atan(p/2) + b
Z, 2 2

(2

The validity of this fact is confirmed by substituting Eq. (2)
into Eq. (1). If k is a real non-zero quantity then (x : y : z)
and k(x : y : z) represent the same point in the real projective
plane (Coxeter, 1969). Without loss in generality, we may let
k = 2 sin (¢/2), and multiply the pole coordinates to obtain

X, X, a sin (p/2) — b cos (p/2)
Y1 =1y | =1 acos (p/2) + bsin (p/2) (3)
Z, 2 2 sin (p/2)

Many mappings can be defined that take a triple of planar
displacement parameters (a, b, ¢) in the moving coordinate
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system E, with respect to the fixed system Z, to a point de-
scribed by the homogeneous coordinates (X, : X, : X; : X,) of
a three dimensional projective image space, X’. The mapping
used here takes a displacement pole, given by the homogeneous
point coordinates (X, : ¥, : Z,), to an image point in X'. It is
defined as:

(X X:X%:X)=(X,:Y,:Z,:7Z,), (4)

where
T = cot (p/2),
0 < ¢ =2m

Thus, the image point, in terms of the displacement parameters
(a, b, p),is

(X, : X, : X;: Xy) = [(asin (¢/2) — b cos (¢/2) :
(acos (p/2) + bsin (p/2) :

2 sin (p/2) : 2 cos (p/2)]. (5)

The algebraic construction of the mapping requires the multi-
plication of Z, by cot ¢/2. Of course, cot /2 is not defined
when ¢ = 0, and vanishes when ¢ = 27. For the purpose of
constructing X, = 7Z,, we impose the limits 0 < ¢ = 27. After
this multiplication has been made, we have X, = 2 cos /2.
Now we can allow ¢ to take on any value, mod (27), because
cos ¢/2 is defined for all real values of . Hence all distinct
displacements have unique image points: the identity displace-
ment is the point (0 : 0 : 0 : 1); pure translations, given by
triples (a, b, 0), and half-turns, given by triples (a, b, 7), map
onto the points in the planes X; = 0 and X, = 0, respectively.

By virtue of the relationships expressed in Eq. (5), the trans-
formation matrix from Eq. (1) may be expressed in terms of
the homogeneous coordinates of the image space, Z’. This
means that we now have a linear transformation to express a
displacement of E with respect to X in terms of the image point:

X (X2-X3)  2XX,  2(XX + XX X
Y| = 2X:X, Xi-X3 206X - XX) y
Z 0 0 (Xi+Xx9 b4

(6)

Since each distinct displacement described by (a, b, @) has
a corresponding unique image point, the inverse mapping can
be obtained from Eq. (5): for a given point of the image space,
the displacement parameters are

tan (p/2) = X:/X.,
a=2(X;X; + LX)/ (X3 +XD),

b=2(X%X; - XiX)/(X3+X3). (7)

Equations (7) give correct results when either X; or X, is zero.
Caution is in order, however, because the mapping is injective,
not bijective: there is at most one pre-image for each image
point. Thus, not every point in the image space represents a
displacement. It is easy to see that any image point on the real
line X; = X; = 0 has no pre-image and therefore does not
correspond to a real displacement of E. From Eq. (7), this
condition renders ¢ indeterminate and places @ and b on the
line at infinity.

We will now derive the required image space constraint equa-
tion. The ungrounded R-pair in a 2R mechanism is forced to
move on a circle with a fixed centre. The image points that
correspond to all possible displacements of the ungrounded link,
with respect to a fixed reference frame, constitute a quadric
hyper-surface (Bottema and Roth, 1990). It’s expression can
be obtained in the following way: the equation of a circle with
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K

Fig. 3 [f tangential contact is maintained A7, = A»;

radius r centred on the homogeneous coordinates (X, : Y. : Z)
has the form

X-XZ)Y¥+ (¥ -Y2Z)?-rZ"=0. (8)
Expanded, this becomes
X*+Y*-2XXZ-2YY.Z
+X2Z*+Y1Z* - rZ*=0. (9)
Setting
¢ =-X,
G =-Y,
C=(Cl+C3-r)=(X2+Y2-1rY,
yields
X*+ Y+ 2C,XZ +2CYZ + GZ? = 0. (10)

Substituting the expressions for X, Y, Z from Eq. (6) into Eq.
(10) produces the following quadric:

H:0=z(X¥+X3 + (1/4)[(x* + y*) — 2Cixz
— 2Cyz + C32?1X 2 + (1/4)[(x* + ¥%) + 2C1xz
+2Cyz + G2 1X 5 + (Ciz — )20 X
+(Cz = X — (v + C2)2XaXe
+ (Ciz + x)2X + (Cox — Cy)ZX:X,.  (11)

The projection of this quadric hyper-surface in the (X;, X;,
X3) sub-space, determined by X, = 1, is a skew hyperboloid.
Its trace in the plane X; = constant is a circle. The points on
any of these circles represent translations of the disk with a
fixed orientation.

3 An Application to the FK Problem

The FK problem is conventionally expressed as a transforma-
tion of the position and orientation of the end effector from a
joint space representation to a Cartesian space representation.
In other words, given a set of » joint variables, one per degree-
of-freedom, determine the position and orientation of the end
effector with respect to a non-moving reference coordinate sys-
tem. Since the platform has three DOF, three joint input vari-
ables are required. As previously mentioned, we select the three
joint input variables to be the change in arclength, measured
along each of the three racks, due to the change in contact
points. They are given by the three numbers Ad; = rAT;,i €
{A, B, C}, where the Ad; are the changes in arclength, the
radius of the pinion is r, and the A7, are the change between
the initial and final rack angles. The Ar; also represent the
change in angle of the disk tangents because tangential contact
is maintained between each rack and the pinion. The Ad; and
AT, are coordinate reference frame independent because they
are differences. Furthermore, since the bases are orthogonal,
the change in tangent angle is the same as the change normal
angle, An,. This is illustrated in Fig. 3.
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Kp/p

Fig. 4 The VP for a given set of inputs

3.1 Virtual Platform. Solving the FK problem for our
manipulator, with Husty’s procedure (Husty, 1995), requires
platform points with fixed positions in the moving frame E
which move on circles in the non-moving frame Z. In order to
establish these points we must first define the platform (or end-
effector). The only points bound to move on circles in X are
points on the first link in each leg, which are connected to the
fixed base by an R-pair. We will use the revolute centres of the
three knee joints, K, Kz and K. Now, consider a virtual plat-
form (VP) formed by the triangle whose vertices are the three
knee joints expressed relative to the disk frame E: K4z, Kpe»
K¢z (see Fig. 4). We call these vertices virtual platform points
(VPP). For a given assembly configuration, the VPP are fixed
relative to each other, but change from pose to pose. In turn, this
means the VP geometry changes continuously during platform
motion. However, for any given displacement it can be consid-

Leg C \

Kid

Fig. 5 Reference systems in leg A after a rotation A7,
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ered a rigid body, since we are only interested in the correspon-
dence between an initial and a final position. Hence, the VPP
meet the requirements of being fixed points in E which move
on circles in X.

3.2 Involute Inputs. The next task is to develop expres-
sions for the VPP so they can be used as inputs to the kinematic
mapping. We want the VPP in terms of the joint input variables.
Consider, for now, only leg A in Fig. 5 and observe that the
knee joint K, has a fixed position in the reference frame attached
to the rack, R,. We know it moves on a circle in Z, but it also
experiences motion relative to the moving disk frame E. What
is required is a description of that motion in terms of the joint
inputs. This turns out to be straightforward: fix the disk and
notice that the relative motion of the rack with respect to E is
pure rolling with the original contact point moving on an invo-
lute of the pinion. There is a bijective correspondence, that
depends on the change in rack tangent angle, between positions
of a given rack point on its involute and knee joint positions.
This gives a complete description of the motion of the knee
joints in terms of the input variables. Due to their positional
dependence on an involute, we call these one parameter sets of
knee joint positions involute inputs.

The motion of the knee joints of the remaining two legs must
be the same type as that of leg A relative to E, but the starting
points of the involutes are different. Thus, for every set of three
joint input parameters one obtains a set of three VPP expressed
in E. With the VPP transformed as involute inputs the kinematic
mapping can be used.

In what follows, we will show how the involute inputs can
be derived. Figure 5 shows the reference coordinate systems
used to transform the position of the knee joint K, from the
moving rack reference frame, R,, to the relatively fixed pinion
reference frame, E. The origin of R, moves along its involute
and R} gives the new position of R, after a change in tangent
angle, A7,. The intermediate system accounting for the location
of the starting point and orientation of the involute, E4, is fixed
relative to E£. Examining Fig. 5, it is easy to see that for each

‘leg the required transformation to take the coordinates of the

knee joint K; from frame R/ to frame E are the concatenation
of transformations expressing points in frame R/ relative to
frame E; and those expressing points in frame E| relative to
frame E:

ch;, —s6, 0
TR,’/E = TE,-’/ETR,’/E{= sb; c; 0
0 0 1
—sAT; —cAT; r(cAT, + ATSAT))
X cAT;, —sAT; r(sAT; — AT;cAT) ],
0 0 1

Fig. 6 Reference frames and parameters for the i, leg
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Table 1 Fixed base points in %, joint inputs, and VPP

i Xo,/z Yoz Ar; Xg/E Yi/E
A0 0 —17.5° —11.85401931  —7.548168766
B 102 0 —15° 7.906899696 —11.60075686
C 52+4 92+14 75 -1308247378  13.94857141

where ¢ = cos, and s = sin.

The geometrical significance of Tk, is seen when each
column is examined. The first column is the direction of the
disk tangent in E] (the direction of the x-axis of frame R!).
The second column is the direction in E}, towards the centre
of the pinion, of the normal at the new contact point (the direc-
tion of the y-axis of frame R/). The third column is the position
of the origin of frame R/ on the involute, also expressed in
E{. The remaining transformation, Tg/;, depends on the angle
between the x-axis of frame E and the rack normal in the home-
position.

The knee joints, shown in Fig. 1, all have the same coordi-
nates in their respective R; frames:

=1,

i

ki/R,- = ki/R,-' =

Once the changes in rack tangent angle (joint inputs), AT, , are
specified the coordinates of the knee joints (involute inputs) in
frame E, K, are easily determined by left multiplying the
K, r; with the appropriate Tz,
K = TR,-’/Eki/R{- (12)
3.3 FK Solution Procedure. To obtain the solutions for
a given set of inputs, begin by removing the VP connections
with legs B and C. That is, consider only the open kinematic
chain consisting of the base, F,, the first link, /,,, and the VP
described by positions of the three knee joints in frame F,
K. i € {A, B, C}. Observe that the higher pairs are locked
in the corresponding VP configuration by virtue of the specified
input parameters. There can be no relative motion between the
disk and the rack because that would change the relative posi-

tions of the VPP. Knee joint K, is constrained to move on a
circle with centre F, and radius /,, (see Fig. 1). Furthermore,

the VP can rotate about K,. The kinematic image of this set of
two parameter displacements is the two parameter constraint
hyperboloid, H,, given by Eq. (11). All poses of this virtual
rigid body correspond to the image points on H,. :

When the other two VP connection points (K and K¢) are
analysed in turn, two additional hyperboloidal constraint sur-
faces are generated, Hy and H¢. The points on each hyperboloid
correspond to the complete range of possible displacements
around the points still connected. The points of intersection of
H,, Hz and H represent the positions of the VP where its
three knee joints are on their respective circles. Therefore, these
points of intersection constitute the solution(s) to the FK prob-
lem. Three distinct quadrics can have, at most, eight real inter-
sections. However, it is shown in Bottema and Roth (1990)
that all such constraint hyperboloids contain the points J;(1 :
i:0:0)and J>(1: =i:0:0). These two points are, therefore,
always in the solution set and must be discarded because they
are on the line X; = X, = 0 and hence correspond to no real
displacement. Thus, there are a maximum of six real solutions
to the FK problem for manipulators of this type, which confirms
the well known result established in Hunt (1983).

4 Example

Table 1 gives the coordinates of the base points Fu, Fj, Fc
in the fixed frame Z with origin at F,, the change in rack
tangent angles, and the corresponding knee joint positions in E
(the VPP), given by Eq. (12). The link lengths, in generic
units, are: v = 4, [;, = 4, I, = 10, the reference angles between
E! and E in the home-position are §;, = (225 deg, 315 deg, 90
deg), and the IAC are (7; /g )inia = (225 deg, 315 deg, 90 deg),
(&8 Dinisia = (0, 0, 0), (191i/0)initial = (135 deg, 45 deg, 180 deg),
and (P21 )i = (270 deg, 90 deg, 90 deg), where i € {4, B,
C }. The link reference frames (0, 1, 2, 3, etc.) were assigned
using the Denavit-Hartenberg convention ( Angeles, 1998). Fig-
ure 6 shows those of the ™ leg.

Setting z = 1 in Eq. (11), which can always be done as no
practical VP will have a vertex on the line at infinity (x : y :
0), and then substituting the VPP from Table 1 into Eq. (11)
determines the three constraint hyperboloids. X, is used as the
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Fig. 7 The constraint hyperboloids in the X, = 1 projection of the image space
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homogenising coordinate in the image space, hence X, = 0
represents the plane at infinity, but also corresponds to VP
rotations of ¢ = 180 deg. Therefore, X, = O is a practical
concern, unlike the case of z = 0. However, this condition
gives only one pair of solutions for all sets of three constraint
hyperboloids, namely J;, and J,. This being the case, we can
safely normalise the image space homogeneous coordinates,
setting X, = 1, by multiplying (X, : X, : X; : X,) through by
(1/2) sec ¢/2. Solving the resulting set of three equations, H,
=0,Hz =0, Hc = 0, for X,, X,, X5 gives two real and two
pairs of complex conjugate solutions. The two real solutions
are:

S Xy = —4.724652386, X, = 4.561069802,
X; = —0.05146192114,
S2: Xy = ~5.754360118, X, = 4.906081896,

X; = 0.03244152899.

The solution set always contains an even number of real
solutions because those that are complex arise in conjugate
pairs. Figure 7 is a view, projected into the sub-space induced
by X, = 1, of the resulting hyperboloids showing one of the
intersections. The position and orientation of the disk corre-
sponding to each real solution in terms of the displacement
parameters (a, b, ¢) can be found by substituting the values
for X, X,, X3, along with X, = 1 into the set of Eqs. (7). The
resulting pair of real displacement parameters are given in Ta-
ble 2.

The rack tangent angle inputs, Ar,, in Table 1, expressed
relative to the disk frame E, reveal the geometry of the VP.
The origin of E is on the disk centre. Once the orientation and
position of the VP, and hence E, are obtained as a triple of
displacement parameters (a, b, ¢), it is a simple matter of
plane trigonometry to determine the relative link angles for the
assembly configuration that correspond to the solution. Figure
8 illustrates the two real assembly configurations, where the
vertices of the VP are on their respective circles.

Table 2 Displacement parameters

Solution a b v (deg.)
1 9.583039940 8.956143130 —5.891904208
2 9.428879858 11.81460751 3.716222033
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(i)

Fig. 8 The two real solutions: (i) solution 1; (if} solution 2

5 Conclusions

A practical solution procedure for the FK problem of plat-
forms of the type in Fig. 1 has been presented. In it, kinematic
mapping has proven to be a useful tool. The involute inputs to
the mapping are the knee joint positions expressed as one pa-
rameter displacements of initial rack contact points along invo-
lutes of the disk. Once the VP is established, conventional solu-
tion procedures can be used, however they are generally poorly
suited to the task. The reason for this is due to the presence of
higher kinematic pairs and the variable platform geometry they
induce. The kinematic mapping procedure is preferable because
it is independent of the platform geometry, and the rolling con-
tacts are rendered innocuous because they can be embedded in
the inputs. In the example, only two real solutions were found.
However, there can be as many as six, always arising in pairs.
This solution is fundamental to any further investigation of this
type of platform, which is worth while because of the applica-
tions it can add to repertoire of planar SGP.
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