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Abstract

Tensegrity systems are composed of high strength to weight mechanisms. They achieve

this strength by replacing heavy elements in tension with lightweight cables. This property

has led to the application of tensegrity theory to many fields, ranging from architecture

to robotics. The greatest difficulty for those wishing to exploit the benefit of tensegrity

systems, is the unintuitive way in which the subelements of a tensegrity are connected to

form a stable configuration. In this thesis, a new method for determining these stable

configurations is developed, thereby providing a more intuitive tool for designing tensegrity

systems. This novel approach is called the geometric intersection method, and is based on

determining the common intersection point between three constraint surfaces, each of which

represent one of the element lengths in the tensegrity system. The geometric intersection

method was found to be algebraically equivalent to an established form finding method by

deriving the established method from the geometric intersection method. This result was

further reinforced by evaluating the two methods using several different tensegrity systems.

While the two methods are algebraically equivalent, the geometric intersection method

is derived using geometry instead of vector analysis. This difference arguably makes the

geometric intersection method more intuitive, because it provides a visual rationale for how

the element lengths affect the final configuration of the tensegrity system, and when the

combination of these parameters will result in a configuration that has no real physical

significance. It was also found that the geometric intersection method is easier to adapt to

new tensegrity configurations than either of the most closely related form finding methods.
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Nomenclature

Units

This thesis uses English units to keep with North American aerospace industry practice.

The following conversion factors are provided to convert to S.I. units:

Imperial Unit S.I. Conversion

in 25.4 mm

lbf 4.45 N

ksi 6.89 MPa

Definitions

Tensegrity system a tensegrity arrangement that can either be a static structure, or an

actuated mechanism

Tensegrity structure a static tensegrity arrangement

Tensegrity mechanism a tensegrity arrangement that can change its edge lengths

Tensegrity topology (X(p)) refers to a specific way in which the elements in a tenseg-

rity structure or mechanism are connected to each other (it encompasses all possible

lengths and nodal placements of the tensegrity elements using these connections)

Tensegrity configuration (G(p)) A specific instance of a tensegrity topology (all ele-

ments have a fixed length and all nodes have fixed coordinates)

xi



Symbols

B(p) A structure with the same configuration as G(p), but with all struts and cables

replaced by bar elements.

E(p) is the equilibrium matrix, which is equal to the transpose of the rigidity matrix.

G(p) The graph of a unique tensegrity configuration whose nodes are given by a vector of

coordinates p.

R(p) The rigidity matrix is similar to the graph G(p) of a tensegrity configuration, but it

is made up of the element edge lengths of the tensegrity system.

X(p) Represents all possible graphs of a specific tensegrity topology.

p or pn a vector that contains the coordinates of the n nodes in a tensegrity system.

Ed the d dimensional Euclidean workspace (E2 is equivalent to a 2D space and E3 is

equivalent to a 3D space).

Fext the external force(s) acting on a tensegrity system.

H Hessian matrix. It is the first derivative of the tensegrity energy equation.

H The group of isometries that maintain the Euclidian distance between the nodes of the

prismatic tensegrity Pns(j, k).

Pn
2
(j, k) or Pns(j, k) are the representations for the connectivity of a prismatic tensegrity

structure by its parameters n
2 or ns, j, and k.

T an array of the forces (tension or compression) in each in each of the element of a

tensegrity system.

Ω The reduced stress matrix made from the vector of element stresses (n× n).

Ω the full stress matrix which has all element stresses broken down into their vectorial

components (nd × nd).

xii



θ the angle of twist between the upper and lower polygons of a prismatic tensegrity struc-

ture.

d is the dimension of the workspace (for the bulk of this thesis d= 3 and therefore the

workspace is in E3).

d an array of the edge lengths in a given topology.

di the change in edge length generated by the velocities in p′i.

e is the number of elements in a tensegrity system including all struts, cables, and bars.

φ is the side angle of a cone measured from its central axis to its outer surface.

h is the distance between the upper node plane and the lower node plane.

hcone is the hight of a cone.

j is the number of nodes between the lower node of a strut and the upper node of the same

strut, counted in the lower plane of a prismatic tensegrity structure.

k is the number of nodes between two nodes in the upper or lower plane of a prismatic

tensegrity topology.

n is the number of nodes or vertexes in a tensegrity system, including constrained nodes.

ns is the number of struts in a prismatic tensegrity system.

p′ a vector of nodal velocity vectors.

q the force density defined as the force per unit length in a tensegrity element (identical to

ω).

r is the radius of the circle described by the nodes in the upper or lower plane.

rcone is the radius of the base of a cone.

ω the tensegrity stress (not the engineering stress) defined as the force per unit length in a

tensegrity element (identical to the force density q).

xiii



pi the node on the lower node plane of a prismatic tensegrity structure, which is used as a

reference coordinate for all other nodes.

pa the node on the upper node plane of a prismatic tensegrity structure, which denotes one

end of the lateral strut (the other end is at node pi).

pb the node on the upper node plane of a prismatic tensegrity structure, which denotes one

end of the lateral cable (the other end is at node pi).

pc one of the nodes on the lower node plane of a prismatic tensegrity structure, which

denotes one end of the clockwise, horizontal cable (the other end is at node pi).

pd one of the nodes on the lower node plane of a prismatic tensegrity structure, which

denotes one end of the counter clockwise, horizontal cable (the other end is at node

pi).

ls is the length of the lateral strut in a prismatic tensegrity system. It is equal to the

distance between nodes pi and pa.

lc is the length of the lateral cable in a prismatic tensegrity system. It is equal to the

distance between both nodes pi and pa, and nodes pd and pa.

le is the length of the end or horizontal cables in a prismatic tensegrity system. It is equal

to the distance between both nodes pi and pc and nodes pi and pd.
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Chapter 1

Introduction

The term tensegrity was coined by Richard Buckminster Fuller in the 1960’s to describe

systems that have compressive elements kept in static equilibrium by a continuous network

of tension elements. The term itself is a contraction of the words tension and integrity,

which refers to the continuous tension elements that keep the compression elements in a

state of static equilibrium [1]. Although there is still debate concerning what constitutes a

tensegrity system, the following definition will be used:

Tensegrity systems are in a stable self-equilibrated state and comprise a

discontinuous set of compressed components inside a continuum of tensioned

components [1].

Figure 1.1 depicts a Harmony tensegrity topology, which is the simplest three dimensional

tensegrity structure possible. This Harmony tensegrity topology has three compression

elements (struts) that are indirectly connected to each other through nine tension elements

(cables).

1
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(a) Harmony Tensegrity (b) Self Stress State

Figure 1.1: Harmony Compression and Tension: The simplest 3D tensegrity struc-
ture is the Harmony tensegrity structure (a), which has 9 elements in tension (cables) and
3 elements in compression (struts)(b).

Tensegrities can be classified according to their purpose, and whether they represent

an individual instance or several instances of a particular way to connect the tensegrity

elements (struts and cables). In this thesis the following nomenclature hierarchy will be

used when discussing tensegrities (the terms are ordered based on decreasing generality):

Tensegrity system a tensegrity topology that can either be a static struc-
ture, or an actuated mechanism

Tensegrity structure a tensegrity topology in static equilibrium

Tensegrity mechanism a tensegrity topology whose element lengths can be
changed to produce a desired motion or redirection of
energy

Tensegrity topology refers to a unique set of connections between the ele-
ments in a tensegrity structure or mechanism (it en-
compasses all possible lengths and nodal placements
of the tensegrity elements using this unique set of con-
nections)

Tensegrity configuration a specific instance of a tensegrity topology (all ele-
ments have a fixed length, all nodes have fixed coordi-
nates, and all elements are connected by a unique set
of connections)
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There is an increasing amount of work being done on smart structures, and tensegrity based

smart structures are especially interesting due to the ease with which these structures can

be controlled [2]. Controlled tensegrity structures (or tensegrity mechanisms) are structures

where the lengths of the struts and cables are controlled by actuators. If properly instru-

mented, tensegrity mechanisms can also function as strain sensors; thereby becoming part

of their own control loop. Tensegrity systems have much higher strength to weight ratios

compared to conventional structures [3]. These higher strength to weight ratios are due to

the lighter cable elements that are used in tensegrity structures, as opposed to conventional

structural elements which are designed to take both tension and compression loads. Once

constructed, tensegrity systems are also relatively easy to analyze because all elements in

the tensegrity system can be modelled as two force members. Furthermore, the isolation

of the compression members results in the predictable, linear response of the joints of a

tensegrity system under a wide range of external loads [2]. These advantages and others

have allowed tensegrity systems to find wide applications in many different fields ranging

from robotics [4], [5] to biological cell modeling [6].

1.1 Applications

Tensegrity systems have been used successfully in a number of applications. Civil engineer-

ing was the first discipline to exploit the benefits of tensegrity structures in dome and grid

structures [7].

1.1.1 Civil Engineering Structures

Tensegrity domes have been used to cover large structures, such as the United States Pavil-

ion for Expo ’67 (76 meters in diameter), and the Georgia Dome stadium (227 by 185

meters) in Atlanta Georgia (Figure 1.2). More recently, a tensegrity bridge with a 128

meter main span was commissioned by the city of Brisbane in Australia. The bridge was

opened to pedestrians on October 4th, 2009 (Figure 1.3). These structures are able to span

such large distances due to the high strength to weight ratio, scalability, and flexibility
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inherent in tensegrity structures. The scalability of tensegrity structures results from the

simplicity of the tensegrity elements (cables and struts), and the ability to combine smaller

tensegrities or add more elements to an existing tensegrity, to achieve larger structures.

The flexibility of tensegrity structures is the result of infinitesimal mechanisms at the joints

of the tensegrity structure (nodes) which allow the structure to deform and rebound under

loading cycles. These two properties of tensegrity systems led biology researchers to won-

der if tensegrity systems could be used to model biological systems which also demonstrate

these properties.

(a) US Pavilion Expo 67 [8] (b) Georgia Dome [9]

Figure 1.2: Civil Engineering Tensegrity Structures: The American Pavilion was
designed by Buckminster Fuller and Shoji Sadao for Expo ’67, and the Georgia Dome was
designed by Heery International et al. for the State of Georgia. Both are examples of
tensegrity structures.

1.1.2 Medical Applications

Many biological systems can be modelled using tensegrity theory, most notably muscu-

loskeletal systems and the structures of some cells. In the 1970’s it was discovered that

all cells that have nuclei also have a cytoskeleton. Dr. Ingber et al. [6] used this discovery

to identify other elements of the cell which could function as anchor points (integrins and

focal adhesions), tensile elements (primarily actin-containing microfilaments and the cell

membrane), and compression elements (cytoskeleton microtubules) (Figure 1.4). Once
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Figure 1.3: Tensegrity Bridge: The Kurilpa Bridge is a tensegrity structure that spans
the Brisbane River in Brisbane, Australia [10].

the cellular analogues for the tensegrity elements were identified, it became possible to

model the mechanical response of the cell under loads using a tensegrity model. Dr. Ingbar

suggests that the tensegrity model is far superior to the previous cell models because

it provides an explanation for how and why cells change their biochemistry and gene

expression under mechanical loads [6].

This process is known as mechanotransduction, and prior to the application of the

tensegrity model, the mechanism of signal transmission within the cell was unknown.

The tensegrity model predicts that the forces acting anywhere on the cell are channeled

through the tension and compression elements, into the extracellular matrix adhesion sites.

Experimental results revealed that the load at the adhesion sites and the deformation of

the cell caused deformation and reorientation of the molecules which regulate intracellular

metabolism and gene expression (Figure 1.4). These reactions occurred on the millisecond

time scale, allowing the cell to quickly respond to mechanical stimulus by altering its rate

and direction of proliferation. These results may lead to therapies for heart conditions like

cardiac hypertrophy [11].
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Figure 1.4: Tensegrity Structural Analogues in a Cell : This is a schematic repre-
sentation of a cell created be Dr. Ingbar er al. Microfilaments act as tension elements and
microtubules act as compression elements. The cell is attached to the extracellular matrix
via adhesion points. The tensegrity elements channel forces acting on the cell through these
adhesion points and into the extracellular matrix [11].

Cardiac hypertrophy occurs when significant pressure builds on the cardiocyte cy-

toskeleton. This pressure buildup is caused by an increase in the number of microtubule

compression elements, and it can interfere with the shortening of the cardiac tissue. This

interference can lead to contractile dysfunction. The tensegrity model suggests that by

changing the loading condition, either at the affected cells or at adjacent sites, the buildup

of microtubules can theoretically be reversed [6]. Other applications for the tensegrity

model include modeling the abnormal mechanoelectrical coupling observed during the

development of heart arrhythmias, and the structural modeling of viruses [1]. Tensegrity

systems are also highly scalable providing an excellent model of mechanotransduction

within the cell, and providing a model for larger biological systems such as the muscu-

loskeletal system [12].
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The mammalian skeleton functions as the compressive elements in a tensegrity sys-

tem. The muscles, tendons, ligaments, facia, and skin provide the tension elements that

channel forces to the skeleton, holding the skeleton in place. Kassolik et al. [12] used this

larger tensegrity model to predict how deep tissues might be massaged by manipulating

surrounding or remote muscles. They concluded that by manipulating the brachioradialis

and peroneal muscles they were able to stimulate the middle deltoid and tensor fasciae

latae muscles respectively. This research indicates that physiotherapists can treat adverse

muscle tension without directly manipulating the stressed area, amounting to less painful

physiotherapy sessions for patients. Kassolik et al. also proposed that deep or inaccessible

tissues could be stimulated remotely if a detailed tensegrity model of the human muscu-

loskeletal system can be developed [12]. The scalability and flexibility of tensegrity systems

also provides unique capabilities for weight and volume restricted space applications.

1.1.3 Space Structures

Space structures tend to be lightweight, strong, stiff, and foldable. These properties

result from the desire to launch the space craft on the least expensive (smallest) launch

vehicle possible, while providing a stable support for sensitive mission hardware like

antennas and optical equipment. Furthermore, the effect of the launch loads on the

structure and equipment can be reduced if the structure can be folded into a low volume,

stowed configuration. Tensegrity systems tend to be lightweight structures that can be

deployed and stiffened by tensioning their cable elements. They are especially attractive

for space applications because the discontinuous nature of the compressive elements allow

for large displacements of the tensegrity nodes when the tension elements are slackened.

Consequently, greatly reduced storage volumes can be achieved. These properties have

led several researchers to develop preliminary designs for tensegrity space booms, reflector

antennas, and telescopes.

Tibert [13] developed a deployable tensegrity boom, which in some respects compared

favourably with conventional booms used for space applications. The booms he designed
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had excellent stowed/deployed volume ratios, high axial stiffnesses, fewer mechanical

joints, and lower masses compared to conventional booms (Figures 1.5 and 1.6). However,

the tensegrity booms had little resistance to bending loads, were prone to cable strut

entanglements, and remained unstable until fully deployed. Tibert suggested methods

for improving the tensegrity booms by using deployment canisters and selecting alternate

tensegrity topologies. His later work dealt with tensegrity reflector antennas, which were

better able to exploit the advantages of tensegrity systems.

The tensegrity reflector proposed by Tibert in [13] and [14] uses a tensegrity structure to

Figure 1.5: Collapsed Tensegrity Space Boom: The top and side views of the tenseg-
rity boom in its collapsed state [13].

create a very stiff and lightweight structure, which also has an excellent stored/deployed

ratio compared to conventional reflectors. One of the prime advantages of using a tensegrity

structure for this application is the tunability of the final reflector. Reflector antennas

must maintain their curvature within a specified range and have high natural frequencies

in order to send and receive transmissions effectively. The stiffness of tensegrity structures

can be adjusted by adjusting cable and strut lengths. This alters the level of prestress in

the structure, which increases the stiffness and natural frequency of the structure. This

tunability of the structure can help the tensegrity reflector adjust its shape to compensate

for deployment defects, and stress relaxation within the elements over the life of the reflector.

The tensegrity reflector is made up of two nets that are suspended from the upper
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Figure 1.6: Deployed Tensegrity Space Boom: A general view of the tensegrity boom
in its deployed state with details of the foldable compression members [13].

and lower faces of a regular tensegrity polygon. Additional members (springs) connect the

upper and lower net knots, which force the nets to maintain their discrete parabolic shape

(Figure 1.7). The compression members are telescoping tubes that extend (pulling against

the net springs) during stowage, and retract to an equilibrium position under the action

of the net springs (Figure 1.8). The remaining issues to be resolved with this design are

minimizing compression and spring element interferences, and finding an optimum balance

between the prestress levels and consequent mass of the compression elements. The high

mass savings (partially due to the reduced number of mechanical joints and high stiffness)

make the tensegrity reflector a promising technology for space applications. Other space

structures that could exploit the high stiffness and controllability of tensegrity systems are

solar arrays and space telescopes.

Sultan et al. [15] proposed using an actively controlled tensegrity structure to adjust the

relative position of two mirrors in a space telescope. The control system for the proposed
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Figure 1.7: Tensegrity Reflector Antenna: A general view of the tensegrity reflector
antenna in its deployed configuration [13].

Figure 1.8: Tensegrity Antenna Deployment : The tensegrity antenna being deployed
using the stored energy in the springs [13].

tensegrity telescope (and tensegrity mechanisms in general) tend to have a high level of

precision because the model of the mechanical system is well characterized by rigid bars

and two force elastic elements. Conventional rigid space telescopes (like the Hubble space

telescope) must maneuver the entire, massive telescope into the desired position and then

adjust the relative position of the mirrors inside the body of the telescope. The tensegrity

telescope could use the reaction forces caused by the actuation of the tensegrity system to

move the telescope into the correct orientation. The relative alignment of the two mirrors

would then be fine tuned, while momentum wheels maintain the general orientation of the
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telescope. This control method has the potential to be fuel efficient (and consequently

mass efficient), which is always desirable for space applications due to the high cost per

kilogram of launching hardware to orbit.

Sultan et al. also proposed using the tensegrity telescope structure itself as a sensor

in [16]. This sensor would replace the tension cables with fibre optic sensors, which would

continuously report their own length to the control system. The sensor controller would then

use the length data to calculate the pose of the tensegrity structure, and the force in each

of its elements. This system allows the structure to serve as its own integrated sensor, and

can reduce the complexity and mass of the control system. This self sensing functionality

has also come to the attention of roboticists, who would like to apply tensegrity theory to

their robots.

1.1.4 Robotics

Tensegrity robots tend to be light, fail safe, and more energy efficient than conventional

robots. Their lightness comes from having the tension elements double as sensors,

replacing more massive structural elements with lightweight cables, and being able to

produce a desired output motion using different sets of actuators [7]. Tensegrity robots

are usually controlled by varying the rest length of the cable elements. For every set of

cable lengths there is a stable geometry where the stresses in the struts and cables are

in equilibrium. This prestress can be exploited in tensegrity mechanisms by using this

energy to help change the mechanisms pose. This energy storage relieves some of the

workload on the actuators allowing tensegrity actuated robots to be more energy efficient.

The interconnected nature of the tensegrity elements means that relatively few actuators

are necessary to control the degrees of freedom of the robot. Furthermore, if one or more

actuators fails the rest of the actuators can be actuated in such a way that the output

motion remains almost the same [4]. In [4] and [5], Paul et al. developed two tensegrity

robots, one of which was able to produce a usable gait despite one, and then two of its four

actuators being taken off-line.
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The tensegrity robots developed by Paul et al. in [4] and [5] were composed of three and

four strut tensegrity topologies, named the TR-3 and TR-4 respectively (Figure 1.9). They

created a simulation of the two configurations where three (TR-3) and four (TR-4) of the

tension cable lengths were controlled using servo motors. They used a genetic algorithm

to determine an actuation scheme that produced the fastest forward motion. The TR-4

produced a bounding gate with distinct take-off, flight, and stance motion phases. The

TR-3’s gate was more like that of an inchworm where two of its struts were dragged along

by the third, which acted like a pickaxe. Another worm like mobile robot was developed

by Masic and Skelton [17], which propelled itself by producing a longitudinal wave through

its tensegrity structure.

These applications illustrate the wide potential of tensegrity systems from biological

Figure 1.9: Tensegrity Robot : The TR-3 robot which was able to produce a worm like
gate [4].

models to smart structures and robotics. The advantages of tensegrity systems are the
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result of the unique way these systems balance compressive and tensile forces using a

minimum of structural elements. However, most tensegrity systems are kinematically and

statically indeterminate, meaning there are multiple solutions to the equilibrium equation,

which defines the state of the tensegrity. This indeterminacy means that more relations or

boundary conditions are necessary to define the stability of a unique configuration. This

indeterminacy also results in several possible self stress states and mechanisms [18]. The

stiffness of a tensegrity structure relies on constraining the motion of these mechanisms.

These motions are constrained by specifying the tensegrity geometry in such a way that all

cables are in tension and all struts are in compression. This initial loading or prestress is

essential for the static stability and rigidity of the tensegrity system.

1.2 Rigidity and Stability

In [1], Motro discusses the importance of determining the stability of a given geometric

tensegrity topology:

The stability of tensegrity systems can be satisfied only for geometry in

which a situation of stable static self-equilibrium can be established: the study

of tensegrity systems necessitates a “form finding process” which allows us to

attain such geometric equilibrium [1].

Rigidity and stability can have several definitions depending on the context in which they

are used. In the context of tensegrity systems rigidity implies that the only permissible

motion of the tensegrity nodes are rigid body motions that preserve the length of the struts

and cables. This definition of rigidity implies that a tensegrity is rigid if the only possible

poses of the structure are congruent poses (poses that maintain the distance between the

nodes in a tensegrity system). Stability indicates how close the structure is to physical

collapse. A tensegrity structure is guaranteed to be both rigid and stable if it is super

stable. Super stability and many other rigidity and stability criteria are more thoroughly

presented in Chapter 2.
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1.3 Form Finding Methods

There are several form finding methods that can be used to determine the geometry of

tensegrity systems. A detailed description of form finding methods is presented in Chapter 3,

building on work reported by Tibert and Pellegrino [2] and Tur and Juan [18]. The form

finding methods have been categorized as either kinematic, static, or simultaneous methods.

The kinematic methods fix the length of the cables and then increase the length of the

struts until a stable configuration is achieved. These methods provide some physical insight

into the form finding problem, and some are relatively computationally simple. However,

these methods become too cumbersome to use if the tensegrity topology is unsymmetric

or has a variety of cable and strut lengths due to the number and interdependent nature

of the variables necessary to describe the configuration. They also lack shape constraint

surfaces, which can make the form finding process more intuitive. These methods have

been largely surpassed by the static methods because the static methods can handle a

wider range of tensegrity systems.

Unlike the kinematic methods that use the geometry of the elements, the static methods

use the forces, stresses, or the energy within the tensegrity elements to determine a stable

configuration. These methods are attractive because they can be used to analyze unsym-

metric structures, and structures with more elements compared to the kinematic methods.

This wider applicability comes at the cost of losing control over individual element lengths

and more cumbersome calculations, which in general must rely on numerical methods.

These methods are only concerned with finding stable configurations for the tensegrity

structure and subsequent techniques must be used to determine other properties of the

system.

The simultaneous methods solve for multiple properties of the tensegrity system as

well as determining the stable configuration of the structure. These methods use genetic
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algorithms, finite element analysis, and other numerical methods to arrive at one or multiple

stable configurations. These methods can analyze unsymmetric tensegrity topologies and

can generate completely new tensegrity topologies. Unfortunately they restrict the designers

ability to specify element lengths and the shape of the final structure. They are also more

cumbersome to implement, and would not be suitable for controlling a tensegrity mechanism

as part of its control system. The disadvantages of the above form finding methods means

there are many opportunities to develop new form finding methods that are better suited

to the requirements of the designer.

1.4 Research Problem

The form finding methods discussed in Chapter 3 reveal that there is a need for a form

finding method that is computationally simple and intuitive for designers to use. In smart

structure applications, it is highly desirable for a form finding method to quickly calculate

the change in pose of a tensegrity mechanism. Most of the current form finding methods

either cannot handle multiple element lengths or are too computationally expensive to

effectively implement in a real-time control system. Furthermore, many of these methods

provide little insight into the solution space, or solution process of the form finding problem.

They also fail to provide the designer with useful tools for manipulating the tensegrity

system. These tools could include the use of shape constraint surfaces or the ability to either

directly control the element lengths, or the overall shape parameters for the tensegrity. For

example, the method could allow the designer to modify the radius and height of a cylindrical

tensegrity structure instead of controlling the strut and cable lengths. Alternatively if the

element lengths are important (as they would be for controlling a tensegrity mechanism)

then the method could use the element lengths as inputs and produce the overall height

and radius parameters as outputs. This thesis proposes a novel geometric form finding

method that seeks to address the apparent lack of control and form finding insight missing

in existing form finding methods.
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1.5 Original Contributions to Knowledge

The objective of this thesis was to introduce and characterize a new geometric form finding

method. The proposed method addresses some of the deficiencies of existing form finding

methods. Specifically it:

1. allows direct control over the element lengths within symmetric tensegrities;

2. allows the shape of the tensegrity structure or mechanism to be parameterized with

more intuitive parameters such as height and radius (as opposed to element angles

and force densities);

3. uses the analytical geometry of surfaces to make the design process more intuitive;

4. provides more insight into the form finding solution space and process.

The new geometric method is compared with two of the most closely related form finding

methods presented in Chapter 3 to validate the above claims.

1.6 Outline

Chapter 2 of this thesis provides a more rigorous mathematical definition of rigidity and

stability as they relate to tensegrity systems. Chapter 3 contains a literature review of

current form finding methods as well as a detailed comparison of their relative strengths and

weaknesses. It also reinforces the rationale for developing the geometric form finding method

proposed in this thesis. Chapter 4 discusses the new geometric intersection method. Chapter

5 provides a series of examples to illustrate the implementation, and unique characteristics

of the geometric intersection method. Finally, Chapter 6 contains a short summary of the

preceding chapters, and highlight the advantages of the geometric intersection method.



Chapter 2

Rigidity and Stability

Tensegrity systems have extremely minimal structures. Relatively few elements make up

a tensegrity system’s structure, and the majority of these elements are unable to support

compressive loads. Additionally, the spherical joint like connections between tensegrity

elements have many degrees of freedom due to the flexibility of the tension elements and the

limited number of elements connected to each node. These properties naturally lead to the

necessity of determining whether a given tensegrity arrangement (topology) is: a structure

or a mechanism (rigidity), in static equilibrium (stability), and finally if that equilibrium is

conditional. This chapter will define several forms of rigidity and stability that have been

used to categorize tensegrity systems, and frameworks in general [18], [19]. The Harmony

tensegrity topology (and by extension prismatic tensegrity structures) will be analyzed to

prove that this topology is stable, regardless of the lengths of its elements, as long as it

has a certain angle of twist between its upper and lower nodes. This chapter will begin

with a description of prismatic tensegrity structures, followed by a description of graph

theory, which is used to represent the edges, connections, and constraints of tensegrity

topologies. Then the various rigidity and stability criteria will be presented in order of

increasing inclusiveness, followed by a brief summary of how these methods pertain to the

prismatic tensegrity topologies analyzed in this thesis.

17
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2.1 Prismatic Tensegrity Topologies

The geometric form finding method presented in this thesis is formulated primarily for the

analysis of prismatic tensegrity topologies, of which the Harmony tensegrity topology is a

subset. A prismatic topology has two sets of nodes that lie on two separate, but parallel

planes. These nodes form regular polygons on each plane such that a circle in each plane,

passing through the nodes of that plane, share a common central axis. A prismatic topology

can be completely parameterized using three parameters: half the number of nodes (denoted

by n
2 )(which is equal to the number of struts denoted by ns); the number of nodes between

the lower node of a strut and the upper node of the same strut (denoted by j); and the

number of nodes between two nodes connected by a cable in the nodal plane (denoted

by k)(Figures 2.1, 2.2, and 2.3) [20]. For example, the Harmony tensegrity topology is

represented by Pn
2
(j, k) ⇒ P3(1, 1). In Figure 2.3 one node from the upper node plane is

selected as the reference node and the strut connected to this node is the reference strut.

j is determined by projecting the reference node into the lower node plane and counting

the number of nodes between the projected reference node and the node at the end of the

reference strut (in this case there are three nodes so j = 3). k is determined by counting

the number of nodes between the reference node and the next node in the upper node plane

that is connected to the reference node by a cable (in this case there are two nodes including

the node connected to the reference node by the cable so k = 3). These parameters define

a family of prismatic tensegrity topologies, and a specific configuration within one of these

topologies can be represented using graph theory.
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Figure 2.1: Prismatic Tensegrity Notation: The Harmony tensegrity topology
(P3(1, 1)) and the P5(1, 1) prismatic topology.

Figure 2.2: Higher j Values: The P5(2, 1) prismatic topology.

2.2 Graph Theory

Graph theory was originally used to describe cable net structures, but it was adapted to

tensegrity structures by Roth and Whiteley [21]. A given tensegrity configuration can be

described by a graph of its nodes G(pn), where the nodal locations are given by their

coordinates pn. Each node is connected to another node by an element in the tensegrity

system (cable or strut). Each row of the graph represents one element by its two end node

coordinates. The graph G(p) for the Harmony tensegrity topology in Figure 2.4 is:
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Figure 2.3: Higher j and k Values: The P5(3, 2) prismatic topology.

G(p) =



p1 p2 0 0 0 0

0 p2 p3 0 0 0

p1 0 p3 0 0 0

p1 0 0 0 p5 0

p1 0 0 0 0 p6

0 p2 0 0 0 p6

0 p2 0 p4 0 0

0 0 p3 p4 0 0

0 0 p3 0 p5 0

0 0 0 0 p5 p6

0 0 0 p4 0 p6

0 0 0 p4 p5 0



. (2.1)

The graph of a tensegrity configuration presents a static image of the nodes of a tensegrity

configuration, but most of the stability and rigidity criteria require the edge lengths of

the elements to be monitored. The graph G(p) can be altered to include the edge length

between nodes by subtracting the coordinates of the two nodes connected by an element.

This new edge graph is known as the rigidity matrix R(p) [18]. The rigidity matrix is an
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Figure 2.4: Potential Numbering Scheme: This is one possible numbering scheme
and coordinate system for a Harmony tensegrity topology.

e× nd matrix where e is the number of elements in the tensegrity system, n is the number

of nodes, and d is the dimension of workspace. The rigidity matrix is constructed such that

there is a row for each element and d columns for each node; each node being located by

d coordinates. The rigidity matrix entries are equal to the edge lengths at the nodes, and

zero if the elements are not attached to a given node. The rigidity matrix for the harmony

tensegrity topology is expressed by Equation (2.2).
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R(p) =



p1 − p2 p2 − p1 0 0 0 0

0 p2 − p3 p3 − p2 0 0 0

p1 − p3 0 p3 − p1 0 0 0

p1 − p5 0 0 0 p5 − p1 0

p1 − p6 0 0 0 0 p6 − p1

0 p2 − p6 0 0 0 p6 − p2

0 p2 − p4 0 p4 − p2 0 0

0 0 p3 − p4 p4 − p3 0 0

0 0 p3 − p5 0 p5 − p3 0

0 0 0 0 p5 − p6 p6 − p5

0 0 0 p4 − p6 0 p6 − p4

0 0 0 p4 − p5 p5 − p4 0



. (2.2)

The rigidity matrix, or its transpose the equilibrium matrix, can be used to monitor the

element lengths of a tensegrity configuration, which has certain implications for the rigidity

of the configuration.

2.3 Rigidity Definitions

One of the governing assumptions for tensegrity mathematical models and form finding

methods is that all elements of a tensegrity system are connected using revolute (E2 by

nature) or spherical (E3 by nature) joints. Since all connections have at least one degree

of freedom, the framework may be either a structure or a mechanism depending on the

lengths, locations, and interconnections of its elements. If the framework is a mechanism it

has the ability to fold or skew into infinitely many discrete poses, and is thus termed flexible.

A two dimensional example of a flexible structure (really a planar four bar mechanism) is

depicted in Figure 2.5. The framework in Figure 2.5 can be made into a structure in E2 by

adding an additional link. This new framework is rigid, but only in E2. In E3 the framework
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can still be folded along the axis of the added link as illustrated in Figure 2.6. Therefore,

determining rigidity can be thought of as determining whether or not a framework is a rigid

structure or a flexible mechanism [22].

Figure 2.5: 2D Flexible Structure: This 2D structure has one degree of freedom. It
can have infinitely many configurations and is therefore non-rigid or flexible [22].

Figure 2.6: 3D Flexible Structure: This structure is rigid in 2D, but non-rigid in 3D
because it can fold onto itself [22].

2.3.1 Determining Rigidity using Motion Analysis

The above definition of rigidity additionally requires that all the element lengths of the

framework remain the same, and hence the rigidity matrix R(p) remains constant. This

assumption can be stated mathematically by specifying that the distance between the two

end nodes of an element, p1(t) and p2(t), remain invariant for all values of time t [23]:

|p1(t)− p2(t)|2 = [p1(t)− p2(t)] · [p1(t)− p2(t)]. (2.3)

Another way to determine rigidity is to prove that all possible configurations of the tenseg-

rity framework are congruent configurations [18]. The graph of the tensegrity system is

used to test for this condition. Let all tensegrity configurations G(p) that share common
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element connection constraints (a specific topology) be represented by X(p), where p is the

abstract map of all connections and nodal coordinates of the framework. Likewise, let all

congruent configurations to a specific configuration G(p) be represented by M(p). Then

a tensegrity framework is rigid if the set X(p) is identical to the set M(p) [21]. In other

words, if one configuration G(p) can only be transformed into new configurations by affine

transformations1 then the tensegrity framework is rigid. Physically, this amounts to prov-

ing that there is really only one possible configuration G(p), and all other configurations

are really just G(p), but rotated, translated, or reflected to look like new configurations

from the set X(p). The key here is that under affine transformations or reflections the

elements of G(p) cannot change their lengths. Therefore, if it is possible to move a portion

of the framework G(p) without changing any of the element lengths, then there must be

other, non-congruent configurations in the set X(p) and the framework is a mechanism (like

the four bar mechanism depicted in Figure 2.5). The following discussion of stability will

present mathematical methods for determining whether or not X(p) is equal to M(p), and

consequently if the elements in a particular tensegrity framework can change their lengths.

The previous methods for determining rigidity have focused on the mechanical status of

the tensegrity system, but another method is available that uses the forces in the tensegrity

elements.

2.3.2 Determining Rigidity using Forces

If the nodal forces in the elements of a tensegrity topology are all in equilibrium, then the

structure is statically rigid [18]. This can be represented by:∑
ij

pi − pj
d

T = Fext. (2.4)

Equation (2.4) can be rewritten in terms of the rigidity matrix:

R(p)T
T

d
= Fext. (2.5)

1The group of affine transformations preserve distance, but not necessarily orientation. For example two
points will always remain the same distance apart when an affine transformation is applied to them, but their
location and orientation in space may be altered. The group of affine transformations include: rotations,
translations, reflections, and glides (reflection and then translation or vice versa).
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Equation (2.5) is non-linear because the element forces T are dependent on the nodal

coordinates pi and pj [18]. The transpose of the rigidity matrix R(p)T is the equilibrium

matrix E(p). In the tensegrity community, the ratio between T and the rest length of an

element d is called a stress ω, or a force density2 q [19]. Using stresses, Equation (2.5)

becomes:

R(p)ω = Fext. (2.6)

The substitution of ω linearizes Equation (2.6), which makes certain form finding processes

and stability analyses much easier (for example, see the force density method in Chapter

3).

2.3.3 Determining Rigidity using Stresses or Force Densities

When a tensegrity system is in equilibrium all struts must be in compression and all cables

must be in tension. In terms of stress, a proper self stress occurs when the strut stresses are

less then zero and the cable stresses are greater than zero (the proper stress is additionally

termed strict if none of the stresses are identically equal to zero) [19]. The vector of stresses

ω in the elements can be used to construct a reduced stress matrix Ω. The reduced stress

matrix has the form:

Ω =


−ωij if i 6= j;∑
k ωjk if i = j;

0 if the nodes are not connected.

(2.7)

and is similar to the rigidity matrix R(p) since it reveals the topology of the tensegrity

system [18]. The reduced stress matrix for the Harmony tensegrity topology, using the

arbitrary, strict, proper stress vector:

ω =

[
1 1 1 −1 1 −1 1 −1 1 1 1 1

]T
(2.8)

2Stresses ω and force densities q are equivalent terms and will be used interchangeably throughout this
thesis. Stresses are used when the references work being discussed uses stresses and force densities are used
when the references work uses force densities. In either case the reader is free to substitute stresses for force
densities in any instance.
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is:

Ω =



2 −1 −1 0 1 −1

−1 2 −1 −1 0 1

−1 −1 2 1 −1 0

0 −1 1 2 −1 −1

1 0 −1 −1 2 −1

−1 1 0 −1 −1 2


. (2.9)

The full stress matrix Ω is an nd × nd square matrix, where each stress ω is given by

its direction and magnitude (a vector of d elements). Since the stresses are generally used

to set up a desired pre-stress within the tensegrity system, the direction of the pre-stress

within the elements is usually arbitrary. For this reason it is generally easier to use the

n× n reduced stress matrix Ω, since the important parts of the stresses are their signs and

magnitudes, not their directions [24]. The equilibrium condition in Equation (2.6) can now

be interpreted in terms of the stress matrix [18]:

pTΩ = Fext, (2.10)

and a self stress is any ω that satisfies the homogenous form of Equation (2.10):

pTΩ = 0. (2.11)

2.3.4 Infinitesimal Rigidity

Another class of rigidity applies if the framework element lengths do not change with time.

This class of rigidity is called infinitesimal rigidity, or first order rigidity, because it implies

that the structure is rigid for an infinitesimally short time dt, starting from the initial time

t = 0. This can be represented mathematically by evaluating the derivative of Equation

(2.3) at t = 0 [21]:

d

dt
|p1(t)− p2(t)|2

∣∣∣∣
t=0

= [p1(0)− p2(0)] · [p′1(0)− p′2(0)] (2.12)

The tensegrity framework is then infinitesimally rigid (or first order rigid) if Equation (2.12)

is equal to zero for bars, less than zero for cables, and greater than or equal to zero for
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struts [21]:

[p1 − p2] · [p′1 − p′2] =


= 0 for bars

< 0 for cables

> 0 for stuts

. (2.13)

Equation (2.13) is better understood by considering how cables, struts, and bars are allowed

to deform. By definition bars are not allowed to change in length, cables are not allowed to

reduce in length, and struts are not allowed to increase in length. Equation (2.13) can be

restated in terms of the rigidity matrix:

R(p)p′i = di, (2.14)

where p′i is a vector of nodal velocities and di is a vector of edge length changes due to p′i.

Without loss in generality, we can replace all the cables and struts of a given tensegrity

framework with bars and examine the properties of Equation (2.13) [18]. The first term

of Equation (2.13), [p1 − p2] can never be zero if the element between p1 and p2 has a

non-zero length. It follows that there are only two cases in which Equation (2.13) can

equal zero. The first is the trivial case where [p′1 − p′2] equals zero. This case amounts

to either no motion of the nodes (p′1 = 0 and p′2 = 0) or both nodes having the same

velocity vectors (p′1 = p′2). If p′1 = p′2 then the element between p1 and p2 is experiencing a

rigid body motion. If all element lengths within the framework remain constant, then the

entire structure must be moving in the same direction, with the same velocity. In other

words, if p′1 = p′2 then the whole structure is experiencing a rigid body motion, otherwise

some elements would have to change their lengths. The second case occurs if a dissimilar,

non-zero velocity can be applied to either p1 or p2.

If p′1 and p′2 are non-zero and p′1 6= p′2, then the velocity vector must be perpendicular

to the element between p1 and p2:

(p1 − p2) · (p′1 − p′2) = |(p1 − p2)||p′1 − p′2| cos(θ) = 0, (2.15)

where: θ is the angle between the direction of the velocity vector and the element. Equation

(2.15) indicates that the only way a non-zero, dissimilar velocity can be assigned to p′1
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and p′2 is when θ = 90◦ or 270◦. In E2 this occurs if the elements connected by point p

are parallel (Figure 2.7). At t = 0 velocity p′ is orthogonal to the links, but a short time

dt later the links have moved and p′ is no longer perpendicular to both links. This short

movement is called an infinitesimal flex and indicates that the structure is infinitesimally

flexible. In E3 there are a pencil of velocity vectors p′ that are perpendicular to the base

links for a infinitesimal time dt (Figure 2.8).

An alternate way to determine infinitesimal rigidity is to use the first order stress test

Figure 2.7: 2D Infinitesimal Flex : This structure is infinitely flexible in 2D, because
the node velocity p′ is perpendicular to the link for a brief moment (dt) until the link rotates
and the nodal velocity becomes p′ + dt [21].

Figure 2.8: 3D Infinitesimal Flex : This structure is infinitely flexible in 3D, because
there are several velocity vectors p′ that are perpendicular to the links [21].
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reported by Connelly and Whiteley [25]. The first order stress test exploits the fact that

the only way an element in a tensegrity system can change its length is if the stress in that

element is zero. If all the stresses in the tensegrity elements are selected to be strict proper

stresses then no stress can be equal to zero. Moreover, if the equivalent bar framework

B(p) (G(p) with all cables and struts replaced by bars) of the tensegrity configuration

G(p) is infinitesimally rigid, then G(p) must also be infinitesimally rigid [25].

Roth and Whiteley [21] proved that if the equivalent bar framework B(p) has a certain

rank then the configuration is potentially infinitesimally rigid. The principle of this proof

is that the nodal coordinates form a dense open set in Ed. This means that there is an

infinitesimal distance between the nodes and the nodes can move an infinitesimal distance

from their initial position and still be members of Ed. If one instance of the configuration

B(p) is infinitesimally rigid then the entire topology is also infinitesimally rigid [18]. The

results of this proof can be stated as [26]:

if rank [R(p)] ≥ nd− d(d + 1)

2
⇒ G(p) is infinitesimally rigid. (2.16)

The rank of the R(p) matrix for the equivalent bar framework of the Harmony tensegrity

topology reveals that this topology will satisfy Equation (2.16), yielding:

rank [R(p)] = 12 = 6 · 3− 3(3 + 1)

2
. (2.17)

However the Harmony topology can never be infinitesimally rigid because non-trivial flexes

can be applied in the plane of the upper and lower nodes [26] (Figure 2.9). Therefore

Equation (2.16) can only predict rigidity, it is not a sufficient condition to guarantee rigidity.

Similarly, all prismatic tensegrity topologies will never be infinitesimally rigid because non-

trivial velocities can be applied to their nodes in the planes of their upper and lower nodes.

Most will also fail the rigidity predictor in Equation (2.16) due to their low node to element

ratio [20]. These topologies can be made rigid by adding a pre-stress to the tensegrities

elements. This pre-stress will stabilize the infinitesimal flexes in the tensegrity by ensuring

that its nodes are always in equilibrium.
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Figure 2.9: Prismatic Tensegrity Infinitesimal Flex : This bar framework has the
same configuration as the Harmony tensegrity topology. It will always be infinitesimally
flexible because non trivial velocities can be applied to its upper or lower nodes since the
nodes share the same plane. This is true regardless of the length of the tensegrity elements.

2.3.5 Second Order Rigidity

Another class of rigidity is second order rigidity. Second order rigidity differs from infinites-

imal, or first order rigidity, in that it is based on taking a higher derivative of the length

function [18]:

d2

dt2
|p1(t)− p2(t)|2

∣∣∣∣
t=0

= [p′1(0)− p′2(0)] · [p′1(0)− p′2(0)] + (p1 − p2) · [p′′1(t)− p′′2(t)]. (2.18)

Similar to the infinitesimal rigidity equation (Equation (2.12)), Equation (2.18) reveals

that in order for a tensegrity to be second order rigid its elements must not be capable

of relative, second order motions (ie. accelerations) (Equation (2.13)). Connelly and

Whiteley [25] proved that the only way Equation (2.18) can be satisfied is if all second

order motions (accelerations, p′′) have trivial first order motions (velocities p′ = 0). It

follows that if all accelerations have trivial velocities (p′ = 0) then the structure must
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be second order rigid. If the velocities associated with the accelerations are non-trivial

then the framework is second order flexible. Connelly and Whiteley [25] proved that if a

framework is second order rigid then the framework is also first order rigid. It follows that

the framework must also be rigid since a first order rigid framework is rigid.

The second order stress test can also be used to determine if a given topology is second

order rigid. The second order stress test states that if:

p′TΩp′ ≤ 0, (2.19)

for all proper self stresses, then p′ can be extended to p′′ and the topology is not second

order rigid [18]. Equation (2.19) will always be satisfied if the reduced stress matrix Ω is

positive semi-definite [25].

2.3.6 Pre-Stress Stability

The energy state of a given tensegrity configuration can be used to verify many of the

above stability criteria, as well as the pre-stress stability of the structure. For instance, a

tensegrity configuration G(p) is considered rigid when its energy is at a local minimum for

p (the vector of nodal coordinates) and all other congruent configurations share the same

minimum [25]. The energy function is given by [18]:

E(p) =
∑
ij

fij |pi − pj |2. (2.20)

The local minimum for the energy function in Equation (2.20) is found by evaluating the

derivative of the energy function at t = 0 [18]:

dE(p)

dt

∣∣∣∣
t=0

=
∑
ij

f ′ij(|pi − pj |2)
[
2(pi − pj)(p

′
i − p′j)

]
. (2.21)

f ′ij(|pi − pj |2) is equivalent to the stress ωij and (pi − pj) can be replaced by the rigidity

matrix R(p) to give the local minimum energy condition given in Equation (2.22) [18]:

dE(p)

dt

∣∣∣∣
t=0

= 2ωTR(p)p′ = 0. (2.22)
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Equation (2.22) guarantees that the tensegrity topology is a local minimum at p, but the

second derivative of the energy equation must be used to determine if the configuration is

at a global minimum [18]:

d2E(p)

dt2

∣∣∣∣
t=0

=
∑
ij

f ′′ij(|pi − pj |2)
[
2(pi − pj)(p

′
i − p′j)

]2
+
∑
ij

fij(|pi − pj |2)2(|p′i − p′j |2).

(2.23)

Equation (2.23) can be rearranged into the Hessian matrix H by substituting the element

stiffness terms (cij) in a diagonal stiffness matrix C for the f ′′ij(|pi − pj |2) term [18]:

d2E(p)

dt2

∣∣∣∣
t=0

= H = p′T
[
2Ω + 4R(p)TCR(p)

]
p′. (2.24)

The Hessian matrix equation (Equation (2.24)) can be used to determine if the tensegrity

topology is pre-stress stable. If the Hessian matrix equation is satisfied then the stress

matrix Ω must be positive semi-definite. The stress matrix is positive semi-definite if its

eigenvalues are positive, and the eigenvalues will only be positive if the stress vector ω

contains strict, proper stresses [25]. Therefore, if ω contains strict, proper stresses then the

tensegrity framework G(p) is pre-stress stable. Pre-stress stability is a key component of

the following stability definitions.

2.3.7 Unyielding

A tensegrity topology can be classified as unyielding if all elements maintain their lengths in

all possible non-congruent and congruent configurations [18]. If all congruent configurations

are classified as G(p) and all non-congruent configurations of the same topology are G(q)

then a topology is unyielding if:

||qi − qj || = ||pi − pj ||. (2.25)

One way to verify Equation (2.25) is to examine the energy state of the desired tensegrity

configuration. A tensegrity configuration G(p) is unyielding if it is pre-stress stable and

the stress matrix Ω is positive semi-definite [18]. These conditions ensure that the Hessian

matrix is positive semi-definite, which means that the tensegrity configuration G(p) is at a
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global minimum energy state. Any other configuration G(q) must then be close to G(p)

to also be in a minimum energy state. If this is the case, then the lengths of the elements

in G(q) must be approaching the lengths of the elements in G(p), and they are in fact the

same configuration (Equation (2.25)).

In terms of the Hessian matrix H (Equation (2.24)), when a tensegrity configuration is

unyielding the first term dominates the second term. This relationship ensures that H is

positive semi-definite [18]. Connelly [25] noted that even if a tensegrity configuration has a

non positive semi-definite stress matrix and is therefore not unyielding, it may still be pre-

stress stable. This state can occur if the physical characteristics of the topology (stiffness

C and placement R(p)) are large enough to preserve the positive semi-definiteness of the

Hessian matrix. In this case the second term in the Hessian matrix dominates the stress

matrix term ensuring that H is positive semi-definite, and consequently that the structure

would only fail if its elements physically failed [18].

2.3.8 Global Rigidity

A tensegrity topology is globally rigid if all possible configurations are actually the same

configurations or congruent configurations [19]. For a tensegrity topology to be globally

rigid, the Hessian matrix must be greater than zero for all non-trivial flexes p′ (ie. be in

a positive, energy storing state), and it must be equal to zero for trivial flexes. These

conditions ensure that configuration G(p) is the global minimum energy configuration,

because all configurations that have negative energy (returning energy to the environment),

and configurations that result from trivial flexes are eliminated; leaving only the energy

storing configurations that have proper stresses by definition [18]. The second term of the

Hessian matrix represents the physical characteristics of the frameworks connections and

its material properties. The second term will always be positive semi-definite because both

the rigidity matrix R(p) and the stiffness matrix C are selected to be positive semi-definite.

The first term represents the internal and external loads on the tensegrity topology. There-

fore the Hessian matrix equation (Equation (2.24)) will always be satisfied if the stresses
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are strict proper stresses and are selected to make the stress matrix Ω positive semi-definite.

If the Hessian equation is satisfied, then the configuration G(p) is rigid because any

other configuration close to G(p) must be at a higher energy state. Each local energy

state corresponds to a specific configuration. If there is only one minimum energy state

then the only other possible configurations are congruent configurations, and G(p) must be

globally rigid [25]. Connelly and Terrell [20] proved that prismatic tensegrities, including the

Harmony tensegrity, can only be globally rigid if k = 1 or k = n
2 − 1. This condition is true

because the k = 1 and k = n
2 − 1 topologies are equivalent (it just depends on the direction

in which the nodes are counted) and the only other possible configuration is the congruent

configuration (Pn
2
(j, n2 − k)), where the vertical struts and cables are switched [20].

2.3.9 Universally Global Rigidity

A tensegrity topology is universally globally rigid if it is globally rigid in a higher dimensional

space. That is, if G(p) is globally rigid in Eo and is also rigid in Ed, and o is less than or

equal to d then the topology is universally globally rigid [19]. In other words, if more degrees

of freedom are added to the tensegrity structure because the dimension of the workspace

has increased, the tensegrity must maintain its shape to be considered universally globally

rigid [18].

2.3.10 Super Stability

A tensegrity topology is super stable when it has a proper self stress, when all possible

alternate configurations are congruent configurations or affine transformations of the topol-

ogy configuration G(p), and when the shape of the tensegrity topology does not change

regardless of the dimension of the workspace [18]. Mathematically, a tensegrity topology is

super stable if:

1. the stress matrix Ω is positive semi-definite;

2. the configuration G(p) contains all other possible configurations of the topology
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(G(p) = X(p)), hence there can be no affine image of p such that G(q) is connected

in the same way as G(p) [19] .

The first condition in the above list occurs when the stresses in Ω are all strict proper

stresses as discussed in the global rigidity criterion. In order for the second condition to

be satisfied the stress matrix Ω must have a nullity of three in E2, four in E3, etc... [20].

Alternatively the rank of the stress matrix must be equal to the number of nodes minus the

dimension of the workspace minus one [19]:

rank (Ω) = n− d− 1. (2.26)

Equation (2.26) ensures that any alternate configuration G(q) resulting from affine

transformations of G(p) are eliminated by the null space of Ω. This elimination means that

the only possible alternate configurations G(q) are congruent configurations to G(p) [20].

These conditions also ensure that as long as the stresses in the elements are all adequately

large the stress matrix will dominate in the energy equation H, and keep the structure in

static equilibrium [27].

Connelly [20] proved that prismatic tensegrity structures are only super stable when

a certain angle of twist (Figure 2.10) between the upper and lower polygons creates a

symmetric proper stress in the elements. The angle of twist is determined by [2]:

θ = π

(
1

2
− j

n
2

)
. (2.27)

A symmetric proper stress state occurs when all elements of the same type (horizontal

cables, vertical cables, and struts) have the same stress. The derivation of Equation (2.27)

is especially relevant to this thesis so it will be reproduced here (see Connelly [20] for

the original derivation). Due to the symmetry of prismatic tensegrity structures it is only

necessary to consider the equilibrium of one node in order to determine the equilibrium

of the entire structure [20]. The equilibrium equation (Equation (2.6)) will be used to

analyze the pi node in Figure 2.11. The equilibrium equation for the case where there are
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Figure 2.10: Angle of Twist : The angle of twist is the angle the top or bottom polygon
must be rotated in order to line up with each other. For the Harmony topology this angle
is 150◦ regardless of the lengths of the elements.

no external loads is [20]: ∑
l

ωl,i(pl − pi) = 0, (2.28)
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Figure 2.11: Single Node Equilibrium: The equilibrium of only one node must be
analyzed due to the symmetry of prismatic tensegrity structures. Each node connected to
the selected node pi is given an arbitrary label.

where l is equal to a, b, c, or d for prismatic tensegrity structures (Figure 2.11). The

coordinates for the five nodes are [2]:

pi = [0, r, 0] ,

pa = [r sin (θ), r cos (θ), h] ,

pb =
[
r sin

(
θ + 2πj

n
2

)
, cos

(
θ + 2πj

n
2

)
, h
]
,

pc =
[
r sin

(
2πk
n
2

)
, r cos

(
2πk
n
2

)
, 0
]

pd =
[
−r sin

(
2πk
n
2

)
, r cos

(
2πk
n
2

)
, 0
]
,

(2.29)

where r is the radius of the circle passing through the nodes in the upper or lower plane

and h is the distance between the upper and lower plane. Using the z coordinates and the

equilibrium equation about node i [20]:

ωi,a(pa − pi) + ωi,b(pb − pi) + ωi,c(pc − pi) + ωi,d(pd − pi) = 0,

ωi,a(h− 0) + ωi,b(h− 0) + ωi,c(0− 0) + ωi,d(0− 0) = 0,

hωi,a + hωi,b = 0.

(2.30)
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Since h cannot equal zero:

ωi,a + ωi,b = 0,

ωi,a = −ωi,b.
(2.31)

Finally, a similar analysis of the x and y coordinates reveals that ωi,c = ωi,d. Using the x

coordinates of the nodes (Equation (2.29)) and Equation (2.31) the twist angle θ can be

determined [20]:

ωi,a [r sin (θ)− 0] + ωi,b

[
r sin

(
θ + 2πj

n
2

)
− 0
]

+ ωi,c

[
r sin

(
2πk
n
2

)
− 0
]

+ ωi,d

[
−r sin

(
2πk
n
2

)
− 0
]

= 0,

rωi,a sin (θ)− rωi,a sin
(
θ + 2πj

n
2

)
= 0,

rωi,a

[
sin (θ)− sin

(
θ + 2πj

n
2

)]
= 0.

(2.32)

Both r and ωi,a cannot simultaneously equal zero because the resulting structure would be

trivial, and unstable, respectively (ie. not a strict proper stress) allowing Equation (2.32)

to be reduced to:

sin (θ)− sin
(
θ + 2πj

n
2

)
= 0. (2.33)

Assuming θ is between 0 and 2π:

θ +
(
θ + 2πj

n
2

)
= π,

2θ = π −
(
2πj
n
2

)
,

θ = π
(
1
2 −

j
n
2

)
.

(2.34)

By construction, Equation (2.34) forces the stresses in the tensegrity elements to be

symmetric, strict, and proper self stresses. Connelly [20] has shown that for prismatic

tensegrity structures, this stress state implies that the stress matrix Ω is positive semi-

definite with a nullity of four. This positive semi-definiteness in turn implies that only θ

(expressed by Equation (2.34)) will result in a super stable structure. Equation (2.34) also

proves that the angle of twist will be constant for prismatic tensegrity structures, regardless

of the lengths of the elements, as long as the connectivity term j and the the number
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of struts n
2 are constant. Therefore, Equation (2.34) is a geometric constraint for this

class of structure and will be used to reduce the solution space produced by the geometric

intersection form finding method proposed in this thesis.

2.4 Summary

Figure 2.12 depicts the hierarchy of the rigidity and stability definitions presented in this

chapter [18]. This diagram has been modified from the diagram presented in Tur [18], which

was an expansion of the diagram presented by Connelly and Whiteley in [25]. In both these

sources the diagram had the most restrictive definition for rigidity and stability at the

bottom and the most inclusive definitions at the top. Reversing this order (as was done

in Figure 2.12) is clearer because the larger boxes enclose the smaller boxes that contain

the definitions that are implied by the definitions of the larger boxes. For example, several

of the authors reported in this section [19], [21], [27], have shown that pre-stress stability

implies that the configuration is also second-order rigid and generally rigid (Figure 2.13a).

Super stability implies global rigidity and pre-stress stability. Hence the structure is also

second-order rigid and generally rigid (Figure 2.13b) [18]. Finally an infinitesimally rigid

structure is also pre-stress stable and consequently second-order and generally rigid [18]

(Figure 2.13c). These relationships are not generally reversible therefore the rearrangement

of Figure 2.12 is justified because a larger box cannot fit within a smaller box. For example,

a super stable structure is not necessarily first-order rigid, but a first-order rigid structure

is always super stable [18].
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Figure 2.12: The Stability Hierarchy :The relationship between the rigidity and sta-
bility classifications with the most inclusive classifications at the bottom and the most
restrictive at the top [18].

(a) Pre-Stress Stability (b) Super Stability (c) Infinitesimal Rigidity

Figure 2.13: Rigidity Hierarchy Examples: (a) Pre-stress stability implies second-
order rigidity and rigidity. (b) Super stability implies global rigidity and pre-stress stability.
(c) Infinitesimal rigidity implies pre-stress stability [18].

Using these definitions it can be shown that prismatic tensegrity structures are never

infinitesimally rigid [27], but can be pre-stress stable if the element stresses have the

correct sign and magnitude. They are also super stable if these stresses are symmetric [20].

Connelly [20] proved that the only way a prismatic tensegrity structure can be rigid and

stable is if it meets the super stability requirements. He went on to prove that prismatic

tensegrity structures must have a specific twist angle between their upper and lower

polygons in order to satisfy the super stability criterion. This twist angle will be used

in the geometric intersection form finding method presented in this thesis to reduce the



41

solution space of the form finding problem.

The form finding problem involves both determining the location and inter-connectivity

of the nodes in a tensegrity system, as well as verifying that the generated arrangement

meets one or several of the rigidity and stability criteria presented in this chapter. The

next chapter will give a brief description of the form finding methods that have been used

to analyze and generate tensegrity systems to date.



Chapter 3

Literature Review of the Form Finding Problem

3.1 The Form Finding Problem

The early tensegrity form finding methods were based on geometry and the intuition of

the designer. The goal of these methods was to calculate stable tensegrity arrangements

using a set number of elements (Fuller [28] and Emmerich [29]). Initially, designers used

physical models and achieved stable arrangements by adjusting the cable lengths of their

tensegrity structures until all cables were in tension and all struts were in compression.

The mathematical analogue of this process was eventually modelled; however some of

the structures predicted by the models were unstable, which prompted the development

of stability criteria [18]. Although the stability criteria allowed the designer to identify

usable tensegrity configurations, the basic problem of finding the spacial arrangement of

the tensegrity nodes remained. The problem of locating these nodes and determining the

stability of a tensegrity system is called the form finding problem, and it stems from the fact

that non-linear equations define the feasibility region of a stable tensegrity configuration.

Most tensegrity systems are underdetermined because the equilibrium equations do not

have a unique solution for the location of the tensegrity nodes [3]. The equilibrium equation

is [18]:

R(p)T
Ti
di

= Fext (3.1)

where i = 1 . . . numberofelements. R(p) is a graph of the edge lengths of the tensegrity

42
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system, d is an array of the edge lengths, and T is an array of the forces in each of the

elements. All of these terms are dependent on both pi and pj (the two end points of the

element), which makes Equation (3.1) non-linear. Equation (3.1) has no general solution

so it is possible to generate configurations that cannot physically exist. These degenerate

configurations include: trivial configurations (such as when all nodes lie on the same

point) intersecting configurations, and unstable configurations (such as prismatic tensegrity

structures with a non θ angle of twist).

The form finding problem involves finding a non trivial, real, and stable tensegrity

arrangement. In 2003 Tibert and Pellegrino [2] published a review of form finding methods

and categorized them as either kinematic or static form finding methods. The kinematic

form finding methods emulate the physical approach, where either the strut lengths (or

cable lengths) are held constant while the cables (or struts) are shortened (or lengthened).

The static methods use relationships between the equilibrium states of a tensegrity

topology and the forces within the elements of the topology to establish the locations of

the topology’s nodes. Both categories of form finding methods are used to find equilibrium

configurations in which the resulting tensegrity structure is in a state of prestress, which

ensures the stability of the configuration. In 2007 Tur and Juan [18] expanded the

catalogue of form finding methods to include more advanced kinematic and static methods

as well as a new category of methods which solve for the prestress, geometry, and topology

of the tensegrity structure simultaneously. One of these new simultaneous methods is the

genetic algorithm method. Since the 2007 survey [18] the genetic algorithm method has

been expanded by Rieffel [30] and a finite element method has been proposed by Pagitz [31].

The following sections give a brief description of the kinematic, static, and simultaneous

methods along with their relative merits. This chapter concludes with a table summarizing

the characteristics of the form finding methods, an explanation of the table itself, and a

description of desirable characteristics a more designer friendly form finding method should

have.
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3.2 Kinematic Form Finding Methods

3.2.1 Analytical Method

The analytical method originally presented by Connelly and Terrell [20] and further ex-

plained in Tibert and Pellegrino [2] and Tur [18], can be used to analyze symmetric tenseg-

rity topologies such as the three strut, nine cable Harmony tensegrity topology. Connelly

and Terrell’s analytical method calculates the coordinates of all the nodes in the tensegrity

system based on the height, radius, and angle of twist of the system. Tibert and Pelle-

grino use these coordinates to create equations for the length of the elements (based on

the distance between two nodes). This second approach is more desirable for the control of

tensegrity mechanisms because the input variables will be the element lengths not the radius

and height of the mechanism. Unfortunately this second approach will fail without warning

when mathematical singularities occur. For example, the length of a strut in the harmony

topology is given by the distance between its two end coordinates. The end coordinates are

given by Connelly’s approach as:

pi = [0, r, 0] ,

pa = [r sin (θ), r cos (θ), h] .
(3.2)

Tibert uses the magnitude equation to determine the distance between the two end nodes:

ls =
√

2r2 (1− cos θ) + h2. (3.3)

Equation (3.3) will be imaginary when the sum of the terms under the square root become

negative, resulting in degenerate configurations.

These approaches become too cumbersome to use in unsymmetric tensegrity structures

because it becomes increasingly difficult to determine the geometric equations that relate the

nodes. Connelly’s approach will always have a real solution, but it cannot be rearranged

in terms of the element lengths. Tibert’s approach is in terms of the element lengths,

but the designer can select lengths that result in non-real, or degenerate configurations.

One of the most limiting aspects of the analytical method is the difficulty in solving the
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form finding problem if multiple cable lengths are desired, such as in tapered prismatic

tensegrity structures (where the upper and lower end cables have different lengths). Finally,

the analytical method is based on vector analysis and yields little insight into the solution

space of the form finding problem.

3.2.2 Non-Linear Constrained Minimization Method

A similar method was proposed by Pellegrino [2] and Burkhardt [32], [18], but instead

of using the angle of twist and maximizing the strut length, a cable/strut length ratio

(Pellegrino [2]), or target length value (Burkhardt [32]) is chosen and then optimized, for

the maximum strut length. The optimization problem involves minimizing a non-linear

function of multiple variables while satisfying an equivalent number of constraints, until a

target range is reached. For the form finding method, the non-linear function describes the

length of a single element and the constraints describe the length of every other element

in the tensegrity structure [32]. This method can easily be implemented in conventional

minimization algorithms found in software packages such as Mathcad.

This numerical method yields approximate results compared to the above analytical

method and the more elements used to make up the structure, the greater the error between

the two methods. This method requires an initial knowledge of the tensegrity topology and

an initial guess at the element lengths which make up the structure. The method also

requires the designer to select different length ratios between the struts (Pellegrino [2])

or strut length targets (Burkhardt [32]) in order to find the final tensegrity configuration.

It is very difficult to specify multiple cable or strut lengths with this method because

the problem becomes a multivariable minimization problem that will drift from the target

lengths. This limits the applicability of this method, especially where tensegrity mechanisms

are concerned. A preferred method would allow the designer to specify the number of

elements and a constraining surface from which a family of tensegrity structures could be

generated.
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3.2.3 Dynamic Relaxation Method

The dynamic relaxation method proposed by Motro and Belkacem [2], [18] seeks to minimize

the kinetic energy of a given tensegrity configuration. The elements in the structure are

given constitutive relationships which relate the axial force in each element to the small

axial deformation of each element. These equations are used to calculate the forces at each

node. These forces are then used in the kinematic equation of the nodes to determine the

acceleration of the nodes, and hence the relative unbalance between the nodes from the

force distribution. The kinematic equation is then integrated to determine the location of

each node. This process is repeated and the kinetic energy is monitored at every iteration.

When the kinetic energy reaches a minimum the velocities are set to zero and the procedure

is repeated from this configuration. This procedure is repeated until the peak kinetic energy

reaches a minimum. A tensegrity topology can be evaluated by holding the length of some

elements fixed and extending the rest until a pre-stress state is developed in the system.

The topology can then be analyzed using the above method.

This method is best suited for topologies with fewer nodes. The method becomes more

cumbersome when multiple cable/strut ratios are specified by the designer. Finally, the

designer must specify these cable/strut ratios before the problem can be solved, which

means that the designer must use trial and error to arrive at a configuration with the

desired cable or strut length.

3.3 Static Form Finding Methods

3.3.1 Analytical Method

The first of the static methods was originally proposed by Connelly and Terrell [20]. It

is an analytical solution that uses the force density within the tensegrity elements and

equilibrium equations to determine the pre-stress stable state of rotationally symmetric

tensegrities. The method yields the same equation for the optimum pre-stress angle of

twist as the kinematic analytical method. Once the angle of twist is determined the overall
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geometry can be found using the same equations outlined in kinematic analytical method.

This method ensures the stability of the unloaded structure, but has the same drawbacks

as the kinematic analytical method (Section 3.2).

3.3.2 Force Density Method

The force density method was originally proposed by Schek [33] and Linkwitz [34] for mod-

eling cable net structures, but was later adapted for tensegrity structures by Vassart and

Motro [35]. The stress matrix is always positive definite for cable nets and positive semi-

definite for tensegrity structures [2]. This rank deficiency for tensegrity structures is the

result of the struts which must have negative stress values (in cable structures all stresses

must be positive, resulting in stress matrices that are always invertible, and hence posi-

tive definite). These negative force densities create null columns within the stress matrix,

thereby reducing its rank. In Chapter 2 it was stated that the stability of the tensegrity

arrangement was dependent on a stress matrix nullity of three and four for two and three

dimensional space respectively [20]. This nullity ensures that non stable form finding solu-

tions are eliminated by the null space of the stress matrix, leaving only stable configurations.

The force density method seeks these stable solutions by solving for a set of force densities

and the resulting configuration of the tensegrity. This method replaces the nonlinear node

equilibrium equations (Equation (3.1)) with linear terms derived from the force densities of

the elements:

R(p)q = Fext. (3.4)

The force densities (q) must be specified before the form finding process can begin. The

force densities are combined with the connectivity matrix, to create the force density

matrix. This matrix is used in the equilibrium equation to solve for the location of the

topology’s nodes. Generating the connectivity matrix is a non trivial exercise that can

involve intuitive, iterative, or analytical methods. The intuitive method is based on

the experience of the designer and is best for finding known tensegrity topologies with
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relatively few elements, and a high degree of symmetry. The iterative method is a trial

and error method which can be used for more complex tensegrity topologies, but takes an

indeterminate amount of time to arrive at a solution. The analytical method is based on

Gaussian elimination of the equilibrium matrix, which is used to determine the relationship

between the force densities. Using Gaussian elimination limits the complexity of the

tensegrity system because the more complex the tensegrity system the greater the number

of variables that must be symbolically manipulated.

It is difficult to control the length of the elements and the overall shape of the tensegrity

structure using the force density method. This is because the lengths of the tensegrity

elements are embedded in the force density values and the designer can only manipulate

the force densities, not the lengths directly. For example the input into the force density

method is an array of force densities:

q =

[
T1
d1
,
T2
d2
, . . .

Tn
dn

]
, (3.5)

where d represents the element length of an element and T represents the force in an element.

Only the ratio T
d can be specified because the length of any one element is dependent on the

length of all the other elements in the system (Equation (3.4)). This difficulty also makes

the force density method less desirable when creating a tensegrity system with prescribed

cable or strut lengths. The only restriction on the force densities is that they must satisfy

the super stability criterion from Chapter 2, which implies that they must all be non zero

and negative for compression elements and positive for tension elements.

3.3.3 Modified Force Density Methods

Adapted Force Density Method

Zhang and Ohsaki [36] used an adapted numerical method in place of the analytical method

proposed by Vassart and Motro [35] to find stable configurations with the force density

method. Vassart and Motro’s [35] analytical method used Gaussian elimination of the
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equilibrium matrix to determine the relationship between the force densities that satisfies

the stability conditions outlined in Connelly [20]. This method limits the complexity of the

topology which can be analyzed because the force densities are analyzed in symbolic form

and additional elements or elements of varying geometry increase the number of variable

that must be manipulated. The adaptive force density method proposed by Zhang and

Ohsaki [36] employs eigenvalue analysis and spectral decomposition to iteratively solve for

stable configurations based on user defined initial guesses for the force densities. This

adapted numerical method allows more complex topologies to be analyzed by manipulating

the force densities, but the designer again looses direct control over the element lengths.

The force density method and the adapted method require the user to specify force

densities for every sub element of the tensegrity structure; however the user is not likely to

know the optimum length of these elements or the load they will experience. The initial

guess at the force densities must therefore be made arbitrarily, based on the users experience,

or using numerical methods. There is also little control over the geometrical and mechanical

properties of the resulting tensegrity structure because of the design variables (the force

densities) the user is given to manipulate. Finally the method requires several iterations to

find a non degenerate configuration of the structure and becomes increasingly cumbersome

as the complexity of the tensegrity system increases.

Adding Surface Constraints

In [37], Masic and Skelton extend the force density method by including surface constraints

with the conventional equilibrium equations to solve the form finding problem. Symmetry

of tensegrity topologies is used to simplify the form finding problem wherever possible.

Within the force density method, constraints can be imposed on the nodes, or the cable

and strut lengths. Also a shell shape constraint can be used to force all nodes to lie on the

surface of the shell. The authors used a cylinder shell as a shape constraint on a Harmony

tensegrity topology as an example. They proceeded to use a tapered cylinder shell and a

planar constraint surface in conjunction with the force density method to solve the form

finding problem.
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The examples in [37] require parameters that the designer is not likely to know be-

forehand, such as the height of the final structure. Even though this method provides

the designer with more control over the final shape of the tensegrity system it still relies

on the force density method and numerical evaluation. The numerical evaluation requires

several iterations to solve even the simplest form finding problem. While this method is

not computationally intensive for highly symmetric topologies, it would be challenging to

implement in a real time environment, such as part of a sensor package or as part of a

tensegrity mechanism control loop.

3.3.4 Energy Method

The Energy Method was originally proposed by Connelly in [38]. It uses stress instead of

force density to linearize the equilibrium equations. An energy function is created using

the stress state at each node. This energy function is then minimized to find a stable

configuration. Schek [33] was able to show that the energy and force density methods are

equivalent. The stress matrix is identical to the force density matrix and minimizing the

energy function is equivalent to finding the positive semi-definiteness of the force density

matrix [18]. The later equality amounts to determining the stability of the system, both

by finding the minimum energy configuration and by finding the configuration that results

in the stress matrix with the correct stresses respectively. Therefore the two methods have

similar advantages and disadvantages.

3.3.5 Coordinate Reduction Method

The reduced coordinate method was proposed by Sultan et al. in 1999 [39]. In this method

a set of generalized coordinates is used to describe the configuration of the structure.

The number of coordinates can be reduced by exploiting symmetry. Virtual work is used

to determine the forces in the cables without determining the forces in the struts. Only

solutions where the cables are in tension are considered, which reduces the form finding

problem to the simpler problem of determining the lengths of the cables in terms of the
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generalized coordinates. The length of the cables are expressed in terms of the generalized

coordinates and then these equations are differentiated to obtain a square equilibrium

matrix which represents the equilibrium condition of the topology. By specifying more

constraint equations, such as surface constraints, and the rank of the equilibrium matrix;

the designer can create a series of simpler, lower dimensional equations that can potentially

be solved analytically. These equations can then be used to determine the overall geometry

of the structure.

This method requires a great deal of symbolic manipulation of the generalized coor-

dinates in order to obtain the simplified equilibrium matrix. This requires a substantial

amount of user input, or computation time depending on the complexity of the structure.

This method is usually used to modify or optimize highly symmetric structures, which have

previously been reduced to a few design variables using the coordinate reduction method

and constraint surfaces.

3.4 Simultaneous Methods

3.4.1 Axial Force Compatibility Method

Architectural applications require the direction and location of structural elements to be

specified. Engineering applications require the member forces to be controlled. A method

proposed by Zhang et al. [3] allows the designer to control both the element locations and

forces simultaneously, to varying extents. A directed graph combined with a constraint

matrix and an axial force matrix is used to linearize the equilibrium equations in terms

of the element force vectors. This method for generating the linear equilibrium matrix is

similar to that used in the force density method.

The designer must specify the location of two or more nodes (support locations) for

2D tensegrities and three or more support nodes for 3D tensegrities. The support node

locations are specified in the directed graph as imaginary fixed members that connect
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each support. The fixed members turn the tensegrity structure into a self-equilibrium

system. Then the designer must specify any desired symmetry constraints as well as the

direction of some of the elements. The designer then uses an algorithm that searches the

equilibrium modes of the constrained linearized equilibrium equations for stable tensegrity

arrangements. This algorithm eventually yields the location of all nodes in the structure.

Finally the fixed members are removed converting the fixed nodes back into support nodes

and transforming the self-equilibrium structure into a self-stressed tensegrity structure.

The number of free variables the designer has access to are dictated by the rank of the

constrained linearized equilibrium matrix. If this matrix has rank x then there are x axial

forces to be defined. The rank of a slightly modified linearized equilibrium matrix dictates

the number of nodes that the designer is free to manipulate in addition to the already fixed

support nodes. The number of free variables can be reduced by specify more constraints.

The major advantage of this method is that it allows the designer to manipulate some

of the axial forces and some of the locations of the elements simultaneously. Constraints

can also be used to modify the structure. Unfortunately the algorithm used in this method

computes the independent variables consecutively. This sequential computation makes it

difficult to specify which members are in tension and which members are in compression,

because the equilibrium state is not known until the algorithm has located all nodes. Not

knowing the equilibrium state can also lead to infeasible structures such as structures with

intersecting nodes or intersecting elements. Furthermore, most tensegrity structures have a

large number of free variables that must be either defined or reduced by adding constraints.

This may present the designer with an overly complicated or restricted solution space.

3.4.2 Differential Equation Method

A more advanced kinematic form finding method was recently proposed by Micheletti

and Williams [40], where a system of differential equations are used to simultaneously

solve for the locations of the tensegrity elements and their stresses. For any tensegrity
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structure there are a manifold of stable configurations which can be represented by a set

of differential equations that relate the nodal coordinates to the lengths of the elements.

This method allows the designer to modify the tensegrity structure by changing the length

of one or more of its edges. When an edge length is changed the system of differential

equations updates the lengths of the other elements conforming to stable paths on the

tensegrity manifold. This manifold constraint ensures that the tensegrity structure remains

stable while an edge length is manipulated. This kinematic stability allows the designer to

create stable, collapsible or foldable tensegrity structures.

This method could be improved by adding geometric constraints to aid the designer

in achieving a specific final configuration. This method is limited to structures with one

instance of self stress. This limitation allows only one edge length to be modified at a time

and restricts the possible stable paths the edge can take from one configuration to another.

While this method gives more control over an element length and more insight into the

form finding process, the characterization of the stability manifold can be quite involved

especially for larger structures with many elements.

3.4.3 Genetic Algorithm Methods

Paul et al. [41] and Rieffel et al. [30] used genetic algorithms to generate stable tensegrities

without specifying a base topology. They created a seed tensegrity structure that adhered

to the definition of a tensegrity structure; namely that every node must have at least three

cables and that no two struts share a common node. The Paul et al. genetic algorithm was

programmed to vary the element to element connections in steps creating a series of new

topologies, while the Rieffel et al. genetic algorithm used Lindenmeyer System (L-system)

evolution rules. The residual forces in the elements were then computed to determine how

close the configuration was to an equilibrium state. The nodes were then perturbed slightly

until the residual forces were lower than a pre-set threshold. This relaxation algorithm

sometimes caused the topologies to collapse. Collapsed structures were then removed
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from the gene pool. At this point a random search for stable tensegrities could be con-

ducted. A more focused search was performed by selecting a fitness criteria. The authors

chose to use the maximum volume enclosed by the struts as their fitness criterion. This

criterion allowed the authors to perform an evolutionary search for optimum configurations.

The strengths of these methods are that no topology is specified before the form finding

process begins, allowing the computer to create completely new topologies independent of

human bias. Also, the more elements the seed structure has the easier it is to find stable

configurations, and irregular tensegrity configurations can be found more quickly than

conventional methods. The weaknesses of this method are that for seed structures with

fewer struts it becomes difficult to find optimum solutions using an evolutionary search due

to the restricted solution space. Under these conditions it becomes necessary to revert to

the random search method. Also, the designer has no direct control over the shape of the

structure. The designer can only indirectly control the shape of the structure by specifying

evolutionary criteria.

3.4.4 Sequential Quadratic Programming Method

This method was proposed by Masic et al. [42] and uses non-linear, sequential quadratic

programming to calculate an optimum equilibrium state under external loading conditions

(including the case where there are no external loads), and designer imposed constraints.

Unlike the force density method, which linearizes the equilibrium equations using the force

densities, this method works with the non-linear equilibrium equations (along with several

constraints) to arrive at stable tensegrity arrangements. The method begins by selecting

a base topology that is optimized by altering the node locations and element connectivity.

The optimum topology is found for a given set of external loads using structural strength

constraints, constraint surfaces, and buckling constraints.

This method differs from most historical form finding methods because it uses external
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loads, and because it solves the non-linear equilibrium problem directly using a numerical

optimization method. The result is a tensegrity configuration that conforms to the designer’s

constraints, and is optimized to carry the desired external load without yielding or buckling.

Unfortunately this method is computationally intensive, and the designer does not have

direct control over the topology. This method may also calculate a local optimum solution

instead of the global optimum solution. This possibility forces the designer to try different

input configurations or constraints to determine if the calculated solution is the global

optimum within the solution space of the form finding problem.

3.4.5 Iterative Numerical Method

This numerical method was proposed by Estrada et al. [43] and it iteratively calculates the

force densities and equilibrium geometry once the designer specifies the connectivity of the

nodes, and which members are in tension and which members are in compression. The seed

coordinates of the nodes are calculated from the Schur decomposition of the force density

matrix. The decomposition of the equilibrium matrix and the seed coordinates are used to

generate the initial tension coefficients. The tension coefficients and seed coordinates are

used to calculate the state of stress within the structure. This process repeats until a state

of one self stress is achieved and the potential energy and element lengths are minimized.

While the calculated geometry satisfies the stability criteria, the solution is one of many

possible stable configurations for the structure.

This method can rapidly calculate stable tensegrity configurations without requiring the

designer to predefine symmetry constraints, element lengths, or force densities. It also seeks

out the configuration with the lowest potential energy, which corresponds to an optimum

stable configuration. However, the lack of constraints and designer input also make the

process difficult to control. It is possible, but not stated, that the element lengths and

constraints could be imposed on this method to guide the form finding process. Finally, the

numerical nature of this method requires several iterations to arrive at a stable configuration.
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3.4.6 Finite Element Method

The finite element method was proposed by Pagitz and Tur [31] and it models the struts

and cables of a tensegrity structure as two-node bar finite elements. The designer must

specify the topology, the undeformed bar lengths and stiffnesses, the total length of all

cables, and the cable prestresses before the form finding process can begin. The finite

element method assumes that the largest amount of potential energy within the tensegrity

structure is developed by the change in length of the strut elements. This assumption

allows the method to maintain the total cable length, while the cable length ratios and the

strut lengths are changed by a preset constant length increment and the finite difference

method. This process continues until the potential energy of the system reaches a minimum.

This method can simultaneously calculate the force densities and configuration of the

tensegrity structure. However, it requires the designer to specify many aspects of the

tensegrity structure before the form finding process can begin. The method can also fail if

the change in length of the elements is too great between iterations. The method requires a

number of iterations to arrive at an optimum configuration, and this configuration is often

identical to the symmetric configuration for the specified topology.
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3.5 Form Finding Method Summary

The characteristics of the above methods are outlined in Table 3.1, which is explained in

the following sections.

Method Ref. Class Type
Element
Length
Control

Uses
Symme-
try

Constraint
Surfaces

Comp.
Com-
plexity

Analytical Connelly [20] Kinematic Analytical Limited Yes No Low

Non-Linear
Constrained
Minimization

Pellegrino [2],
Burkhardt [32]

Kinematic Numerical Limited No No Low

Dynamic
Relaxation

Motro and
Belkacem [2] [18]

Kinematic Numerical Limited No No Mod.

Analytical
Connelly and
Terrell [20]

Static
Analytical
Iterative
Intuitive

Limited Yes No Low

Force Density
Schek et al. [33]
[34] [35]

Static Analytical No Yes No Mod.

Adaptive Force
Density

Zhang and
Ohsaki [3]

Static Numerical No No No Mod.

Surface Con-
straints

Masic and Skel-
ton [37]

Static Numerical No Yes Yes Mod.

Energy Connelly [38] Static Numerical No No No Mod.

Coordinate
Reduction

Sultan et al. [39] Static Analytical Limited Yes Yes High

Axial Force
Compatibility

Zhang et al. [36] Simultaneous Numerical fill in No No High

Differential
Equation

Micheletti and
Williams [40]

Simultaneous Numerical fill in No No Mod.

Genetic Algo-
rithm

Paul et al. [41]
and Rieffel et al.
[30]

Simultaneous Numerical No No No High

Sequential
Quadratic
Programming

Masic et al. [42] Simultaneous Numerical No No Yes High

Iterative Nu-
merical

Estrada et
al. [43]

Simultaneous Numerical No No No Mod.

Finite Element
Pagitz and Tur
[31]

Simultaneous Numerical Some No No High

Table 3.1: Summary : Characteristics of historical form finding methods.

3.5.1 Class

The kinematic, static, and simultaneous methods tend to have separate benefits and

drawbacks. The kinematic methods mimic the physical tensegrity building process with
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analytic and numeric analogues. Some element lengths are held constant while the rest are

lengthened or shortened until a geometric constraint is satisfied. None of these methods

use constraint surfaces to simplify the design process. These methods have largely been

replaced by the static methods because the static methods can solve the form finding

problem of more complex structures [18].

The static methods use the forces, the stresses, or the energy within the tensegrity

elements to linearize the non-linear equilibrium equations for the tensegrity structure. The

strength of these methods is that they can analyze more complex structures with more

elements and less symmetry than the kinematic methods. Unfortunately this increased

applicability comes at the cost of having direct control over the tensegrity element lengths,

and increased programming complexity.

The simultaneous methods solve for the prestress, geometry, and topology of the tenseg-

rity structure simultaneously. They include methods based on genetic algorithms, finite

element analysis and other iterative methods. None of these methods require the tensegrity

structure to be symmetric, but few employ constraint surfaces, and most restrict the control

the designer has over the element lengths and the shape of the final structure. The major

advantage of these methods is that most do not require an initial tensegrity topology. This

means that new topologies can be generated based on the designer’s selection constraints

instead of the designers intuition or previous experience.

3.5.2 Type

Most of the form finding methods are numerical methods due to the indeterminate nature

of the form finding problem. Numerical methods are also better suited to tensegrity struc-

tures that have many elements and little symmetry. For simpler structures with a high

degree of symmetry and fewer elements, the analytical methods are preferred because they

provide exact solutions. The analytical methods require extensive matrix manipulation

to determine the relationship between elements in the equilibrium equations. The matrix
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manipulation becomes much more difficult and time consuming for more complex tenseg-

rity arrangements. However, analytical methods can be significantly faster than numerical

methods if the designer wishes to modify an existing configuration.

3.5.3 Element Length Control

The ability to control the element lengths directly is a highly desirable aspect of any form

finding method, especially in the absence of constraint surfaces. This control is necessary

in real world applications where attachment points must be selected and the volume the

structure occupies is limited. Length control is also necessary to predict how a tensegrity

mechanism will deform as element lengths are varied.

In Table 3.1, when a variety of cable and strut lengths are selectable (unsymmetrical

tensegrities) within a form finding method, the ‘Element Length Control’ category receives

the ‘Several’ designation. When a group of element lengths are controllable, such as all

struts have one common length and all cables have another common length, this category

receives a ‘Limited’ designation. When the length of the tensegrity elements are not directly

controllable, such as in the dynamic relaxation and force density methods, this category

receives a ‘No’ designation.

3.5.4 Employs Symmetry

Symmetry in the context of tensegrity systems generally refers to rotational symmetry.

Rotational symmetry allows the designer to determine the location of a few nodes in the

structure and then extrapolate the location of the rest of the nodes using the symmetry

planes of the structure. Highly symmetric tensegrity arrangements allow the designer

to create tensegrity structures with almost any number of elements and are much more

common in real world applications. Analytical methods often use symmetry to reduce

the number of variables within the solution space, while most numerical methods exploit

symmetry when necessary, but can also analyze unsymmetrical structures. The ability to

analyze unsymmetrical structures usually comes at the price of computational time and
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implementation complexity.

In Table 3.1, a form finding method receives a ‘Yes’ designation when the method

requires symmetry to solve most practical applications. When a form finding method can

be used to analyze both symmetric and unsymmetric tensegrity arrangements it receives a

‘No’ designation.

3.5.5 Constraint Surfaces

Constraint surfaces allow the designer to control the overall shape of the tensegrity

structure at a higher, more intuitive level. Only a few methods were able to incorporate

constraint surfaces and they were all fairly simple, regular surfaces such as planes, spherical

shells, or cylindrical shells. The three methods which use constraint surfaces tended to be

more computationally complex than the rest.

In Table 3.1, a form finding method receives a ‘Yes’ designation when the method

explicitly uses constraint surfaces. When a form finding method does not use constraint

surfaces it receives a ‘No’ designation.

3.5.6 Comp. Complexity

Computational complexity refers to the complexity of the form finding method algorithm.

Form finding methods received a ‘Low’ ranking when the method could be reduced to a few

analytical equations. Methods received a ‘Mod.’ or moderate ranking when their algorithms

required multiple iterations (less than twenty iterations for methods in this category), or two

to three sequential steps to arrive at a solution. Finally, methods received a ‘High’ ranking

if they required several iterations (greater than twenty), and required multiple sequential

steps to arrive at a solution. It should be noted that only the more computationally complex

methods (Mod. to High) were capable of analyzing non-symmetric systems, and the low

complexity methods were limited to highly symmetric systems.
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3.5.7 Form Finding Insight

A method provides form finding insight when it predicts non valid geometric arrangements

or provides an intuitive or visual depiction of the solution space of the form finding problem.

While the stability criteria in most of the form finding methods will predict some degenerate

configurations, this criteria is mainly used to determine the stability of the configuration

and provides little insight into why a configuration is degenerate. None of the form finding

methods provide a clear geometric or visual representation of the form finding process;

however the kinematic methods do mimic the way tensegrity structures are built, making

these methods a bit more intuitive.

3.6 Discussion

Of the fifteen form finding methods analyzed only a few were computationally simple. Very

few allowed the designer to directly control the lengths of the tensegrity structure elements.

Only a few of the methods exploited constraint surfaces, which would make the design

process much more intuitive, controllable, and efficient. Many of the newer methods are

computationally intensive and some, like the genetic algorithm, do not produce symmetric

structures that are common in real world applications. None of the form finding methods

provided much insight into the form finding solution space or process, although the

kinematic methods replicate the techniques used to build real world tensegrity structures.

The body of literature evidently lacks a form finding method that simplifies the design

process by incorporating constraint surfaces, and direct element length control. It would

also be beneficial if a method could be devised that is computationally simple, and provided

some insight into the form finding problem. Such a method would have applications in many

real world design projects where tensegrity structures could be parameterized with intuitive

variables, such as hight and radius, instead of strut lengths and cable angles. The novel

geometric intersection method presented in this thesis addresses some of the deficiencies

identified in the previous body of knowledge.
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Geometric Intersection Method

The form finding methods identified in Chapter 3 all have various advantages and

disadvantages, but none of these methods employ a geometric approach to make the form

finding process more intuitive. A geometric form finding process is more intuitive because

trivial, intersecting, or unstable configurations can be identified and interpreted more

quickly visually. A geometry based method also simplifies the understanding of the control

system for tensegrity mechanisms, because the response of the mechanism can be directly

visualized. This visualization is extremely difficult with conventional methods because of

their numeric or pure algebraic nature. Other possible ways to improve the intuitive nature

of the form finding process include using constraint surfaces, and parameterizing the form

finding problem in terms of the controlled inputs and global outputs. For example, it is

preferable from a mechanism control perspective, if the inputs to the form finding problem

are the controlled lengths of the elements, and the outputs are the global height and radius

of the prismatic tensegrity system.

With these criteria in mind, a novel geometric method was developed based in part

on the kinematic analytical method developed by Connelly in [20] (See Chapter 3).

The geometric intersection method presented in this chapter retains all the benefits of

Connelly’s method, but with the added advantage of making the form finding process more

intuitive. This improvement is achieved by using a geometric representation of the form

finding problem, by using input and output parameters that are better suited to controlling

62
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tensegrity mechanisms, and by employing geometric constraint surfaces. Unfortunately

the geometric intersection method also retains some of the disadvantages of Connelly’s

method, most notably both are limited to the analysis of prismatic, symmetric tensegrity

systems. This deficiency is not overly limiting due to the wide use of symmetric tensegrity

structures and the inherent stability of the prismatic tensegrity topology.

The next section lists the assumptions used in both the geometric intersection and

kinematic analytical methods, then the geometric intersection method will be presented.

Tibert’s interpretation of Connelly’s kinematic analytical method will then be derived from

the geometric intersection method to prove their analytical equivalence. Finally, this chapter

will conclude with a discussion of the implementation of the geometric method in a hybrid

Mathcad-ProEngineer model.

4.1 Assumptions

The following assumptions are used in both the kinematic analytical and geometric inter-

section methods:

1. only symmetric prismatic tensegrity systems are considered;

2. the number of struts is known;

3. the connectivity of the elements is known;

4. all nodes are modelled as spherical joints;

5. cables and struts maintain their lengths for each value of the input parameters (ie.

they will not deform under load);

6. no external forces act on the structure, including body forces;

7. the structure is free standing, without any supports.
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The first assumption is the primary limitation of both the geometric intersection and

kinematic analytical methods. Both methods can only be used to analyze symmetric

tensegrity structures such as the Harmony tensegrity structure in Figure 4.1. This

assumption limits the ability of these methods to adequately model tensegrity mechanisms

because real world tensegrity mechanism will have positioning errors, and consequently will

not be exactly symmetric. The elements of a prismatic tensegrity system are grouped into

Figure 4.1: Prismatic Tensegrity System Elements: Prismatic tensegrity systems
are characterized by their symmetry, and connectivity. Their symmetry results in three
separate element categories: lateral cables, lateral struts, and horizontal or end cables. All
elements in a category have the same length.

three categories (Connelly called them transitive element classes [20]): horizontal cables;

lateral cables; and lateral struts. Assumptions two and three yield the parameters needed

to define a unique topology as was discussed in Chapter 2. For example the Harmony

tensegrity arrangement shown in Figure 4.1 has three struts (ns = 3), and has connectivity

terms j = 1 and k = 1. These parameters can be used to define the prismatic tensegrity

graph of the structure (Pns(j, k)→ P3(1, 1)).
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Assumption four is the result of the incompressibility of the cable elements. The cables

are rigidly connected to the struts, but their incompressibility results in a large number

of degrees of freedom, which can be modelled with spherical joints. This element of the

models, as well as the length constraint in assumption five are only used in the stability

analysis of the structure (see Chapter 2).

Assumptions six and seven simplify the analysis of the models by eliminating all external

forces from the nodal equilibrium equations. This simplification has consequences for the

stability of the structure, but is beyond the scope of the methods compared in this chapter.

Assumptions five, six, and seven further limit the applicability of these methods to tensegrity

mechanisms, and must be addressed before the dynamic motion of a tensegrity system can

be modeled. While the above assumptions limit the applicability of the kinematic methods

and the geometric intersection method, this first development can be used for the initial

design of many tensegrity systems. Some proposals for removing some of these assumptions

are discussed in Chaper 6.

4.2 Geometric Intersection Method Premise

The premise of the geometric intersection method is that any three prismatic tensegrity

parameters can be calculated from the remaining parameters by finding the intersection

points between two spheres and a circular cylinder. The cylinder has radius r and all

tensegrity nodes lie on its surface. These nodes are divided into two groups. The upper

nodes define the upper node plane, and the lower nodes define the lower node plane. The

two node planes are parallel and the perpendicular distance between them is the height h

of the tensegrity system (Figure 4.2). The nodes of the prismatic tensegrity system are

labeled following the convention established by Connelly in [20]; however the coordinate

system is selected to simplify the derivation of the geometric intersection method. Due to

the symmetry of prismatic tensegrity systems, only the connections to one node pi must be

analyzed. The nodes are labeled in the following way, and are illustrated in Figure 4.3:
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Figure 4.2: Geometric Method Cylinder : All the nodes of a prismatic tensegrity
system lie on a circular cylinder of radius r and of height h. These nodes also make up the
upper and lower node planes.

• the lateral strut, of length ls, will connect nodes pi and pa;

• the lateral cable, of length lc, will connect nodes pa and pd (this is a slight departure

from Tibert’s notation [2] because he uses the equivalent length pi to pb);

• the horizontal cables, of length le, will connect nodes pi and pc (clockwise) and pi and

pd (counterclockwise).
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Figure 4.3: Geometric Method Points and Coordinates: The node labels and coor-
dinate system are similar to those used in Connelly’s method [20], except that the lateral
cable has been defined from pa to pd instead of from pi to pb, and the coordinate system
has been shifted to the lower node plane from the upper node plane.

The coordinate system is located and oriented as follows:

• the x axis will be positive in the direction from the center of the cylinder through the

pi node, and shall lie in the lower node plane;

• the y axis will be positive in the direction normal to the x axis and lie in the lower

node plane;

• the z axis will pass through the central rotation axis, and complete a right hand

coordinate system.

The first sphere has a radius equal to the lateral strut length ls, and its center is located at

node pi. The second sphere has a radius equal to the lateral cable length lc, and its center

is located at node pd. The intersection between the two spheres and the cylinder surface

yeild the location of node pa (Figure 4.4).
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Figure 4.4: Geometric Method Surfaces: The two spherical surfaces intersect in a
circle. This circle intersects with the cylindrical surface in a unique point pa, in the positive
z plane.

4.3 Symmetry in the Geometric Intersection Method

Prismatic tensegrity systems are well suited to the application of group theory due to their

regular polygonal shapes [36]. Let H be the group of isometries that preserve the Euclidian

distance between the nodes in a prismatic tensegrity system (alternatively, H is the group

of isometries that make the coordinates of the nodes of Pns(j, k) invariant [20]). This

definition means that group H contains reflections and rotations about the symmetry axes

of the prismatic tensegrity system. In prismatic tensegrity systems the rotation axis is

taken to be the vertical z axis and there are ns reflection mirror lines to the rotation axis.

This symmetry allows us to consider only one collection of transitive element classes (end

cables, longitudinal cables, and longitudinal struts [20]) to completely define the geometry

of the prismatic tensegrity system. The geometry definition is accomplished by determining

the coordinates of the nodes that make up one collection of transitive elements and then
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reflecting this collection about the ns mirror lines to represent the tensegrity system in its

entirety.

4.4 Geometric Intersection Method

The coordinates of the nodes in a prismatic tensegrity have historically been calculated

using the angle of twist θ (which is unique for a set number of struts ns and connectivity

terms j), and by specifying the desired height and radius of the cylinder that is bounded by

these nodes. This is the method presented by Connelly in [20]. This method was adapted

slightly by Tibert in [2], in which he used the magnitude of the distance between two

nodes to calculate the element length between the two nodes. Both of these approaches

are difficult to visualize and the adaptation presented by Tibert [2] has the additional

disadvantage of failing without warning when a combination of element lengths result in

an impossible kinematic geometry (a configuration that cannot be physically assembled).

While it is desirable to express the overall prismatic tensegrity system in terms of

its connectivity parameters, radius, and height; from a control perspective, it is more

advantageous to control the cable and strut lengths directly. The geometric intersection

method presented here allows the end cable and strut lengths, or end cable and lateral

cable lengths to be specified. The missing cable or strut length, as well as the radius

and height of the prismatic tensegrity system can then be computed. First, the radius is

determined using the coordinate system illustrated in Figure 4.3.

The radius of the cylinder is a function of the connectivity term k, the number of struts

ns, and the end cable length le:

r =
le

2 sin
(
β
2

) , (4.1)

where β is:

β =
2πk

ns
. (4.2)

The relations in Equations (4.1) and (4.2) can be derived from Figure 4.5. The radius forms
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Figure 4.5: Geometric Method Angles: β is the angle between two adjacent nodes in
the lower node plane. θ is the angle between the nodes at the end of a strut, projected into
either the upper or lower node plane.

the hypotenuse of a right angle triangle. This triangle is created by bisecting the end cable

le. The length of le is known, and β can be calculated from Equation (4.2) as long as the

number of struts (ns) is known. The radius can be calculated using β
2 , le

2 , and Figure 4.5:

sin

(
β

2

)
=
le
2
· 1

r
. (4.3)

Equation (4.3) can then be solved for r, yeilding Equation (4.1). Calculating h is slightly

more involved. The process begins by determining the angle of twist for the desired

configuration.

The angle of twist θ for any prismatic tensegrity configuration Pns(j, k) is known to be

(see Connelly [20]):

θ = π ·
(

1

2
+

j

ns

)
. (4.4)

Equation (4.4) is a necessary and sufficient condition to guarantee the stability of the

prismatic tensegrity structure [20]. Next the locations of the sphere centers are determined.
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The center of the sphere with radius ls is located at node pi, and the center of the sphere

with radius lc is located at node pd. The coordinates of these nodes are expressed by:

pi =


r

0

0

 , (4.5)

and

pd =


r cos(β)

r sin(β)

0

 . (4.6)

The Cartesian equation for a sphere offset from the origin is given by:

(x− xi)2 + (y − yi)2 + (z − zi)2 = r2, (4.7)

where (xi, yi, zi) are the coordinates for the center of the sphere. The equations for the two

spheres are then:

(x− pi0)2 + (y − pi1)2 + (z − pi2)2 = l2s , (4.8)

and

(x− pd0)2 + (y − pd1)2 + (z − pd2)2 = l2c . (4.9)

The axis of the cylinder contains the origin and is coincident with the z axis. The cross

section of the cylinder is:

x2 + y2 = r2. (4.10)

Equations (4.8), (4.9), and (4.10) can be solved simultaneously for the missing strut or cable

length, and h. These equations can have four real solutions, however only one solution can

have the correct angle of twist and be in the positive z plane. The four possible solutions are

illustrated in Figure 4.6 (only the two intersection points above the z = 0 plane are visible in

Figure 4.6, but all four can be seen in Figure 4.7). When the solutions are not constrained by

the correct angle of twist (the angle of twist that ensures stability), the circle of intersection

points between the two spheres can intersect the cylinder in four points (Figure 4.7). The
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Figure 4.6: Geometric Method Solutions: if the solution is not constrained by the
proper angle of twist then there can be at most four solutions, or intersection points. When
the solutions are constrained by the correct angle of twist there can be only one intersection
point above the z = 0 plane.

correct angle of twist forces the plane containing the circle of intersection points to be

tangent to the surface of the cylinder. This tangency reduces the possible solutions from

four to two. Of these two solutions, only one has a positive z coordinate. The negative z

solution is a valid solution, and results in a reflection of the tensegrity topology using the

z = 0 plane as a mirror line.

4.4.1 Analytical Method and Derivation of the Analytic Kinematic

Method From the Geometric Intersection Method

The analytical form of the geometric intersection method can be derived by rearranging

Equations (4.8), (4.9), and (4.10) in terms of the desired output parameters. Let y, z, and

lc or ls be the desired parameters. The analytical equation for y is given by:

y = ±
√
r2 − x2, (4.11)

where

x = r cos(θ). (4.12)

According to Equation (4.11) y can either be positive or negative, but Figure 4.8 can be

used to show that only the y = +r2
√

1− cos2(θ) equation results in the correct angle of
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Figure 4.7: Geometric Method Solutions: the two spheres intersect in a circle, and
this circle intersects the cylinder in four locations defining four intersection points. When
the correct angle of twist is used the four possible intersection points are reduced to two,
because the circle of intersection points becomes tangent to the cylinder.

twist. y = −r2
√

1− cos2(θ) is equivalent to y = −r2 sin θ, which in turn is equivalent to

y = +r2 sin (−θ). This equation gives the y coordinate for an imaginary point (point p′a

from Figure 4.8), which has no physical significance for the form finding problem.

z and lc or ls can be determined by rearranging Equations (4.8), and (4.9) in terms

of z, θ, and r. This process begins by substituting both Equations (4.12) and (4.11) into

Equations (4.8) and (4.9):

l2s = [r cos (θ)− pi0 ]2 +
[√

r2 − (r cos (θ))2 − pi1
]2

+ (z − pi2)2 , (4.13)

and

l2c = [r cos (θ)− pd0 ]2 +
[√

r2 − (r cos (θ))2 − pd1
]2

+ (z − pd2)2 . (4.14)

Equation (4.13) can be simplified by substituting the coordinates for the center of the ls

sphere, which are in terms of r and θ:

l2s = [r cos θ − r]2 +
[√

r2 − (r cos θ)2 − 0
]2

+ (z − 0)2 ,

l2s = r2 (cos θ − 1)2 + r2 − r2 cos2 θ + z2,

l2s = r2
(
cos2 θ − 2 cos θ + 1 + 1− cos2 θ

)
+ z2,

l2s = r2 (2− 2 cos θ) + z2,

l2s = 2r2 (1− cos θ) + z2.

(4.15)
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Figure 4.8: Correct y Value: The positive value for the angle of twist (θ) can be used to
determine the correct coordinates for pa. Coordinates calculated using the negative value
for θ would give the location of point p′a, which has no physical meaning in the context of
the geometric form finding method.

Equation (4.15) is the same equation Tibert derived in [2] from Connelly’s coordinates

in [20] (Tibert used a different coordinate system so his equation for the cable length is

equal to the above equation for the strut length). A similar method can be used to simplify

Equation (4.14):

l2c = [r cos θ − r cosβ]2 +
[√

r2 − (r cos θ)2 − r sinβ
]2

+ (z − 0)2 ,

l2c = r2 (cos θ − cosβ)2 +
[
r
√

1− cos2 θ − r sinβ
]2

+ z2.
(4.16)

Using the following trigonometric identities:

cos a− cos b = −2 sin
(
a+b
2

)
sin
(
a−b
2

)
,

sin2 a = 1− cos2 a,
(4.17)

Equation (4.16) becomes:

l2c = r2
[
−2 sin

(
θ+β
2

)
sin
(
θ−β
2

)]2
+
[
r
√

sin2 θ − r sinβ
]2

+ z2,

l2c = r2
[
4 sin2

(
θ+β
2

)
sin2

(
θ−β
2

)
+ (sin θ − sinβ)2

]
+ z2.

(4.18)
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Using the following trigonometric identity:

sin a− sin b = 2 cos

(
a+ b

2

)
sin

(
a− b

2

)
, (4.19)

Equation (4.18) becomes:

l2c = r2
[
4 sin2

(
θ+β
2

)
sin2

(
θ−β
2

)
+ 4 cos2

(
θ+β
2

)
sin2

(
θ−β
2

)]
+ z2,

l2c = 4r2
[
sin2

(
θ−β
2

) [
sin2

(
θ+β
2

)
+ cos2

(
θ+β
2

)]]
+ z2,

l2c = 4r2 sin2
(
θ−β
2

)
+ z2.

(4.20)

Finally, the following relation can be used to obtain the cable length equation found in

Tibert [2]:

sin2 a =
1

2
(1− cos(2a)) . (4.21)

Equation (4.21) becomes:

l2c = 2r2 [1− cos (θ − β)] + z2. (4.22)

The height of the prismatic tensegrity (z or h) can be calculated by rearranging either

Equation (4.15) or Equation (4.22) as follows:

l2s = 2r2 (1− cos θ) + z2,

z2 = l2s − 2r2 (1− cos θ) ,
(4.23)

or,

l2c = 2r2 [1− cos (θ − β)] + z2,

z2 = l2c − 2r2 [1− cos (θ − β)] .
(4.24)

Equations (4.15) and (4.22) prove that the geometric intersection method will always yield

equivalent results to both Connelly’s method [20] and Tibert’s interpretation of Connelly’s

method [2], because one can be derived from the other. However, the geometric method

is based on a physical interpretation of the solution space, where Connelly’s method is

based on trigonometry. This geometric basis has distinct advantages that will be illustrated

in Chapter 5. The next section will discuss how the geometric intersection method was

implemented in Mathcad and ProEngineer to generate the examples in Chapter 5.
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4.5 Mathcad/ProEngineer Implementation

A parametric ProEngineer 3D model of a generic prismatic tensegrity system was created to

allow the user to input desired element lengths, connectivity, and number of struts. These

values were then analyzed in an integrated Mathcad worksheet feature to determine the

height and angle of twist of the resulting prismatic tensegrity system. These values were

used to update the old generic ProEngineer parameters, creating a visualization of the new

geometry. This implementation allowed several prismatic tensegrity systems to be analyzed

visually, under a wide variety of element lengths and number of struts. A transcript of the

Mathcad code can be found in Appendix A.

4.5.1 Computational Complexity

The computational complexity of the implementation of the geometric intersection algo-

rithm was low when compared to the form finding methods in Chapter 3, Table 3.1. This

is to be expected because the geometric intersection method arrives at the same analytical

equations as Connelly’s and Tibert’s methods [20], [2]. An alternate implementation is

documented in Appendix A where the constraint surface equations are used directly, and

solved numerically to arrive at a solution. This particular implementation is particularly

useful because it allows the constraint surfaces to be changed without re-derive the ana-

lytical equations. Also the input variables can be changed and the numerical solver will

automatically calculate the missing parameters as long as enough input variables have been

specified. By contrast, if different input or output variables are desired then Connelly’s and

Tibert’s equations must be rearranged in terms of the desired variables. While this equation

manipulation is not particularly difficult, it does add an additional step to the form finding

algorithm that the numerical implementation of the geometric intersection method avoids.
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Examples

The examples in this chapter will serve four purposes. First, they will illustrate one potential

implementation of the geometric intersection method and how it can be used to help design

and control prismatic tensegrity systems. Second, they will demonstrate the mathematical

equivalence between the geometric intersection method and Connelly’s method [20]. Third,

they will illustrate how the geometric intersection method can be used to visually identify

the boundaries of the form finding solution space (ie. when a set of parameters will result

in a degenerate tensegrity system that has no real physical representation). Finally, they

will illustrate how other surfaces can be substituted for the cylinder surface to determine

stable configurations of a wider variety of tensegrity topologies.

5.1 Implementation of the Geometric Intersection Method

The following examples were implemented using ProEngineer with an embedded Mathcad

worksheet feature, as discussed at the end of Chapter 4. The form finding process begins

by starting from a known configuration and altering the connectivity, number of struts, or

element lengths (Figure 5.1).

77



78

Figure 5.1: Generic Model Configuration: The spheres and cylinder used to generate
the generic prismatic tensegrity arrangement are shown on the left. This same generic
configuration is more easily seen when these surfaces are hidden (the image on the right).

If the kinematic geometry of the tensegrity system has variable radius, and lateral cable

lengths, then Table 5.1 and 5.2 illustrate the end poses of the tensegrity system, assuming

a constant lateral strut length for each pose.
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Initial Parameters lc = 2.0 lc = 2.5 lc = 3.0 lc = 3.5 lc = 4.0 Final

j 1 1 1 1 1

k 1 1 1 1 1

ns 3 3 3 3 3

θ 150◦ 150◦ 150◦ 150◦ 150◦

r 0.57735 0.57735 0.57735 0.57735 0.57735

Geo.


h 1.97754 2.36291 2.88675 3.40343 3.91578

ls 2.27040 2.61292 3.09473 3.58153 4.07153

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.97754 2.36291 2.88675 3.40343 3.91578

ls 2.27040 2.61292 3.09473 3.58153 4.07153

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 4 4 4 4 4

θ 135◦ 135◦ 135◦ 135◦ 135◦

r 0.70711 0.70711 0.70711 0.70711 0.70711

Geo.


h 1.92538 2.44072 2.70054 3.24698 3.78059

ls 2.32685 2.76843 3.00000 3.50000 4.00000

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.92538 2.44072 2.70054 3.24698 3.78059

ls 2.32685 2.76843 3.00000 3.50000 4.00000

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 5 5 5 5 5

θ 126◦ 126◦ 126◦ 126◦ 126◦

r 0.85065 0.85065 0.85065 0.85065 0.85065

Geo.


h 1.84484 2.37770 2.48524 3.07025 3.62993

ls 2.38774 2.81981 2.91106 3.42407 3.93373

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.84484 2.37770 2.48524 3.07025 3.62993

ls 2.38774 2.81981 2.91106 3.42407 3.93373

le 1.00000 1.00000 1.00000 1.00000 1.00000

Table 5.1: lc Variable 1 : In these examples the connectivity terms j and k are constant,
as are the number of struts (ns), and the end cable length (le). The output variables height
(h), and strut length (ls), are calculated using both the geometric method (Geo.) and
Connelley’s method (Con.) [20]. Images of the configurations corresponding to lc = 2.0 are
shown on the left and configurations corresponding to lc = 4.0 are shown on the right.
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Initial Parameters lc = 2.0 lc = 2.5 lc = 3.0 lc = 3.5 lc = 4.0 Final

j 1 1 1 1 1

k 1 1 1 1 1

ns 6 6 6 6 6

θ 120◦ 120◦ 120◦ 120◦ 120◦

r 1.00000 1.00000 1.00000 1.00000 1.00000

Geo.


h 1.73205 2.29129 2.82843 2.87228 3.46410

ls 2.44949 2.87228 3.31662 3.35410 3.87298

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.73205 2.29129 2.82843 2.87228 3.46410

ls 2.44949 2.87228 3.31662 3.35410 3.87298

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 7 7 7 7 7

θ 115.714◦ 115.714◦ 115.714◦ 115.714◦ 115.714◦

r 1.15238 1.15238 1.15238 1.15238 1.15238

Geo.


h 1.58000 2.17863 2.73796 3.27817 3.80742

ls 2.51093 2.92485 3.36226 3.81507 4.27841

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.58000 2.17863 2.73796 3.27817 3.80742

ls 2.51093 2.92485 3.36226 3.81507 4.27841

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 8 8 8 8 8

θ 112.5◦ 112.5◦ 112.5◦ 112.5◦ 112.5◦

r 1.30656 1.30656 1.30656 1.30656 1.30656

Geo.


h 1.37563 2.03528 2.62533 3.18471 3.72724

ls 2.57160 2.97710 3.40780 3.85527 4.31429

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.37563 2.03528 2.62533 3.18471 3.72724

ls 2.57160 2.97710 3.40780 3.85527 4.31429

le 1.00000 1.00000 1.00000 1.00000 1.00000

Table 5.2: lc Variable 2 : This is a continuation of Table 5.1, where lc is the variable and
the output parameters are ls and h.
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Similarly, Table 5.3 and 5.4 illustrate the beginning and end geometry if the user decides

to control the end cable and strut lengths instead of the end cable and lateral cable lengths.

Initial Parameters ls = 2.0 ls = 2.5 ls = 3.0 ls = 3.5 ls = 4.0 Final

j 1 1 1 1 1

k 1 1 1 1 1

ns 3 3 3 3 3

θ 150◦ 150◦ 150◦ 150◦ 150◦

r 0.57735 0.57735 0.57735 0.57735 0.57735

Geo.


h 1.66012 2.23741 2.78496 3.31753 3.84135

lc 1.68680 2.25728 2.80095 3.33096 3.85296

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.66012 2.23741 2.78496 3.31753 3.84135

lc 1.68680 2.25728 2.80095 3.33096 3.85296

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 4 4 4 4 4

θ 135◦ 135◦ 135◦ 135◦ 135◦

r 0.70711 0.70711 0.70711 0.70711 0.70711

Geo.


h 1.51423 2.13141 2.70054 3.24698 3.78059

lc 1.60804 2.19904 2.75423 3.29178 3.81913

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.51423 2.13141 2.70054 3.24698 3.78059

lc 1.60804 2.19904 2.75423 3.29178 3.81913

le 1.00000 1.00000 1.00000 1.00000 1.00000

Table 5.3: ls Variable 1 : In these examples j, k, ns, and le are constant. The output
variables h, and lc are calculated using both the geometric method (Geo.) and Connelley’s
method (Con.) [20]. The images correspond to the extreme configurations (ls = 2.0 and
4.0).

5.2 Equivalence of the Geometric Form Finding Method to

Connelly’s Method

Tables 5.1, 5.2, 5.3, and 5.4 empirically show that the geometric intersection method is

mathematically equivalent to Connelly’s method [20] as expected. This equivalence occurs
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Initial Parameters ls = 2.0 ls = 2.5 ls = 3.0 ls = 3.5 ls = 4.0 Final

j 1 1 1 1 1

k 1 1 1 1 1

ns 5 5 5 5 5

θ 126◦ 126◦ 126◦ 126◦ 126◦

r 0.85065 0.85065 0.85065 0.85065 0.85065

Geo.


h 1.30466 1.98800 2.58885 3.15470 3.70164

lc 1.51615 2.13277 2.70161 3.24788 3.78136

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.30466 1.98800 2.58885 3.15470 3.70164

lc 1.51615 2.13277 2.70161 3.24788 3.78136

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 6 6 6 6 6

θ 120◦ 120◦ 120◦ 120◦ 120◦

r 1.00000 1.00000 1.00000 1.00000 1.00000

Geo.


h 1.00000 1.80278 2.44949 3.04138 3.60555

lc 1.41421 2.06155 2.64575 3.20156 3.74166

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 1.00000 1.80278 2.44949 3.04138 3.60555

lc 1.41421 2.06155 2.64575 3.20156 3.74166

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 7 7 7 7 7

θ 115.714◦ 115.714◦ 115.714◦ 115.714◦ 115.714◦

r 1.15238 1.15238 1.15238 1.15238 1.15238

Geo.


h 0.43778 1.56258 2.27852 2.90545 3.49165

lc 1.30201 1.98626 2.58752 3.15361 3.70071

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 0.43778 1.56258 2.27852 2.90545 3.49165

lc 1.30201 1.98626 2.58752 3.15361 3.70071

le 1.00000 1.00000 1.00000 1.00000 1.00000

j 1 1 1 1 1

k 1 1 1 1 1

ns 8 8 8 8 8

θ 112.5◦ 112.5◦ 112.5◦ 112.5◦ 112.5◦

r 1.30656 1.30656 1.30656 1.30656 1.30656

Geo.


h undefined 1.23662 2.06863 2.74394 3.35846

lc undefined 1.90706 2.52723 3.10433 3.65881

le 1.00000 1.00000 1.00000 1.00000 1.00000

Con.


h 0.84899i 1.23662 2.06863 2.74394 3.35846

lc 1.17766 1.90706 2.52723 3.10433 3.65881

le 1.00000 1.00000 1.00000 1.00000 1.00000

Table 5.4: ls Variable 2 : This is a continuation of Table 5.3, where ls is the variable and
the output parameters are lc and h. Note that for ns = 8 there is no geometric solution,
and no real solution for Connelly’s method.
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because both Connelly’s method and the geometric intersection method arrive at the same

analytical equations, despite being derived using completely different methods (algebraic

derivation vs. geometric derivation). One notable exception occurs in Table 5.4, where

the output variables h and lc are undefined for the geometric intersection method and

imaginary for Connelly’s method. This result occurs in Connelly’s method because the left

hand side of z2 = l2s − 2r2 (1− cos θ) becomes negative when l2s < 2r2 (1− cos θ). This

inequality explains mathematically why there is no real solution for h, but it is arguably not

intuitive. The differences between Connelly’s and Tibert’s methods and the geometric in-

tersection method become clearer when the algorithm for each of these methods is described.

5.3 Form Finding Method Algorithm Comparison

All method algorithms begin by defining the topology of the tensegrity system. These

definitions include specifying the number of compression elements and the j and k values

that define how the tension elements connect to the compression elements. Connelly’s

method can then be implemented using the following algorithm:

1. Specify the radius of the topology r, and the hight of the topology h.

2. Determine the angle of twist that will ensure the stability of the topology using:

θ = π

(
1

2
+

j

ns

)
. (5.1)

3. Calculate the coordinates of the nodes using the following equations:

pi = [0, r, 0] ,

pa = [r sin (θ), r cos (θ), h] ,

pb =
[
r sin

(
θ + 2πj

n
2

)
, cos

(
θ + 2πj

n
2

)
, h
]
,

pc =
[
r sin

(
2πk
n
2

)
, r cos

(
2πk
n
2

)
, 0
]

pd =
[
−r sin

(
2πk
n
2

)
, r cos

(
2πk
n
2

)
, 0
]
.

(5.2)
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4. Plot the resulting configuration.

5. Calculate the length of the elements by using the following equations:

ls =
√

2r2 (1− cos θ) + h2,

lc =
√

2r2 [1− cos (θ − β)] + h2,

le = 2r sin
(
β
2

)
.

(5.3)

6. Change the hight, radius, number of elements or connectivity variables to achieve the

desired element lengths.

Tibert’s method can be implemented using the following algorithm:

1. Specify the input variables:

• One input variable must be either the radius of the topology r or the length of

the end cables le,

• The other input variable must be the hight of the topology h, the length of the

side cables lc, or the length of the struts ls.

• For this example the length of the end cables and the struts will be specified.

2. Evaluate the following boundary condition to ensure the existence of a solution:

l2s < 2r2 (1− cos(θ)) . (5.4)

3. If the inequality is not satisfied alter the radius or the strut length until the inequality

is satisfied.

4. Determine the angle of twist that will ensure the stability of the topology using:

θ = π

(
1

2
+

j

ns

)
. (5.5)

.
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5. Simultaneously solve the following equations for h and lc:

ls =
√

2r2 (1− cos θ) + h2,

lc =
√

2r2 [1− cos (θ − β)] + h2.

(5.6)

6. Plot the resulting configuration.

The geometric intersection method can be implemented using the following algorithm:

1. Specify the input variables:

• One input variable must be either the radius of the topology r or the length of

the end cables le,

• The other input variable must be the hight of the topology h, the length of the

side cables lc, or the length of the struts ls.

• For this example the length of the end cables and the struts will be specified.

2. Evaluate the following boundary condition to ensure the existence of a solution:

l2s < 2r2 (1− cos(θ)) . (5.7)

3. If the inequality is not satisfied alter the radius or the strut length until the inequality

is satisfied.

4. Determine the angle of twist that will ensure the stability of the topology using:

θ = π

(
1

2
+

j

ns

)
. (5.8)

5. Calculate the coordinates for the two sphere centers using the following equations:

pi =


r

0

0

 , (5.9)
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and

pd =


r cos(β)

r sin(β)

0

 . (5.10)

6. Simultaneously solve the following equations for h and lc:

ls =
√

2r2 (1− cos θ) + h2,

lc =
√

2r2 [1− cos (θ − β)] + h2.

(5.11)

7. Plot the resulting configuration.

Connelly’s method will always have a solution, but does not allow the element lengths to

be directly controlled. Both Tibert’s method and the geometric intersection method allow

the element lengths to be controlled, but they must both evaluate a boundary condition

to ensure the existence of a solution. The geometric intersection method does not offer

a significant advantage over Tibert’s method for an unknown configuration, but once the

element lengths of a non degenerate configuration are known, the geometric intersection

method can be used to optimize the configuration using a more intuitive process.

5.4 Optimization of a Known Configuration

Connelly’s method can be used to optimize a known configuration using the same algorithm

presented above. The optimization is conducted by altering the radius and hight of the

tensegrity topology until the desired element lengths are achieved (the exact element lengths

may not be achievable depending on the number of struts and the connectivity terms j and

k). This method is difficult to use as part of an optimization process because it does not

allow the element lengths to be optimized directly. Similarly Tibert’s method can be used

to optimize a know configuration using the above algorithm and altering the input variables.

Difficulties arise when the specified element lengths approach the boundary condition. In

Tibert’s method it is not clear which element lengths must be altered in order to avoid the
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boundary condition. Like Tibert’s method, the geometric intersection method can optimize

a known configuration using the above method and altering the input variables. Unlike

Tibert’s method, the geometric method provides a new boundary condition which is more

intuitive.

5.5 Determining Boundary Conditions Geometrically

A closer examination of the geometric method reveals that the intersection point between

the spheres and the cylinder is about to be lost when the cylinder does not extend below the

xy plane. The loss of the intersection point corresponds to a zero or negative height, which

is an E3 boundary condition for this configuration. This result is immediately obvious when

ls is reduced until it becomes imaginary. This more intuitive visual approach to examining

the boundary conditions of the form finding problem is illustrated in Figure 5.2.

Figure 5.2: Cylinder Boundary Evaluation: The upper row is the top view of the
8 strut tensegrity from Table 5.2, and the lower row is a side view of the same topology.
The upper row illustrates that the lc sphere is becoming smaller relative to the ls sphere.
The lower row shows that the intersection point is rapidly approaching the xy plane, and a
degenerate E3 configuration.
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Another indication that a boundary condition has been reached is when the lc sphere

is completely enveloped by the ls sphere. If lc is inside ls then no real intersection between

the three surfaces can exist. This condition can be restated mathematically as:

ls ≥ lc + le. (5.12)

Equation 5.12 can be derived from Figure 5.3. These two methods of visually identifying

Figure 5.3: Sphere Boundary Evaluation: If lc + le becomes less than ls then the lc
sphere will be completely inside the ls sphere, and no intersection between the three surfaces
is possible.

the boundary conditions for the form finding process can allow the designer or the

algorithm to quickly identify when a degenerate configuration will occur. The geometric

intersection method also provides a new context in which to understand the nature of these

boundary conditions. Using the geometric method, the boundary conditions are identified

by determining when the parameters result in a cylinder and two spheres that have no

intersection in common. When this situation occurs there can be no real representation of

the tensegrity configuration in the workspace. Furthermore, since each constraint surface is

directly linked to the length of the elements, the designer can immediately identify which

element lengths should be altered to avoid approaching a boundary condition. This visual
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feedback is in contrast to Connelly’s method where the designer must interpret the output

configuration alone, without the aid of the constraint surfaces.

Figure 5.4 illustrates this advantage. The geometric intersection method clearly shows

that the length of the cable (represented by the green sphere) should be increased to prevent

the red sphere (which represents the strut length) from enveloping the green sphere. If the

one sphere is enveloped by the other then the intersection point will be lost, and there will

be no solution to the form finding problem. Connelly’s method is shown on the right and it

is not immediately obvious which element lengths need to be changed in order to move away

from the boundary condition. This visual feedback is one of the greatest advantages of the

geometric intersection method because it is the only method that provides this information.

Figure 5.4: Boundary Condition Evaluation: The geometric intersection method out-
put is shown on the left along with its boundary condition, and the output from Connelly’s
method is shown on the right along with its boundary condition. Without the constraint
surfaces it is difficult to determine which element lengths should be changed to ensure
that Connelly’s boundary condition is satisfied. The geometric intersection method clearly
shows that the cable length must be increased to ensure that the strut sphere (red) does
not envelope the cable sphere (green).
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5.6 Using Alternate Control Surfaces

Alternate geometric surfaces can be used in place of the cylinder as long as some degree of

symmetry is maintained. One of the most practical surfaces after the cylinder is the cone.

A conical prismatic tensegrity topology finds use in a variety or real world applications,

including intermediate poses of tensegrity mechanisms. The Cartesian equation for a cone

is: (
x2 + y2

)(hcone
rcone

)2

= (z − hcone)2 , (5.13)

where hcone is the height of the cone and rcone is the radius of the base. Equation 5.13 can

be rearranged in terms of the prismatic tensegrity parameters by letting rcone = r1, and

specifying a new radius r2 at h as shown in Figure 5.5. Figure 5.5 can also be used to derive

Figure 5.5: Cone Surface Parameters: A truncated cone can be parameterized by
the radius of two circles dividing a cone into two sections. One of these circles is in the
base plane (z = 0), and the other is in a parallel plane that is also occupied by the upper
tensegrity nodes (z = h).

the relationship between hcone and h as follows:

tan(φ) = r1
hcone

,

tan(φ) = r1−r2
h ,

r1
hcone

= r1−r2
h ,

hcone = r1h
r1−r2 .

(5.14)
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In terms of these new variables, Equation 5.13 becomes:

(
x2 + y2

)( h

r1 − r2

)2

= z − h
(

r1
r1 − r2

)2

. (5.15)

Equation 5.15 can be further simplified because the z coordinate of the intersection point

is equal to h: (
x2 + y2

)
z2
(

1
r1−r2

)2
= z2

[
1−

(
r1

r1−r2

)]2
,(

x2 + y2
)

= r22
(r1−r2)2
(r1−r2)2 ,

x2 + y2 = r22.

(5.16)

Equation 5.16 can now be used with the two sphere equations to determine the desired

parameters of the prismatic tensegrity structure. An additional parameter is required to

account for the different end cable lengths between the upper nodes. This new parameter

can be either r2 or lt, where lt is the upper end cable length. The relationship between r2

and lt is given by:

r2 =
lt

2 sin
(
β
2

) . (5.17)
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Table 5.5 contains a series of prismatic tensegrities where the ratio between le and lt is

altered while the rest of the geometric and connectivity parameters remain constant.

lt
le

= 2
3

lt
le

= 1 lt
le

= 3
2

Table 5.5: Cone Example: Each row corresponds to an increased number of struts (3,

4, and 5 struts). The side wall of the cone will slope outwards if lt
le
> 1 and slope inwards

if lt
le
< 1. The cone becomes a cylinder when lt

le
= 1.
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The need to define an additional parameter for cone prismatic tensegrities is offset by the

larger subset of tensegrity topologies that can be modelled. Connelly’s method can also be

adapted to model different topologies, but it is much easier to think of these changes in terms

of selecting a new constraint surface than it is to derive the new relationships between the

parameters algebraically. Table 5.5 again illustrates a case where an infeasible geometry

is reached. This configuration can be further analyzed by examining the configurations

leading up to the infeasible geometry (Figure 5.6).

Figure 5.6: Cone Boundary Evaluation: As ls is reduced the intersection point be-
tween the three surfaces is lost. This occurs because the ls sphere envelops the lc sphere.
Also the height of the cone is approaching zero as can be seen in the lower serries of images.
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The preceding examples have demonstrated the suitability of the geometric intersection

method for solving the form finding problem of prismatic tensegrity systems. They have

also demonstrated the mathematical equivalence of the geometric intersection method and

Connelly’s method (Tables 5.1, 5.2, 5.3, and 5.4). Figures 5.2 and 5.6 have illustrated a

new rationale for the occurrence of degenerate configurations, which is completely unique

to the geometric intersection method. It is clear that degenerate configurations will occur

if a combination of parameter values results in a loss of intersection between one or more

of the three geometric surfaces. This rationale is very intuitive, and can warn the designer

when a given configuration becomes infeasible. This aspect of the geometric intersection

method would be particularly useful for determining the reachable workspace of a prismatic

tensegrity mechanism. Finally, the geometric intersection method can easily be reformulated

to accept other geometric shapes as constraint surfaces. A truncated cone is an especially

important surface because of its applicability to the deployment and actuation of tensegrity

structures and mechanisms.



Chapter 6

Conclusions

The current literature suggests that there is an absence of form finding methods that

can provide insight into the form finding process, make the form finding process more

intuitive for those wishing to exploit the benefits of tensegrity systems, and which can

be more easily implemented in a tensegrity mechanism control loop. The geometric

intersection method presented in this thesis addresses these shortcomings by providing

a more visual interpretation of the solution space, and by being easier to adapt to more

complex tensegrity topologies. These advantages are achieved due to the novel derivation

of the geometric intersection method.

The geometric intersection method is derived in a completely different way than

conventional form finding methods. While most conventional form finding methods are

derived using vector analysis, the geometric form finding method is derived using geometric

analysis, making it arguably much easier to use and interpret. Part of its usefulness comes

from its simplicity. The geometric intersection method determines the location of the

nodes in a tensegrity system by finding the intersection points between two spheres and

a circular cylinder. Each sphere is defined by its radius and the coordinates of its center.

The radius is given by either the lateral strut or cable length, and its center location is

defined by the coordinates of the end cable nodes. The cylinder is defined by its radius

and central axis. The radius of this cylinder is defined by the end cable length and the

number of struts, while the central axis is coincident with the z axis of the coordinate system.

95



96

These simple geometric shapes give an immediate visual impression of how the

parameters of the tensegrity system influence the final shape of the tensegrity system.

Furthermore, these shapes are parameterized in terms of the element lengths (ls, lc, and le),

which are most likely to be controlled in a tensegrity mechanism. This formulation makes

the geometric intersection method better suited to tensegrity mechanism control than

conventional form finding methods because it is much easier to understand the relationship

between the element lengths and the final shape of the tensegrity system. Once the end

cable length and either the lateral cable length or the strut length are defined, the length

of the missing lateral element is calculated, as well as the global parameters (the radius

and height) of the resulting tensegrity system.

Both Connelly’s [20] and Tibert’s [2] methods can be derived from the geometric in-

tersection method, which guarantees their algebraic equivalence. This equivalence is espe-

cially clear when comparing Tibert’s method to the geometric intersection method. Tibert’s

method is based on calculating the length of a vector between the tensegrity system’s nodes

(the coordinates of the nodes being calculated first using Connelly’s method) to determine

the length of the end cables, lateral cables, and lateral struts. This method is based on

vector algebra and does not immediately give a sense of the resulting tensegrity system,

or when this system is approaching a boundary condition and a degenerate configuration.

The geometric method provides the exact same solution, but with the added benefit of

clearly establishing the relationships between the input parameters and the output param-

eters. The geometric intersection method also provides immediate visual feedback when a

combination of parameters is about to result in a degenerate configuration.

The geometric intersection method was implemented in a ProEngineer-Mathcad

model so that it could be compared with a similar model of Connelly’s kinematic

analytical method. It was demonstrated in Chapter 4 that the geometric intersection

method can be used to derive Connelly’s method, and the examples generated from the

ProEngineer-Mathcad model confirm the algebraic equivalence of the two methods. The
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major advantage of the geometric intersection method is the clear way the element lengths

affect the final geometry of the tensegrity system. This relationship is best illustrated

when a combination of element lengths are selected, which result in a degenerate, non-real

configuration.

When a degenerate configuration occurs, both the geometric intersection method and

Connelly’s method will provide an imaginary solution that has no physical significance.

The geometric intersection method reveals that the degenerate configuration is due to

the loss of intersection between the three constraint surfaces, while the relationships in

Connelly’s method result in a negative term under a square root; giving no clear indication

of which parameters have caused the degenerate configuration. The geometric intersection

method can quickly identify which parameters should be altered to restore the tensegrity

system, because each of the constraint surfaces in the geometric intersection method

correspond to an element length (the radius of the cylinder is given by the end cable length,

and the radii of the spheres are given by the lateral element lengths). This direct re-

lationship helps make the geometric intersection method more intuitive than other methods.

Another aspect of the geometric intersection method that makes it more intuitive and

useful for designers than other methods, is that it can quickly be adapted to solve the form

finding problem for other symmetric tensegrity systems. These modifications can be accom-

plished by replacing the circular cylinder with another geometric shape, such as an elliptical

cylinder, another sphere, or a cone. The cone is a particularly useful surface because conic

tensegrity systems are found in many real world applications, and they can represent the

intermediate posses of some tensegrity mechanisms ( [13], [4], [5] ). Implementing the cone

surface in the geometric intersection method involves replacing the circular cylinder equa-

tion with the equation for a cone. This substitution requires an additional parameter to

be selected (either the new upper radius, or upper end cable length). By contrast, Con-

nelly’s method would require redefining the node coordinate equations algebraically, which

is arguably less intuitive than substituting constraint surface equations. The versatility
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and visual nature of the geometric intersection method should allow it to find applications

in a wide variety of tensegrity systems, especially in the design and control of tensegrity

mechanisms.

6.1 Contributions

The primary contribution of this thesis is the introduction of the geometric intersection

method, which is a better optimization and interpretation tool for designing tensegrity

systems. Additionally the literature review presented in Chapter 3 is more up to date than

Tibert’s review [2] and Tur’s review [18]. The updated, and in some cases, more in depth

literature review should be a valuable resource to anyone seeking an updated introduction

to tensegrity form finding methods.

6.2 Future Work

The geometric intersection method should be further developed to solve the form finding

problem for a wider range of tensegrity topologies. It should also be adapted to include

the deformation of the elements, and the response of a tensegrity system to external loads.

The current geometric intersection method can be used to control tensegrity mechanisms,

but these mechanisms must maintain their symmetry throughout their actuation. If more

irregular topologies could be analyzed then the geometric intersection method could model

tensegrity mechanisms with irregular deployment or actuation schemes. The following as-

sumptions were made in Chapter 5 to reduce the complexity of developing the geometric

form finding method:

1. only symmetric prismatic tensegrity systems are considered;

2. the number of struts is known;

3. the connectivity of the elements is known;

4. all nodes are modelled as spherical joints;
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5. cables and struts maintain their lengths for each value of the input parameters (ie.

they will not deform under load);

6. no external forces act on the structure, including body forces;

7. the structure is free standing, without any supports.

The above assumptions create restrictions on the symmetry, element material properties,

and loading environment of the tensegrity systems that can be analyzed by the geometric

intersection method.

Currently the geometric intersection method is limited to symmetric prismatic tensegrity

structures. While different constraint surfaces can be substituted for the circular cylinder

surface, the new topologies must still have a large degree of symmetry. More irregular

tensegrity topologies could be modelled if the length of each element were represented by

its own sphere. The intersection points between these spheres and a control surface could

then be calculated to determine the coordinates of the nodes. The stability of these new

topologies would then need to be evaluated. Once more irregular tensegrity topologies can

be analyzed, the mass properties of the tensegrity elements could be used in conjunction

with the generally unsymmetric element displacements to evaluate the transient dynamics

of a tensegrity mechanisms.



Chapter 7

Glossary

Affine Transformation affine transformations preserve the distance, but not necessarily

orientation between objects. For example two points will always remain the same

distance apart when an affine transformation is applied to them, but their location

and orientation in space may be altered. The group of affine transformations in-

clude: rotations, translations, reflections, and glides (reflection then translation or

vice versa).

Bars connect two nodes, and can never change in length. They can be in tension or

compression.

Cables connect two nodes, and can only increase in length. They are only stable in tension.

Compression a force that tends to decrease the length of an object.

Congruence two sets of points are called congruent if one can be transformed into the other

by an isometry, i.e., a combination of translations, rotations, glides, and reflections.

Less formally, two figures are congruent if they have the same shape and size, but are

in different positions (for instance a set of points may be rotated, flipped, or moved,

but their relative distance must be maintained).

Eigenvalues are scaling factors for eigenvectors. If they are negative they flip the direction

of the eigenvector.

100
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Eigenvectors Are vectors that maintain their direction, but not necessarily their magni-

tude when multiplied by a matrix: Ax = xl, where l is the eigenvalue scalar.

Force density the amount of force per unit length in a tensegrity element.

Form finding refers to the process of determining the stable geometry of a tensegrity

system.

Framework a framework is any point cloud, where every point is connected to at least two

other points by a structural element. These elements can be bars, struts, or cables.

Isometry a group theory concept that includes all transformations that preserve distance

(for instance the distance between two points).

Mirror Line a mirror line is the line or plane about which an object is reflected.

Nullity, Null space, Kernel In a system of equations in matrix form, the null space is

the number of equations that cause the variables to equal zero. For instance the null

space is equal to the number of vectors x that cause Ax = 0, where A is the matrix.

Positive Definite Matrix a positive definite matrix has all positive eigenvalues.

Proper Self Stress a tensegrity system is in a proper stress state when all cables have a

positive self stress, and all struts have a negative self stress.

Rank the column rank of a matrix is equal to the number of linearly independent columns

in the matrix.

Strict Proper Self Stress a tensegrity system is in a strict proper stress state when all

cables have a positive self stress, all struts have a negative self stress, and no struts

or cables have a self stress equal to zero.

Struts connect two nodes, and can only decrease in length. They are only stable in com-

pression.
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Tensegrity a term developed by Richard Buckminster Fuller to describe systems composed

of compression element kept in static equilibrium by a network of tension elements.

Tensegrity configuration a specific instance of a tensegrity topology. All elements have

a specified length, all nodes have fixed coordinates, and all elements are connected by

a unique set of connections.

Tensegrity mechanism a tensegrity topology whose element lengths can be changed to

produce a desired motion or transformation of energy.

Tensegrity structure a tensegrity topology in static equilibrium.

Tensegrity system a tensegrity that can either be a static structure, or an actuated

mechanism.

Tensegrity topology refers to a unique set of connections between the elements in a

tensegrity structure or mechanism It encompasses all possible lengths and nodal place-

ments of the tensegrity elements using this unique set of connections).

Tension a force that tends to increase the length of an object.

Topology A specific arrangement or set of connections between elements. A given topol-

ogy includes all element lengths that are achievable, with a single set of element

connections.

Transitive Element Classes this nomenclature was used by Connelly [20] to describe

the elements in a prismatic tensegrity system that share the same length. The three

transitive element classes are: lateral struts, lateral cables, and end cables.

Trivial In this thesis, trivial parameters are parameters that are equal to zero.
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Mathcad Transcript

The following transcript corresponds to version 10 of the Mathcad worksheet rela-

tions10.xmcd, which is current as of October 2009.
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