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In this paper kinematic mapping is used to take the first steps towards development of a general algorithm
combining both type and dimensional synthesis of planar mechanisms for rigid body guidance. In the present
work we develop an algorithm that can size link lengths, locate joint axes, and using heuristics decide between
RR- and PR-dyads that, when combined, can guide a rigid body exactly through five specified positions and
orientations, i.e., the five-position Burmester problem. An example is given providing proof-of-concept.

1 Introduction

The determination of a planar four-bar mechanism
that can guide a rigid body through five finitely
separated poses (position and orientation) is known
as the five-position Burmester problem. It may be
stated as follows: given five positions of a point on a
moving rigid body and the corresponding five orien-
tations of some line on that body, design a four-bar
mechanism whose coupler is the moving body and
is assemblable upon these five poses. The coupler
must assume the five required poses, even though
it may be that not all five lie in the same assembly
branch. Burmester showed that the problem leads to,
at most, four dyads that can be taken two at a time:
there can be as many as six different four-bar mech-
anisms that can guide a rigid body exactly through
five specified poses [1].

From time to time dimensional synthesis for the
Burmester problem has been revisited, see for ex-
ample [2]. More recently, classical finite position
synthesis has been reviewed in [3]. An algebraic ap-
proach to this exact problem based on quaternions is
to be found in [4]. Instead, we use planar kinematic
mapping whose geometry is analogous to quater-
nions. The planar kinematic mapping was intro-
duced independently by Blaschke and Grünwald in
1911 [5, 6], and is summarized in [7].

In general, dimensional synthesis for rigid body
guidance assumes a mechanism type: i.e., planar
4R; slider-crank; crank-slider; trammel, etc.. Our

aim is to develop a completely general planar mech-
anism synthesis algorithm that integrates both type
and dimensional synthesis for five-position exact
synthesis. It was shown in [8] how kinematic map-
ping can be used for exact dimensional synthesis.

We employ the Blashke-Grünwald mapping of
planar kinematics [5, 6] to regard the problem from
a projective geometric perspective, thereby obtain-
ing a system of five non-linear equations in five un-
knowns expressed in terms of a sixth homogenizing,
or influence coefficient. The value of the sixth un-
known determines type. The six unknowns represent
one dyad. The solutions of the system of equations
leads to, at most, four dyads, thereby agreeing with
Burmester theory.

It is convenient to characterize rigid body dis-
placements by a coordinate system E that moves
relative to a fixed coordinate system Σ, see Figure 1.
General planar displacements are then the transfor-
mation of points described in E to the coordinates of
the same points described in Σ. The constraints on
linkages imposed by different joint types can then be
described geometrically.

Planar linkages contain either revolute (R-pairs),
or prismatic (P -pairs). These kinematic pairs per-
mit rotations about one axis, or translations parallel
to one direction, respectively. In the kinematic map-
ping image space an RR-dyad (three binary links
jointed end to end by two R-pairs) constraint in-
volving a point with fixed coordinates in E forced
to move on a circle with fixed radius and centre in
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Σ is a hyperboloid of one sheet. A PR-dyad (three
binary links jointed in series by a P -pair and an R-
pair) imposes the constraint where a point with fixed
coordinates in E is restricted to move on a line with
fixed line coordinates in Σ. This constraint maps to a
hyperbolic paraboloid in the image space. The RP -
dyad is the kinematic inversion of the PR-dyad. It’s
constraints also map to hyperbolic paraboloids. The
PP -dyad constraints map to a plane in the image
space. These are the four possible lower pair dyads
for planar mechanisms.

The algorithm that performs both type and di-
mensional synthesis for rigid body guidance must
identify the constraint surfaces that intersect in the
curve specified by the image space points of the five
given poses. The way the constraints are formulated,
the influence coefficient, mentioned earlier, can have
either the value 1 or 0, indicating either an RR- or
PR-dyad, respectively.

The planar RRRP four-bar linkage shown in
Figure 1 can be decomposed into an RR- and a PR-
dyad. The RR-dyad is composed of the grounded
R-pair centred at the base-fixed point F1 and the
moving R-pair centred at the point M1. The PR-
dyad is composed of the sliding P -pair and the R-
pair connected to it with centre at M2. In the PR-
dyad, the P -pair slides on a line with fixed position
and direction relative to the base-fixed R-pair cen-
tred at F1. This RRRP linkage is used to gener-
ate the five specified poses. Clearly, the algorithm
must identify the constraint surfaces corresponding
to the given RR- and PR-dyads. Using heuristics,
we succeed in identifying these dyads, together with
two additional RR-dyads, thereby agreeing with
Burmester theory. These are the first steps towards
the general algorithm.

2 Kinematic Mapping
The motion of the coupler in a four-bar mechanism
can be described by the motion of a reference frame
E that moves with the coupler, relative to a ground-
fixed non moving reference frame Σ. The RRRP
linkage shown in Figure 1 illustrates these two co-
ordinate reference frames. The homogeneous coor-
dinates of points represented in E are given by the
ratios (x : y : z). Those of points represented in Σ
are given by the ratios (X : Y : Z).

The homogeneous transformation that maps the
coordinates of points in E to Σ, which also describes
the displacement of E relative to Σ, can be written: X

Y
Z

 =

 cosφ − sinφ a
sinφ cosφ b
0 0 1

 x
y
z

 . (1)

Equation (1) indicates that general planar displace-
ments are characterized by the three parameters a,
b, and φ, where the pair (a, b) are the (X/Z, Y/Z)
Cartesian coordinates of the origin of E expressed
in Σ, and φ is the orientation of E relative to Σ, re-
spectively.

All general planar displacements (i.e., any com-
bination of translations and rotations) may be rep-
resented by a single rotation through a finite angle
about a fixed axis normal to the plane of the dis-
placement. Even a pure translation may be consid-
ered a rotation through an infinitesimal angle about
the point at infinity in the direction normal to the
translation. The coordinates of the piercing point of
the rotation axis with the plane of the displacement
describe the pole of the displacement. The coordi-
nates of the pole are invariant under the associated
transformation described by Equation (1).

The pole coordinates for a particular displace-
ment come from the eigenvector corresponding to
the one real eigenvalue of Equation (1). Denoting
them by the subscript p, the homogeneous pole co-
ordinates, which are the same in both E and Σ, are:

Xp = xp = a sin (φ/2)− b cos (φ/2),

Yp = yp = a cos (ϕ/2) + b sin (φ/2),

Zp = zp = 2 sinφ/2.

Note that the value of the homogenizing coordi-
nate is arbitrary. Without loss in generality it is set
Zp = zp = 2 sinφ/2.

The essential idea of kinematic mapping is to
map the three homogeneous coordinates of the pole
of a planar displacement, in terms of three parame-
ters that characterize it, (a, b, φ), to the points of a
three dimensional projective image space. The kine-
matic mapping image coordinates are defined as:

X1 = a sin (φ/2)− b cos (φ/2)

X2 = a cos (φ/2) + b sin (φ/2)

X3 = 2 sin (φ/2)

X4 = 2 cos (φ/2). (2)

Since each distinct displacement described by
(a, b, φ) has a corresponding unique image point,
the inverse mapping can be obtained from Equa-
tion (2): for a given point of the image space, the
displacement parameters are

tan (φ/2) = X3/X4,

a = 2(X1X3 +X2X4)/(X
2
3 +X2

4 ),

b = 2(X2X3 −X1X4)/(X
2
3 +X2

4 ). (3)

By virtue of the relationships expressed by
Equations (2), the transformation matrix from Equa-
tion (1) may be expressed in terms of the homoge-
neous coordinates of the image space. This yields a
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Figure 1: RRRP linkage used to generate the five poses for the example.

linear transformation to express a displacement of E
with respect to Σ in terms of the image point [7]:

λ

 X
Y
Z

 = T

 x
y
z

 , (4)

where λ is some non-zero constant arising from the
use of homogeneous coordinates and

T =

 X2
4 −X2

3 −2X3X4 2(X1X3 +X2X4)
2X3X4 X2

4 −X2
3 2(X2X3 −X1X4)

0 0 X2
3 +X2

4

 .

The inverse transformation can be obtained with the
inverse of the matrix in Equation (4) as follows.

γ

 x
y
z

 = T−1

 X
Y
Z

 , (5)

with γ being another non-zero constant arising from
the use of homogeneous coordinates and

T−1=

 X2
4−X2

3 2X3X4 2(X1X3−X2X4)
−2X3X4 X2

4−X2
3 2(X2X3+X1X4)

0 0 X2
3 +X2

4

 .

2.1 Kinematic Constraints
There is a specific type of constrained motion cor-
responding to each type of planar lower-pair dyad:

RR-type; PR-type; RP -type; and PP -type. Be-
cause a motion is a continuous set of displacements,
and because a displacement maps to a point, a con-
strained motion will map to a continuous set of
points in the image space. As shown in [9], the con-
straints imposed by the four different dyad types are
quadric surfaces with special properties in the image
space.

A clearer picture of the image space constraint
surface that corresponds to the possible kinematic
constraints emerges when (X : Y : Z), or (x : y :
z) from Equations (4), or (5) are substituted into the
general equation of a circle, the form of the most
general constraint [10]:

K0(X
2+Y 2)+2K1XZ+2K2Y Z+K3Z

2 = 0. (6)

The Ki in Equation (6) depend on the constraint im-
posed by the dyad. The result is that the constraint
surfaces corresponding to RR, PR, and RP -dyads
can be represented by one equation [10]. It is ob-
tained by substituting the results from Equations (4),
or (5) into Equation (6). However, the expression is
greatly simplified under the following assumptions:

1. No mechanism of practical significance will have
a point at infinity, so it is safe to set z = 1.

2. Coupler rotations of φ = π (half-turns) have im-
ages in the plane X4 = 0. Because the Xi are im-
plicitly defined by Equation (2), setting φ = π gives

(X1 : X2 : X3 : X4) = (a : b : 2 : 0). (7)
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When we remove the one parameter family of im-
age points for coupler orientations of φ = π we can,
for convenience, normalise the image space coordi-
nates by setting X4 = 1. Conceptually, this implies
dividing the Xi by X4 = 2 cosφ/2 giving

X1 =
1

2
(a tan (φ/2)− b)

X2 =
1

2
(a+ b tan (φ/2))

X3 = tan (φ/2)

X4 = 1. (8)

Applying these assumptions to Equations (4), or
(5) gives the simplified constraint surface equation
upon substitution in Equation (6):

K0(X
2
1 +X2

2 ) + (−K0x+K1)X1X3

+(−K0y +K2)X2X3 ∓ (K0y +K2)X1

±(K0x+K1)X2 ∓ (K1y −K2x)X3

+ 1
4
[K0(x

2 + y2)− 2(K1x+K2y) +K3]X
2
3

+ 1
4
[K0(x

2 + y2) + 2(K1x+K2y) +K3] = 0. (9)

The Xi are the image space coordinates that rep-
resent a displacement of E relative to Σ. The x
and y, after setting z = 1, are the Cartesian coor-
dinates of the coupler attachment point in E. For
both the RR- and PR-dyads the coupler and base-
fixed link are joined by an R-pair, hence these co-
ordinates are conveniently selected to be the rota-
tion centre of the R-pair. The constraint surfaces for
these dyads are obtained by using the upper signs in
Equation (9). Note that for RP -dyads the kinematic
constraint is inverted: instead of an R-pair centre
constrained to move along a fixed line yielding a
fixed range of points, we have a movable line con-
strained to move on a fixed point yielding a planar
pencil of lines on the fixed point. For this case we
use the alternate form of Equation (9) where the co-
ordinates (X : Y : 1) of the fixed R-pair centre are
used in place of (x : y : 1), and the lower signs are
used. See [10] for a detailed explanation.

PP -dyads represent a special case. The image
space constraint surface corresponding to possible
displacements of a PP-dyad is a degenerate quadric
that splits into a real and an imaginary plane. This is
because only curvilinear motion of the coupler can
result. Because φ is constant, the image space co-
ordinates X3 = f(φ) and X4 = g(φ) must also be
constant. Hence, the finite part of the two dimen-
sional constraint manifold is linear and must be a
hyper-plane. The plane is completely determined by
the coupler orientation. When the image space is
normalised by setting X4 = 1, the surface equation
is simply X3 = tan (φ/2).

In what follows only RR- and PR-dyads will
be considered to provide some degree of proof-of-
concept. Development, refinement, and generaliza-
tion of this approach will come in subsequent publi-
cations.

2.2 RR-type Circular Constraints
The ungrounded R-pair in an RR-dyad is con-
strained to move on a circle with a fixed centre.
Meanwhile, the coupler can rotate about the mov-
ing R-pair when the coupler connection to the other
dyad has been removed. This two parameter fam-
ily of displacements corresponds to a two parameter
hyperboloid of one sheet in the image space. An im-
portant property of the hyperboloid is that sections
in planes parallel to X3 = 0 are circles [9]. Each
one of these image space circles represents possible
coupler displacements with a fixed orientation. Thus
the constraints imposed by RR-dyads are called cir-
cular constraints. The exact coefficients of the hy-
perboloid are determined by substituting in Equa-
tion (9) the appropriate values for the kinematic pa-
rameters:

K0 = 1,

K1 = −Xc,

K2 = −Yc,

K3 = K2
1 +K2

2 − r2, (10)

where (Xc, Yc) are the Cartesian coordinates of the
fixed circle centre in the reference frame that is con-
sidered to be non-moving, and r is the circle ra-
dius. If the kinematic constraint is a fixed point in
E bound to fixed circle in Σ, then (x, y) are the
Cartesian coordinates of the coupler reference point
in E, and the upper signs apply. If the kinematic
constraint is a fixed point in Σ bound to fixed circle
in E, then (X,Y ) are substituted for (x, y) as the
coordinates of the coupler reference point in Σ, and
the lower signs apply.

2.3 PR-type Linear Constraints
Linear constraints result when PR- and RP -dyads
are employed. The linear coefficients are defined as

[K0 : K1 : K2 : K3] = [0 : 12L1 : 12L2 : L3], (11)

where the Li are line coordinates obtained by Grass-
mann expansion of the determinant of any two dis-
tinct points on the line [11].

Of these in the present work we consider only
PR-dyads. The direction of the line is a design con-
stant, described by the angle it makes with respect to
the fixed base frame Σ, indicated by ϑΣ. The point
at infinity contained on the line is determined by the
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direction of the line, and hence can be specified as
(cosϑΣ : sinϑΣ : 0). Additionally, the location of a
fixed point on the line, also expressed in Σ, is given
by the coordinates FΣ. The line equation in Σ for
a given PR-dyad is obtained from the Grassmann
expansion:∣∣∣∣∣∣

X Y Z
FX/Σ FY/Σ FZ/Σ

cosϑΣ sinϑΣ 0

∣∣∣∣∣∣ = 0, (12)

where the notation FX/Σ, FY/Σ, FZ/Σ, represent the
homogeneous coordinates (X : Y : Z), expressed
in reference frame Σ, of a fixed point on the line that
is fixed relative to Σ. Applying Equations (11) and
(12) we obtain

K0 = 0,

K1 = −
FZ/Σ

2
sinϑΣ,

K2 =
FZ/Σ

2
cosϑΣ,

K3 = FX/Σ sinϑΣ − FY/Σ cosϑΣ. (13)

The direction of the translation permitted by the
P -pair is specified by the angle the line makes ex-
pressed in Σ, ϑΣ. When the coordinates of a fixed
point on the line are known, we obtain the line co-
efficients [K0 : K1 : K2 : K3]. These, along
with the design values of the coordinates of the cou-
pler attachment point (x, y), expressed in reference
frame E, substituted into Equation (9) reveals the
image space constraint surface for the given PR-
dyad. This surface is an hyperbolic paraboloid [9]
with one regulus ruled by skew lines that are all par-
allel to the plane X3 = 0.

2.4 The Burmester Problem in the Im-
age Space

Each specified pose of E determines a point, (X1 :
X2 : X3 : X4), in the image space. If the displace-
ments are feasible, the five points lie on the curve
of intersection of the dyad constraint surfaces. The
five points are enough to determine the intersecting
quadrics. Recall that, in general, nine points are re-
quired to specify a quadric. The special nature of
the constraint surfaces represent four constraints on
these quadrics.

The hyperboloids, corresponding to RR-dyads,
intersect planes parallel to X3 = 0 in circles. Thus,
all constraint hyperboloids contain the image space
equivalent of the imaginary circular points, J1 and
J2: (1 : ±i : 0 : 0). The points J1 and J2 are
imaginary points on the real line, l, of intersection

of the planes X3 = 0 and X4 = 0. This real line
is the axis of a pencil of planes that includes the
complex conjugate planes V1 and V2, defined by:
X3 = ±iX4. The hyperboloids all have V1 and V2

as tangent planes, though not necessarily at J1 and
J2.

The hyperbolic paraboloids, corresponding to
PR- and RP -dyads, contain l as a generator. There-
fore all constraint hyperbolic paraboloids contain J1
and J2, moreover V1 and V2 are the tangent planes
at these two points. Thus every constraint surface
for RR-, PR-, and RP -dyads have these four con-
ditions in common, reducing the number of indepen-
dent parameters to five.

Our approach is to leave K0 as an unspecified
variable homogenizing coordinate and solve the syn-
thesis equations in terms of K0. In general, the
constants K1, K2, and K3 will depend on K0. If
these multipliers become very large (on the order of
106) indicating a very large crank radius then we set
K0 = 0 and use line coordinate definitions for K1,
K2, and K3 in Equation 13 giving a PR-dyad. Oth-
erwise, K0 = 1, and the circle coordinate definitions
for K1, K2, and K3 in Equation 10 are used yielding
an RR-dyad.

3 Example
The mechanism illustrated in Figure 1 was used to
generate the five poses listed in Table 1 and dis-
played in Figure 2. For this generating mechanism,
the origin of reference frame E, OE , is on the centre
of the R-pair on the coupler point M2. Homoge-
neous coordinates in E are described by the triples
of ratios (x : y : z). The coupler reference points
M1 and M2 define the direction of the x-axis. The
positive y-axis is as shown in Figures 1 and 2. Frame
Σ is as shown in the same two figures. Reference
frame E moves with the coupler. The fixed R-pair
center is located on point F1. The geometry of the
generating mechanism is listed in the right hand side
of Table 1.

The given five poses are mapped to the coor-
dinates of five points in the image space. Using a
computer algebra software package, we substitute
the corresponding values for X1, X2, X3, together
with X4 = 1 and z = 1 into Equation (9), effec-
tively projecting the points onto the embedded Eu-
clidean Space. This produces the following five non-
linear equations in terms of K0, K1, K2, K3, x, and
y, which are quadratic when K0 is considered con-
stant:
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Figure 2: The five poses.

pose a b φ (deg) parameter value

1 5.24080746 4.36781272 43.88348278 F1 (X : Y : Z) = (1.5 : 2 : 1)

2 5.05087057 4.03883237 57.45578356 M1 (x : y : z) = (−2 : 0 : 1)

3 4.76358093 3.54123213 66.99534998 M2 (x : y : z) = (0 : 0 : 1)

4 4.43453496 2.97130779 72.10014317 M1M2 l = 2

5 4.10748142 2.40483444 72.30529428 F1M1 r = 2.5

P -pair angle ϑΣ = 60 (deg)

Table 1: Five poses of the RRRP mechanism; Geometry of the RRRP generating mechanism.

(13.52428430 + 3.954702976x− 0.281732470y + 0.2905708072x2 + 0.2905708072y2)K0+

(3.045651308 + 0.4188583855x− 0.4028439264y)K1+

(2.538317736 + 0.4028439264x+ 0.4188583855y)K2 + 0.2905708072K3; (14)

(13.59714292 + 3.980465638x− 1.355748810y + 0.3251080324x2 + 0.3251080324y2)K0+

(3.284157186 + 0.3497839351x− 0.5481168944y)K1+

(2.626113690 + 0.3497839351y + 0.5481168944x)K2 + 0.3251080324K3; (15)

(12.66604850 + 3.682213684x− 2.157608235y + 0.3595038128x2 + 0.3595038128y2)K0+

(3.425051014 + 0.2809923744x− 0.6618272064y)K1+

(2.546172905 + 0.6618272064x+ 0.2809923744y)K2 + 0.3595038128K3; (16)

(10.89749412 + 3.205294435x− 2.529259406y + 0.3824518134x2 + 0.3824518134y2)K0+

(3.391991875 + 0.2350963732x− 0.7278785984y)K1+

(2.272764106 + 0.7278785984x+ 0.2350963732y)K2 + 0.3824518134K3; (17)

(8.686958330 + 2.714462017x− 2.440453512y + 0.3834517468x2 + 0.3834517468y2)K0+

(3.150041851 + 0.2330965065x− 0.7306209600y)K1+

(+1.844275934 + 0.7306209600x+ 0.2330965065y)K2 + 0.3834517468K3; (18)
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Parameter Surface 1 Surface 2 Surface 3 Surface 4

K1 −1.500K0 −4.2909× 106K0 −15.6041K0 −8.3011K0

K2 −2.0000K0 2.4773× 106K0 3.4362K0 −5.0837K0

K3 −2.5801× 10−6K0 2.3334× 107K0 107.3652K0 93.4290K0

x −2.0000 8.1749× 10−7 0.2281 3.7705

y 3.4329× 10−7 −1.3214× 10−6 −0.7845 −2.0319

Table 2: The identified constraint surface coefficients.

Parameter Relation Value

F1 (−K11 ,−K21) (1.500, 2.000)

M1 (x1, y1) (−2.000, 3.4329× 10−7)

M2 (x2, y2) (8.1749× 10−7,−1.3214× 10−6)

ϑΣ arctan
(

−K12

K22

)
60.0◦

Table 3: Geometry of one of six synthesized mechanisms that is a good approximation of the generating
RRRP linkage in Figure 1.

Solving the system of Equarions (14-18) for the
unknowns K1, K2, K3, x, and y in terms of K0

yields the set of four solutions listed in Table 2. Sub-
stituting these values into Equation (9) gives four
distinct constraint surfaces in the image space, in
terms of the homogenizing circle, or line coordinate,
K0.

At the present time, heuristics must be used
to select an appropriate value for K0 by compar-
ing the relative magnitudes of K1 and K2. Re-
call that the circle coordinates are defined to be
K1 = −Xc, and K2 = −Yc, the Cartesian coor-
dinates of the fixed revolute centres, multiplied by
-1, expressed in Σ. The crank radius is given by
r = +

√
K2

3 − (K2
1 +K2

2 ). The coefficients for
Surfaces 1, 3, and 4 represent RR-dyads with finite
rotation centres when K0 = 1. However, the coeffi-

cients for Surface 2, relative to the other three, have
a rotation centre whose location approaches infinity,
(4.2909× 106,−2.4773× 106) with a crank radius
of 4.9547×106, also approaching infinity, while the
relative values of x and y indicate this attachment
point is on OE . This surface should clearly be re-
computed as an hyperbolic paraboloid revealing the
corresponding PR-dyad. Recall the line coordinate
definition, with K0 left unspecified:

K0 = K0,

K1 = −
FZ/Σ

2
sinϑΣ,

K2 =
FZ/Σ

2
cosϑΣ,

K3 = FX/Σ sinϑΣ − FY/Σ cosϑΣ. (19)

The angle of the direction of translation of the P -

Solution Dyad surface pairing

1 Dyad 1 - Dyad 2

2 Dyad 2 - Dyad 3

3 Dyad 2 - Dyad 4

4 Dyad 1 - Dyad 3

5 Dyad 1 - Dyad 4

6 Dyad 3 - Dyad 4

Table 4: Dyad pairings yielding the six synthesized mechanisms.
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Figure 3: The six synthesized mechanisms.

pair relative to the X-axis of Σ is ϑΣ. The transla-
tion direction of a PR-dyad that could be combined
with any of the three RR-dyads is thus

ϑΣ = arctan

(
−K1

K2

)
= arctan

(
4.2909× 106K0

2.4773× 106K0

)
= 60.0◦. (20)

Employing plane trigonometry, it is simple to
extract the link lengths and joint locations of the
dyad associated with each of the four constraint sur-
faces. The generating mechanism is reproduced
when the dyads corresponding to Surfaces 1 and 2
are paired. We obtain the geometry listed in Ta-

ble 3 (note, the second subscript refers to the par-
ticular surface). The six possible mechanisms are
the combinations of the four dyads taken two at a
time. These are listed in Table 4 and are illustrated
in Figure 3.

4 Conclusions
The example presented herein illustrates that the
general image space constraint surface equation,
leaving K0 unspecified, can be used for general
type and dimensional synthesis for planar mecha-
nisms. For a set of five poses generated by a par-
ticular slider-crank, we synthesized six mechanisms,
including the one that generated the poses, that can
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guide the coupler through the five poses. Three of
the six synthesized linkages are slider-cranks while
the remaining three are 4R mechanisms. The cou-
pler point is the centre of the R-pair connecting the
coupler to the P -pair. This coupler point is clearly
bound to a line in the RRRP linkages, but not in
the case of the 4R’s. This approach to planar four-
bar mechanisms stands to offer the designer all pos-
sible linkages that can attain the desired poses, not
just 4R’s and not just slider-cranks, but all feasi-
ble four-bar linkage architectures along with their
dimensions.

Outstanding issues involve the following. The
heuristics must be rethought so that an algorithm
for type selection can be developed. Moreover, the
problem formulation must be reconsidered in such a
way that both PR- and RP -dyads can be typed, and
extracted from the solutions. The geometric reason-
ing explaining why five image space points are suf-
ficient to define four unique quadrics must be for-
malized. Additionally, the geometric interpretation
of K0 must be investigated. How, for example, are
the constraint hyperbolic paraboloids parameterized
in the image space without setting K0 = 0?

Finally, methods to apply this technique to ap-
proximate synthesis should be investigated. The
resulting problem would involve fitting a suitable
number of points to surfaces in the image space.
More specifically, fitting points to the curve of inter-
section of constraint surfaces. To do this some form
of least-squares error minimization would have to
be employed. The outcome would be a single dyad
pair: the one corresponding to the two constraint
surfaces whose intersection best approximates the
given set of desired poses
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