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1. Motivation 

As a first step in the validation of a relative measurement 
concept, several kinematic calibration simulations were 
performed. The developed programs are essentially 
learning tools involving the derivation of the Denavit-
Hartenberg (DH) parameters, calculation of the Jacobian 
matrix and application of Singular Value Decomposition 
(SVD).  A similar analysis, involving these steps, will then 
take place regarding the validation of an error model 
developed for a KUKA 15/2 industrial manipulator that 
will incorporate the relative measurement concept [1]. 
Once accomplished, an error model will then be generated 
for a Stäubli RX 90B type manipulator, after which, the 
feasibility of a low-cost kinematic calibration system, 
employing this technique, will be studied. 

2. Method 

In order to calibrate a manipulator, measurements, in terms 
of position and orientation, must be taken of the end 
effector.  For the development of the programs considered 
here, only the position of the end effector is taken into 
account.  The true end effector position could either be 
directly supplied to the program with the corresponding 
joint angles or computed given the joint parameter 
deviations.  Both cases were accounted for, however for 
ease of simulation, the latter case was pursued.  Standard 
DH parameterization reveals the joint parameters, and to 
these sufficiently small synthetic deviations are introduced.  
The parameters considered were the joint angles, ϑ , the 
link lengths, a, and the link offsets, d.  The joint twist 
angles were assumed constant in the analysis.  Thus, the 
actual position of the end effector can be calculated as a 
function of the joint angles, link lengths, link offsets and 
joint twists along with their corresponding deviations: 

Whereas the position calculated by the controller involves 
only the nominal parameters: 

The difference is computed vectorially and in three-
dimensional space: 

The forward kinematic equations and the elements of the 
Jacobian can be derived analytically through use of the DH 
parameters.  The Jacobian is determined as follows: 

This overall procedure was followed for each of the robot 
poses and then the data was concatenated into a final 
Jacobian matrix and a vector of end point deviations.  The 
deviations of the joint parameters can be determined by 
use of the inverse of the Jacobian matrix: 

As the Jacobian matrix is not invertible, it must be suitably 
decomposed. We employed SVD. Thus, the equation 
relating the joint parameter deviations to the position 
deviations becomes: 

where the S matrix is diagonal and comprised of the 
inverses of the singular values.  If the singular value was 
infinitesimally small, smaller than the floating-point 
precision of the machine, it was set to zero [2].  The joint 
parameter deviations found could then be added to the 
nominal parameters used in the controller. 

3. Modelled Manipulators 

As previously stated, the motivation behind developing 
these programs was to use them primarily as a learning 
tool, thus, different robots employing both revolute and 
prismatic joints were examined.  Each revolute joint was 
rotated simultaneously in equal increments of 1º from 0º to 
the number of poses, while prismatic joints were extended 
similarly to their full extension.  There were five 
manipulators modelled, each progressively more complex, 
and each modelled using standard DH parameterization. 
Three simple planar manipulators were modelled, an R, an 
RR and an RRR, as seen in Figure 1.  Also, two more 
complex manipulators were modelled, each involving 
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prismatic joints: a SCARA arm and a Scorbot robot, seen 
in Figure 2.  The SCARA arm has four degrees of freedom 
while the Scorbot robot has five degrees of freedom and 
each have three-dimensional workspaces.  General 
representations of each of the five manipulators can be 
seen below. 
 
 

                                       

                     

 

 

 

Figure 1: Planar Manipulators 

 

 
Figure 2: SCARA Arm and Scorbot Robot 

 
4. Results 
 
With reference to Table 1, the calibration procedure 
identified nearly all of the joint parameter deviations with 
high accuracy for the Scorbot robot.  Similar results were 
obtained with the other manipulators as well.  The only 
requirement of the procedure was the joint parameter 
deviations be sufficiently small, approximately four orders 
of magnitude smaller than the dimensions of the link 
lengths.  For the simple planar manipulators, R, and RR, 
their respective programs were able to observe and identify 
all of the parameter deviations with errors of less than 
0.01% with 10 poses. 
 
For the SCARA arm, all of the link offsets, d, in the 
vertical direction of the manipulator were not observable.  
The program was able to successfully identify the 
deviations in terms of the link lengths and the first two 
joint angles.  As the position of the end effector is not 
dependent on the angular position of the final joint, the 
elements of the Jacobian relating to this joint parameter 
were zero.  Similarly, the derivatives of the position vector 
in the z-direction with respect to all the DH parameters 
were constants, namely �1, 0, or 1. 
 
In the case of the Scorbot robot with the following set of 
parameter deviations, 100 poses, and one application of 
SVD, the error of greatest magnitude was 0.1813 %.  Even 
if the number of poses was reduced to 25, the magnitude of 
the greatest error only grew to approximately 2%.  This 
indicates that an iterative procedure could be implemented 

using a smaller number of measurements to save time.  
Increasing the number of poses reduces the magnitude of 
the error accordingly.  All of the deviations were 
observable and identified.   
 
Table 1: Results of Kinematic Calibration of the Scorbot Robot 

Deviation Synthetic Identified Error 
(%) 

1ϑ∆  0.010000 º 0.010001 º 0.0980 

2ϑ∆  - 0.005000 º -0.005007 º 0.1454 

3ϑ∆  0.007500 º 0.007514 º 0.1813 

4ϑ∆  - 0.008500 º -0.008510 º 0.1167 

1a∆  0.1500 mm 0.1500 mm - 0.0279 

2a∆  - 0.2000 mm -0.2000 mm 0.0194 

3a∆  0.1250 mm 0.1250 mm 0.0095 

1d∆  - 0.1750 mm -0.1749 mm - 0.0477 

5d∆  0.2500 mm 0.2501 mm 0.0208 
  
 
5. Conclusions 
 
The results indicate that kinematic calibration is an 
efficient approach to the elimination of parameter errors 
and further study is justified.  In terms of the manipulators 
analyzed in this paper, almost all of the joint parameter 
deviations were observable and identified with little error.  
However, this calibration procedure was followed under 
the assumption that there was no measurement noise 
inherent in the data.  The absolute position of the end 
effector was calculated directly knowing the parameter 
deviations.  The effectiveness of the error model generated 
for the KUKA 15/2 will be tested on actual measurement 
data and this will reveal the effect of measurement noise. 
   
Modifications will also be realized such that the programs 
follow a different approach, where a particular threshold 
value for sufficient calibration is designated.  Thus, the 
same general procedure of determining the spatial 
deviations of the end effector, calculation of the Jacobian 
matrix and application of SVD, will be iteratively 
performed while a minimum number of pose 
measurements will be required. 
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