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Abstract

The current state-of-the-art simulation motion platforms are based on parallel ma-

nipulators known as Gough-Stewart platforms or hexapods. These have limited motion

range in both translational and angular senses, and are subject to singularities. An

alternative novel kinematic architecture, the Atlas platform, has been developed at

Carleton University. The Atlas platform achieves six degree of freedom motion by

mounting the Atlas spherical platform on top of an XYZ translation platform. The

Atlas rotational stage comprises a sphere manipulated by three omnidirectional wheels.

Each wheel imparts a prescribed velocity to the sphere through friction enabling it to

rotate about any desired axis with unlimited angular displacement. This thesis in-

vestigates four main issues including: unified and generalized kinematics of a sphere

actuated by n omnidirectional wheels; the dynamics of a sphere actuated by omnidi-

rectional wheels; vibration induced by omnidirectional wheels on an actuated sphere;

and a comparison between classes of omnidirectional wheels in the context of the Atlas

platform.

The kinematic model for the system was derived using a zero-slip approach yield-

ing a basic Jacobian. The model was then generalized to include any number and

type of omnidirectional wheels treating the various wheel designs as geometric classes.

Results show non-negligible corrections in both magnitude and direction of the re-

sulting angular motion of the sphere. The equations of motion for the system were

obtained taking into account several non-rigid effects. The non-smooth shape of the

wheels was taken as a positional input for vibration analysis. Comparison between

omnidirectional wheel types was made from the standpoint of vibration and transmis-

sion efficiency, with mixed results, using a numerical integration program developed in

Matlab. The program, developed with numerical simulation in mind, was then used to

investigate the effects of various parameters on the behaviour of the platform. Thus,

it is parameterized to enable further research on various design parameters.
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Chapter 1

Introduction

1.1 Overview

Conventional training simulator motion platforms commonly use a Gough-Stewart platform

[1, 2], otherwise known as a hexapod, to provide motion cues. A hexapod is a mechanical

system with six extensible legs in parallel connecting a moving platform to a relatively fixed

base. Positions and orientations of the moving platform are manipulated with six degrees

of freedom (6 DOF) by changing the lengths of the six prismatic legs. Figure 1.1 shows a

typical example. Various configurations based on this architecture exist, and will be reviewed

later in the literature review. These designs all attempt to expand the workspace of the

manipulator, and to reduce singularities within the workspace. The reason for the limits and

some singularities of the workspace of the parallel manipulators lies in the hardware limits of

this type of motion platform; however, there are other areas that require improvement. These

areas have to do mostly with the complicated kinematics of such platforms. The kinematics

expressions are mathematically complex, and in most cases, require numerical solutions. In

addition, the translational and rotational degrees-of-freedom are heavily coupled, a fact that

further increases the complexity of the equations, and consequently increases the resources
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Figure 1.1: CAE’s version of a Gough-Stewart motion platform for a flight simulator [3].

required to evaluate them.

1.2 The Atlas Platform

The idea suggested and implemented in the Atlas platform aims to resolve all the aforemen-

tioned issues; namely, remove singularities from the interior of the reachable workspace, re-

move the rotational limits, and decouple the rotational and translational degrees-of-freedom.

The new platform is broken down into two different mechanisms sitting one on top of the

other; a translational platform and a rotational platform, as shown in Figure 1.2. The first

is a simple, well-known, XYZ platform. The latter is a novel design, where a sphere rests on

three wheels, and motion is provided with friction at the sphere-wheel interface. Different

linear combinations of angular speeds of the wheels yield different angular velocity vectors

for the sphere. This suggested new platform has the potential, under certain conditions

2



that need to be precisely defined, to open the workspace to become rotationally unlimited

while eliminating interior singularities. Other benefits that can be derived from this design

are the decoupling of the rotational degrees-of-freedom from the translational ones, and the

compact analytical expressions resulting for the kinematics of the system. Friction wheels,

while offering unlimited range of motion, resist motion in the direction normal to their rota-

tion axis. Instead, omnidirectional wheels with free spinning passive castor rollers on their

periphery, that minimize the resisting friction in the directions normal to their rotation, are

used. Various omnidirectional wheel designs exist, each with its respective pros and cons

discussed in more detail in Section 1.3.3.

Figure 1.2: The Atlas demonstrator.

The original Atlas rotational stage shown in Figure 1.3 comprises a sphere mounted on

3



three dual-race omnidirectional wheels having contact points at the vertices of an equilateral

triangle at an elevation angle of 40◦. A generalization of the Atlas sphere idea is to have the

omnidirectional wheels located at any position relative to the sphere. Omnidirectional wheels

are wheels that have rollers on their periphery, which are free to rotate about an axis which

is not parallel to the omnidirectional wheel primary rotation axis but is on a plane tangent to

the wheel’s perimeter. An example of an omnidirectional wheel is shown in Figure 1.4. These

wheels may be actuated about their axis; thus providing tractive force at their contact point

in the plane of the wheel. In its most intuitive form, combining three orthogonally-arranged

omnidirectional wheels, enables actuation of the Atlas sphere about three orthogonal axes,

each omnidirectional wheel acting like a friction wheel only in its actuation direction but

without resisting motion in the transverse direction, unlike friction wheels. Proof of concept

platforms have been constructed by the Carleton University Simulator Project (CUSP) team,

and it has been shown qualitatively that the actuation method is feasible. However, to be

able to put this conceptual design to practical use, a comprehensive understanding of the

kinematics and dynamics of the platform must be achieved as well as overcoming engineering

issues related to vibration and performance, such that an optimal platform, with respect to

specific application design parameters, can be achieved.

1.3 Literature Review

To obtain a better background to the work presented in the thesis, a literature review of

existing motion platforms was performed. In addition, since the suggested solution involves

the interaction between a sphere and omnidirectional wheels, a survey of existing published

work on the motion of a sphere and on omnidirectional wheel designs and applications fol-

lowed. Finally, a survey of kinematic and dynamic formulations and methods was conducted

as preliminary work to the development of the kinematics and dynamics of the suggested

4



Figure 1.3: Atlas orientation platform.

Figure 1.4: Example of an omnidirectional wheel.
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platform. Thus, the literature review covers the following topics:

• motion platforms;

• motion of a sphere;

• omnidirectional wheels;

• kinematics; and

• dynamics.

1.3.1 On Holonomic Systems

The term ‘holonomic’ is used to describe the kinematic level of controllability of a mechanical

system. Mathematically, a holonomic system is defined as one in which all constraints

depend only on position coordinates and not on velocities. Another approach for looking

at a holonomic system is one where the number of controllable degrees-of-freedom is equal

to the total number of degrees-of-freedom. It is noted hereby that in this thesis the term

‘holonomic’ relates to the latter definition. That is, a holonomic system is one where the

number of controllable degrees-of-freedom is equal to the total number of degrees-of-freedom.

1.3.2 Motion Platforms

Existing motion platform designs may be clearly divided into three categories: parallel ma-

nipulators, serial manipulators, and newer ideas that essentially recognize the inherent flaws

of the more traditional designs and try new approaches to improve the performance of motion

platforms.

6



Parallel Manipulators

Parallel manipulators are closed-loop mechanisms with the ability to accurately manipulate

large loads. The current state-of-the-art in motion platforms, mentioned in Section 1.1, in-

cludes parallel manipulators known as Gough-Stewart platforms [1, 2], sometimes referred

to as hexapods. Thorough analysis and synthesis of such systems is presented by Merlet

[6], and a vast survey of the kinematics and design of parallel manipulators in flight simu-

lator applications is presented by Advani [7]. A popular research direction in this field of

parallel manipulators is dealing with various designs of the legs constraining the platforms.

Research has considered variations that change the joint types and geometry of the legs, or

the actuated joints, or both; see for example Hunt [8] and McCallion [9]. All these designs,

in addition to having limited range of motion, also have their translational and rotational

degrees-of-freedom coupled, i.e. their actuators influence both translation and rotation, or,

alternatively stated, a single actuator impacts more than a single degree-of-freedom. From

the standpoint of control, it is preferable to have a motion platform where three actuators

control translation, and three other actuators control rotation independently. Such designs

exist, still utilizing the hexapod configuration. Innocenti’s approach [10], shown in Figure

1.5, has three links that share a common ball and socket joint, where controlling the lengths

of the links determines the position of the centre of the joint without rotating the platform,

and controlling the lengths of the three remaining legs determines the orientation of the

platform.

A similar approach with slightly different implementation is presented by Bernier [11].

Another approach, suggested by Uchiyama [12], changes the configuration of the legs them-

selves, where some of the legs have only revolute joints such that some of the legs are con-

trolled by changing their length and others by actuating a revolute joint to achieve decoupling

of the translational and rotational degrees-of-freedom. Some variations of the concept exist,

7



Figure 1.5: Decoupled translation and orientation in a hexapod configuration [10].

as presented by Zlatanov [13], Mianowski [14], and others. Although these platforms suc-

ceed in decoupling the translational degrees-of-freedom from the rotational ones, the limited

range of motion issue remains.

Serial Manipulators

Since serial manipulators have a single point of contact with the payload, they are not as

limiting as parallel manipulators from the standpoint of workspace and singularities. How-

ever, their major flaw, and the main reason why parallel manipulators are still dominating

the motion platform market, is their payload to manipulator weight ratio. Because of the

cantilever loading of the individual links, serial manipulators have a small payload to manip-

ulator weight ratio compared to parallel manipulators of similar weight. The typical serial

manipulator with 6 degrees-of-freedom has a payload to manipulator weight ratio of less than

1/10 to manipulate a mass [6]. This means that it takes a 10 ton manipulator to manipulate

a 1 ton payload. Research in this field tries to improve this ratio.
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Newer Ideas

Some ideas that are different from the traditional parallel or serial manipulators have recently

appeared. One of these motion platform types may be classified as the hybrid type. That

usually means placing a serial 3 DOF manipulator on top of a parallel 3 DOF manipulator.

Such examples may be seen in [15, 16, 17] to name a few. These usually possess compromised

performance between the serial manipulator and the parallel manipulator.

An interesting hybrid mobile robot is suggested by Moosavian [18] to allow handling heavy

objects on a moving platform, having a serial arm mounted on a planar parallel platform.

Some other attempts have been made to resolve some of the aforementioned issues. Yan

et al. [19] suggest a platform that decouples the translational degrees-of-freedom from the

rotational ones. This architecture relies on three actuators, each controlling two degrees-of-

freedom - one translational and one rotational, where each leg has two prismatic and two

rotational joints, all of which are passive as presented in Figure 1.6. However, singularities

within the workspace, limited payload capacity, as well as a limited range of angular motion

result.

Figure 1.6: Decoupled translation and orientation through compound legs [19].

Unbounded rotational motion is achieved by the Eclipse II architecture [20], which is
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essentially an active gimbal system. However, it is not singularity free and the kinematics

are very complicated and require numerical solutions. A similar commercial platform is the

Desdemona [21], which has a fully gimballed cabin for essentially unlimited angular motion

on top of a 3 DOF system comprising two linear degrees-of-freedom and another rotational

degree-of-freedom. Thus the rotational and translational motions are still coupled.

1.3.3 Motion of a Sphere

Since the Atlas platform is essentially a sphere actuated by omnidirectional wheels, it is

a worthwhile activity to research the domain of actuated spheres. Generally, there are two

applications for actuated spheres. These are joints and wheels for robotic applications. In the

vast majority of cases, the sphere is utilized such that it is actuated only about a single axis

while allowing passive degrees-of-freedom in the other directions. An interesting approach is

used by Ferriere and Raucent [22], where a sphere is actuated for a single degree-of-freedom

by means of a single omnidirectional wheel. Three such wheels may be utilized to drive a

wheeled mobile robot in a holonomic fashion. Another idea involving actuation of a mobile

robot using spheres is presented in [23], where a sphere is actuated using passive rollers

mounted on an actuated ring. Again, the sphere is actuated only in one direction, where the

benefit of using the sphere is for the free rolling in the non-actuated directions.

A similar application is described by West et al. [24] who show how to use a ball wheel

for single degree-of-freedom actuation with the remaining degrees-of-freedom passive such

that there is no slip. Three such ball wheels may be utilized similarly to omnidirectional

wheels with rollers on their periphery to drive a wheeled mobile robot on a plane.

Two degrees-of-freedom are accomplished by Lauwers et al. [25] utilizing friction wheels

to drive a single sphere for a very interesting single-sphere mobile robot, balanced by a

pendulum. However, there are major losses in the system due to the use of simple friction
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wheels rather than omnidirectional wheels. Attempting to obtain spherical motion is not only

the domain of pure mechanical engineering mechanisms, but rather electromagnetic-based

motion has also been considered. Such ideas were developed by Chirikjian et al. [26, 27] and

Lee et al. [28], to name a few.

1.3.4 Omnidirectional Wheels

The majority of the research and development in the area of omnidirectional wheel actua-

tion focuses on mobile robots. That is, the actuation of the robotic platform on a plane,

taking advantage of the omnidirectional wheels to eliminate singularities in the workspace

of the mobile robot and to achieve the ability to change direction with zero turning radius.

Omnidirectional wheels are wheels that may be actuated in one direction, while allowing two

passive degrees-of-freedom. These are the free spinning of the castor roller about its axis,

and unconstrained rotation about an axis perpendicular to the point of contact. There are

quite a few designs for omnidirectional wheels, and a few major applications for them that

are explored in what follows.

Omnidirectional Wheel Design

The basic design of omnidirectional wheels is such that there are rollers around the periphery

of the wheel. The axis of rotation of the rollers may be perpendicular to the axis of rotation

of the wheel, as in a standard omnidirectional wheel, or at another angle. When the angle

is ±45◦, the wheel is called a Mecanum wheel (or Swedish wheel). Regardless of the angle,

all of these designs possess a basic inherent flaw: there must be gaps between the rollers,

such that there may be either loss of contact, contact with a non-rolling structural surface,

and vibration on the transition between rollers. Some attempts to resolve these problems

are focused on adding races of rollers that interlace such that there is always contact with a
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roller, though the contact point may change. Others attempt to minimize and smooth the

gap as much as possible. An alternative approach is to use spherical omnidirectional wheels

[22, 24].

A few attempts to solve the vibration issues caused by the inherent discontinuity of the

omnidirectional wheel rollers were attempted starting with Mecanum-type wheels shown in

Figure 1.7 [29]. An interesting feature of Mecanum wheels with an offset angle of ±45◦ is

that they can generate motion normal to the rotation direction of the wheels, see for example

Viboonchaicheep [30], Han [31], and Diegel et al. [32] for an alternate version of the Mecanum

wheels idea.

Another attempt at solving the vibration issue is a double wheel drive, which maintains

continuous contact, but changes the point of contact [22]. Another solution that utilizes

the idea of the double wheel drive while eliminating the problem of a changing point of

contact by decoupling the two omnidirectional wheels by means of two offset wheels that

are not mounted on the same axis, is proposed. Instead, they are mounted on parallel axes,

maintaining the offset between the rollers and being driven by a single actuator (Figure 1.8).

That way, continuous contact is maintained, while the point of contact, although not the

same, is on the same great circle, leading to decreased vibrations.

Finally, a solution that appears to be most promising, utilizes rollers that are of different

diameters, which allows construction of an omnidirectional wheel that maintains continuous

contact and does not change the point of contact, as suggested by Song et al. [33] (Figure

1.9).

Omnidirectional Wheel Applications

Most of the research involving omnidirectional wheels concentrates on wheeled mobile robots,

where an extensive amount of literature already exists for the kinematics of mobile robots

with standard wheels (see Alexander et al. [34], Low et al. [35] to name a few), and offset
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Figure 1.7: Mecanum-type wheel [29].

Figure 1.8: Two offset wheels mounted on different axes [22].

Figure 1.9: Continuous contact through variable diameter rollers [33].
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castor wheels (see Yu et al. [36]). The work of West et al. [24] shows how to use a ball wheel

for single DOF actuation with the remaining degrees-of-freedom passive such that there is

no slip. Three such ball wheels may be utilized similarly to omnidirectional wheels with

rollers on their periphery to drive a wheeled mobile robot on a plane. Similarly, Williams

et al. [37], and Saha et al. [38] use three omnidirectional wheels to drive a mobile robot or

vehicle on a plane.

Several configurations have been considered for omnidirectional mobile robots. A triangu-

lar configuration, where three omnidirectional wheels are located on the points of a triangle

is considered in two identical papers [39, 40], as well as [37]. More exotic configurations

include one where a chain-like construction is suggested for a crawler type mobile robot, and

a six-wheel combination [42]. These are all examples of various omnidirectional wheel con-

figurations for mobile robots moving on a flat surface. Other applications of omnidirectional

wheels exist. In one case omnidirectional wheels are used for an odometer, where the free

rolling is allowing another passive degree-of-freedom rather than actuating anything [43]. In

[41], which is another variation on the application of omnidirectional wheels for actuation of

mobile robots on a flat surface, four omnidirectional wheels are aligned on the four sides of

a square, instead of the more common triangular setting where three omnidirectional wheels

are set up on the three sides of an equilateral triangle.

In the case of the Atlas platform, the final arrangement of the driving omnidirectional

wheels has not yet been optimized. In addition, despite the fact that different arrangements

have been considered for the mobile robot case, there exists no publicly available research on

optimization of the omnidirectional wheel arrangement from the standpoint of the number

and relative positions of the wheels under any criterion.

14



Mecanum Wheels

As mentioned earlier, Mecanum wheels, where the rollers have a ±45◦ angle, are designed to

generate smoother continuous contact. This however is a side effect of the original concept

that allows a four-wheeled platform to have pure translational motion in the transverse

direction [44]. Utilizing four Mecanum wheels, a ground vehicle becomes holonomic, and is

capable of translating in any direction, as well as rotating as shown in Figure 1.10.

Figure 1.10: Mobile robot with Mecanum wheels motion examples [45].

The geometry and kinematics of a Mecanum wheel are investigated by Gfrerrer [46] with

the emphasis on the effects of manufacturing, and wheel and rollers design. The single use

of Mecanum wheels in the literature is in the field of mobile robotics, as presented earlier.

The basic kinematics of such a mobile robot with four omnidirectional wheels is presented

in [30]. Tlale et al. [47] add the treatment of dynamics and Shimada et al. [48] treat control

issues for a similar four-wheeled robot.

Some published applications of such four-wheeled mobile robots include a robot for mobile

haptic interface [31], and a floor cleaning robot [49, 50] among others. Indiveri [51] generalizes
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the kinematics of mobile robots with Mecanum wheels to robots with n Mecanum wheels,

with special attention given to the most basic configuration where n = 3. The latter is the

single published paper on the kinematics of mobile robots with omnidirectional or Mecanum

wheels where a generalization of the problem is treated.

1.3.5 Kinematics

Kinematics of the system means the relation between the motion inputs and motion outputs

of the system; specifically, the relationship between the velocities of the actuators and ve-

locities (translational and rotational) of the motion platform. The majority of the problems

mentioned for existing motion platforms, are kinematic in nature. Workspace singularities,

limited ranges of motion, coupling of the translational and rotational degrees-of-freedom,

and computational complexity are all due to the kinematic architecture of these systems,

and subsequently their kinematics.

While a generalized approach to finding the instantaneous screw based on velocities of

three points on a rigid body exists [52, 53], it requires perfect knowledge of these velocities,

i.e. three components of the velocity for each given point. Here, only two components of the

velocity per contact point are known, namely the actuation direction and the zero-velocity

in the radial direction of the sphere. Hence, the approach in [52, 53] may not be utilized as

presented.

Since the Altas platform is actuated using a friction mechanism, avoiding slip at the

contact points is essential to the design. While slip commonly is the result of kinetic con-

siderations, attention must be paid to the existence of slip for kinematic reasons. That is,

some kinematic configurations would result in slip at the contact points no matter what the

forces and friction coefficients were. Prior to considering slip due to kinetic considerations,

lack of kinematic slip is a necessary condition.

16



Three related fields; namely motion platforms, wheeled mobile robots, and wheeled mo-

bile robots with omnidirectional wheels will be surveyed here. While the reason for surveying

motion platform kinematics is obvious, the other two fields have to consider kinematic slip

in the kinematic analysis and therefore were researched and presented here.

One basic goal of this thesis is generalization of the Atlas kinematics for application to

optimization. Kinematic design optimization is the concern of many research publications,

such as Stock et al. [54], Fattah et al. [55] for cable suspended platforms, and Merlet [56], to

name a few.

Motion Platforms

While the kinematics of serial platforms have accepted methods and closed form solutions

generated using the Denavit-Hartenberg formulation [57], kinematics of parallel motion plat-

forms have more complex formulations [58] that usually require numerical solutions to be

resolved due to the existence of multiple closed-loop kinematic chains unless the workspace

is planar [59]. Most other references to kinematic architecture of motion platforms deal with

parallel manipulators [6], specifically the Gough-Stewart platform, which has the inherent

limitation of range of angular motion. Comprehensive survey of kinematic architectures

of flight simulation motion platforms with emphasis on Gough-Stewart platforms was per-

formed by Advani [7] in his Ph.D. thesis, which underscores the fact that all the considered

platforms were essentially parallel manipulators. Significant research on determining the

workspace of parallel platforms also exists (see for example Gosselin [60]).

Wheeled Mobile Robots

Most wheeled mobile robots are nonholonomic systems with three or more wheels. A classi-

fication survey of such systems was performed by Campion et al. [61], which presents various

configurations of wheeled mobile robots, including some omnidirectional ones, utilizing either
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offset castor wheels or what they refer to as Swedish wheels, which are essentially referred

to here as omnidirectional wheels.

Omnidirectional mobile robots utilizing conventional wheels also exist, sometimes referred

to as pseudo-holonomic omnidirectional mobile robots, where essentially all wheels have

control of their orientation without angular limits [62]. Another omnidirectional robot using

conventional wheels with redundant actuation is presented and analyzed by Yi and Kim [63].

Wheeled Mobile Robots with Omnidirectional Wheels

More interesting are the kinematics of wheeled mobile robots with omnidirectional wheels,

since these are holonomic vehicles and are closer in terms of approach and thus treatment

to the problem of actuating a sphere using omnidirectional wheels than any of the previous

applications. There is no generalized method for these applications, and each case is treated

separately.

A triangular configuration, where three omnidirectional wheels are located on the points

of a triangle is considered in [39] and [40] as mentioned earlier. Their approach is comparing

the linear velocity vector of the platform and its rotation speed with the three velocity vectors

induced by the omnidirectional wheels. A similar approach is taken by Angeles [52] for a

similar configuration.

This basic three omnidirectional wheels in a triangular arrangement configuration is

common also where research is geared more toward control and path planning as the basic

holonomic mobile robot as opposed to the more standard nonholonomic configurations uti-

lizing standard wheels, see for example Kanjanawanaishkul et al. [64]. This approach works

for the specific case of a robot rolling on a plane having three omnidirectional wheels, in a

specific configuration, but is not general. A square configuration is suggested in [41].

More exotic configurations include one where a chain-like construction is suggested for

a crawler type mobile robot [42], and a six-wheel combination. Song et al. [33, 65] look
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at a mobile robot with steerable omnidirectional wheels, where the kinematics are treated

similarly to the three-wheeled robot; only here, each omnidirectional wheel has four degrees-

of-freedom, instead of three.

1.3.6 Dynamics and Vibration

Much of the material for this topic can be found in advanced-level dynamics textbooks, such

as Ginsberg [66], Baruh [67], and Greenwood [68]. These books present advanced methods

for the development of the equations of motion for a system. Common methods such as

Newton-Euler, Hamilton, Lagrange, and d’Alembert are well documented and covered in such

textbooks, where more obscure and less known methods, such as Gibbs-Appell Equations,

Jourdain’s principle, and Kane’s Equations are less documented, though they have been in

use for at least several decades.

The specific topic of the motion of a disc on a surface and of a sphere on a surface is

covered in some textbooks such as Baruh [67] that deals with the problem of a disc rolling on

a surface using Lagrange’s equations, and Neimark [69] that deals specifically with a sphere

rolling on an absolutely rough surface (no friction limit), using the Newton-Euler Method.

This latter textbook, also suggests that the Gibbs-Appell method may be very suitable for

the development of the equations of motion for nonholonomic systems as also suggested in

[70]. However, the particular motions in the case of a cylinder actuated by a wheel and the

case of a sphere actuated by three wheels are holonomic, providing that kinematic slip is

avoided.

In the sphere case, the complete angular motion of the sphere could be described using

three generalized coordinates. The solution proposed in this thesis utilizes three independent

actuating omnidirectional wheels. Therefore, the number of degrees-of-freedom is equal to

the number of generalized coordinates. Hence, the problem is holonomic, even though it may
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not seem so at first glance. It is concluded that a more specific search for a similar problem

needs to be conducted.

The specific platform in this thesis became a possibility only recently when omnidirec-

tional wheels were introduced. Prior to that it was not possible to create such a kinematic

architecture. Hence, there is not much literature on the dynamics of such a configuration.

The slip issue has more coverage in the literature. Papers such as [71] discuss the topic of

slip in mobile robots, where the concern is slip between wheels and a flat surface. The same

idea is discussed and developed by Williams et al. [37], where two models for evaluating

the friction force between the omnidirectional wheels and the ground are presented. The

development of the dynamics in this case uses the Newton-Euler method for evaluating the

forces and accelerations.

Some of these ideas for actuation using omnidirectional wheels have been developed either

at the kinematic level or at the dynamic level. It is noted though, that the treatment is always

for a holonomic mobile robot with 3 degrees-of-freedom moving on a plane. This differs from

the proposed platform in three ways. First, the suggested problem has 6 degrees-of-freedom.

Second, the motion handled by the omnidirectional wheels is purely rotational. Finally, the

moving platform is not the platform attached to the wheels, but, using the mobile robot

analogy, a reference plane which is the sphere.

In addition to the dynamics and the development of the equations of motion, vibration

is a wide topic, which is covered by many textbooks such as Rao [72] and Shabana [73],

which treat linear systems having one through several degrees-of-freedom. More advanced

textbooks such as Shabana [74] deal with continuous non-rigid systems. Other texts such as

Nayfeh [75] treat the issue of nonlinear systems.

In the case of the Atlas sphere, attention needs to be paid to what happens at the

contact points between the sphere and the omnidirectional wheels. Although the bodies

involved may be assumed rigid, it is essential to maintain high normal forces at the contact
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points to avoid kinetic slip. These high forces lead to deflections at the contact points that

affect the kinematics and dynamics of the system. Most texts and papers dealing with the

contact point interactions treat the issue mostly from the standpoint of stresses and strains

which are structural concerns. However, some of the analyses may be utilized for the current

application. A major source in the field is the textbook by Johnson [76] utilizing the Hertzian

contact pressure model [77].

1.4 Project Definition

The Atlas platform [4, 5] described above is a novel concept for an orientation motion plat-

form. The proposed project is to establish a complete mathematical framework for the

spherical Atlas actuation concept from the standpoint of kinematics, dynamics, and vibra-

tion. The formulation allows investigation of various possible designs where the rotational

platform is based on a sphere actuated by omnidirectional wheels.

Thorough examination of the kinematics and dynamics of the Atlas platform requires that

it be posed in a general way. A generalization of the concept at hand would be to examine

the concept of actuating a sphere using omnidirectional wheels. This way, the number of

omnidirectional wheels, their types, their relative sizes, their position and orientation, and

their shape, become kinematic design parameters. In addition, dynamic design parameters

such as stiffness of the sphere and omnidirectional wheel mounts, friction coefficients, position

of the centre of mass, and others may be explored to achieve complete understanding of the

novel kinematic architecture suggested.

This thesis presents a complete kinematic analysis of such a system, addressing the design

issues mentioned above, as well as the very important slip issue. In addition, the dynamics of

the system are addressed, and non-ideal conditions, such as contact flexibility, and non-ideal

shape of the wheels, are investigated. A numerical simulation program has been developed
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to integrate the dynamic equations of motion of the non-ideal system that allows for the

investigation of the effects of various design parameters, such as location and orientation of

the omnidirectional wheels, stiffness of the sphere, position of the centre of mass of the sphere

relative to its geometric centre, friction coefficients, and other parameters on performance

of the Atlas platform. The result is a generalized unified treatment of the kinematics and

dynamics of a sphere actuated by omnidirectional wheels.

1.5 Significance and Contributions of this Thesis

1.5.1 Significance

The work in this thesis is built on novel concepts in terms of kinematic architecture and

actuation methods of simulation motion platforms, and the results mean the removal of

angular displacement limitations and a class of singularities from the current state of the

art motion platforms. The results may be used by the simulation community, but other

applications that may require such unlimited angular motion, such as gyroscope calibration,

optical sensor mounts, and other pointing applications may find them beneficial.

The actuation method, though already used in the planar mobile robot industry and in

some limited-space motor vehicle applications (such as a forklift in a crowded warehouse [78],

wheelchairs [79], etc.), can be applied to a wider range of applications that require spherical

motion.

1.5.2 Contributions

The mathematical modelling and analysis of this kinematic architecture of motion platform

are novel. The kinematics of such a system suggests further advantages in terms of the

kinematic expressions that can be solved analytically in closed form. Major overall contri-
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butions to knowledge include the development and application of kinematic and dynamic

formulations for the motion of a sphere actuated by omnidirectional or Mecanum wheels as

well as analyses suggesting best practice for their use in the design and operation of the

Atlas motion platform.

Some of the results presented in this thesis have been presented at international confer-

ences and in archival journals [81, 82, 83, 84, 85]. Specific novel contributions of the thesis

include the following.

1. First general kinematics model for a sphere actuated with three active degrees-of-

freedom.

2. Method for determining the angular velocity of a sphere based on partial information

of velocities of points on the sphere.

3. First treatment of kinematics of dual-race and triple-race omnidirectional wheels. De-

spite the relatively wide use of dual-race omnidirectional wheels in the mobile robots

field, they were always assumed to be single-race. This work analyzes the kinemat-

ics of the dual-race omnidirectional wheels, yielding correction matrices and estimates

of the error of the single-race assumption that turns out to be more significant than

previously assumed.

4. Complete kinematics model for a sphere actuated by n omnidirectional wheels of any

type, including slip estimation and equivalent points.

5. Complete dynamics and vibration model for a 6 DOF motion platform with a sphere

actuated by omnidirectional wheels as its rotational subsystem.

6. Application of the suggested models for the purpose of analyzing and comparing two

similar systems with different omnidirectional wheel types from the vibration stand-

point.
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Chapter 2

Kinematics

The kinematics of the Atlas platform is an especially significant contribution of this work. A

sphere is actuated by omnidirectional wheels using friction, thus avoiding joints that limit the

motion of the platform. This, in turn, allows for a singularity-free workspace with unlimited

rotation about any axis. In this chapter, conditions on the position and orientation of the

actuating omnidirectional wheels will be developed such that the theoretical benefits of the

design will be feasible. Although proof of concept investigation was previously performed

using one arbitrary selection of omnidirectional wheel type, position, and orientation [5];

thorough research is required as to the effects of these parameters on the kinematics of the

platform.

Essential to the design of Atlas is that kinematic slip be avoided at all contact points be-

tween omnidirectional wheels and the sphere. Kinematic slip is a velocity difference between

corresponding contacting points on the sphere and omnidirectional wheel due to kinematics

alone, i.e., regardless of kinetic reasons such as insufficient friction limits at the contact point

necessary to avoid slip. Avoiding kinematic slip is a necessary condition to avoid slip com-

pletely at the contact points. Once this is achieved, kinetic slip due to insufficient normal

forces at the contact points needs to be investigated.
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A complete kinematic model for a sphere actuated by omnidirectional wheels will be

developed here for the general case. The kinematics of dual-race and triple-race omnidirec-

tional wheels will be treated for the first time for any application, with emphasis made on

highlighting the correction required for models that work with single-race kinematics and the

error in using a single-race kinematic model for a dual-race application. The issue of driving

a sphere using omnidirectional wheels is therefore completely generalized here allowing for

any particular configuration to be analyzed from the standpoint of workspace, singulari-

ties, slip at contact points, as well as both forward and inverse kinematics. Even though

the Atlas platform is a parallel design, the resulting kinematics have a closed form analyti-

cal expression which significantly reduces the computational requirements for any controller

implementation.

2.1 The Generalized Problem

A generalization of the Atlas platform kinematics problem is to define the orienting platform

as a sphere actuated by omnidirectional wheels positioned at n arbitrary contact points

and arranged in arbitrary orientations. Thus, the Atlas platform is a specific case of the

generalized problem, where n = 3. The theoretical kinematics problem then becomes one of

finding a geometrical configuration for the omnidirectional wheels such that the slip due to

kinematic issues is zero. To develop the kinematics of the platform, a general configuration is

assumed, and an inertial coordinate frame is positioned at the geometric centre of the sphere

as illustrated in Figure 2.1. The kinematic slip is defined as the difference between the linear

velocity vector Ṽi induced by the actuating wheel i at its contact point with the sphere and

the velocity vector of the same contact point Ṽ′i on the sphere. It must be emphasized here

that the no-kinematic slip condition is a necessary but not sufficient condition for achieving

zero slip in the system. It is a necessary condition since not meeting this condition means
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that the velocities of two bodies at a contact point are different, thus slip is imminent. It is

not sufficient, since the contact forces, specifically the friction force, that evolve at a contact

point may exceed the friction limit of the contacting surfaces, thus creating slip due to kinetic

reasons.

The translational motion, generated with an XYZ gantry or some other means of transla-

tional actuation, is completely decoupled from the rotational motion of the sphere, thus the

velocity of the geometric centre of the sphere is simply the velocity dictated by the gantry.

Relative translational motion resulting from imperfections will be treated as an overlaying

perturbation in the subsequent chapter dealing with dynamics and vibration (Chapter 3).

The resulting rectilinear motion is straightforward and well understood, and will not be

further discussed. Since an omnidirectional wheel allows free rolling in the direction per-

pendicular to the actuation direction, the no-slip requirement for this direction does not

apply. The omnidirectional wheels are initially treated as ideal, meaning that the location

and geometry of the contact point is assumed to be constant. The change in location of the

contact point due to omnidirectional wheel design, such as dual-race omnidirectional wheels

will be addressed subsequently.

All mathematical developments presented here are referenced to the inertial coordinate

frame illustrated in Figure 2.1. The position vectors of the ith contact point is indicated by

R̃i, and Ω̃ is the angular velocity of the sphere. The contact point velocity on the sphere

side of the sphere/omnidirectional wheel interface is therefore

Ṽ′i = Ω̃× R̃i , (2.1)

where subscript i refers to a specific omnidirectional wheel, where i ∈ {1, 2, ..., n}. The

velocity of the contact point on the omnidirectional wheel side, can be broken into two

components: one in the actuation direction, Vi, and the other in the direction of the free-roll
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Figure 2.1: Inertial coordinate frame with origin at the geometric centre of the sphere.
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of the castors, Vri:

Ṽi = Viv̂i + Vriv̂ri , (2.2)

where v̂i is a unit vector in the actuation direction, and v̂ri is a unit vector in the free-roll

direction. These two directions are orthogonal by design, such that

v̂i · v̂ri = 0 . (2.3)

The no-slip requirement may now be restated as:

(Ω̃× R̃i) · v̂i = Vi , (2.4)

or, alternatively stated in words, the magnitude of the velocity of a sphere contact point with

the omnidirectional wheel in the actuation direction is required to be the same as the one

on the omnidirectional wheel in the same direction, thereby eliminating slip. Equation 2.4

can be rearranged using vector product relations as:

(Ω̃× R̃i) · v̂i = (R̃i × v̂i) · Ω̃ = Vi . (2.5)

Since the magnitude of all position vectors is the radius of the sphere, R, the position

vectors of the contact points can be written as

R̃i = RR̂i , (2.6)

where R̂i is a unit vector in the direction of contact point i from the sphere centre. Equa-
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tion 2.5 can then be rewritten as

(R̂i × v̂i) · Ω̃ =
Vi
R

. (2.7)

Now, since the actuation velocity of the omnidirectional wheel may be expressed as:

Viv̂i = ω̃i × r̃i , (2.8)

where ω̃i is the angular velocity of omnidirectional wheel i and r̃i is the vector emanating

from the omnidirectional wheel’s centre to its contact point with the sphere. The contact

point actuation velocity can be expressed in terms of the magnitudes of ω̃i and r̃i as:

Vi = ωiri . (2.9)

Hence, Equation 2.7 may be reexpressed as

(R̂i × v̂i) · Ω̃ =
ri
R
ωi . (2.10)

Next the unit induced angular velocities , Ω̂i, are defined to be

Ω̂i = R̂i × v̂i (2.11)

and used to simplify Equation 2.10, yielding

Ω̂i · Ω̃ =
ri
R
ωi . (2.12)

Equation 2.12 defines a relationship between Ω̃, the angular velocity of the sphere, and ωi,

the magnitudes of the actuation angular velocities of the omnidirectional wheels, which define
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the kinematics of the system. Thus, for n contact points, the following matrix equation in

component form is obtained:



Ω̂T
1

Ω̂T
2

Ω̂T
3

.

.

Ω̂T
n


Ω̃ =

1

R



r1 0 0 . . .

0 r2 0 . . .

0 0 r3 . . .

. . . . . .

. . . . . .

. . . . . rn





ω1

ω2

ω3

.

.

ωn



. (2.13)

The relationship in Equation 2.13 is valid as long as there is a solution to this system of n

equations. Three cases are next considered: n < 3; n = 3; and n > 3.

2.1.1 The n < 3 Case

In the case where n < 3, there are fewer omnidirectional wheel angular velocity inputs than

rotational degrees-of-freedom. Thus, while slip-free conditions may exist, singularities in the

workspace must also exist since the system is nonholonomic, that is, there are fewer controls

than degrees-of-freedom. This case is not suitable for a 3 DOF orientation platform, and is

not discussed further.

2.1.2 The n = 3 Case

In this case, the system of equations reduces to:


Ω̂T

1

Ω̂T
2

Ω̂T
3

 Ω̃ =
1

R


r1 0 0

0 r2 0

0 0 r3




ω1

ω2

ω3

 (2.14)
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and in this case the requirement for no-slip is that the matrix


Ω̂T

1

Ω̂T
2

Ω̂T
3

 (2.15)

be non-singular. To satisfy this, it is required that the three unit vectors Ω̂i be linearly

independent. In this case, the system will have zero slip, and the kinematics of the system

are given by:

Ω̃ =
1

R


Ω̂T

1

Ω̂T
2

Ω̂T
3


−1 

r1 0 0

0 r2 0

0 0 r3




ω1

ω2

ω3

 (2.16)

or in Jacobian form:

Ω̃ = Jω̃ (2.17)

where

ω̃ =

{
ω1 ω2 ω3

}T
(2.18)

and

J =
1

R


Ω̂T

1

Ω̂T
2

Ω̂T
3


−1 

r1 0 0

0 r2 0

0 0 r3

 . (2.19)
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Note that Ω̃ here is 3× 1 array whose elements are the angular velocity magnitudes of the

three omnidirectional wheels. Since the Jacobian of the system is constant once the config-

uration has been determined, acceleration-level kinematics can be derived by differentiation

of Equation 2.19 yielding:

˙̃Ω = J ˙̃ω . (2.20)

Obtaining the expression for the orientation of the platform, however, is not as simple. To

accomplish that, quaternions or Euler parameters are the natural choice since the unbounded

and singularity-free nature of the design calls for a singularity-free representation. Thus,

integration of the quaternionic differential equation [80]

q̇ =
1

2
Ω ◦ q (2.21)

is required, where q is the unit quaternion describing the orientation of the system, and Ω◦q

is a quaternionic product. Integration of this equation yields the quaternion describing the

orientation of the sphere in terms of Euler parameters. Finally, the inverse kinematics of

the system relating the required omnidirectional wheel speeds to the desired sphere angular

velocity is obtained using the inverse of the Jacobian

J−1 = R


1
r1

0 0

0 1
r2

0

0 0 1
r3




Ω̂T
1

Ω̂T
2

Ω̂T
3

 (2.22)

such that

ω̃ = J−1Ω̃ . (2.23)
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2.1.3 The n > 3 Case

The motivation for performing the analysis for the n > 3 case is twofold: first, generaliz-

ing the problem to seek other potential solutions that may allow for improved designs; and

second, as will be presented later, some omnidirectional wheels, such as triple-race omnidi-

rectional wheels may have more than a single contact point per wheel, and having three of

these implies having more than three contact points with the sphere.

The case where n > 3 results in an overdetermined set of equations. This case usually

requires approximation, typically using a least squares approach because solutions do not

exist in general. Rewriting Equation 2.13 in matrix notation, results in

[
ΩT
]
Ω̃ =

1

R
[r] ω̃ , (2.24)

where

[
ΩT
]

=



Ω̂T
1

Ω̂T
2

Ω̂T
3

.

.

Ω̂T
n


, (2.25)

and

[r] =


r1 0 0

0 r2 0

0 0 r3

 . (2.26)
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While the forward kinematics of the system are expressed as an overdetermined set of equa-

tions, the inverse kinematics is straightforward. Knowing the desired angular velocity vector

allows easily calculating the input angular velocities required to obtain the desired output:

ω̃ = R [r]−1 [ΩT
]
Ω̃ . (2.27)

As mentioned earlier, the forward kinematics may not be obtained, that is, there is no

solution to the system through kinematics alone. The outcome would depend on the kinetics

of the system, that is, taking the forces, moments, masses and inertia of the system compo-

nents into account to obtain the system’s behaviour. To obtain a sense of the behaviour of

the system from kinematics alone, and to enable comparison between various configurations

with more than three actuating wheels, one may resort to approximation. The solution to

the forward kinematics in the least square sense, yields:

Ω̃ls ≈
1

R
{[Ω]

[
ΩT
]
}−1 [Ω] [r] ω̃ , (2.28)

where

[Ω] =
[
ΩT
]T

. (2.29)

This can be abbreviated as:

Ω̃ls ≈ Jlsω̃ , (2.30)

where the Jacobian for the least squares approximation is:

Jls =
1

R
{[Ω]

[
ΩT
]
}−1 [Ω] [r] (2.31)
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The Jacobian exists if the columns of
[
ΩT
]

are linearly independent, or alternatively, if the

rows of [Ω] are linearly independent. Since Ω̂i are unit vectors, the Jacobian does not exist

only if all Ω̂i point in the same (or reverse) directions.

Slip

To evaluate the slip at the contact points, it is necessary to compare the contact point velocity

on the sphere to the contact point velocity on the omnidirectional wheel. It is important to

remember that using the least square approximation method does not yield the actual slip

at the contact point. To obtain that, kinetics need to be considered. However, utilizing such

approximation would provide with a tool that may give a measure of the slip involved at the

best case scenario. Thus, it would allow comparing various designs quantitatively.

It was shown previously that the contact point velocity on the omnidirectional wheel is:

Ṽi = ωiriv̂i (2.32)

and the corresponding contact point velocity on the sphere is:

Ṽ′i = Ω̃ls × R̃i . (2.33)

Thus, the velocity difference in the actuating direction is

∆Vi = |Ṽi| − Ṽ′i · v̂i . (2.34)

The slip ratio can be defined as:

Si ≡
∆Vi

|Ṽi|
= 1− Ṽ′i · v̂i

|Ṽi|
. (2.35)
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An overall slip assessment indicator is defined to be

S =

√√√√ n∑
i=1

S2
i , (2.36)

where the minimal value for S is desired.

In the general case, it is clear that having more than three omnidirectional wheels driving

the sphere leads to slip and energy loss, since the system is overdetermined. Thus, assigning

arbitrary angular velocities to the wheels would yield slip in the general case. However, a

larger number of omnidirectional wheels may be utilized without slip if the velocities of the

redundant omnidirectional wheels are coordinated such that their slip ratios will all be zero,

resulting in a master-slave system, where three omnidirectional wheels determine the angular

velocity of the sphere and the remaining wheels match their speeds such that slip is zero.

To obtain that, three omnidirectional wheels need to be selected such that they meet the

criteria set out for the n = 3 case, such that the resulting sphere angular velocity is evaluated,

then the required velocities at the remaining contact points are obtained resulting in zero

slip. Although there is no kinematic benefit from such a master-slave system, benefits that

stem from dynamics, vibration, and stress considerations may exist. Since omnidirectional

wheels must have some gaps between their rollers, there are areas where loss of contact

may occur; thus having a second omnidirectional wheel covering the same degree-of-freedom

allows compensating for this problem as detailed in Section 3.2.3.
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2.2 Omnidirectional Wheel Types and Their Effect on

the Kinematics

2.2.1 Single-race Omnidirectional Wheels

The most basic omnidirectional wheel has a single race of rollers. As presented in the intro-

duction, the Atlas platform requires three omnidirectional wheels to achieve a singularity-free

workspace that allows for angular motion about any axis. The following two examples of

kinematic configurations will serve as benchmarks, and will be revisited with the various

wheel types covered here.

The Orthogonal Case

The following example shows an architecture that satisfies the necessary condition stated

in Equation 2.15 , and indeed yields zero kinematic slip. Figure 2.2 shows the architecture

suggested. For simplicity, and without loss of generality, the global coordinate frame was

chosen as shown in the figure. That, in turn, allows all calculations to be performed directly

in the global coordinate frame.

Here, the sphere has a radius R, and each of the omnidirectional wheels has a radius r.

Thus, the position vectors of the three contact points are:

~R1 = Rı̂ ;

~R2 = R̂ ;

~R3 = Rk̂ . (2.37)

The position vectors of the contact points with respect to the omnidirectional wheels’s centres
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Figure 2.2: Kinematic architecture for the orthogonal case.

of rotation are:

~r1 = −rı̂ ;

~r2 = −r̂ ;

~r3 = −rk̂ . (2.38)

The angular velocities of the omnidirectional wheels are:

~ω1 = ω1̂ ;

~ω2 = ω2k̂ ;

~ω3 = ω3ı̂ . (2.39)
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Therefore the velocities they induce on the sphere at the contact points are:

~V1 = ~ω1 × ~r1 = ω1rk̂ ;

~V2 = ~ω2 × ~r2 = ω2rı̂ ;

~V3 = ~ω3 × ~r3 = ω3r̂ . (2.40)

These velocities create the three components of angular velocity of the sphere:

Ω̂1 = ı̂× k̂ = −̂ ;

Ω̂2 = ̂× ı̂ = −k̂ ;

Ω̂3 = k̂ × ̂ = −ı̂ . (2.41)

It is clear now, that these are mutually orthogonal, since:

Ω̂1 · Ω̂2 = 0 ;

Ω̂1 · Ω̂3 = 0 ;

Ω̂2 · Ω̂3 = 0 . (2.42)

This could alternatively be shown directly by evaluating the Jacobian of the system as:

J =
r

R


0 −1 0

0 0 −1

−1 0 0


−1

=
r

R


0 0 −1

−1 0 0

0 −1 0

 (2.43)

and noting that rows are linearly independent as required by the theory presented.
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The Atlas Sphere

Atlas motion platform demonstrators, constructed to date, have the three omnidirectional

wheels arranged on the edges of an equilateral triangle with an elevation angle of 40◦. To

generalize the symmetric configuration, an arbitrary elevation angle θ will be used. The

configuration is presented in Figure 2.3.

Figure 2.3: Kinematic architecture for the Atlas sphere case [86].

In this case, the omnidirectional wheel position vectors are:

~R1 = R(cos θı̂− sin θk̂) ;

~R2 = R(−1

2
cos θı̂+

√
3

2
cos θ̂− sin θk̂) ;

~R3 = R(−1

2
cos θı̂−

√
3

2
cos θ̂− sin θk̂) . (2.44)

The contact point velocities are given by:

~V1 = ω1r̂ ;

~V2 = ω2r(−
√

3

2
ı̂− 1

2
̂) ;

~V3 = ω3r(

√
3

2
ı̂− 1

2
̂) . (2.45)
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as shown in [86]. These yield:

Ω̂1 = (cos θı̂− sin θk̂)× ̂ = (sin θı̂+ cos θk̂) ;

Ω̂2 = (−1

2
cos θı̂+

√
3

2
cos θ̂− sin θk̂)× (−

√
3

2
ı̂− 1

2
̂)

= (−1

2
sin θı̂+

√
3

2
sin θ̂+ cos θk̂) ;

Ω̂3 = (−1

2
cos θı̂−

√
3

2
cos θ̂− sin θk̂)× (

√
3

2
ı̂− 1

2
̂)

= (−1

2
sin θı̂−

√
3

2
sin θ̂+ cos θk̂) . (2.46)

Hence,


Ω̂T

1

Ω̂T
2

Ω̂T
3

 =


sin θ 0 cos θ

−1
2

sin θ
√

3
2

sin θ cos θ

−1
2

sin θ −
√

3
2

sin θ cos θ

 . (2.47)

The determinant of this matrix will yield zero for:

3
√

3

2
sin2 θ cos θ = 0 (2.48)

and so, the only singularities would be for θ = 0 and θ = ±90◦. For all other cases, the

Jacobian can be evaluated. In this case,

J =
r

R


sin θ 0 cos θ

−1
2

sin θ
√

3
2

sin θ cos θ

−1
2

sin θ −
√

3
2

sin θ cos θ


−1

(2.49)

thereby defining the direct relationship between omnidirectional wheel speeds and sphere

angular velocity without kinematic slip.
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Figure 2.4: A dual-race omnidirectional wheel [86].

2.2.2 Dual-race Omnidirectional Wheels and Shifting Contact Points

In the preceding discussion, the omnidirectional wheels were assumed to be perfectly round;

while in reality, it is impossible to have a perfectly round omnidirectional wheel as illustrated

in Figure 1.4. A simple solution to the discontinuity problem caused by the basic design of

omnidirectional wheels is utilizing a dual-race omnidirectional wheel as shown in Figure 2.4.

While the kinematics for the Atlas platform have been developed in the previous section for

perfectly round omnidirectional wheels, here that basic assumption is removed. Instead, one

of the more common solutions to the contact discontinuity problem, the use of dual race

omnidirectional wheels will be treated. The dual race design aligns the rollers in two parallel

races, such that exactly when a roller on one race loses contact with the rolling surface, the

roller on the other race makes contact at the same point in time, thus maintaining roller

contact at all times.

Figure 2.5 shows an imprint of a dual-race omnidirectional wheel, in use in the Atlas

demonstrator, on a flat surface. Attention is drawn to the fact that shifting one of the two

parallel races to align with the other yields a continuous straight line. This design indeed

solves the contact gap problem, but introduces a new one: there is no longer a single point

of contact. Rather, there are two alternating points of contact on the sphere. This change

in location of the contact point on the sphere alters the system’s kinematics and, as a result,

modifications to the kinematic model are necessary to improve the accuracy of the system

kinematic and dynamic models. This is important for subsequent use in model-based control.
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Figure 2.5: The imprint of a dual-race omnidirectional wheel on a flat surface.

Refined Kinematics Model

As presented earlier, the underlying concept in obtaining the kinematics for the sphere is

to obtain a relationship between ~Ω, the angular velocity vector of the sphere, and ωi, the

angular speeds of the three omnidirectional wheels, that would account for zero kinematic

slip between the sphere and the omnidirectional wheels. The condition is met by requiring

that the projection of the velocities of the sphere at all contact points in the actuation

direction of the omnidirectional wheel be the same; or, expressed mathematically,

(Ω̃× R̃i) · v̂i = Vi . (2.50)

This condition results in the relationship

Ω̃ = Jω̃ (2.51)

where

J =
1

R


Ω̂T

1

Ω̂T
2

Ω̂T
3


−1 

r1 0 0

0 r2 0

0 0 r3

 . (2.52)

In the case of dual-race omnidirectional wheels, the position vector R̃i of the contact

points alternates between two locations. Six contact points (two per omnidirectional wheel)

43



R̃ij are identified where the first index marks the omnidirectional wheel and the second index

marks the point of contact of a specific race on the wheel. This results in eight different

combinations of possible simultaneous contact points:

R11 R21 R31 ;

R11 R21 R32 ;

R11 R22 R31 ;

R11 R22 R32 ;

R12 R21 R31 ;

R12 R21 R32 ;

R12 R22 R31 ;

R12 R22 R32 .

Now, since v̂i remains the same as with the single-race case, the only change to Ω̂i is due

to the change from R̂i to R̂ij, thus

Ω̂ij = R̂ij × v̂i (2.53)

and so, we obtain eight Jacobians for the eight combinations above:

Jlmn =
1

R


Ω̂T

1l

Ω̂T
2m

Ω̂T
3n


−1 

r1 0 0

0 r2 0

0 0 r3

 ...l,m, n = 1, 2 (2.54)

where the indices l, m, and n determine the race in contact with the sphere on omnidirec-

tional wheels 1, 2, and 3 respectively. Determining l, m, and n could be performed directly

using sensors, or by simply integrating the angular velocities of each omnidirectional wheel
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independently, such that:

φi =

∫ t

0

ωidt (2.55)

and for 2N rollers per omnidirectional wheel, the indices may simply be calculated, using

the integer floor values, as

l = floor

[
Nφ1

π
mod 2

]
+ 1 , (2.56)

m = floor

[
Nφ2

π
mod 2

]
+ 1 , (2.57)

n = floor

[
Nφ3

π
mod 2

]
+ 1 . (2.58)

This approach would require first evaluating the indices l, m, and n, and then calculating

the angular velocity of the sphere, using the appropriate Jacobian.

As mentioned above, the two benchmark examples used for the single-race case are uti-

lized to illustrate the differences between the kinematic behaviour of the dual-race omni-

directional wheels and the single-race ones. These are both architectures that satisfy the

necessary no-slip condition. Just as shown earlier, the sphere has a radius R, and each of

the omnidirectional wheels has a radius r. However, the contact point details are now those

of a dual-race omnidirectional wheel and are presented in Figure 2.6.

There is a deviation of ±∆θ from the ideal contact point used in the evaluation of the

Jacobian of the ideal case. It is clear from Figure 2.6 that

sin ∆θ =
d
2

R + rr
=

d

2(R + rr)
. (2.59)
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Figure 2.6: The actual contact points on the Atlas sphere.

Thus,

cos ∆θ =
√

1− sin2 ∆θ =
1

2(R + rr)

√
4(R + rr)2 − d2 . (2.60)

Utilizing these relations, it is clear that for any arbitrary angle θ,

sin(θ ±∆θ) =
1

2(R + rr)
(
√

4(R + rr)2 − d2 sin θ ± d cos θ) ,

cos(θ ±∆θ) =
1

2(R + rr)
(
√

4(R + rr)2 − d2 cos θ ∓ d sin θ) . (2.61)

The Orthogonal Case with Dual-race Omnidirectional Wheels

Figure 2.2 shows a case where the omnidirectional wheels are mutually orthogonal. Thus, the

position vectors of the three contact points for the ideal case are, as shown in the single-race

case:

~R1 = Rı̂ ; ~R2 = R̂ ; ~R3 = Rk̂ . (2.62)
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However, accounting for the angular deviation from the ideal contact point (in the case of

dual-race wheels), the position vectors become

~R11 = R(cos ∆θı̂+ sin ∆θ̂) =
R

2(R + rr)
(
√

4(R + rr)2 − d2ı̂+ d̂) ;

~R12 = R(cos ∆θı̂− sin ∆θ̂) =
R

2(R + rr)
(
√

4(R + rr)2 − d2ı̂− d̂) ;

~R21 = R(cos ∆θ̂+ sin ∆θk̂) =
R

2(R + rr)
(
√

4(R + rr)2 − d2̂+ dk̂) ;

~R22 = R(cos ∆θ̂− sin ∆θk̂) =
R

2(R + rr)
(
√

4(R + rr)2 − d2̂− dk̂) ;

~R31 = R(sin ∆θı̂+ cos ∆θk̂) =
R

2(R + rr)
(dı̂+

√
4(R + rr)2 − d2k̂) ;

~R32 = R(− sin ∆θı̂+ cos ∆θk̂) =
R

2(R + rr)
(−dı̂+

√
4(R + rr)2 − d2k̂) .

(2.63)

The direction cosines of the omnidirectional wheel contact point velocities in the actuation

directions are, as shown earlier

v̂1 = k̂ ;

v̂2 = ı̂ ;

v̂3 = ̂ . (2.64)
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Using these relations in Equation 2.2.2, yields

Ω̂11 =
1

2(R + rr)
(dı̂−

√
4(R + rr)2 − d2̂) ;

Ω̂12 =
1

2(R + rr)
(−dı̂−

√
4(R + rr)2 − d2̂) ;

Ω̂21 =
1

2(R + rr)
(d̂−

√
4(R + rr)2 − d2k̂) ;

Ω̂22 =
1

2(R + rr)
(−d̂−

√
4(R + rr)2 − d2k̂) ;

Ω̂31 =
1

2(R + rr)
(−
√

4(R + rr)2 − d2ı̂+ dk̂) ;

Ω̂32 =
1

2(R + rr)
(−
√

4(R + rr)2 − d2ı̂− dk̂) .

(2.65)

Finally, the inverse Jacobian becomes

J−1
lmn =

√
4(R + rr)2 − d2

2(R + rr)
J−1
id +

Rd

2r(R + rr)


(−1)l+1 0 0

0 (−1)m+1 0

0 0 (−1)n+1

 ,

(2.66)

where Jid is the Jacobian for the ideal case:

J−1
id =

R

r


0 −1 0

0 0 −1

−1 0 0

 . (2.67)

The orthogonal case is presented for discussion as it is convenient to study the essential

difference between the single-race and dual-race omnidirectional wheels. The first term in

Equation 2.66 indicates a slight reduction of the magnitude of ~Ω in the original direction,
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while the second term reveals a more significant change in direction.

The Atlas Platform

The second benchmark, has the configuration of the Atlas spherical motion platform where

the three omnidirectional wheels are arranged on the edges of an equilateral triangle with

an elevation angle of θ, as illustrated in Figure 2.3. In this case

~R1 = R(cos θı̂− sin θk̂) ;

~R2 = R(−1

2
cos θı̂+

√
3

2
cos θ̂− sin θk̂) ;

~R3 = R(−1

2
cos θı̂−

√
3

2
cos θ̂− sin θk̂) . (2.68)

Accounting for the change in the contact points, the new position vectors may be ex-

pressed as

~R11 = R(cos(θ −∆θ)̂ı− sin(θ −∆θ)k̂) ;

~R12 = R(cos(θ + ∆θ)̂ı− sin(θ + ∆θ)k̂) ;

~R21 = R(−1

2
cos(θ −∆θ)̂ı+

√
3

2
cos(θ −∆θ)̂− sin(θ −∆θ)k̂) ;

~R22 = R(−1

2
cos(θ + ∆θ)̂ı+

√
3

2
cos(θ + ∆θ)̂− sin(θ + ∆θ)k̂) ;

~R31 = R(−1

2
cos(θ −∆θ)̂ı−

√
3

2
cos(θ −∆θ)̂− sin(θ −∆θ)k̂) ;

~R32 = R(−1

2
cos(θ + ∆θ)̂ı−

√
3

2
cos(θ + ∆θ)̂− sin(θ + ∆θ)k̂) . (2.69)

The direction cosines of the omnidirectional wheel contact point velocities in the actuation
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directions are, as presented earlier

v̂1 = ̂ ;

v̂2 = −
√

3

2
ı̂− 1

2
̂ ;

v̂3 =

√
3

2
ı̂− 1

2
̂ . (2.70)

Utilizing the relations shown in Equations 2.61, 2.69, 2.70 in Equation 2.2.2, the expressions

for the unit vectors identifying the directions of the sphere’s angular velocity components

50



induced by the individual omnidirectional wheels are

Ω̂11 =
1

2(R + rr)
[(
√

4(R + rr)2 − d2 sin θ − d cos θ)̂ı

+ (
√

4(R + rr)2 − d2 cos θ + d sin θ)k̂] ;

Ω̂12 =
1

2(R + rr)
[(
√

4(R + rr)2 − d2 sin θ + d cos θ)̂ı

+ (
√

4(R + rr)2 − d2 cos θ − d sin θ)k̂] ;

Ω̂21 =
1

2(R + rr)
[−1

2
(
√

4(R + rr)2 − d2 sin θ − d cos θ)̂ı

+

√
3

2
(
√

4(R + rr)2 − d2 sin θ − d cos θ)̂

+ (
√

4(R + rr)2 − d2 cos θ + d sin θ)k̂] ;

Ω̂22 =
1

2(R + rr)
[−1

2
(
√

4(R + rr)2 + d2 sin θ + d cos θ)̂ı

+

√
3

2
(
√

4(R + rr)2 + d2 sin θ + d cos θ)̂

+ (
√

4(R + rr)2 − d2 cos θ − d sin θ)k̂] ;

Ω̂31 =
1

2(R + rr)
[−1

2
(
√

4(R + rr)2 − d2 sin θ − d cos θ)̂ı

−
√

3

2
(
√

4(R + rr)2 − d2 sin θ − d cos θ)̂

+ (
√

4(R + rr)2 − d2 cos θ + d sin θ)k̂] ;

Ω̂32 =
1

2(R + rr)
[−1

2
(
√

4(R + rr)2 + d2 sin θ + d cos θ)̂ı

−
√

3

2
(
√

4(R + rr)2 − d2 sin θ + d cos θ)̂

+ (
√

4(R + rr)2 − d2 cos θ − d sin θ)k̂] .

(2.71)
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Finally, the inverse Jacobian becomes:

J−1
lmn =

R

r

√
4(R + rr)2 − d2

2(R + rr)


sin θ 0 cos θ

−1
2

sin θ
√

3
2

sin θ cos θ

−1
2

sin θ −
√

3
2

sin θ cos θ



+
R

r

d

2(R + rr)


(−1)l cos θ 0 (−1)l+1 sin θ

(−1)m+1 1
2

cos θ (−1)m
√

3
2

cos θ (−1)m+1 sin θ

(−1)n+1 1
2

cos θ (−1)n+1
√

3
2

cos θ (−1)n+1 sin θ

 .

(2.72)

The inverse Jacobian for the ideal system is:

J−1 =
R

r


sin θ 0 cos θ

−1
2

sin θ
√

3
2

sin θ cos θ

−1
2

sin θ −
√

3
2

sin θ cos θ

 . (2.73)

For the dual row system the inverse Jacobian is:

J−1
lmn =

√
4(R + rr)2 − d2

2(R + rr)
J−1 +

R

r
∆J′ (2.74)

where J−1 is the inverse of the Jacobian for the ideal case and ∆J′ is the correction component

for the contact point change, such that

∆J′ =
d

2(R + rr)


(−1)l cos θ 0 (−1)l+1 sin θ

(−1)m+1 1
2

cos θ (−1)m
√

3
2

cos θ (−1)m+1 sin θ

(−1)n+1 1
2

cos θ (−1)n+1
√

3
2

cos θ (−1)n+1 sin θ

 . (2.75)

This last term is the only one required to be re-evaluated as it is the only one that may vary
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in time. The Jacobian of the system is therefore

Jlmn = (J−1 +
R

r
∆J′)−1 . (2.76)

Evaluating the Error Correction: Some Numerical Results

Some numerical examples have been studied in order to demonstrate the importance of the

suggested correction to the Jacobian. The program developed for this purpose evaluates

the resulting angular velocity vector for a few sets of time-varying inputs, for both the

original Jacobian developed for the ideal case, and for the corrected Jacobian suggested in

this section. The magnitude and the direction of the resulting angular velocity vectors are

evaluated and compared for both cases. The reference platform for the numerical experiment

is an Atlas platform as described in the previous section, with an elevation angle of 40◦, and

the following design parameters:

R = 15 cm, rr = 4.85 mm, d = 12.5 mm, r = 25 mm, 2N = 16.

The input is the set of angular speeds of the three omnidirectional wheels, prescribed to

illustrate a variety of cases. The inputs are described in Table 2.1.

The prescribed input was selected to demonstrate cases with various ratios among the

omnidirectional wheels’s angular speeds. The first step was intended for creating a slight

misalignment such that the experiment had a starting point where not all omnidirectional

wheels were in the same phase.

Figure 2.7 shows the orientation error [◦] of the angular velocity vector ~Ω of the sphere

and the error [%] in the magnitude of ~Ω. The orientation error is defined as the angle between
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Table 2.1: Prescribed omnidirectional wheel inputs.

time [s] ω1 [rad/s] ω2 [rad/s] ω3 [rad/s]

0 1 0 0
0.1 1 1 1
1 1 2 2
2 2 1 1
3 2 1 2
4 0 0 1
5 1 0 0
6 0 1 0
7 1 2 3
8 2 1 3
9 1 3 2
10 2 3 1
11 3 1 2
12 3 2 1
13 0 0 0

the two resulting angular velocity vectors:

ε = cos−1

(
Ω̃id · Ω̃
|Ω̃id||Ω̃|

)
(2.77)

where ~Ωid is the resultant angular velocity vector for the ideal single-row case. It is clear

from the results that there are both magnitude and direction errors that are generally non-

zero. The magnitude error peaks at 3.8%, for the selected input set. The angular deviation,

which is the angle between the angular velocity vector of the sphere, calculated using the

augmented Jacobian, and the angular velocity vector of the sphere calculated using the ideal-

case Jacobian, as demonstrated in Equation 2.77 is also generally non-zero, and peaks at

an angle of 3.2◦. The zero case only exists when the prescribed angular speeds of all three

omnidirectional wheels are the same, which translates to a rotation about the Z-axis of the

sphere, as long as all omnidirectional wheels are touching with the same race. The initial

intentional misalignment was used to prevent this unique case, and demonstrate the more

54



Figure 2.7: Errors in angle and magnitude of the sphere angular velocity vector.

general case for which the augmented Jacobian presented above was developed.

A closer look at Equations 2.66 and 2.72 from the examples reveals that one can generalize

the Jacobian of a system comprising of three identical dual-row omnidirectional wheels:

J−1
lmn =

R

r

1

2(R + rr)


√

4(R + rr)2 − d2


Ω̂T

1

Ω̂T
2

Ω̂T
3

− d


(−1)lR̂T
1

(−1)mR̂T
2

(−1)nR̂T
3




...l,m, n = 1, 2 . (2.78)

Since R̂i is orthogonal to Ω̂i by definition, the only way to avoid the directional error of ~Ω is

to set d = 0, thereby reducing the solution to a single row.

The dual-race omnidirectional wheel solution addresses the problem of obtaining contin-

uous contact with the sphere; however, it introduces a shift in the location of the contact

points on the sphere, thereby introducing complications in the kinematics of the system that

are shown to produce significant errors both in magnitude and in direction of the angular
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velocity vector of the sphere as detailed in [81], and thus possibly control issues.

This problem could theoretically be avoided by splitting the dual-row omnidirectional

wheels, having the two rows mounted on separate races that touch on antipodal points 1 on

the sphere. Antipodal points on the sphere would have the same velocity in the actuation

direction. For a contact point R̃1 with actuation direction v̂1 we have the velocity Ṽ1 =

Ω̃ × R̃1. It is clear that for the point located on the same great circle but angularly offset

by 180◦, R̃2 = −R̃1 and the velocity Ṽ2 = Ω̃ × R̃2 = −Ω̃ × R̃1 = −Ṽ1 that is, the same

magnitude but opposite in direction. Thus, setting the actuation direction to be v̂2 = −v̂1,

results in an equivalent second row at R̃2 enslaved to the omnidirectional wheel at R̃1. All

that is left is to arrange the omnidirectional wheels such that the rollers are synchronized

between the two races, a relatively easy task since the actuation speeds for both wheels are

identical and they could, in principle, be actuated by the same motor.

Another attempt to combine the benefits of the single and dual row designs, driven by

intuition, is to have triple-race omnidirectional wheels, as shown in Figure 2.8. Here, the

two external races touch the sphere at the same time, alternating with the centre race. The

idea is to create an equivalent or effective contact point that is exactly centred in between

the two external races, hence generating continuous contact with the sphere in the same

effective contact point.

Utilizing three dual-race omnidirectional wheels, instead of single-race ones, changes the

kinematics due to the shift of contact points when shifting between the two races of each

omnidirectional wheel occurs, as presented in [81]. However, the problem remains one with

n = 3, since at any instance there are exactly three effective contact points.

1points that lie on the same great circle and are diametrically opposed.

56



Figure 2.8: A triple-race omnidirectional wheel.

2.2.3 Triple-race Omnidirectional Wheels

Utilizing three triple-race omnidirectional wheels, however, is a completely different case.

Triple-race omnidirectional wheels alternate between one point of contact when the centre

race is in contact with the sphere, and two points of contact when the two outer races are in

contact with the sphere simultaneously. This in turn, creates numerous combinations, where

anywhere between three and six contact points (i.e., n = 3, 4, 5, 6) could exist at any given

time, and where all combinations would be encountered during typical operation. However,

this case has simplifying constraints, since any two simultaneous contact points belonging to

a single omnidirectional wheel, share the same r, ω, and v̂. This allows for the simplification
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of the equations. In the worst case scenario, where n = 6, the kinematics are given by



Ω̂T
11

Ω̂T
12

Ω̂T
21

Ω̂T
22

Ω̂T
31

Ω̂T
32


Ω̃ =

1

R



r1 0 0 0 0 0

0 r1 0 0 0 0

0 0 r2 0 0 0

0 0 0 r2 0 0

0 0 0 0 r3 0

0 0 0 0 0 r3





ω1

ω1

ω2

ω2

ω3

ω3



(2.79)

where

Ω̂ij = R̂ij × v̂i (2.80)

and R̂ij is a unit vector in the direction of the contact point j of omnidirectional wheel i.

As presented above, this kind of overdetermined equation set is usually solved with an

approximation method. However, using such an approach leads to a solution that is missing

the point of the design: to achieve motion that is equivalent to that induced by the contact

point of the centre race. It should be expected that any set of two equations belonging to

the same omnidirectional wheel will yield a result in the same direction as the equivalent

result for the single-race case. While this may be accomplished by utilizing the results

from the single-race analysis, the equations are still over constrained. Solutions can only be

approximated, which implies that the slip-free condition cannot be satisfied. Thus, without

being able to achieve slip-free conditions, the kinetics of the system must be taken into

consideration, and the true motion cannot be determined using kinematics alone.
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Rearranging the terms in Equation 2.79, yields another way to look at the problem:



Ω̂T
11 − r1

R
0 0

Ω̂T
12 − r1

R
0 0

Ω̂T
21 0 − r2

R
0

Ω̂T
22 0 − r2

R
0

Ω̂T
31 0 0 − r3

R

Ω̂T
32 0 0 − r3

R





Ωx

Ωy

Ωz

ω1

ω2

ω3



= ~0 . (2.81)

This representation allows, once again, examining a given design. In order to obtain a

nontrivial solution, it is required for the determinant of the matrix in Equation 2.81 to be

zero. Once this is established, there could be sets of allowable solutions {Ω̃, ω̃} that yield

slip-free conditions.

Gaussian elimination further simplifies the equations, yielding:



Ω̂T
11 − r1

R
0 0

Ω̂T
12 − Ω̂T

11 0 0 0

Ω̂T
21 0 − r2

R
0

Ω̂T
22 − Ω̂T

21 0 0 0

Ω̂T
31 0 0 − r3

R

Ω̂T
32 − Ω̂T

31 0 0 0





Ωx

Ωy

Ωz

ω1

ω2

ω3



= ~0 . (2.82)

Rows 1, 3, and 5 of the coefficient matrix of Equation 2.82 are clearly linearly independent

with respect to each other, and with respect to rows 2, 4, and 6. All that remains is to
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ensure that the determinant of the smaller (3x3) matrix


Ω̂T

12 − Ω̂T
11

Ω̂T
22 − Ω̂T

21

Ω̂T
32 − Ω̂T

31

 (2.83)

is zero. Remembering that Ω̂ij = R̂ij × v̂i, the rows of the matrix in Equation 2.83 may be

rewritten as:

Ω̂i2 − Ω̂i1 = (R̂i2 − R̂i1)× v̂i . (2.84)

Figure 2.9: Contact point geometry when two races touch the sphere simultaneously.

From the geometry of the problem, illustrated in Figure 2.9, it is observed that the

resultant vector R̂i2− R̂i1 is perpendicular to both v̂i and R̂i. Thus, it is concluded that the

result of Equation 2.84 is a vector in the direction of R̂i. Hence, the matrix above can be

rewritten as: 
R̂T

1

R̂T
2

R̂T
3

 . (2.85)

60



The no-slip condition now becomes a requirement on the position vectors of the effective

contact points to be linearly dependent. Finally, combining this requirement with the no-

slip requirement on the centre row combination, which was shown to be that the matrix


Ω̂T

1

Ω̂T
2

Ω̂T
3

 (2.86)

be non-singular; denotes the need for R̂i to be linearly dependent while Ω̂i are linearly

independent.

Once again, the two benchmark examples used for the single-race case are utilized to

illustrate the differences between the kinematic behaviour of the triple-race omnidirectional

wheels and the single-race ones. These are both architectures that satisfy the necessary

no-slip condition for the single-race case. However, it is shown here that the additional

requirements are not met; thus these configurations no longer yield no-slip conditions. These

two benchmark examples are then followed with an example that does meet the new criteria,

and finally, an example with six separate omnidirectional wheels is presented illustrating both

the evaluation of the slip factor and the master-slave approach.

The Orthogonal Case

The following example examines the benchmark architecture, illustrated in Figure 2.2 and

presented earlier for single-race and dual-race omnidirectional wheels, that satisfies the neces-

sary condition for these cases, and indeed yields zero kinematic slip. While this architecture

is fairly simple, it provides a good benchmark to demonstrate the principles, and point out

the problems without the need for cumbersome expressions. For simplicity, and without loss

of generality, the global coordinate frame is the one in Figure 2.2. This allows all calculations
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to be performed directly in the global coordinate frame.

The sphere has radius R, and each of the omnidirectional wheels has radius r. Thus, the

position vectors of the three contact points are:

R̃1 = Rı̂ ; R̃2 = R̂ ; R̃3 = Rk̂ (2.87)

and the position vectors of the contact points with respect to the omnidirectional wheel

centres of rotation are:

r̃1 = −rı̂ ; r̃2 = −r̂ ; r̃3 = −rk̂ . (2.88)

The angular velocities of the omnidirectional wheels are:

ω̃1 = ω1̂ ; ω̃2 = ω2k̂ ; ω̃3 = ω3ı̂ (2.89)

and therefore the velocities they induce on the sphere at the contact points are

Ṽ1 = ω̃1 × r̃1 = ω1rk̂ ,

Ṽ2 = ω̃2 × r̃2 = ω2rı̂ ,

Ṽ3 = ω̃3 × r̃3 = ω3r̂ , (2.90)

respectively. These velocities create the three components of angular velocity of the sphere:

Ω̂1 = ı̂× k̂ = −̂ ; Ω̂2 = ̂× ı̂ = −k̂ ; Ω̂3 = k̂ × ̂ = −ı̂ . (2.91)
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It is clear now that these are mutually orthogonal, since

Ω̂i · Ω̂j = 0 ...i 6= j . (2.92)

This could alternatively be shown directly by evaluating the Jacobian of the system as:

J =
r

R


0 −1 0

0 0 −1

−1 0 0


−1

=
r

R


0 0 −1

−1 0 0

0 −1 0

 (2.93)

noting that the rows are linearly independent as required for the single-row case. It is

obvious, however, that this case does not simultaneously fulfill the requirement for n = 6.

The Atlas Sphere

The second benchmark configuration is the Atlas sphere presented earlier in Section 3.2.1.

To generalize the equilateral configuration, an arbitrary elevation angle θ will be used. The

configuration is presented in Figure 2.3.

In this case

R̃1 = R(cos θı̂− sin θk̂) ,

R̃2 = R(−1

2
cos θı̂−

√
3

2
cos θ̂− sin θk̂) ,

R̃3 = R(−1

2
cos θı̂+

√
3

2
cos θ̂− sin θk̂) , (2.94)
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and the contact point velocities are

Ṽ1 = −ω1r̂ ,

Ṽ2 = ω2r(−
√

3

2
ı̂+

1

2
̂) ,

Ṽ3 = ω3r(

√
3

2
ı̂+

1

2
̂) , (2.95)

as shown in [86]. These yield:


Ω̂T

1

Ω̂T
2

Ω̂T
3

 =


− sin θ 0 − cos θ

1
2

sin θ
√

3
2

sin θ − cos θ

1
2

sin θ −
√

3
2

sin θ − cos θ

 . (2.96)

The determinant of this matrix will be zero for

3
√

3

2
sin2 θ cos θ = 0 . (2.97)

So, the only singularities would be for θ = 0 and θ = ±90◦. For all other cases, the Jacobian

can be evaluated. In this case,

J =
r

R


− sin θ 0 − cos θ

1
2

sin θ
√

3
2

sin θ − cos θ

1
2

sin θ −
√

3
2

sin θ − cos θ


−1

=
r

3R


−2 csc θ csc θ csc θ

0
√

3 csc θ −
√

3 csc θ

− sec θ − sec θ − sec θ

 .

(2.98)

Thereby showing the direct relationship between omnidirectional wheel speeds and sphere

angular velocity without kinematic slip for the single-row case. It is obvious once again that

this case does not simultaneously fulfill the requirement for n = 6.
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The Collinear Case

An example that conforms to both conditions of the triple-race case can easily be constructed.

Figure 2.10: A configuration that allows for slip-free conditions.

In the configuration shown in Figure 2.10 we have:

R̂1 = ı̂ ; R̂2 =

√
2

2
ı̂+

√
2

2
̂ ; R̂3 = ̂ (2.99)

Ω̂1 = ̂ ; Ω̂2 = k̂ ; Ω̂3 = ı̂ . (2.100)

It is clear that the three induced angular velocities are linearly independent, while all position

unit vectors lie in the XY plane, thus being linearly dependent.

Orthogonal Case with Six Omnidirectional Wheels

This example examines a case where six omnidirectional wheels are employed. First, arbi-

trary values for the speeds of the omnidirectional wheels will be assigned and the slip factor

will be evaluated; then the same scenario will be investigated using the master-slave concept.
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Figure 2.11: Kinematic architecture for the orthogonal case with six omnidirectional
wheels.

Here, the position vectors of the six contact points, as shown in Figure 2.11 are:

R̃1 = Rı̂ , R̃2 = R̂ , R̃3 = Rk̂ ,

R̃4 = −Rı̂ , R̃5 = −R̂ , R̃6 = −Rk̂ , (2.101)

and the position vectors of the contact points with respect to the omnidirectional wheel

centres of rotation are:

r̃1 = −rı̂; r̃2 = −r̂; r̃3 = −rk̂

r̃4 = rı̂; r̃5 = r̂; r̃6 = rk̂ . (2.102)
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The angular velocities of the omnidirectional wheels are:

ω̃1 = ω1̂; ω̃2 = ω2k̂; ω̃3 = ω3ı̂

ω̃4 = ω4̂; ω̃5 = ω5k̂; ω̃6 = ω6ı̂ . (2.103)

Therefore the velocities they induce on the sphere at the contact points are:

Ṽ1 = ω̃1 × r̃1 = ω1rk̂ ;

Ṽ2 = ω̃2 × r̃2 = ω2rı̂ ;

Ṽ3 = ω̃3 × r̃3 = ω3r̂ ;

Ṽ4 = ω̃4 × r̃4 = −ω4rk̂ ;

Ṽ5 = ω̃5 × r̃5 = −ω5rı̂ ;

Ṽ6 = ω̃6 × r̃6 = −ω6r̂ . (2.104)

These velocities create the six components of angular velocity of the sphere:

Ω̂1 = ı̂× k̂ = −̂ ;

Ω̂2 = ̂× ı̂ = −k̂ ;

Ω̂3 = k̂ × ̂ = −ı̂ ;

Ω̂4 = −ı̂×−k̂ = −̂ ;

Ω̂5 = −̂×−ı̂ = −k̂ ;

Ω̂6 = −k̂ ×−̂ = −ı̂ . (2.105)
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Thus, we have:

[
ΩT
]

=



0 −1 0

0 0 −1

−1 0 0

0 −1 0

0 0 −1

−1 0 0


(2.106)

and the Jacobian becomes:

Jls =
r

R


0 0 −0.5 0 0 −0.5

−0.5 0 0 −0.5 0 0

0 −0.5 0 0 −0.5 0

 . (2.107)

This leads to the slip factor for the ith wheel being:

Si =
1

2

(
1−

ω((i+2) mod 6)+1

ωi

)
i = 1, 2, ..., 6 . (2.108)

Thus, the only way to obtain zero slip at all points requires:

ω((i+2) mod 6)+1 = ωi ∀i (2.109)

In other words, to enslave omnidirectional wheels 4, 5, and 6 to omnidirectional wheels 1, 2,

and 3 or vice versa. Any other angular velocity combination would yield non-zero slip. For

example, consider

ω1 = ω2 = ω3 = 1, ω4 = ω5 = ω6 = 1.5 (2.110)

68



resulting in a slip factor of S = 0.52.

2.2.4 Mecanum Wheels

Mecanum wheels, also known as Swedish wheels or Ilonators after their Swedish inventor [44],

are similar to single-race omnidirectional wheels only the rollers have a 45◦ angle relative to

the rotation axis of the wheel, as shown in Figure 1.7. Such a design allows for a smoother

interface between the rollers and the sphere, thus potentially reducing induced vibration.

Since the axes of the rollers and the rotation axis of the wheel are no longer orthogonal, the

effects of the rollers’s spin needs to be considered in the kinematics of the system. Thus,

the kinematics will be modified to include rollers at any angle, generalizing the previous

expressions even further. As in the standard omnidirectional wheel case, the contact point

velocity on the sphere side of the sphere/omnidirectional wheel interface is

Ṽ′i = Ω̃× R̃i (2.111)

where subscript i refers to a specific omnidirectional wheel. The velocity of the contact point

on the omnidirectional wheel side, is once again broken into two components: one in the

actuation direction, and the other in the direction of the free-roll of the castors

Ṽi = Viv̂i + Vriv̂ri . (2.112)

However, unlike the standard case, the v̂ri direction is not orthogonal to the actuation

direction, but may be expressed as

v̂ri = cosαv̂i + sinαv̂ni (2.113)
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where v̂ni is a direction normal to the actuation direction, and α is the offset angle of the

rollers, as illustrated in Figure 2.12.

Figure 2.12: Mecanum wheel rollers offset angle.

The no-slip requirement then becomes

(Ω̃× R̃i) · v̂i = (R̃i × v̂i) · Ω̃ = Ṽi · v̂i (2.114)

thus,

RΩ̂i · Ω̃ = ωiri + Vri cosα . (2.115)

In the normal direction the relationship is

(Ω̃× R̃i) · v̂ni = (R̃i × v̂ni) · Ω̃ = Vri sinα . (2.116)
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Combining the latter two equations yields

RΩ̂i · Ω̃ = ωiri +
R

tanα
(R̂i × v̂ni) · Ω̃ . (2.117)

Finally, for each contact point:

(Ω̂i +
1

tanα
v̂i) · Ω̃ =

ri
R
ωi . (2.118)

Therefore, for three contact points, the kinematics may be expressed as,


Ω̂T

1 + 1
tanα

v̂T
1

Ω̂T
2 + 1

tanα
v̂T

2

Ω̂T
3 + 1

tanα
v̂T

3

 Ω̃ =
1

R


r1 0 0

0 r2 0

0 0 r3




ω1

ω2

ω3

 (2.119)

or in Jacobian form

Ω̃ = Jω̃ , (2.120)

where

J =
1

R


Ω̂T

1 + 1
tanα

v̂T
1

Ω̂T
2 + 1

tanα
v̂T

2

Ω̂T
3 + 1

tanα
v̂T

3


−1 

r1 0 0

0 r2 0

0 0 r3

 . (2.121)

Equation 2.121 is a more general version of Equation 2.19 and converges to it for α = 90◦

which is the case for the standard omnidirectional wheels in use for developing Equation

2.19.

Since the most common Mecanum wheels utilize an offset angle of α = 45◦, the following
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two benchmark examples will use 45◦ to demonstrate the effect. However, the expressions

will first be developed generally. For the angle α = 45◦, 1
tanα

= 1, thus, combining with the

choice of three identical omnidirectional wheels with radius r, the expression becomes

J =
r

R


Ω̂T

1 + v̂T
1

Ω̂T
2 + v̂T

2

Ω̂T
3 + v̂T

3


−1

. (2.122)

The Orthogonal Case

Here, as previously presented, the configuration is shown in Figure 2.2. In addition, the

actuation directions and unit induced angular velocity vectors were shown to be

v̂1 = k̂ ,

v̂2 = ı̂ ,

v̂3 = ̂ , (2.123)

and

Ω̂1 = −̂ ,

Ω̂2 = −k̂ ,

Ω̂3 = −ı̂ , (2.124)
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respectively. Thus,

Ω̂1 + cotαv̂1 = −̂+ cotαk̂ ,

Ω̂2 + cotαv̂2 = −k̂ + cotαı̂ ,

Ω̂3 + cotαv̂3 = −ı̂+ cotα̂ . (2.125)

The no-slip condition is

det


0 −1 cotα

cotα 0 −1

−1 cotα 0

 6= 0 . (2.126)

Thus, the expression for the no-slip condition is

1

tan3 α
− 1 6= 0 , (2.127)

which corresponds to the condition that α 6= 45◦. However, the Mecanum wheel has an offset

angle of α = 45◦, and so the necessary condition is not met, and slip is unavoidable. This

essentially means that the Jacobian is not valid because if there exists slip in the system

there is no way to predict, by means of kinematics alone, the linear velocity imposed by an

omnidirectional wheel at a contact point on the sphere. Two more extreme angles would be

α = 0◦ which indicates an omnidirectional wheel where the actuation axis and the rollers

axes are parallel, which yields a zero Jacobian, as expected; and the α = 90◦ case, which

indicates a standard omnidirectional wheel, and converges into the Jacobian developed for

that particular case.

Looking at the rows of the inverse of the Jacobian as vectors, as presented in Figure 2.13

one can observe that the no-slip condition shifts from depending on the unit induced angu-
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lar velocity vectors being linearly independent, to shifted vectors comprised from the unit

induced angular velocity vectors and the direction of the contact point velocity shifted by α.

This, in turn, changes the angle between each two of the three vectors from the orthogonal

90◦ case to an angle of 120◦ case. The only arrangement for such an angular relation is in

a plane; thus, the 45◦ shift of the orthogonal case (as highlighted in the left portion of Fig-

ure 2.13), flattens the row vectors of the matrix into a plane thereby making them linearly

independent, as highlighted in the right portion of Figure 2.13.

For the general case with arbitrary offset angle α 6= 45◦ the Jacobian becomes

Figure 2.13: Shifted row vectors (left) align into a single plane in space (right) to form
Jacobian singularity.

J =
r

R(1− tan3 α)


tan2 α tanα tan3 α

tan3 α tan2 α tanα

tanα tan3 α tan2 α

 . (2.128)
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The Atlas Sphere

As before, the Altas sphere kinematic architecture is shown in Figure 2.3. The actuation

directions and unit induced angular velocity vectors were shown to be

v̂1 = ̂ ,

v̂2 = −
√

3

2
ı̂− 1

2
̂ ,

v̂3 =

√
3

2
ı̂− 1

2
̂ , (2.129)

and

Ω̂1 = sin θı̂+ cos θk̂ ,

Ω̂2 = −1

2
sin θı̂+

√
3

2
sin θ̂+ cos θk̂ ,

Ω̂3 = −1

2
sin θı̂−

√
3

2
sin θ̂+ cos θk̂ , (2.130)

respectively. The no-slip requirement becomes

det


sin θ cotα cos θ

−1
2

sin θ −
√

3
2 tanα

√
3

2
sin θ − 1

2 tanα
cos θ

−1
2

sin θ +
√

3
2 tanα

−
√

3
2

sin θ − 1
2 tanα

cos θ

 6= 0 (2.131)

and the expression for the no-slip condition becomes

3
√

3

2
cos θ(sin2 θ + cot2 α) 6= 0 . (2.132)

This results in the same cases as in the original Atlas sphere architecture, where the deter-

minant is zero only if θ = 90◦ or if θ = 0◦ and α = 90◦ simultaneously, which is exactly an
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Atlas sphere with regular omnidirectional wheels. The Jacobian for this system becomes

J =
r

R


sin θ cotα cos θ

−1
2

sin θ −
√

3
2 tanα

√
3

2
sin θ − 1

2 tanα
cos θ

−1
2

sin θ +
√

3
2 tanα

−
√

3
2

sin θ − 1
2 tanα

cos θ


−1

. (2.133)

Once again, it is clear that the resulting Jacobian converges into the Jacobian obtained

for standard omnidirectional wheels, for the case where α = 90◦, as expected.

2.3 Kinematics Summary

In this kinematics chapter, a general approach was developed to examine the kinematics of

a sphere actuated by omnidirectional wheels. The approach was used to examine various

design architectures. The effects of the number of omnidirectional wheels in use was closely

examined, and a general Jacobian for the case was developed:



Ω̂T
1

Ω̂T
2

Ω̂T
3

.

.

Ω̂T
n


Ω̃ =

1

R



r1 0 0 . . .

0 r2 0 . . .

0 0 r3 . . .

. . . . . .

. . . . . .

. . . . . rn





ω1

ω2

ω3

.

.

ωn



. (2.134)

This general relation was analyzed and it was concluded that in the general sense, three om-

nidirectional wheels yield a singularity-free no-slip system in terms of applicable kinematics,
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where the kinematics become:

Ω̃ =
1

R


Ω̂T

1

Ω̂T
2

Ω̂T
3


−1 

r1 0 0

0 r2 0

0 0 r3




ω1

ω2

ω3

 . (2.135)

Additionally, various omnidirectional wheel types were considered, where single-race,

dual-race, and triple-race wheels were discussed and compared. Finally, Mecanum wheels

were considered and a modified, more general version for the kinematics of a sphere actuated

by three omnidirectional wheels was developed


Ω̂T

1 + 1
tanα

v̂T
1

Ω̂T
2 + 1

tanα
v̂T

2

Ω̂T
3 + 1

tanα
v̂T

3

 Ω̃ =
1

R


r1 0 0

0 r2 0

0 0 r3




ω1

ω2

ω3

 , (2.136)

which embodies both Mecanum wheels and standard omnidirectional wheels in a single

expression. This representation allows examining new cases of omnidirectional wheels where

the shift angle of the rollers may be different from the standard angles of 45◦ and 90◦ available

currently.
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Chapter 3

Dynamics and Vibration

Obtaining general equations of motion for a platform comprising a sphere actuated by omni-

directional wheels, assuming all components are rigid, is a first step towards understanding

the dynamics of the system. However, as mentioned earlier, omnidirectional wheels are not

ideal by design; that is, they are never ideally round. Other issues that may arise are the

rigidity of their mounts and the contact rigidity. Moreover, various types of omnidirectional

wheels exist composed of various materials, and having various geometric shapes. All these

need to be taken into consideration when constructing the dynamic model and deriving the

equations of motion of the system. The model developed in this work takes into account

the effects of the shape of the omnidirectional wheels, the stiffness of their mounting, and

the deflection of the sphere at the contact point. The overall mechanical system is analyzed

as a combination of a completely rigid system, with a subsystem of springs and dampers to

represent the non-rigid elements, while the shape of the wheel is treated as positional input.

This chapter will present the model and the corresponding equations of motion for the

system. A Matlab program was written to integrate the equations numerically. Sample

results will be presented and discussed to show the basic dynamic behaviour of the system

for the purpose of verification and validation. The program was developed as a simulation
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tool that is suitable for allowing more thorough research and analysis of the effects of various

design parameters on the system’s performance. The analysis of all possible design param-

eters and their effects on all performance indicators is a vast project; thus, a representative

analysis will be presented in the following chapter.

3.1 System Model

3.1.1 Omnidirectional Wheel Shape

In Chapter 2, kinematic relationships were developed for the ideal case where the omnidirec-

tional wheels were assumed to be perfectly round and there was no relative motion between

the sphere’s geometric centre and the omnidirectional wheels. In addition to the assumption

that the omnidirectional wheels and the sphere are rigid, it had also been assumed that the

rotational platform is rigidly attached to the translational platform. In order to obtain the

equations of motion for a more realistic platform the kinematics must first be modified to

include these departures from the ideal case. First, removing the assumption of a perfectly

round omnidirectional wheel, means:

rwi
= rwi

(θi) (3.1)

thus,

ṙwi
= θ̇ir

′
wi

(3.2)

r̈wi
= θ̇2

i r
′′
wi

+ θ̈ir
′
wi

, (3.3)

where rwi
is the distance from the centre of omnidirectional wheel i to its contact point

with the sphere, and θi is a cyclical coordinate of the orientation of omnidirectional wheel i,
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r′wi
=

drwi

dθi
, and r′′wi

=
d2rwi

dθ2i
. The actual shape of the omnidirectional wheel has a significant

effect on the effective contact radius; however, the radius of the sphere itself also affects the

effective contact radius rwi
.

Figure 3.1: Contact area between omnidirectional wheel and sphere.

Figure 3.1 shows the contact area between an omnidirectional wheel and the sphere,

illustrating the gaps between the rollers. Here, rb is the maximal radius of the omnidirectional

wheel, θb is the angular distance between two consecutive rollers, θs is the angular size of the

gap between two consecutive rollers, both measured about the centre of the omnidirectional

wheel, and θR is the same gap measured about the centre of the sphere. From geometric

considerations, it is apparent that:

sin
θRi

2
=
rbi
Ri

sin
θsi

2
. (3.4)
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The difference between the maximal and minimal distances between the centres of the sphere

and the omnidirectional wheel is

∆rwi
= (R + rbi)− [(R cos

θRi

2
) + (rbi cos

θsi

2
)] . (3.5)

Thus,

∆rwi
= R(1− cos

θRi

2
) + rbi(1− cos

θsi

2
) , (3.6)

where ∆rwi
is defined by the relation

rwi
= rbi −∆rwi

. (3.7)

Finally, combining with the constant radius rbi of the roller area:

0 < θi < θsi
rwi

= rbi −∆rwi
sin(2π

θi
θsi

)

θsi
≤ θi ≤ θsi

+ θbi rwi
= rbi (3.8)

where for ni rollers,

θsi
+ θbi =

2π

ni
. (3.9)

Defining the roundness ratio ηi as

ηi =
θsi

θsi
+ θbi

(3.10)

provides a means to classify omnidirectional wheels as follows:
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• η = 0 - perfectly round wheel;

• η = 1 - wheel with continuous contact, such as Mecanum wheels; and

• 0 < η < 1 - omnidirectional wheel with gaps between the rollers where smaller η means

smaller gaps.

Thus, Equation 3.8 becomes

ηi = 0; rwi
= rbi

ηi 6= 0; rwi
= rbi −∆rwi

sin(
niθi
ηi

) . (3.11)

This model essentially presents the main cause for vibration in the system. It should

be noted that the effects of the omnidirectional wheel’s radius changes are small compared

with the radius itself (less than 0.5% for a reasonably bad case), and thus the impact on

the Jacobian and the angular motion resulting is negligible. However, its impact on the

translational vibratory motion is significant. Since this is the main source for vibration it is

there, in the translational motion of the centre of the sphere, that the model is used.

3.1.2 Sphere-Omnidirectional Wheel Interface

The interface between the omnidirectional wheels and the sphere is treated here as non-rigid.

Thus, each contact point is modelled as a combination of a spring and a viscous damper.

The non-rigid assumption, in turn, results in each contact point becoming a contact patch

that is spread over more than a single point. The implications are that, in addition to

radial deflection, there may be two additional resisting moments occurring: rolling resistance

and spin resistance. Rolling resistance may be caused due to shifts in the position of the

equivalent normal force over a contact patch from the line connecting the centres of the

sphere and omnidirectional wheel involved. Spin resistance is due to friction.
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Radial Deflection

The radial deflection is modelled as a combination of a spring with linear stiffness Ki and

viscous damping of Ci. The importance of these coefficients is their contribution to isolation

of the internal parts of the sphere from vibration. The main source of vibration in the system

is the imperfect shape of the omnidirectional wheels as they roll in contact with the sphere.

Since each contact point is not really connected to the others, its effect on the position

of the effective centre of the deformed sphere is assumed independent of the other contact

point deflections. Thus, the radial motion of each contact point is analyzed independent of

the other contact points, and their contributions to the overall translation of the centre of

the sphere is then vectorially summed to obtain the overall translation of the centre of the

sphere.

Hertzian Contact Model

Since radial deflection depends on what happens at the contact point, a contact model

must be considered. A widely accepted model for this purpose is the Hertzian model [76, 77].

The following analysis for the resisting moments is independent of the model of choice, yet

an implementation of the Hertzian model is shown as an example. The Hertzian model

suggests that the contact patch is circular. In that case, for a normal force Ni at contact

point i, the pressure distribution pi is:

pi = p0i

√
1−

(
r

ai

)2

(3.12)

where r is a local coordinate representing the distance of the point in the contact patch from

the centre of the contact patch, a is the radius of the contact patch, and is a function of the
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equivalent radius R
′
i and the equivalent elasticity modulus E

′
i [76] detailed below such that

ai =

(
3NiR

′
i

4E
′
i

) 1
3

, (3.13)

and p0i
is the maximal pressure at the centre of the patch,

p0i
=

3Ni

2πa2
i

. (3.14)

For this case, the deflection at contact point i is

δi =

(
9N2

i

16R
′
iE

′
i
2

) 1
3

. (3.15)

The values of E
′
i and R

′
i are:

E
′

i =
EsEwi

Es(1− ν2
wi

) + Ewi
(1− ν2

s )
(3.16)

and

R
′

i =
Rri
R + ri

, (3.17)

where Es and Ewi
are Young’s moduli of the sphere and omnidirectional wheel i respectively,

and νs and νwi
are the corresponding Poisson ratios.

Rolling Resistance

If the equivalent normal force corresponding to the pressure distribution within a contact

patch is not located at the corresponding theoretically ideal rigid body contact point, then

the normal force would not pass through the geometric centre of the sphere, and therefore
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create a moment resisting the rolling motion. This, in turn, will affect the moment equations,

both for the sphere and for the omnidirectional wheels. Various models exist to evaluate the

length of the moment arm lri . However, it must be included as a contribution to the moment

equations of the sphere and the omnidirectional wheels:

~Tri = ~lri × ~Ni i = 1, 2, 3 (3.18)

where ~Tri is the rolling resistance moment at contact point i and ~lri is the position of the

equivalent normal force with respect to the rigid body contact point.

Thus, the magnitude of the rolling resistance for a single contact point i is:

Tri = −Nilri i = 1, 2, 3 (3.19)

where lri is the effective roll moment arm of contact point i, and may be evaluated through

either theoretical or experimental models.

The full vector expression of the rolling resistance is therefore:

~Tri = −Nilri
~Ω · Ω̂i

|~Ω · Ω̂i|
Ω̂i i = 1, 2, . (3.20)

As an illustrative example, the Hertzian model will be used to obtain lri . Since the

Hertzian model calls for a symmetric distribution of the normal force, the equivalent contact

point is at the rigid body contact point, therefore, the normal force passes through the

geometric centre of the sphere, and so we obtain:

Tri = 0 i = 1, 2, 3 (3.21)
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and clearly,

lri = 0 i = 1, 2, 3 . (3.22)

This result is due to the fact that the Hertzian model is completely symmetrical. This may

not necessarily be the realistic case, where possibly lri 6= 0. However, the moment arm length

is limited by the radius of the contact patch. Since lri is essentially the centre of pressure

offset, it depends on the viscoelastic properties of the interface between the sphere and the

omnidirectional wheel, and varies with properties, speed of rotation, temperature, and other

parameters. Practically, this moment arm can be obtained by rolling resistance tests. For

demonstration, lri will be taken to be lri = ai as long as the angular velocity is non-zero.

Spin Resistance

Omnidirectional wheels allow actuation about one axis while providing practically no re-

sistance in a direction perpendicular to the actuation direction. However, they have no

mechanism that eliminates resistance in the spin direction. This is due to the assumption

that the contact occurs at a point. Once the contact point becomes a contact patch, this

assumption is no longer valid, and some spin resistance must exist. While specific models

for evaluating this component may be considered, it can be modelled as a contribution to

the moment equation:

Tsi
=

∫∫
Si

µiNi(r, θ) dSi i = 1, 2, 3 (3.23)

where Tsi
is the spin resistance moment at contact point i, the normal force at the contact

point Ni becomes a distributed pressure Ni(r, θ) over the contact patch Si, where r and θ

are local coordinates at the contact patch surface. The coefficients of dry friction at the
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contact points are µi. As mentioned earlier, various models exist for the evaluation of the

distributed normal pressure Ni(r, θ) and the contact patch shape Si.

As far as the higher level dynamic model of the platform is concerned, the magnitude of

the spin resistance when the angular velocity is non-zero may be modelled as:

Tsi
= µiNilsi

i = 1, 2, 3 (3.24)

where lsi
is the effective spin lever of contact point i, and may be evaluated through either

theoretical or experimental models.

The full vector expression of the spin resistance would therefore be:

~Tsi
= µiNilsi

~Ω · ~Ri

|~Ω · ~Ri|
R̂i i = 1, 2, 3 . (3.25)

Note that due to this definition of the resisting components

~Tsi
· ~Tri = 0 i = 1, 2, 3 . (3.26)

Once more, the Hertzian model will be used to obtain lsi
. Spin is the rotation about an

axis that connects the geometric centres of the sphere and an omnidirectional wheel through

the contact point. When the contact point becomes a contact patch, spin is accompanied

by friction, which is proportional to the normal force at the point. Although the resultant

friction force may be zero, the friction produces a moment resisting the spin motion:

Tsi
=

∫∫
c.p.

µipirdS =

∫ 2π

0

∫ ai

0

µipir
2drdθ . (3.27)
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Utilizing Equation 3.12 and applying the integral limits, we obtain:

Tsi
=

3π

16
µiNi

(
3NiR

′
i

4E
′
i

) 1
3

. (3.28)

The direction of the spin resistance is opposite that of the spin direction at the contact point,

thus,

~Tsi
= −3π

16
µiNi

(
3NiR

′
i

4E
′
i

) 1
3 ~Ω · ~Ri

|~Ω · ~Ri|
R̂i (3.29)

therefore,

lsi
=

3π

16

(
3NiR

′
i

4E
′
i

) 1
3

i = 1, 2, 3 . (3.30)

The total spin resistance is therefore:

~Ts =
3∑
i=1

~Tsi
. (3.31)

3.1.3 Omnidirectional Wheel-Linear Platform Interface

Another important interface is the one between the linear platform and the omnidirectional

wheels. The reaction forces between the omnidirectional wheels and the sphere affect the

mounting point of the omnidirectional wheel onto the linear platform. The mounting point,

which is attached to the omnidirectional wheel’s centre, is modelled as non-rigid. Each

mounting point is modelled as having stiffness coefficient ki, and viscous damping coefficient

ci.

Combining the effects of the shape of the omnidirectional wheels, the sphere-omnidirectional

wheel contact interface, and the omnidirectional wheel-linear platform interface, with the
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rigid body dynamics makes up the model for the system that allows investigation of the

dynamics of the system as well as vibration issues.

The model for the contact point area is illustrated in Figure 3.2. It takes the linear plat-

form’s motion (Sci in the illustration) as a motion input into the sphere. The motion input

into the sphere is a combination of the linear motion of the centre of the omnidirectional

wheel and the distance to the effective contact point between the sphere and the omnidirec-

tional wheel. All contact points are treated using the same model. Next, the parameters

Sai
, Sbi , Sci need to be mapped into the parameters in the context of the Atlas platform.

Sai
= ~Rs · r̂wi

,

Sbi = ~Rl · r̂wi
+ ∆i ,

Sci = ~Rl · r̂wi
,

Sdi
= const. , (3.32)

where ~Rs is the position of the centre of the sphere, ~Rl is the position of the translational

platform, ∆i is the local deflection of the attachment point of the omnidirectional wheel to

the linear platform, and Sdi
is a constant distance definition of the kinematic closure of the

system, Sdi
> 2R. The exact magnitude is determined by the geometric details and design

of the system, and does not impact the results. To obtain vibration information, we observe

∆~R = ~Rs − ~Rl , (3.33)

where ∆~R is the displacement of the effective centre of the sphere from the geometric centre

of a perfect sphere. One can observe that

~Rl · r̂wi
+ ∆i + rwi

+ δi = ~Rs · r̂wi
(3.34)
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Figure 3.2: Model for contact point.
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and kinematic closure equations maintain:

∆i + rwi
+ δi + δci = Zc , and (3.35)

∆̇i + ṙwi
+ δ̇i + δ̇ci = 0 . (3.36)

3.2 Equations of Motion

Utilizing the assumptions and relations described in the previous sections, combined with

the kinematic relations, Equations 3.37 - 3.44 below are obtained using the Newton-Euler

dynamic formulation. Since the focus of the thesis is on concept, not application, some details

are generalized. Specifically, the translational motion implementation is treated as a black

box controlled by three independent forces along its main axes. In addition, form closure is

assumed without detail on the exact locations of support, since this is an implementation

detail. The internal structure of the sphere is also application dependent and therefore not

specified or structurally modelled.

Equations of motion were derived using a Newtonian approach. The system is broken

down into two subsystems: the sphere and the linear platform (which includes everything

but the sphere).

First, the force equation for the sphere is:

~Fext +
3∑
i=1

~Ni +
3∑
i=1

~fi = Ms( ~̈Rs) , (3.37)

where Ms is the mass of the sphere, Rs is the position of the centre of the sphere, ~Fext is

an external compressive force applied to the sphere to ensure zero slip, ~Ni and ~fi are the

normal and frictional forces at contact point i respectively.
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The force equation for the linear platform is:

~P −
3∑
i=1

~Ni −
3∑
i=1

~fi = (Ml +
3∑
i=1

mi) ~̈Rl , (3.38)

where Ml is the mass of the linear platform, mi is the mass of omnidirectional wheel i, ~P is

the force applied to the linear platform, and Rl is the position vector of the mass centre of the

linear platform. The moment equation of each omnidirectional wheel i about its geometric

centre is:

Ti − firwi
− Tri = Iwi

ω̇i , (3.39)

where Ti is the actuation moment of omnidirectional wheel i. This equation is a scalar

equation, and is valid for each of the omnidirectional wheels in the system. In the case where

there are three omnidirectional wheels, there are three equations involved. The moment

equation of the sphere about its geometric centre is:

3∑
i=1

~fi × ~Ri −
3∑
i=1

~Tri −
3∑
i=1

~Tsi
= [Is] ~̇Ω + ~Ω× [Is] ~Ω . (3.40)

The equations for the elastic effects at the contact points, derived using the model presented

in Figure 3.2 are:

Ms( ~̈Rl · r̂wi
+ ∆̈i + δ̈i) + Ciδ̇i +Kiδi −K ′i(∆i + δi) = K ′i(rwi

− Zc)−Msr̈wi
,(3.41)

and

mi∆̈i − Ciδ̇i + ci∆̇i −Kiδi + ki∆i = 0 , (3.42)
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where δi is defined in Figure 3.2 as the distance between the centre of the sphere to contact

point i, and ∆i is defined in Figure 3.2 as the distance between the centre of omnidirectional

wheel i to its mounting point on the translational platform. Finally, from the kinematics we

have Equation 2.20

~̇Ω = J {ω̇} , (3.43)

and the quaternionic differential equation 2.21

q̇ =
1

2
Ω ◦ q . (3.44)

It is essential to understand that a deviation of the centre of mass from the geometric

centre will not result in coupling of the linear and rotational motions due to the fact that the

motion of the omnidirectional wheels is controlled, and setting the moment applied to them

is the only means to cause rotational motion in the system. Thus, as long as the friction limit

at the contact points is not exceeded, the only effect would be that of increasing the reaction

forces at the contact points. Since it is desired to obtain a slip-free system, the required

external force ~Fext that would yield zero kinetic slip needs to be determined. Obtaining this

is done by assuming the friction limit is exactly reached while still maintaining the kinematic

no-slip condition, that is, fi = µiNi, and ~̇Ω = J {ω̇}. The result is the minimum required

external force to assure the no-slip condition. In our case, we obtain

~Fext =
Ms

MT −Ms

·(
Ms

MT

~P −R2
(
[v]− [µ]−1 [Ri]

) (
[Iw] [rw]−1 [Is]

−1 [Ω]T [Ω] + [rw]
)−1

{T}
)

,

(3.45)
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and

{N} =
(

[Iw]R2 [rw]−1 [Is]
−1 [Ω]T [Ω] [µ] + [rw] [µ]

)−1

{T} , (3.46)

where, [Iw] is a diagonal matrix containing the moments of inertia of the omnidirectional

wheels, [Is] is the inertia tensor of the sphere, and [µ] is a diagonal matrix with µi as

its elements. In addition, [Ri] is a matrix with R̂i as its columns, [v] is a matrix with

v̂i as its columns, and [rw] is a matrix with rwi
as its columns. This set of equations

is a combination of differential equations and algebraic equations. Thus, the differential

equations need to be integrated while the algebraic equations need to be solved at each

integration step simultaneously. Integration was performed utilizing the basic 4th order

Runge-Kutta method (Ode45 solver) in a Matlab program.

Several steps were performed during each integration iteration. First, the orientation of

each omnidirectional wheel is translated into the input function for the vibration equations

utilizing Equations 3.11. Then the actual current omnidirectional wheel radii (rwi
) and

its time derivatives are evaluated. Next, the contact forces Ni are evaluated algebraically.

Finally, the differential equations are evaluated and the required external force calculated.

At the end of the integration step, constraints are checked and enforced.

3.2.1 Verification and Validation

A Matlab program was developed to simulate the dynamics. To verify the program and

equations the orthogonal case presented in Chapter 2 was considered. The goal of this

exercise was to qualitatively validate the program by introducing scenarios with predictable

results before delving into analyses of more realistic and complex behaviours.

First, a scenario where all bodies are rigid and the omnidirectional wheels are perfectly

round is examined as a baseline. Here, the expectation is to obtain the pure ideal motion
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of a sphere rolling without sliding on actuating omnidirectional wheels. The translation

should show parabolic motion as a result of a constant driving force. The rotational mo-

tion is expected to behave similarly driven by constant torques, which is to be indicated

in the Euler parameters behaving in a sinusoidal manner. The resulting magnitudes of the

angular velocity vector components of the sphere are expected to develop linearly. No per-

turbatory motion is expected is such an ideal system, meaning zero vibration. The program

demonstrates the behaviour mentioned above for the rigid body case as the first part of the

verification.

Second, to ensure that the non-ideal shape of the omnidirectional wheels affects the

simulation results, a basic set of examples with varying values of roundness ratio are intro-

duced. The expectation is to observe vibrational motion superimposed on the ideal motion.

The frequencies are expected to reflect the number of rollers and angular velocity of each

omnidirectional wheel. The orthogonal configuration would be used so that the three axes

would be independent of one another, thus each axis should represent the effects of a single

omnidirectional wheel.

Finally, to show the effects of a non-rigid sphere, an effective spring coefficient would

be considered along with imperfect omnidirectional wheels to show the vibration isolation

effects of the model. The expectation is to observe a reduction in the maximal magnitude

that was observed when a similar omnidirectional wheel was used combined with a rigid

sphere.

The baseline configuration is a sphere with radius R = 1.22 m and mass Ms = 5 kg. The

low mass for the sphere is selected to enhance any vibrational motion. The linear platform’s

mass is Ml = 5 kg. The three identical wheels have a mass of m1 = m2 = m3 = 0.25 kg and

nominal radii of rw1 = rw2 = rw3 = 7.58 cm. The coefficient of friction at the contact points

was taken as a representative µ = 0.9 [89].
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“Perfect World”

The most basic results presented are for the “perfect world” case, where all bodies are

rigid and the omnidirectional wheels are perfectly round (η = 0). This case is used for

basic verification of the program. Figure 3.3 shows the development of the angular velocity

vector components of the sphere. Both the linear behaviour and the magnitudes behave as

predicted since there is no resisting moment acting on the sphere, and the actuating moment

is constant.

The components of the quaternion representing the orientation of the sphere are shown in

Figure 3.4. The harmonic plots represent motion about a constant axis, and the increasing

frequency indicates an increasing angular velocity as one would expect. The linear portion of

the motion, indicated by the position of the centre of mass of the linear platform, is presented

in Figure 3.5. It is expected to develop in a parabolic fashion as there are no resisting forces

to oppose the constant applied force ~P . It is also clear that there is no indication of coupling

between the angular degrees-of-freedom and the linear ones. The details of the driving forces

used for the validation were taken to be step functions, where the magnitudes of the steps

are Px = 0.1 N, Py = 0.2 N, Pz = 0.3 N and T1 = 0.1 N ·m, T2 = 0.2 N ·m, T3 = 0.3 N ·m.

All other components remain zero as expected. That is, there is no relative linear motion

between the sphere and the linear platform.

Imperfect Omnidirectional Wheels

Here, the omnidirectional wheels are no longer assumed perfectly round. However, all system

components are still maintained rigid. The goal here is to observe whether the rigid system

reacts to the shape input of the wheels within the rigid constraints. It is expected that ob-

serveable relative motion will occur between the centre of the sphere and the linear platform

which is of the same magnitude as the input signal, that is, the shape of the omnidirectional
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Figure 3.3: ~Ω as a function of time for the orthogonal case.

Figure 3.4: The quaternion as a function of time for the orthogonal case.
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Figure 3.5: ~Rl as a function of time for the orthogonal case.

wheel. Results show the vibration caused by the gaps between the rollers. Presented in

Figures 3.6 through 3.9 is the motion of the centre of the sphere for sample roundness ratios.

The omnidirectional wheels currently in use on the Atlas demonstrator have 14 rollers,

and a roundness ratio of η = 0.4485. The figures present the motion of the centre of the

sphere relative to the linear platform, in the inertial x, y, and z directions, along with the

magnitude of the vector. All figures present a magnification of the graph showing the first

1.5 s of the results. From Figures 3.6 through 3.9 it is observed that the lower the roundness

ratio, the smoother the motion, as the magnitude grows with the roundness ratio as presented

in more detail in Figure 3.10. Looking at the plots reveals also that there is no change in

the frequency of the peaks observed in the plots. These results are expected as suggested

by Equations 3.6 and 3.8, where reducing θsi
and θRi

reduces ∆rwi
thereby reducing the

magnitude of the input perturbation function.
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Figure 3.6: ∆~R as a function of time for the orthogonal case η = 0.3.

Figure 3.7: ∆~R as a function of time for the orthogonal case η = 0.4.
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Figure 3.8: ∆~R as a function of time for the orthogonal case η = 0.4485.

Figure 3.9: ∆~R as a function of time for the orthogonal case η = 0.6.
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Figure 3.10: Maximum magnitude of ∆~R as a function of η for the orthogonal case.

Non-rigid Sphere

When considering a non-rigid sphere, the stiffness of the contact point is considered. In

this case, as an example, this coefficient was selected to be Ki = 188208 N/m which is the

measured stiffness of the sphere of the Atlas demonstrator. The effects of changes to this

number will be presented in the next chapter. Figure 3.11 shows the response for constant

angular speed values of ω1 = 0.1 rad/s, ω2 = 1.2 rad/s, ω3 = 0.3 rad/s for the case where

the roundness ratio is η = 0.4485, but with the stiffness coefficient above. Comparing with

the previous examples that had a completely rigid sphere, we can see that the magnitude of

the vibration is orders of magnitude lower than that of the rigid system.

Figure 3.12 presents the result for the same system but with a damping coefficient of

Ci = 8500 N · s/m, while in Figure 3.13 the damping coefficient is Ci = 20000 N · s/m.

Thus, adding damping to the system, shows a noticeable but very slight reduction in the

magnitude of the vibration. It does appear, however to dampen the secondary higher fre-

quency vibration. Thus, the importance of the stiffness of the sphere is highlighted and is
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Figure 3.11: ∆~R as a function of time for the orthogonal case η = 0.4485,
Ki = 188208 N/m.

worth further examination, but damping coefficient effects seem to be only secondary.

Discussion

The purpose of presenting the simulation results in this chapter was validation and verifi-

cation of the simulation program so that results for more complex cases will be considered

reliable. The expected results were stated for the ideal case and the simulation results ob-

tained indeed agreed with expectations. The introduction of non-ideal shape parameters for

the omnidirectional wheels added vibrations to the system and it was shown, as expected,

that increasing the roundness ratio increases the maximal magnitude of the vibratory mo-

tion of the centre of the sphere. Removing the rigid body assumption from the sphere,

introduced vibration isolation effects, and a significant reduction of the maximal magnitude

and frequency of the sphere’s position was observed. Adding damping to the system indeed

smoothed the plots more without affecting the magnitude of the vibration. All these results
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Figure 3.12: ∆~R as a function of time for the orthogonal case η = 0.4485
Ki = 188208 N/m Ci = 8500 N · s/m.

Figure 3.13: ∆~R as a function of time for the orthogonal case η = 0.4485
Ki = 188208 N/m Ci = 20000 N · s/m.
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were predicted prior to running the simulation program and presented earlier in this chapter,

thus verifying and validating the program for use in more complex scenarios.

A more detailed analysis and comparison will be performed in the next chapter. The

purpose of the presentation here was for demonstration using relatively-simple examples and

will serve as a starting point for more representative cases considered in the following chapter.

However, it is quite clear from the results that the roundness ratio and the stiffness of the

sphere significantly affect the motion of the sphere, as expected and presented in Figures 3.10

and 3.11, while the equivalent damping coefficient at the contact point has a less significant

role in the resulting motion of the centre of the sphere. Attention should be paid to the fact

that using the orthogonal case, there is a direct mapping between axes and omnidirectional

wheel as shown when the orthogonal case was originally presented in Chapter 3. This allows

us to examine the results in an easier fashion since the three omnidirectional wheels are

orthogonal to each other, thus, making it easy to observe the effects of each individual

omnidirectional wheel.
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Chapter 4

Application and Analysis

The kinematics and dynamics of the system have been presented and demonstrated in Chap-

ters 1 through 3. In this chapter, as a sample application of the formulation and engineering

analysis of the simulation developed, the results are used to compare the performance of two

different sets of omnidirectional wheels in the Atlas motion platform configuration. First,

the effectiveness of the transmission is examined; then, the induced vibrations are compared.

This application is a demonstration of the utility of the tools developed in Chapters 2 and 3

from the standpoint of the ability to investigate various architectures for the design of a

motion platform based on a sphere actuated by omnidirectional wheels. The application

selected compares two omnidirectional wheel sets. One comprises three standard omnidirec-

tional wheels with fourteen rollers as illustrated in Figure 4.1. The other is a set of three

Mecanum wheels with the same diameter but with sixteen rollers, as shown in Figure 4.2.

4.1 Mecanum Wheel Geometric Model

While the geometric model of the standard omnidirectional wheel was presented in Chapter 3,

Mecanum wheels were only presented in the definition of the roundness ratio, η, stating that
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Figure 4.1: Standard omnidirectional wheel considered in this chapter [89].

for Mecanum wheels, η = 1. While this is indeed the case, the basic shape of the Mecanum

wheel varies from that of the standard omnidirectional wheel. In a standard omnidirectional

wheel the deviation from perfect roundness is due to gaps between the rollers. In the case of

Mecanum wheels, gaps between rollers are not present because the cylindrical shape of the

rollers combined with their orientation results in a series of ellipses touching each other, as

shown in Figure 4.3, when looking in a cross-section at the contact line on the perimeter of

the omnidirectional wheel.

For an orientation angle α = 45◦, the parameters for the ellipse become:

a =
√

2rr ,

b = rr , (4.1)

where rr is the radius of the roller. The state where the centre of the sphere is closest to the
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Figure 4.2: Mecanum wheel considered in this chapter [90].
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Figure 4.3: Contact area cross-section for Mecanum wheels.

centre of the omnidirectional wheel corresponds to:

l2min = (R + rr)
2 − r2

r (4.2)

and the furthest state is:

lmax = R + rr . (4.3)

Thus, in the Mecanum wheel case:

∆rwi
= Ri + rri −

√
Ri(Ri + 2rri) , (4.4)

where ∆rwi
is defined by the relation

rwi
= rbi −∆rwi

. (4.5)
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Finally, similar to the way the standard omnidirectional wheels were treated in Chapter 3,

the continuous function for the distance from the centre of the Mecanum wheel to the contact

point becomes

rwi
= rbi −∆rwi

sin (Niθi) . (4.6)

The plots shown in Figures 4.4 - 4.6 illustrate the differences between the two wheel types

in terms of position, velocity, and acceleration, respectively, for unit angular velocity of the

wheels. The dimensions of the two omnidirectional wheels are presented in Figures 4.1 and

4.2.

Figure 4.4: Positional excitation comparison between standard and Mecanum
omnidirectional wheels.

The motivation for checking the Mecanum wheel option is quite clear from the figures.

The excitation magnitudes resulting from the shape of the Mecanum wheels are significantly

lower than the excitation magnitudes resulting from the shape of the standard omnidirec-

tional wheels. The drawback is that the excitation frequency is slightly higher due to the
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Figure 4.5: Velocity excitation comparison between standard and Mecanum
omnidirectional wheels.

Figure 4.6: Acceleration excitation comparison between standard and Mecanum
omnidirectional wheels.
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fact that one may fit more rollers on the circumference of a Mecanum wheel.

4.2 Transmission Effectiveness

The first parameter to be examined is the effectiveness of the transmission. While the

Jacobian developed in Chapter 2 exists for both types of wheels, it is clear that the direction

of the resultant angular velocity vector is, generally, different. However, less obvious is the

difference in the magnitude of the sphere angular velocities generated by the two types of

wheels. In this section, the difference between the angular velocity vector magnitude of the

sphere induced by Standard omnidirectional wheels and by Mecanum wheels is examined.

In order to examine the effectiveness of the transmission, a parameter similar to the

traditional one degree-of-freedom transfer ratio is defined:

ι =
|~Ω|
|~ω|

(4.7)

where ι is the equivalent transfer ratio of the rotational subsystem. Since the system is

assumed to be slip-free, the differences in the transmission effectiveness are due to different

distribution of the angular velocity between the sphere itself and the rollers on the omnidi-

rectional wheels. That is, loss of transmission effectiveness is a result of the rollers absorbing

the slip instead of the sphere gaining the full magnitude possible from the actuating omnidi-

rectional wheels. A better tool to compare the transmission effectiveness would remove the

dependence on the radii of the sphere and omnidirectional wheels. Thus, for omnidirectional

wheels with radius r, and a sphere with radius R, we define the transmission effectiveness:

ξ =
R

r
ι =

R

r

|~Ω|
|~ω|

. (4.8)

Greater values of ξ mean greater transmission effectiveness, thus allowing comparison of
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various configurations and wheels. In this case, the comparison is made for identical config-

urations using two types of wheels - standard omnidirectional wheels and Mecanum wheels -

with similar radii and the same sphere. The results for combinations of values for ω1, ω2, and

ω3 varying between 0−2.5 rad/s are presented in Figure 4.7. Figure 4.7 presents the transfer

ratio and the transmission effectiveness of regular and Mecanum omnidirectional wheels as

a function of the norm of the input angular velocities column matrix, and clearly shows that

regular omnidirectional wheels, i.e., with α = 90◦ consistently have higher transmission ratio

and transmission effectiveness, where the worst results for regular omnidirectional wheels

are the upper limit for the Mecanum wheels.

Figure 4.7: Comparing ι (left) and ξ (right) for regular (x) and Mecanum (+)
omnidirectional wheels

4.3 Vibration

The major reason for examining Mecanum wheels is their relatively smooth circular profile,

resulting in a smoother input function into the sphere in terms of vibration. The expectation

is to find the Mecanum wheels advantageous in that regard simply because the noise input

level has lower magnitude and has a smoother shape (lower magnitude of the derivatives).

112



Elastic properties of the sphere at the contact points, as well as elastic properties of the

mounting of the omnidirectional wheels significantly affect the vibration response of the

system. These effects, as well as damping effects, are investigated next.

4.3.1 Natural Frequency

The natural frequencies of the system are obtained from Equations 3.41 and 3.42, by resolving

the coefficient determinant:∣∣∣∣∣∣∣
−Msω

2
ni
−K ′i −Msω

2
ni

+Ki −K ′i

−miω
2
ni

+ ki −Ki

∣∣∣∣∣∣∣ = 0 i = 1, 2, 3 (4.9)

for each contact point, where ωni
is the natural frequency for contact point i. Figure 4.8

illustrates the natural frequency as a function of Ki, illustrating the effects of changing the

stiffness coefficient of the omnidirectional wheel mounting.

Figure 4.8: Natural frequency as a function of the stiffness of the sphere and the
stiffness of the omnidirectional wheel mounting K ′i = 0
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It is clear that increasing both these parameters increases the natural frequency of the

system as shown in the plot. The effects of increasing the stiffness coefficient of the kinematic

closure mounting K ′ are presented in Figure 4.9. Here, the effects of K ′ are negligible as seen

Figure 4.9: Natural frequency as a function of the stiffness of the sphere and the
stiffness of the kinematic closure mounting, ki = 0

in the left hand side of the figure and the overall relation is with the opposite effect, as is

seen in the magnified area illustrated in the right hand side of the figure. That is, increasing

K ′ decreases the natural frequency of the system.

4.3.2 Sphere Stiffness Effects

The stiffness of the sphere, as presented in section 3.2 plays a role in the dynamic behaviour of

the sphere in isolating vibration. The vibration response, as well as the effects of the sphere’s

stiffness on the vibration magnitude are presented in this section, focusing on the comparison

between the two omnidirectional wheels presented in the beginning of this chapter. Figure

4.10 shows the maximum magnitude of the motion of the sphere centre as a function of

the stiffness coefficient of the sphere, K, comparing a standard omnidirectional wheel to a

Mecanum wheel. The right hand side of the figure shows a magnification of the plot on

114



the left hand side to better highlight the differences. The results are for constant angular

velocities of the omnidirectional wheels with values of ω1 = 0.1 rad/s, ω2 = 1.2 rad/s, and

ω3 = 0.9 rad/s.

Figure 4.10: Maximum magnitude of sphere centre displacement as a function of K
comparing standard and Mecanum omnidirectional wheels, ω1 = 0.1 rad/s,

ω2 = 1.2 rad/s, and ω3 = 0.9 rad/s.

The rigid body case can be viewed at the K = 0 point on the left hand side plot and

the significant reduction of the maximum magnitude for various stiffness coefficients for the

sphere. The right hand side plot is a magnification of the plot on the left hand side that

shows the differences between the two omnidirectional wheel types more clearly for non-zero

values of K. The ratio between the maximal displacement magnitude resulting with the

Mecanum wheel and a standard omnidirectional wheel is defined:

κ =
|∆Rsmax|Mecanum

|∆Rsmax|Standard
. (4.10)

The values for κ for this case, were all in the range of 0.04 < κ < 0.11

To observe the effects of various combinations of input angular speeds, various combina-

tions were used. Such an example, where another combination of input angular speeds was
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used. The right hand side of the figure shows a magnification of the plot on the left hand

side to better highlight the differences. The results are for constant angular velocities of the

omnidirectional wheels with values of ω1 = 2.0 rad/s, ω2 = 2.0 rad/s, ω3 = 2.0 rad/s.

Figure 4.11: Maximum magnitude of sphere centre displacement as a function of K
comparing standard and Mecanum omnidirectional wheels, ω1 = 2.0 rad/s,

ω2 = 2.0 rad/s, ω3 = 2.0 rad/s. .

Similarly, the ratio κ for this case was in the range of 0.06 < κ < 0.12.

A variety of input angular speeds was used with similar results where the input angular

speed was in the range:

0 < ωi < 12 rad/s (4.11)

resulting in ratios in the range:

0.04 < κ < 0.12 . (4.12)
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4.3.3 Omnidirectional Wheel Mounting Effects

While it is possible to affect the stiffness of the sphere, it may be done in a limited fashion.

The omnidirectional wheel mounting may be affected by mounting the omnidirectional wheels

onto the linear platform through spring-damper systems. However, this system is not directly

affecting the sphere and its overall effects are expected to be small. Here, the effects of such

mounting on the motion of the centre of the sphere is investigated. Figure 4.12 shows sample

results for the case where K = 190000 N/m.

Figure 4.12: Maximal magnitude ratio as a function of ki for K = 190000 N/m.

The results presented in Figure 4.12 clearly show that increasing ki increases the maxi-

mum magnitude of the sphere centre motion; yet, once again, it stands out that the maximum

magnitude for the Mecanum wheel is significantly lower than that of the standard omnidirec-

tional wheel. This effect may be explained by the fact that the magnitude of the vibration

increases with the natural frequency, and it was observed in the natural frequency section of

this chapter that increasing ki increases the natural frequency of the system.
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4.3.4 Kinematic Closure Mounting Effects

Since the results obtained examining the effects of the omnidirectional wheel mounting

showed little to no effect on the sphere vibration magnitude, the remaining location for

vibration isolation is by controlling the stiffness of the kinematic closure mechanism, K ′.

Figure 4.13: Maximum magnitude ratio as a function of k′ for K = 0 N/m,
ω1 = 2.0 rad/s, ω2 = 2.0 rad/s, ω3 = 2.0 rad/s.

Figure 4.13 shows that the effects of the kinematic closure mounting stiffness are insignif-

icant, as the maximum magnitude of the vibration of the centre of the sphere remains the

same, regardless of the value of K ′ and regardless of the omnidirectional wheel type. While

the results presented in Figure 4.13 were obtained for the case where the angular velocities

of the omnidirectional wheels with values of ω1 = 2.0 rad/s, ω2 = 2.0 rad/s, ω3 = 2.0 rad/s,

similar results were obtained for other values of angular velocities, another such example

is presented in Figure 4.14 for angular velocities values of ω1 = 0.1 rad/s, ω2 = 1.2 rad/s,

ω3 = 0.9 rad/s.

Investigating the effects of k′ on the results showed little to no effect of the parameter
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Figure 4.14: Maximum magnitude ratio as a function of k′ for K = 0 N/m,
ω1 = 0.1 rad/s, ω2 = 1.2 rad/s, ω3 = 0.9 rad/s.

on the resulting magnitude of the vibration of the sphere’s centre. A sample demonstration

where the sphere was not assumed rigid is presented in Figure 4.15, for angular velocity values

of ω1 = 0.1 rad/s, ω2 = 1.2 rad/s, ω3 = 0.9 rad/s, and sphere stiffness of K = 170000 N/m.

Thus, it is concluded that the effects of the kinematic closure mounting are minor.

4.3.5 Standard Versus Mecanum Omnidirectional Wheel Poten-

tial

While the previous subsections focused on the comparison of two specific omnidirectional

wheels - one a standard omnidirectional wheel and the other a Mecanum wheel, the com-

parison took place between two omnidirectional wheels that were picked for the purpose of

construction of an Atlas demonstrator. Thus, major factors in the selection process were

availability and comparable sizes. In this subsection, a more general comparison is made

between standard and Mecanum omnidirectional wheels, from a vibration standpoint.
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Figure 4.15: Maximum displacement magnitude ratio as a function of k′ for
K = 1700000 N/m.

The excitation levels of both omnidirectional wheel types are compared for both maximal

magnitude, maximal velocity, and maximal acceleration. While it was clear from Figures 4.4

through 4.6 that the Mecanum wheel is far superior to the standard omnidirectional wheel,

there may still be other standard omnidirectional wheels constructed, with the same di-

ameter, that may show better levels of excitation. The same is true for Mecanum wheels.

This subsection takes these omnidirectional wheels’s improvements to the limits in order to

compare the two wheel types’s potential from the vibration standpoint.

In order to compare the two omnidirectional wheel types, a geometric descriptor needs to

be selected as a parameter for the comparison. On the one hand, it seems like the number of

rollers (for the same diameter wheel) may be a good choice. However, this is ignoring some of

the advantages that the standard omnidirectional wheel may have with some clever design.

The important parameter for the standard omnidirectional wheel is η, the roundness ratio.

While increasing the number of rollers carries the potential to increase the roundness ratio,
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there are some designs, presented in Chapter 1, such as conical rollers and variable diameter

rollers, that significantly increase the roundness ratio and get very close to a smooth shape

(η = 0). Thus a good parameter to describe the shape of a standard omnidirectional wheel

is the roundness ratio, η. Mecanum wheels, on the other hand, possess a roundness ratio of

η = 1, or very close to that. However, the roller orientation is the cause for vibration. In this

case, the significant parameter is the roller diameter, which is representative of the number

of rollers. Thus, comparison was performed using the roundness ratio for the standard

omnidirectional wheels and the number of rollers for Mecanum wheels. The comparison was

made for omnidirectional wheels with the same diameter as the wheels used in the Atlas

demonstrator in the previous sections.

Figure 4.16: Maximum excitation magnitude comparison - standard omnidirectional
wheel on the left, Mecanum wheel on the right.

Figure 4.16 shows a maximum excitation magnitude comparison between the two om-

nidirectional wheel types. While it is clear that in most cases, and specifically in the area

that was investigated (η = 0.4485 for the standard omnidirectional wheel, N = 16 for the

Mecanum wheel), the Mecanum wheel is superior to the standard omnidirectional wheel.

One may observe from the plots presented in Figure 4.16 that for very low values of η, stan-
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dard omnidirectional wheels have lower maximal excitation magnitudes than the best that

Mecanum wheels can obtain even for a very large number of rollers (N > 100). In addition,

a Mecanum wheel with such a large number of rollers would have a very low load capacity

and would be extremely expensive to produce, whereas standard omnidirectional wheels may

obtain very low values of η with a rather small number of rollers utilizing designs such as

conical rollers or variable diameter rollers.

Figure 4.17: Maximum excitation velocity comparison - standard omnidirectional wheel
on the left, Mecanum wheel on the right.

Similar observations may be obtained from Figure 4.17 regarding the velocity of the

excitation, though less pronounced. The maximal excitation acceleration though shows

a different picture, where it is clear that the Mecanum wheel is always superior to the

standard omnidirectional wheel, as observed in Figure 4.18. This is likely due to the fact

that the diameter changes that do occur in the standard omnidirectional wheel are abrupt

and therefore produce large accelerations when transitioning between rollers.
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Figure 4.18: Maximum excitation acceleration comparison - standard omnidirectional
wheel on the left, Mecanum wheel on the right.

4.4 Summary

In this chapter, standard and Mecanum omnidirectional wheels were compared using two

specified omnidirectional wheel designs. It was observed that for the cases selected in this

chapter Mecanum wheels show significantly less vibration than standard omnidirectional

wheels. However, it was also shown that the equivalent transfer ratio of standard omni-

directional wheel is superior to that of the Mecanum wheels. Furthermore, extending and

generalizing the geometric comparison between the two omnidirectional wheel types reveals

that some standard omnidirectional wheel designs may perform even better than Mecanum

wheels from the vibration standpoint.

In addition, it was also observed that the omnidirectional wheel mounts and the kinematic

closure mounts play a very minor role when considering vibration, and the most significant

factor in reducing vibration is the sphere-omnidirectional wheel interface.
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Chapter 5

Conclusions and Future Work

The main goal of this thesis was the development of a comprehensive mathematical model for

a sphere actuated by omnidirectional wheels, and in particular the kinematics and dynamics

of a sphere actuated by three omnidirectional wheels. This work encompassed four main

issues including:

1. Kinematics of a sphere actuated by n omnidirectional wheels of any type, size or shape,

at any position and orientation;

2. The dynamics of a sphere actuated by omnidirectional wheels;

3. Vibration induced by omnidirectional wheels on an actuated sphere; and

4. A comparison between two major classes of omnidirectional wheels - standard omnidi-

rectional wheels, and Mecanum wheels.

The development of the kinematics of a sphere actuated by omnidirectional wheels served

as a basis for the dynamics of the system. Yet, the development of the kinematics has some

merits on its own, since it was derived in a general manner and produced a tool to derive

the kinematics of any system including a sphere actuated by any type of omnidirectional
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wheel. The kinematics model also yields a set of conditions that must be met in order to

obtain a system that is free of singularities and has zero kinematic slip. Satisfying these

conditions it should be a first step in the design process of any such system, and to perform

first qualification of a given architecture. In addition, the kinematics serve as a foundation

for the dynamics of the system, and, in its inverse form, as the basis for feedback control.

The kinematic model for the system was developed in stages, originating from the zero-slip

concept applied to a basic three perfect wheels problem that resulted in the basic Jacobian

portrayed in Equation 2.19.

To enhance the extent of the solution and obtain a more powerful tool, the concept was

generalized to include any number of omnidirectional wheels. Furthermore, in order to make

the results more applicable to real world problems, the imperfect nature of the omnidirec-

tional wheel design was considered. Various omnidirectional wheel design concepts were

treated as geometrical anomalies to the basic single-race perfectly round shaped omnidirec-

tional wheels. Thus, dual-race omnidirectional wheels were treated as a combination of two

alternating single-race omnidirectional wheels where the point of contact with the sphere

shifts. This extension of the basic problem yielded a set of eight different Jacobians for the

three wheels case, and a simple algorithm that selects the proper Jacobian for each instant.

Sample results showed a correction of up to 4% and 3◦ in the magnitude and direction of

the resulting angular velocity vector respectively, compared with using the single-race Jaco-

bian. Thus, the modified set of Jacobians can be used as an error estimate if the single-race

Jacobian is used to determine the kinematics of the system. Alternatively, the modified

set of Jacobians can be used to determine the kinematics of the system more accurately,

which would require either more computing power, or more sensors to determine the exact

orientation of each omnidirectional wheel.

Next, triple-race omnidirectional wheels were treated as a combination of dual-race wheels

from the standpoint of shifting contact points and 2n omnidirectional wheels, where each
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set of two wheels was constrained to move with the same angular velocity. While the idea

behind the design was to create an equivalent single contact point with the sphere, thus

avoiding the errors/corrections of the dual-race Jacobian, the results showed conclusively

that this is not the case, and singularity-free no-slip conditions cannot be obtained at all

using triple-race omnidirectional wheels.

After that, Mecanum type wheels were considered, where the rollers are aligned at a

45◦ angle to the actuation axis of the wheel, instead of the standard 90◦ orientation. The

appropriate Jacobian for this case was derived using a generalization of the basic method

used for developing the kinematics for the standard omnidirectional wheel case. Finally,

the inclination angle of the rollers was treated as a parameter, and the kinematics were

generalized further to include any inclination angle for the rollers, where the Mecanum wheels

become a special case where the inclination angle is 45◦, and standard omnidirectional wheels

are a special case with an inclination angle of 90◦.

During the development and presentation process throughout Chapter 2, benchmark

examples were used along with specific examples that illustrate and highlight important

cases and ideas. These were used to demonstrate the approach and the differences between

the various kinematic architectures and the omnidirectional wheel types. The kinematics

showed that from the standpoint of slip, single-race and Mecanum omnidirectional wheels

are superior to their multi-race counterparts. In addition, it was shown that an architecture

comprising three omnidirectional wheels is superior to architectures comprising more or less

omnidirectional wheels, with the exception of some special cases such as the example of six

omnidirectional wheels with three wheels enslaved to the other three, as shown in Chapter 2.

Once the kinematics of a system are in place, deriving the equations of motion, assuming

all bodies are rigid, is a relatively straightforward process. However, no system is completely

rigid. Specifically with the Atlas platform it was observed that the sphere-roller interface

experiences significant deflections (associated with the low mass design objective and the
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soft castor rollers material). Thus, it was assumed that the interfaces between the sphere

and the omnidirectional wheels are non-rigid. In addition, other connection points were

assumed flexible. Most interesting is the non-rigid interface at the force transfer points; that

is, the contact points between the sphere and the actuating omnidirectional wheels. The

deflection at the sphere-roller interface causes the contact points to become contact patches

with distributed normal and tangential forces. These, in turn, create moments resisting the

driving moments in the form of spin resistance and rolling resistance. These moments were

modelled in Chapter 3 as a product of a moment arm and a force. This idea for modelling

allowed for the investigation of the effects of the moment arm length on the resisting moments

regardless of the model selected to evaluate them. A detailed analysis using the classic

Hertzian model for the contact forces was performed to demonstrate the approach. However,

due to the Hertzian basic assumption that the contact patch is symmetric, rolling resistance

vanished. This demonstrated the power of the modelling approach of a moment arm that

can be varied to investigate its effect. The results showed only negligible effects of both spin

resistance, and especially rolling resistance. The effects of elastic contact on the vibration

of the centre of the sphere were, though, dominant when compared to a rigid sphere, but

varied little with changes of the effective spring coefficient of the contact.

Modelling for vibration assumed that the contact points between the sphere and the

omnidirectional wheels act like spring-damper systems that are independent of one another,

since the actual centre of the sphere is not necessarily connected to the contact points.

The shape of the omnidirectional wheels was taken as positional excitation. Similarly, the

mounting of the omnidirectional wheels onto the linear platform and the contact between the

sphere and kinematic closure mounting points were taken as non-rigid. The most significant

effect on vibration by far was that of the stiffness of the sphere-wheel contact. It was

evident that the effective spring coefficient of this interface is the dominant factor when it

comes to natural frequency and maximum vibration magnitude of the centre of the sphere’s
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position. The omnidirectional wheels’s mounting stiffness had a minor impact on the natural

frequency of the system, but not much on the maximal magnitude. The damping coefficient’s

contribution was also minor.

The performance of two omnidirectional wheel types were compared and contrasted with

the Atlas demonstrator. Comparing the two wheel types required developing a geometric

model for the interface between their perimeter and a sphere. It was observed that the

Mecanum wheel’s perimeter, when it comes in contact with the sphere has a much smoother

excitation function shape, as well as much smaller excitation function magnitude, compared

with its standard omnidirectional wheel counterpart. Once this fact was established mathe-

matically, it was no surprise to observe significant differences in the resulting motion of the

centre of the sphere.

While initially it appeared that Mecanum wheels have the advantage over the standard

omnidirectional wheels from the standpoint of vibration. A closer look at the differences

between the two omnidirectional wheel designs exposed a more interesting conclusion. While

most currently available omnidirectional wheels demonstrate the same kind of differences

(i.e., smaller vibration magnitudes for the Mecanum wheels), Mecanum wheels are more

limited in terms of potential. This means that comparing the best Mecanum wheel design to

the best standard omnidirectional wheel design, the standard omnidirectional wheels would

actually show a lower vibration magnitude than that of the Mecanum wheel. However, the

acceleration would still be higher than that of the Mecanum wheel, which is significant if the

application calls for something sensitive to accelerations inside the sphere (such as a human

being).

Another observation derived directly from the kinematics of both omnidirectional wheels

was that of the transmission ratio. It was demonstrated that for the same angular velocity

input levels, the magnitude of the angular velocity of the sphere in the system comprising

standard omnidirectional wheels would be higher than its counterpart comprising Mecanum
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wheels.

Based on the conducted study, the contributions of this thesis with respect to existing

systems, investigations, and approaches is summarized below:

• The development and application of general kinematic and dynamic formulations for

the motion of a sphere actuated by any omnidirectional wheel type.

There are no studies that attempt to obtain a general kinematic formulation to a

system comprising a sphere actuated by omnidirectional wheels. The only studies that

involve friction actuation using omnidirectional or Mecanum wheels deal with planar

motion of a mobile robot. It is concluded that the proposed formulations and their

applications are not only new, but also involve a different approach pertaining to the

spatial nature of the problem.

• The development of a method for determining the angular velocity vector of a sphere

based on partial information of velocities of points on the sphere.

The proposed method was developed for the purpose of determining the kinematics

of the sphere actuated by three omnidirectional wheels. In this case, only partial

information is known about the velocities of the contact points between the sphere and

the omnidirectional or Mecanum wheels. There are cited studies that derive the angular

velocity vector of a rigid body providing the full information on the velocities of three

points on the body are known. The method developed for the purpose of resolving

the kinematics of this system is therefore new and utilized a different approach to the

existing studies.

• The detailed treatment of the effects of omnidirectional wheel design on the kinematics

of the system.

While kinematics of systems comprising omnidirectional wheels was treated in previous
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studies, most of which relate to mobile robots moving on a plane, the wheels them-

selves were always treated as perfectly-round-single-race wheels from the standpoint of

kinematics. This thesis differentiates between omnidirectional wheels designed with a

single race of rollers and designs with two and three races of rollers at the kinematics

level, and shows differences too significant to ignore when dealing with these varia-

tions between omnidirectional wheel designs. This thesis analyzes the kinematics of

the dual-race omnidirectional wheel design, suggests correction matrices, and estimates

the error of the single-race assumption. In addition, the treatment of the triple-race

omnidirectional wheel design shows major drawbacks and slip issues when using such

wheels, all of which are ignored completely in previous studies of systems comprising

omnidirectional wheels.

• The development of a general kinematic model for a sphere actuated by any number

of omnidirectional wheels of any type, including slip estimation, and the concept of

equivalent points.

The theoretical expansion of the basic concept of actuating a sphere with three omni-

directional wheels to N omnidirectional wheels resulted in a robust tool for examining

any desired architecture from the standpoint of slip and workspace singularities. This

mathematical tool is novel and allows for the evaluation of a design at an early stage,

prior to dealing with dynamics and detailed design of the system. The work performed

in this thesis yields the Jacobian for any such system.

• The development of dynamics and vibration models for a 6 DOF system comprising a

sphere actuated by omnidirectional or Mecanum wheels as its rotational subsystem.

This 6 DOF system is a natural but novel expansion of the aforementioned 3 DOF

counterpart. It demonstrates a unique system where the rotational degrees-of-freedom

are uncoupled from the translational ones, at the input level. That is the control of
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the translational motion is done using separate controls from the ones controlling the

rotational motion. While some 6 DOF parallel motion platforms achieve the ability to

perform translational-only and rotational-only motions, they must still employ all six

controls at the input level to accomplish the task. This thesis also performs an analysis

of the vibration induced by the actuating omnidirectional or Mecanum wheels on the

actuated sphere.

• The application of the suggested models for the purpose of analyzing and comparing

two similar systems with different omnidirectional wheel types from the standpoint of

vibration.

Two otherwise identical systems with similar sizes of Mecanum wheels and standard

omnidirectional wheels were compared from the standpoint of vibration. Various sys-

tem parameters, such as stiffness of certain points of the system were varied to obtain

a broad picture of the differences between the two wheel types. This is the first time

these two wheel types were compared directly in this regard.

• The general comparison between Mecanum and omnidirectional wheels actuation in-

duced vibration.

The two omnidirectional wheel types vibration excitation levels when in contact with

a sphere were compared geometrically. The comparison was performed in a general

manner such that their specific design were parameterized and taken into account to

obtain their excitation levels. Both wheel types potential was compared and pushed to

the limits. Such parametric mathematical comparison is done here for the first time.
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5.1 Future Work

It is clear that the study conducted within this thesis has reached the objective set by the

motivation to develop a general mathematical model of a sphere actuated by omnidirectional

wheels, comparing various omnidirectional wheel types, and investigating vibration induced

by omnidirectional wheels. Yet, there is still a lot to investigate with respect to all the issues

of this thesis, as discussed in the following:

• While the effects of various parameters on the vibration of the system were investi-

gated, some parameters were left for future work. Such parameters were the friction

coefficients between the omnidirectional wheels and the sphere, the position and ori-

entation of the omnidirectional wheels with respect to the sphere, the masses of the

sphere and the linear platform, the radii ratio between the omnidirectional wheels and

the sphere, and more. The tools to obtain these effects were developed in this thesis

and their use was demonstrated.

• An experimental system that would allow for experiments to be conducted needs to be

constructed and used to obtain experimental results that would allow for refining the

results obtained in this thesis. This system would allow varying the omnidirectional

wheel types, sizes, positions, and orientations, as well as controlling the Force closure

that forces the no-slip condition.

• While the effects of varying effective spring coefficients for the sphere-omnidirectional

wheel interface were investigated, design and strength of materials considerations would

not allow for much flexibility in the selection of this parameter. Thus, a less constrained

way for vibration isolation should be selected. Such a way would be application depen-

dent, but would comprise a spring-damper subsystem that should be located between

the excitation source (the omnidirectional wheels) and the sphere, probably inside the
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sphere.

• Common anticipated applications, such as a flight simulator motion platform, should

have their design requirements defined and, utilizing the mathematical model pre-

sented in this thesis, should be optimized. This stage would call for multi-objective

optimization, followed by the design of a control system.

The scope of this thesis is wide. It introduces a mathematical formulation for the kine-

matics and dynamics of the Atlas platform using new and general approaches. It then applies

these formulations to several benchmark designs. The ideas introduced in this thesis are gen-

eral in nature, and as such, are applicable to any system with the basic configuration of a

sphere actuated by omnidirectional wheels.
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