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ABSTRACT
In a recent paper we have shown a general method for determining algebraic input-output (IO) equations

for planar and spherical 4R linkages. In this paper, we will demonstrate that this method can be similarly
applied to the spatial Bennett linkage as well as the planar slider-crank mechanism. The procedure requires
describing the linkages with Denavit Hartenberg (DH) parameters, projecting the overall coordinate trans-
formation of the linkage into Study soma coordinates, and solving the resulting system of equations via
resultants in the case of the slider-crank, and Gröbner basis in the case of the Bennett mechanism. The
procedure is free of trigonometric expressions, and the results of this paper illustrate that the applicability of
this method may be extended to other spatial mechanisms.

Keywords: Algebraic input-output equation; RRRP linkage; Bennett; Study soma coordinates.

MÉTHODE GÉNÉRALE POUR DÉTERMINER LES ÉQUATIONS ALGÉBRIQUES
D’ENTRÉE-SORTIE POUR LE MÉCANISME BIELLE-MANIVELLE ET LA LIAISON

BENNETT

RÉSUMÉ
Dans un article récent, nous avons démontré une méthode générale pour déterminer les équations algé-

briques d’entrée-sortie (IO) pour les liaisons planaires et sphériques 4R. Dans cet article, nous démontrerons
que cette méthode peut être appliquée de la même manière à la liaison spatiale de Bennett ainsi qu’au mé-
canisme planaire bielle-manivelle. La procédure requiert de décrire les liens avec les paramètres de Denavit
Hartenberg (DH), puis de projeter la transformation globale des coordonnées de la liaison en coordonnées
Study soma, et enfin de résoudre le système d’équations qui en résulte via les résultants dans le cas du
bielle-manivelle, et la base de Gröbner pour le mécanisme de Bennett. Cette procédure a l’avantage de ne
pas appeler de fonctions trigonométriques et les résultats de cet article laissent entrevoir que cette méthode
pourrait être appliquée à d’autres mécanismes spatiaux.

Mots-clés : Équation algébrique d’entrée-sortie ; liaison RRRP; Bennett ; coordonnées Study soma.
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1. INTRODUCTION

Planar and spatial four-bar mechanisms are commonly used in a wide range of applications, including
braking and steering systems in cars, space and aircraft systems, or even laparoscopic surgical tools. In many
of these applications, the mechanism’s designer is interested in the relation between the input angle of the
first link and the output angle of the last link. This relationship is commonly expressed as the input-output
(IO) equation. The first analytically derived IO equation for planar four-bar linkages with four revolute
(4R) joints was presented by Ferdinand Freudenstein in 1954 [1]. He divided the linkage into two dyads
containing a1/a2 and a3/a4, and used trigonometric relations to obtain the Freudenstein equation

k1 + k2 cos(θ4)− k3 cos(θ1) = cos(θ1−θ4), (1)

where the linear factors ki are known as the Freudenstein parameters and are defined by

k1 ≡
(a2

1 +a2
2 +a2

4−a2
3)
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Fig. 1. Planar 4R function generator.

As illustrated in Fig. 1, the parameters a1, a2, a3 and a4 correspond to the input link, coupler, output
link, and the non-moving ground connection; and the variables θ1 and θ4 correspond to the input and output
angle, respectively.

The first algebraic IO equation for planar 4R linkages was presented in [2] by Bottema and Roth. Their
derivation is purely trigonometric. However, by substituting tan(θ1/2) = v1/w and tan(θ4/2) = v4/w the
authors map the IO motion in a (v1,v4,w)-plane which results in an algebraic version of the equation.

An alternative approach to derive the algebraic version of the 4R linkage was presented by Hayes, Husty
and Pfurner [3]. They described the two constraints defined by the circular motion of the input and output
links, and mapped these constraints into Study’s soma coordinates [2, 4]. With Weierstraß subsitutions [5]
they converted the trigonometric expressions of the input and output angle into algebraic ones, and finally
eliminated the undesired Study coordinates using resultants to obtain the IO equation.

A slightly different linkage is obtained by exchanging the fourth R joint with a prismatic (P) joint. This
linkage is known as the slider-crank, or RRRP linkage, whose most famous application is the piston engine.
The linkage allows transforming the reciprocating linear motion of the piston into a rotary motion of the
crankshaft. Inversely, in e.g. a hand pump a rotary motion is transformed into a reciprocating motion of the
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piston in the suction pipe [6]. A general illustration is shown in Fig. 2. In contrast to the 4R IO equation it is
easy to see that the coordinate frame in Fig. 2 can be selected in such a way that the slider is perpendicular
to the ground connection a4 without affecting the IO equation.
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Fig. 2. Planar RRRP function generator.

The literature differentiates between two RRRP linkages, the in-line or central, and the offset or eccentric
RRRP linkages [7]. It is considered central if the extended line of the slider intersects the rotation centre of
the crank. On the other hand, an eccentric RRRP exists if a4 6= 0 [8]. Thus, a central RRRP is a special case
of the eccentric slider crank.

Centric slider-crank IO equations for function generation can be found in every basic mechanics book.
Two different trigonometric derivations that also apply to the eccentric linkage are given in [2, 9]. They
use trigonometric constraints to derive a trigonometric and an algebraic expression of the IO equation,
respectively. In a recent publication [10], it was shown that the same IO equation as derived in [3] for planar
4R linkages can be applied to planar RRRP linkages. The only difference between the IO equations is the
interpretation of it: while the variables of the 4R are the input and the output angle, the variables of the
RRRP are the input angle and the slider distance. To demonstrate the general applicability of the method
presented in this paper, we will show that it can also be applied to a particular spatial mechanism, the Bennett
linkage which is shown in Fig. 3.

The Bennett linkage is, as the planar 4R, composed of four rigid links that are connected by four R joints.
According to the Chebychev–Grübler–Kutzbach criterion the Bennett linkage has a mobility of -2, which in
theory prevents it from moving. However, its actual mobility is 1, and thereby, it is the only known mobile
spatial 4R linkage. The linkage is able to move if it satisfies the following conditions which were discovered
by Bennett and for that reason known as the Bennett conditions [11]

a1 = a3 a2 = a4
τ1 = τ3 τ2 = τ4

sin(τ1)

a1
=

sin(τ2)

a2
.

(2)
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Fig. 3. Spatial 4R function generator: the Bennett linkage.

The IO equation is well known, for example [11–15] show different derivations. While the former authors
favoured a geometric approach, Denavit used Cayley-Klein parameters, and Pfurner et al. used an algebraic
method to first derive the Bennett conditions and second, obtain an IO equation in terms of the tangent half
input and output angles.

In [16], we have presented a general method for determining IO equations for the planar 4R and the
spherical 4R linkage. It required describing the open-chain of the linkages with DH parameters, and pro-
jecting the overall transformation of the linkage into Study soma coordinates. The open-chain linkage is
conceptually closed by equating the Study vector to its identity vector, and to solve the system of equations
and simultaneously to eliminate the intermediate link angles we use Gröbner basis. The IO equation for the
planar 4R linkage results in

Av2
1v2

4 +Bv2
1 +Cv2

4−8a1a3v1v4 +D = 0, (3)

where
A = (a1−a2 +a3−a4)(a1 +a2 +a3−a4) = A1A2;

B = (a1 +a2−a3−a4)(a1−a2−a3−a4) = B1B2;

C = (a1−a2−a3 +a4)(a1 +a2−a3 +a4) = C1C2;

D = (a1 +a2 +a3 +a4)(a1−a2 +a3 +a4) = D1D2;

v1 = tan
θ1

2
;

v4 = tan
θ4

2
.

In the following sections, we will show how this method can successfully be applied to planar RRRP link-
ages and the Bennett linkage in order to compute their respective IO equations.
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2. DENAVIT HARTENBERG PARAMETER

Displacements of kinematic chains are often parametrised using the Denavit-Hartenberg (DH) convention
[17]. They were first introduced by Denavit and Hartenberg in 1955, and are still widely used in the field of
robotics. The four associated DH parameters for a single link in the kinematic chain are the link lengths ai,
link twist angles τi, joint angles θi, and link offsets di. Traditionally, the coordinate frames are assigned in
the following way:

• the zi-axis points along the directions of joint i+1;

• the xi-axis is parallel to zi× zi−1, and it is directed towards zi;

• the yi-axis is complementing a right-handed coordinate frame.

link i-1
link i

axis i-1
axis i

axis i+1

a

x
y

z

a yz

x

i

i
i

i

i-1

i-1

i-1
i-1

d i

i

Denavit-Hartenberg (DH) frame assignments and parameters.

u i

Fig. 4. DH parameter frame assignment and parameter.

Subsequently, the DH parameters are assigned as illustrated in Fig. 4, following the convention

• di: distance from the origin of the coordinate system i− 1 to the intersection of zi−1 to xi, measured
along zi−1;

• θi: rotation angle from xi−1 to xi, measured about zi−1;

• ai: distance from the intersection of zi−1 and xi to the origin of the coordinate system i, measured
along xi;

• τi: rotation angle from zi−1 to zi, measured about xi.

According to this convention the coordinate transformation from the coordinate system for joint i relative to
the coordinate system of the previous joint i−1 can be divided into two screw displacements, i.e., two pure
rotations and two pure translations in terms of the DH parameters

T(di) =


1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

 ; T(θi) =


cos(θi) −sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

 ;
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T(ai) =


1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

 ; T(τi) =


1 0 0 0
0 cos(τi) −sin(τi) 0
0 sin(τi) cos(τi) 0
0 0 0 1

 .

Multiplying the rotations and translations following

T(θi) ·T(di) ·T(ai) ·T(τi) (4)

yields the transformation between two coordinate frames which is given by

i−1
i T =


cosθi −sinθi cosτi sinθi sinτi ai cosθi

sinθi cosθi cosτi −cosθi sinτi ai sinθi

0 sinτi cosτi di

0 0 0 1

=

 A t

0 0 0 1

 . (5)

Hence, to describe the end-effector coordinate frame of a kinematic chain with respect to the base frame,
the overall transformation matrix becomes

0
i T =0

1 T 1
2T 2

3T ... i−1
i T. (6)

Applying this algebraic representation to linkages requires that the end-effector coordinate frame coincides
with the coordinate frame of the base. Therefore, the overall transformation equates to the identity matrix
[18].

3. STUDY’S KINEMATIC MAPPING

Using matrices is one possibility of representing Euclidean displacements where orientation and distances
are preserved. Another possibility was introduced by Eduard Study in 1903 [4]. He demonstrated that
displacements can be represented as points on a hyper-surface in a seven-dimensional space, known as
kinematic mapping. These points contain eight coordinates and are known as Study parameters or soma
coordinates, x = [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]

T ∈ P7.
Representing displacement as points in a higher dimensional space result in algebraic varieties that can be

illustrated geometrically and that allow for detailed analysis using algebraic tools. Moreover, in contrast to
other displacement representations, such as Euler angles, the kinematic mapping introduced by Study is not
subjected to representational singularities. The first four entries of the Study vector xi are defined as one of
the following combinations of the rotation matrix elements ai j of Eq. (5) which excludes xi = (0 : 0 : 0 : 0)

x0 : x1 : x2 : x3 =


1+a11 +a22 +a33 : a32−a23 : a13−a31 : a21−a12,
a32−a23 : 1+a11−a22−a33 : a12 +a21 : a31 +a13,
a13−a31 : a12 +a21 : 1−a11 +a22−a33 : a23 +a32,
a21−a12 : a31 +a13 : a23 +a32 : 1−a11−a22 +a33.

(7)

The remaining four entries of the Study vector yi are defined as linear combination of the first four entries xi

and the elements of the translation vector t of Eq. (5) following

y0 = 1
2(t3x3 + t2x2 + t1x1), y1 = 1

2(t3x2− t2x3− t1x0),

y2 = 1
2(−t3x1 + t1x3− t2x0), y3 = 1

2(−t3x0 + t2x1− t1x2).
(8)
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4. SLIDER-CRANK LINKAGE

The first step to derive the IO equation of the RRRP linkage is to identify the associated DH parameters
of the linkage. Consider the RRRP linkage as an open-chain which is closed by aligning the base coordinate
frame with the end-effector coordinate frame. As a result we can assign the coordinate frames as shown in
Fig. 5, leading to the DH parameters as displayed in Table 1.

a

O

1

x0/4

0/4
y

x1
x2x3a2

d4

a4

z3

q3

q1

q2

Fig. 5. DH parameter assignment for the RRRP linkage.

Note that the variables in this linkage are the input angle θ1 and the output slider distance d4. Moreover, note

Table 1. DH parameters for RRRP linkage.
joint axis i link angle θi link offset di link length ai link twist τi

1 θ1 0 a1 0
2 θ2 0 a2 0
3 θ3 0 0 −π/2
4 0 d4 a4 +π/2

that the link lengths and the link offset are directed distances with the directions as indicated in the Fig. 5.
In a second step, the DH parameters are substituted into Eq. (5) for every i= 1...4. The four transformation

matrices are multiplied according to Eq. (6), and the resulting overall transformation 0
4T can be mapped into
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Study’s coordinates using Eq. (7) and Eq. (8). The vector yields

x0 = (−2v2−2v3)v1−2v2v3 +2,

x1 = 0,

x2 = 0,

x3 = −2v1v2v3 +2v1 +2v2 +2v3, (9)

y0 = 0,

y1 = ((−d4v3−a1 +a2 +a4)v2 +(−a1−a2 +a4)v3 +d4)v1 +((a1−a2 +a4)v3 +d4)v2 +d4v3−a1−a2−a4,

y2 = (((a1−a2 +a4)v3 +d4)v2 +d4v3−a1−a2−a4)v1 +(d4v3 +a1−a2−a4)v2 +(a1 +a2−a4)v3−d4,

y3 = 0,

where vi = tan(θi/2).
The Study array is equated to its identity array, x = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]T ∈ P7, allowing the first and

the last coordinate frame in the RRRP linkage to align. Since the Study coordinates are homogeneous, this
leaves a system of three equations, i.e., I. x3 = 0; II. y1 = 0; III. y2 = 0 which can easily be solved using
resultants. Eliminating the intermediate link angle v2 from I. and II. yields

a1v2
1v2

3 +a2v2
1v2

3−a4v2
1v2

3 +a1v2
1−a1v2

3−a2v2
1 +a2v2

3−a4v2
1−a4v2

3−a1−a2−a4 = 0. (10)

And eliminating the same intermediate angle v2 from I. and III. yields

−d4v2
1v2

3−2a1v1v2
3 +2a2v2

1v3−d4v2
1−d4v2

3−2a1v1 +2a2v3−d4 = 0. (11)

Finally, eliminating the intermediate angle v3 from Eq. (10) and Eq. (11) reveals the IO equation for RRRP
linkages

v2
1d2

4 +d2
4 +4a1d4v1 +(a1 +a2 +a4)(a1−a2 +a4)+(a1−a2−a4)(a1 +a2−a4)v2

1 = 0. (12)

Eq. (12) can be verified via the IO equation of the planar 4R linkage, Eq. (3), as follows. Since the slider of
the RRRP linkage is perpendicular to the fixed ground distance a4, we can substitute v4 = tan(−90◦/2)=−1
into Eq. (3). In addition, the original link length a3 of the 4R linkage now becomes the slider distance of
the RRRP, i.e., a3 has to be renamed to d4. After recollecting the equation in its variables v1 and d4 it yields
Eq. (12).

5. BENNETT LINKAGE

The IO equation for the Bennett linkage is derived following the same procedure. First, as illustrated
in Fig. (3) the coordinate frames are attached to the linkage according to the DH convention. The DH
coordinate frame assignment allows to define the DH parameters for the linkage. It turns out that the Bennett
linkage does not contain any link offsets di. However, it contains the four variable joint angles θi of the R
joints and the design parameters ai and τi. The DH parameters for the Bennett linkage are given in Table 2.
To evaluate the overall transformation of the position and orientation of the last joint with respect to the base
coordinate system, the DH parameters from Table 2 are substituted into Eq. (5), and multiplied according to
Eq. (6).

Recall that the Bennett linkage is subjected to special conditions. The Bennett conditions from Eq. (2)
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Table 2. DH parameters for the Bennett linkage.
joint axis i link angle θi link offset di link length ai link twist τi

1 θ1 0 a1 τ1
2 θ2 0 a2 τ2
3 θ3 0 a3 τ3
4 θ4 0 a4 τ4

can be reformulated with Weierstraß substitution and expressed algebraically as

a2 =
a1α2(α

2
1 +1)

α1(α2
2 +1)

;

a4 =
a1α2(α

2
1 +1)

α1(α2
2 +1)

; (13)

a3 = a1;

α3 = α1;

α4 = α2;

where αi = tan(τi/2).
Eq. (13) is substituted into the overall transformation matrix which reduces the number of unknown

parameters. After mapping the transformation matrix into Study’s parameters, the vector yields

x0 = α
3
1 α

4
2 v1v2v3v4 +α

3
1 α

4
2 v1v2−α

3
1 α

4
2 v1v3 +α

3
1 α

4
2 v1v4 +α

3
1 α

4
2 v2v3−α

3
1 α

4
2 v2v4 +α

3
1 α

4
2 v3v4

+4α
2
1 α

3
2 v1v2v3v4−α1α

4
2 v1v2v3v4 +α

3
1 α

4
2 −2α

3
1 α

2
2 v1v3 +2α

3
1 α

2
2 v1v4 +2α

3
1 α

2
2 v2v3−2α

3
1 α

2
2 v2v4

−α
3
1 v1v2v3v4 +4α

2
1 α2v1v2v3v4 +α1α

4
2 v1v2−α1α

4
2 v1v3−α1α

4
2 v1v4−α1α

4
2 v2v3−α1α

4
2 v2v4

+α1α
4
2 v3v4−α

3
1 v1v2−α

3
1 v1v3 +α

3
1 v1v4 +α

3
1 v2v3−α

3
1 v2v4−α

3
1 v3v4−4α

2
1 α

3
2 −α1α

4
2

−2α1α
2
2 v1v3−2α1α

2
2 v1v4−2α1α

2
2 v2v3−2α1α

2
2 v2v4 +α1v1v2v3v4−α

3
1 −4α

2
1 α2−α1v1v2

−α1v1v3−α1v1v4−α1v2v3−α1v2v4−α1v3v4 +α1,

x1 = −2α
3
1 α

3
2 v1v2v3v4 +2α

2
1 α

4
2 v1v2v3v4−2α

3
1 α

3
2 v1v2−2α

3
1 α

3
2 v3v4−2α

3
1 α2v1v2v3v4 +2α

2
1 α

4
2 v1v4

−2α
2
1 α

4
2 v2v3 +2α1α

3
2 v1v2v3v4−2α

3
1 α

3
2 −2α

3
1 α2v1v2−2α

3
1 α2v3v4−2α

2
1 α

4
2 +4α

2
1 α

2
2 v1v4

−4α
2
1 α

2
2 v2v3−2α

2
1 v1v2v3v4−2α1α

3
2 v1v2−2α1α

3
2 v3v4 +2α1α2v1v2v3v4−2α

3
1 α2 +2α

2
1 v1v4

−2α
2
1 v2v3 +2α1α

3
2 −2α1α2v1v2−2α1α2v3v4 +2α

2
1 +2α1α2,

x2 = −2α
3
1 α

3
2 v1v3v4 +2α

3
1 α

3
2 v2v3v4−2α

2
1 α

4
2 v1v2v3−2α

2
1 α

4
2 v2v3v4−2α

3
1 α

3
2 v1 +2α

3
1 α

3
2 v2

−2α
3
1 α2v1v3v4 +2α

3
1 α2v2v3v4−2α

2
1 α

4
2 v1−2α

2
1 α

4
2 v4−4α

2
1 α

2
2 v1v2v3−2α1α

3
2 v1v3v4

−2α1α
3
2 v2v3v4−2α

3
1 α2v1 +2α

3
1 α2v2−4α

2
1 α

2
2 v4−2α

2
1 v1v2v3 +2α

2
1 v2v3v4 +2α1α

3
2 v1 +2α1α

3
2 v2

−2α1α2v1v3v4−2α1α2v2v3v4 +2α
2
1 v1−2α

2
1 v4 +2α1α2v1 +2α1α2v2,

x3 = α
3
1 α

4
2 v1v2v3−α

3
1 α

4
2 v1v2v4 +α

3
1 α

4
2 v1v3v4−α

3
1 α

4
2 v2v3v4 +α

3
1 α

4
2 v1−α

3
1 α

4
2 v2 +α

3
1 α

4
2 v3−α

3
1 α

4
2 v4

+2α
3
1 α

2
2 v1v2v3−2α

3
1 α

2
2 v1v2v4−4α

2
1 α

3
2 v2v3v4−α1α

4
2 v1v2v3−α1α

4
2 v1v2v4 +α1α

4
2 v1v3v4

+α1α
4
2 v2v3v4 +2α

3
1 α

2
2 v3−2α

3
1 α

2
2 v4 +α

3
1 v1v2v3−α

3
1 v1v2v4−α

3
1 v1v3v4 +α

3
1 v2v3v4−4α

2
1 α

3
2 v1

−4α
2
1 α2v2v3v4−α1α

4
2 v1−α1α

4
2 v2 +α1α

4
2 v3 +α1α

4
2 v4−2α1α

2
2 v1v2v3−2α1α

2
2 v1v2v4−α

3
1 v1

+α
3
1 v2 +α

3
1 v3−α

3
1 v4−4α

2
1 α2v1 +2α1α

2
2 v3 +2α1α

2
2 v4−α1v1v2v3−α1v1v2v4−α1v1v3v4

−α1v2v3v4 +α1v1 +α1v2 +α1v3 +α1v4,
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y0 = −2a1α
4
1 α

2
2 v1v2v3v4 +4a1α

3
1 α

3
2 v1v2v3v4−2a1α

2
1 α

4
2 v1v2v3v4−2a1α

4
1 α

2
2 v1v2−2a1α

4
1 α

2
2 v3v4

−2a1α
2
1 α

4
2 v1v4−2a1α

2
1 α

4
2 v2v3−2a1α

4
1 α

2
2 −4a1α

3
1 α

3
2 −2a1α

2
1 α

4
2 −4a1α

2
1 α

2
2 v1v2−4a1α

2
1 α

2
2 v1v4

−4a1α
2
1 α

2
2 v2v3−4a1α

2
1 α

2
2 v3v4 +2a1α

2
1 v1v2v3v4−4a1α1α2v1v2v3v4 +2a1α

2
2 v1v2v3v4−2a1α

2
1 v1v4

−2a1α
2
1 v2v3−2a1α

2
2 v1v2−2a1α

2
2 v3v4 +2a1α

2
1 +4a1α1α2 +2a1α

2
2 ,

y1 = −a1α
4
1 α

3
2 v1v2v3v4 +a1α

3
1 α

4
2 v1v2v3v4−a1α

4
1 α

3
2 v1v2−a1α

4
1 α

3
2 v3v4 +a1α

4
1 α2v1v2v3v4

+a1α
3
1 α

4
2 v1v4−a1α

3
1 α

4
2 v2v3−4a1α

3
1 α

2
2 v1v2v3v4 +4a1α

2
1 α

3
2 v1v2v3v4−a1α1α

4
2 v1v2v3v4−a1α

4
1 α

3
2

+a1α
4
1 α2v1v2 +a1α

4
1 α2v3v4−a1α

3
1 α

4
2 +2a1α

3
1 α

2
2 v1v4−2a1α

3
1 α

2
2 v2v3−a1α

3
1 v1v2v3v4

−2a1α
2
1 α

3
2 v1v2−2a1α

2
1 α

3
2 v3v4 +4a1α

2
1 α2v1v2v3v4−a1α1α

4
2 v1v4 +a1α1α

4
2 v2v3

−4a1α1α
2
2 v1v2v3v4 +a1α

3
2 v1v2v3v4 +a1α

4
1 α2 +4a1α

3
1 α

2
2 +a1α

3
1 v1v4−a1α

3
1 v2v3 +4a1α

2
1 α

3
2

+2a1α
2
1 α2v1v2 +2a1α

2
1 α2v3v4 +a1α1α

4
2 −2a1α1α

2
2 v1v4 +2a1α1α

2
2 v2v3 +a1α1v1v2v3v4

−a1α
3
2 v1v2−a1α

3
2 v3v4−a1α2v1v2v3v4 +a1α

3
1 +4a1α

2
1 α2 +4a1α1α

2
2 −a1α1v1v4 +a1α1v2v3

+a1α
3
2 +a1α2v1v2 +a1α2v3v4−a1α1−a1α2,

y2 = −a1α
4
1 α

3
2 v1v3v4 +a1α

4
1 α

3
2 v2v3v4−a1α

3
1 α

4
2 v1v2v3−a1α

3
1 α

4
2 v2v3v4−a1α

4
1 α

3
2 v1 +a1α

4
1 α

3
2 v2

+a1α
4
1 α2v1v3v4−a1α

4
1 α2v2v3v4−a1α

3
1 α

4
2 v1−a1α

3
1 α

4
2 v4−2a1α

3
1 α

2
2 v1v2v3 +4a1α

3
1 α

2
2 v2v3v4

−2a1α
2
1 α

3
2 v1v3v4−4a1α

2
1 α

3
2 v2v3v4 +a1α1α

4
2 v1v2v3 +a1α1α

4
2 v2v3v4 +a1α

4
1 α2v1−a1α

4
1 α2v2

+4a1α
3
1 α

2
2 v1−2a1α

3
1 α

2
2 v4−a1α

3
1 v1v2v3 +a1α

3
1 v2v3v4 +4a1α

2
1 α

3
2 v1 +2a1α

2
1 α

3
2 v2

+2a1α
2
1 α2v1v3v4−4a1α

2
1 α2v2v3v4 +a1α1α

4
2 v1 +a1α1α

4
2 v4 +2a1α1α

2
2 v1v2v3 +4a1α1α

2
2 v2v3v4

−a1α
3
2 v1v3v4−a1α

3
2 v2v3v4 +a1α

3
1 v1−a1α

3
1 v4 +4a1α

2
1 α2v1−2a1α

2
1 α2v2 +4a1α1α

2
2 v1

+2a1α1α
2
2 v4 +a1α1v1v2v3−a1α1v2v3v4 +a1α

3
2 v1 +a1α

3
2 v2 +a1α2v1v3v4 +a1α2v2v3v4−a1α1v1

+a1α1v4−a1α2v1−a1α2v2,

y3 = −2a1α
4
1 α

2
2 v1v3v4 +2a1α

4
1 α

2
2 v2v3v4−4a1α

3
1 α

3
2 v2v3v4−2a1α

2
1 α

4
2 v1v2v3 +2a1α

2
1 α

4
2 v2v3v4

−2a1α
4
1 α

2
2 v1 +2a1α

4
1 α

2
2 v2−4a1α

3
1 α

3
2 v1−2a1α

2
1 α

4
2 v1 +2a1α

2
1 α

4
2 v4−4a1α

2
1 α

2
2 v1v2v3

−4a1α
2
1 α

2
2 v1v3v4 +4a1α

2
1 α

2
2 v2 +4a1α

2
1 α

2
2 v4−2a1α

2
1 v1v2v3−2a1α

2
1 v2v3v4 +4a1α1α2v2v3v4

−2a1α
2
2 v1v3v4−2a1α

2
2 v2v3v4 +2a1α

2
1 v1 +2a1α

2
1 v4 +4a1α1α2v1 +2a1α

2
2 v1 +2a1α

2
2 v2.

Again, to form a closed-loop chain it requires that the base and the fourth coordinate frames align. Hence,
the Study array is equated to the identity array. As the Study coordinates are homogeneous, i.e., a point
represented by these coordinates remains unchanged if every entry is multiplied by the same factor, the
system of equations which has to be solved consists of seven equations.

One method to eliminate the intermediate link angles is using Gröbner basis. A pure lexicographic or-
dering of (x1 > ... > xn)→ (v2 > v3 > v4 > v1) reveals one polynomial that no longer contains v2 and
v3

(v2
4 +1)(v2

1 +1)((α1−α2)v1v4−α1−α2) = 0. (14)

Since the expressions (v2
4 + 1) and (v2

1 + 1) can never be zero, we can safely divide Eq. (14) by these two
terms. This yields the IO equation for the Bennett linkage

(α1−α2)v1v4−α1−α2 = 0, (15)

where αi = tan(τi/2) and vi = tan(θi/2). Eq. (15) is identical to the IO relation of the Bennett linkage
obtained in [13] after algebraisation with tangent half-angle substitutions.
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6. CONCLUSIONS

This paper applied a novel method to derive the IO equation of the planar RRRP and the Bennett linkage.
This method has shown previous success in the derivation of the IO equation for planar and spherical 4R
linkages. With this paper, however, its applicability has been extended to all known types of 4R linkages:
planar; spherical; and spatial.

In general, the procedure requires defining the DH parameters of the examined linkage which are used
to calculate the overall change in orientation and position of the last coordinate frame with respect to its
base coordinate frame. The transformation is projected into Study coordinates, and the open linkage is
conceptually closed by equating the Study array to its identity. Depending on the system of equations that
has to be solved to obtain the respective IO equation, an appropriate method to eliminate the intermediate
angle parameters has to be chosen. In the case of the planar RRRP linkage using resultants is sufficient, and
in the case of the Bennett linkage Gröbner basis leads to the desired result. We believe the presented method
can streamline the way IO equations are derived for any type of mechanism which could help leveraging the
design process of arbitrary linkages.
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