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Abstract. This paper will begin to lay the foundation to solving the continuous
approximate Burmester problem using a technique to map desired continuous cou-
pler pose curves to the closest, in some sense, quartic curve of intersection of two
quadric dyad constraint surfaces in the planar kinematic mapping image space.
Since there are 27 distinct planar 4R mechanism types with specific input-output
mobility constraints, the first step in the path forward is to examine the correspond-
ing image space quartic curves corresponding to the coupler pose curves of these
linkage types. This paper provides first steps towards characterisation of the family
of quartic coupler pose curves generated by several examples among the 27 planar
4R linkage types.
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1. Introduction

The study of planar four bar linkages involves a large variety of problems ranging from
the problem of guiding a point along a specific curve (the coupler curve) to the input-
output relationship of the crank and follower (the function generation problem), to rigid
body guidance of the coupler (the Burmester problem), to trajectory generation and the
transmission of forces and torques through the linkage; in this paper, the topic will be re-
stricted to the Burmester problem. In most cases, the Burmester problem involves guid-
ing a rigid body through a discrete sequence of positions and corresponding orientations
(poses), and identifying the linkage that best guides this rigid body through the discrete
number of poses, with no real control over the intermediate configurations.

Burmester theory [1] states that five finitely separated rigid body poses are sufficient
to identify at most four dyads that can be taken two at a time: there can be as many as
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six different four-bar mechanisms that can guide a rigid body exactly through five speci-
fied poses. The discrete approximate Burmester problem specifies greater than five poses
leading to an optimisation problem to identify a linkage that best approximates the spec-
ified poses in some sense. Whereas, the continuous approximate Burmester problem, an
extension of the continuous approximate synthesis problem for function-generation [2],
considers a continuous pose curve to which the best approximating linkage must be fit,
in some sense.

Solutions to any form of the Burmester problem include branch-defect and assembly
mode issues [3], as well as ordering of the desired poses. The identified linkage will be
able to guide the coupler through the desired poses, though whether or not the coupler
will be able to reach all poses in the same assembly mode, or the order in which these
poses will be assumed is not guaranteed. While there are algorithms and extended so-
lution characterisations which determine whether or not an assembly mode defect or an
ordering fault is present within the synthesised linkage exist, these algorithms are inher-
ently retrospective and are performed as an analysis on the synthesised linkage. Ideally,
a full solution to the Burmester problem would be able to present all of this information,
and remove the need for any further analysis.

In this paper, we intend to layout the goal of taking a desired continuous parametric
pose curve of arbitrary complexity described in the Euclidean plane and identifying the
planar 4R linkage that best approximates the desired motion, in some specified sense,
over the continuous range of motion. This is certainly work in progress and we will offer
no results per se, rather the intended path towards attaining the goal.
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Figure 1. A planar 4R mechanism.

2. Kinematic Mappping Image Space

A general displacement of one coordinate system in the plane relative to a stationary one
requires three independent parameters to fully describe it. With reference to Figure 1, the
position of a point in the moving coordinate system E, described by the ratios (x : y : z),
can be mapped to the coordinates of the same point, but described by the ratios (X :Y : Z),
in the stationary coordinate system Σ using a homogeneous linear transformation as:
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The Cartesian coordinates of the origin of E measured in Σ are (a,b), while ϕ is the
rotation angle measured from the X-axis to the x-axis, the positive sense being counter-
clockwise. Clearly, in the first matrix in Eq. (1) the three characteristic displacement
parameters are (a,b,ϕ). Image points in the 3-D projective image space are defined in
terms of the displacement parameters (a,b,ϕ) as [5]

(X1 : X2 : X3 : X4) = ((asin(ϕ/2)−bcos(ϕ/2) : (acos(ϕ/2)+bsin(ϕ/2) :

2sin(ϕ/2) : 2cos(ϕ/2)) . (2)

The second matrix in Eq. (1) is the Euclidean displacement transformation from the first
matrix expressed in terms of the image space coordinates as defined in Eq. (2). In order
for a set of four numbers, a point in the image space, to represent a planar displacement
it must be that X2

3 +X2
4 6= 0, given the definitions of X3 and X4. Considering rotations of

π as special cases, we can safely project the image space coordinates into the hyperplane
X4 = 1 leaving

(X1 : X2 : X3) =

(
1
2
(a tan(ϕ/2)−b) :

1
2
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)
. (3)

Extracting the pose from the full or the normalised image space coordinates is given by:

ϕ = 2tan−1(X3/X4); a =
2(X1X3 +X2X4)

(X2
3 +X2

4 )
; b =

2(X2X3−X1X4)

(X2
3 +X2

4 )
. (4)

2.1. Image Space Constraint Surface

In the projective extension P3 of the Euclidean plane E2 an RR-dyad can be modelled
as the motion of a fixed point in E constrained to move on a fixed centred circle with
constant radius in Σ, where the circle can be describe as

k0(X2 +Y 2)+ k1XZ + k2Y Z + k3Z2 = 0. (5)

The ki represent the quadric shape parameters. When k0 = 1 Eq. (5) describes a circle
and the parameters are defined as

k0 = 1, k1 =−Xc, k2 =−Yc, k3 = k2
1 + k2

2− r2. (6)

Here Xc, Yc represent the Cartesian (X ,Y ) coordinates of the circle centre in Σ while r
is it’s radius. Upon substitution of Eq. 1 into Eq. 5 the following quadric in the Xi is
revealed, after factoring out the term 1/4(X2

3 +X2
4 ), which can never vanish:
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When we remove the one parameter family of image points for orientations of π we can,
for convenience, normalise the image space coordinates and use the definitions for the
Xi from Eq (3) making X4 = 1. Since we are only interested in real finite linkages we
can also set Z = z = 1. What remains is a hyperboloid of one sheet, projected into the
hyperplane X4 = 1, which has circular sections in every plane parallel to X3 = 0 [8]:
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4
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The point (x,y) is represented by the Cartesian coordinates of a specified point on
the coupler link described in moving frame E, see Figure 1. The motion of the coupler
can be visualised as the intersection curve of two hyperboloids of one sheet which define
the motion constraints of left and right dyads of a given 4R linkage. The X1 and X2
coordinates contain the (a,b) coordinates of the origin of E for any given ϕ parameter
on the X3-axis. Hence, the 4th order curve of intersection of the two quadric constraint
surfaces completely describes the coupler motion, since every point on the continuous
curve describes the different (a,b,ϕ) parameters of the coupler for given values of the
4R input link angle.

The intersection of two second order surfaces will always generate a fourth order
curve; these curves can self-intersect, lie in separate branches, and may have complex-
conjugate components. Fourth order curves can always be classified into two classes of
function; quartics of the first species are the intersection, or base, of a pencil of quadric
surfaces, while quartics of the second species lie only on one quadric surface [6]. Given
the formulation at hand, specifically that the coupler pose curves are generated through
the intersection of at least two and at most four quadric surfaces, it is clear that these
surfaces are, by definition, quartics of the first species. General quartic surfaces can be
defined by nine distinct points [6], however, Burmester showed [1] that only five distinct
poses (five points in the kinematic mapping image space) are required to uniquely define
the pencil of at most four quartics which define dyads that, when combined into a 4R
linkage, can make the coupler coordinate system exactly visit the five specified poses.
Hence, the image space constraint hyperboloids of one sheet are not general quadrics.
The special nature of the constraint surfaces represent four constraints common to all
quadric constraint hyperboloids.

The hyperboloids, corresponding to RR-dyads, always intersect planes parallel to
X3 = 0 in circles. Thus, all constraint hyperboloids contain the image space equivalent
of the imaginary circular points, J1 and J2: (1 : ±i : 0 : 0) [5]. The points J1 and J2 are
imaginary points on the real line l of intersection of the planes X3 = 0 and X4 = 0. This
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real line is the axis of a pencil of planes that includes the complex conjugate planes V1
and V2, defined by: X3 = ±iX4. The hyperboloids all have V1 and V2 as tangent planes,
though not necessarily at J1 and J2. Since all RR-dyad hyperboloids share these four
constraints in their shape parameters, only five additional constraints need be imposed:
the five desired poses.

2.2. 4R Linkage Architecture

Mobility constraints on the input and output links for planar 4R mechanisms are linked
to specific conditions on link lengths a, b, c, and d as illustrated in Figure 1. These
conditions, developed in [9] and later refined in [7], depend on the value of three sums
of link lengths being either greater than, identically equal to, or less than zero. The three
sums are (maintaining the naming convention from [7] to maintain consistency):

A1 : a−b− c+d;
C1 : a+b− c−d;
D1 : a−b+ c−d.

(9)

The three permutations of +, =, and − for each of the sums A1, C1, and D1 lead to 27
unique combinations that represent all planar 4R linkage input-output mobility types2,
listed in Table 1 [7].

Table 1. Planar 4R types classified by mobility conditions.

Type A1 C1 D1 Input Output Type A1 C1 D1 Input Output

1 + + + 0-rocker 0-rocker 15 0 0 - crank π-rocker
2 + + 0 0-rocker 0-rocker 16 0 - + π-rocker crank
3 + + - rocker rocker 17 0 - 0 crank crank
4 + 0 + 0-rocker crank 18 0 - - crank π-rocker
5 + 0 0 0-rocker crank 19 - + + crank crank
6 + 0 - 0-rocker π-rocker 20 - + 0 crank crank
7 + - + rocker crank 21 - + - π-rocker π-rocker
8 + - 0 0-rocker crank 22 - 0 + crank crank
9 + - - 0-rocker π-rocker 23 - 0 0 crank crank
10 0 + + crank crank 24 - 0 - crank π-rocker
11 0 + 0 crank crank 25 - - + π-rocker 0-rocker
12 0 + - π-rocker π-rocker 26 - - 0 crank 0-rocker
13 0 0 + crank crank 27 - - - crank 0-rocker
14 0 0 0 crank crank

Perhaps the most important step in developing a continuous Burmester synthesis al-
gorithm is understanding the algebraic nature of the possible coupler pose curves implied
by the 4R linkage types listed in Table 1. Since the major goal of this paper is to de-
rive parametric equations of the 4th order curve of intersection of the associated quadric
constraint surfaces, several linkages are identified that each fit one of the mobility types
listed in the table.

2When the X-axis of the stationary coordinate system Σ, whose origin is located at the centre of the left-
most ground fixed joint points towards the centre of the other ground fixed joint, as in Figure 1, then for the
link connected to the joint: a rocker rocks in the range between 0 and π radians; a 0-rocker rocks in the range
between −π/2 and π/2; and a π-rocker rocks in the range between π/2 and 3π/2.
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2.2.1. Linkage Type 2: 0-rocker-0-rocker

The link lengths for the linkage were selected as (a,b,c,d) = (3,2,1,2). For the input-
dyad (the left-most dyad) the circle parameters are (k0,k1,k2,k3) = (1,0,0,−9) and for
the output-dyad are (k0,k1,k2,k3) = (1,−2,0,0). The corresponding two constraint sur-
faces and curve of intersection are illustrated in Figure 2. As is seen in Figure 2b, the
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(b) One hyperboloid and intersection.

Figure 2. Type 2 constraint hyperboloids and curve of intersection.

coupler pose curve in the image space has a single self-intersection, confirming results
in [3]. But, what is new, combined with the input-output mobility in Table 1, is that for
this 0-rocker-0-rocker the coupler has a branch point, where at a particular position and
orientation, it can take one of two paths on the coupler curve. Moreover, because the
intersection curve goes to infinity in two directions along the X3-axis, the coupler can
rotate completely through 2π radians.
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(b) One hyperboloid and intersection.

Figure 3. Type 3 constraint hyperboloids and curve of intersection.
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2.2.2. Linkage Type 3: rocker-rocker

The link lengths for the Type 3 linkage were selected as (a,b,c,d) = (2,2,1,2). For the
input-dyad (the left-most dyad) the circle parameters are (k0,k1,k2,k3) = (1,0,0,−4)
and for the output-dyad are (k0,k1,k2,k3) = (1,−2,0,0). The corresponding two con-
straint surfaces and curve of intersection are illustrated in Figure 3. As can be seen in
the figure, what is different for this Type 3 rocker-rocker compared to the Type 2 0-
rocker-0-rocker is that the coupler pose curve in the image space possesses no finite self-
intersections and hence there are no branch points. Since the curve of intersection ex-
tends to infinity in both directions along the X3-axis the coupler can rotate completely
through 2π radians.

2.2.3. Linkage Type 9: 0-rocker-π-rocker

The link lengths for this Type 9 linkage, a 0-rocker-π-rocker are (a,b,c,d) = (1,2,1,3).
For the input-dyad (the left-most dyad) the circle parameters are (k0,k1,k2,k3) =
(1,0,0,−1) and for the output-dyad are (k0,k1,k2,k3) = (1,−3,0,5). The corresponding
two constraint surfaces and curve of intersection are illustrated in Figure 4. The coupler
pose curve is affinely finite, and agrees with the results from [3].
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Figure 4. Type 9 constraint hyperboloids and curve of intersection.

2.2.4. Linkage Type 27: crank-0-rocker

The final linkage considered is a crank-0-rocker of Type 27. The linkage was identified
from a set of five poses listed in [3] that should correspond to a linkage that generates two
distinct affinely finite pose curves in the kinematic mapping image space. The resulting
link lengths identify it as a Type 27 linkage.

The five poses were used to identify constraint hyperboloids, following the method
in [10]. In agreement with Burmester theory, four RR-dyad constraint surfaces were
identified, see Figure 5. Each pair of constraint surfaces intersects in a distinct pair of
closed curves of intersection. However, all eight of the corresponding curves intersect in
the same five points, the poses specified at the outset. The initial expectation was that the
four quadrics would lay in a pencil on a single curve of intersection, however this is not
the case.
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Figure 5. Four hyperboloids.

3. Conclusions

The conclusion we wish to draw from the work presented herein is that it may be possible
to develop a kinematic mapping based algorithm to solve the continuous approximate
Burmester problem. It is to be seen that the constraint hyperboloids corresponding to
pairs of RR-dyads intersect in 4th order curves. It is expected that a study of the algebraic
properties of these spatial quartic curves will lead to a method to identify the planar
4R linkage that best approximates, in some least-squares sense, a desired parametric
coupler pose curve. This will yield an interesting lower bound on solutions to the discrete
approximate Burmester problem.
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