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Abstract— In this paper synthetic and analytic projective and
Euclidean geometry are used to map the unit circle inscribing
the unit square to an ellipse possessing the largest area inscribing
special prescribed convex quadrilaterals; namely parallelograms
and trapezoids. The transformation of the unit circle to the
inscribing ellipse is the inverse transformation that maps the ver-
tices of the convex quadrilateral to the vertices of the unit square.
We describe the computational geometric details of determining
the transformation matrix that is used in the mapping. Addi-
tionally, employing synthetic geometric arguments, we prove
that the resulting inscribing ellipses are the ones possessing the
maximum area in the corresponding one parameter pencil of
ellipses inscribing the prescribed convex quadrilaterals.

Keywords- projective, affine, Euclidean geometry; collineations;
parallelograms; trapezoids; inscribing ellipses.

I. INTRODUCTION

In this paper classical analytic projective and Euclidean
geometry [1-4] are used to determine the largest area inscribing
ellipse subject to specific linear constraints, namely convex
quadrilaterals, that are either parallelograms or trapezoids. This
topic has generated only scant interest in the literature despite a
relatively large range of applications. For example, error ellipses
subject to linear constraints are important in statistical analysis.
Error ellipses arise when considering the covariance between
two statistical variables. The lengths of the semi-major and
semi-minor error ellipse axes are the square roots of the absolute
values of the eigenvalues of the associated covariance matrix [1].
Given additional constant linear constraints on the ellipse, the
maximum area ellipse inscribing those constraints is a measure
of the maximum covariance between the variables.

Determining the maximum area inscribing ellipse given
linear constraints that form convex quadrilaterals provides an
alternate approach to characterizing the velocity performance of
parallel mechanisms in the presence of actuation redundancy,
as reported in [2]. Therein the aim is to determine the ellipse
with the largest area that inscribes an arbitrary polygon. In this
context, the area of the ellipse is proportional to the kinematic

isotropy of the mechanism, while the polygon is defined by the
reachable workspace of the mechanism [2]. There, the approach
is a numerical maximization problem, essentially fitting the
largest area inscribing ellipse starting with a unit circle.

There are only a handful of papers that report investigations
into determining maximum area ellipses inscribing arbitrary
polygons, to the best of the author’s knowledge. The dual
problem, that is the problem of determining the polygons of
greatest area inscribed in an ellipse is reported in [3]. While
interesting, this dual problem is not germane to determining
the maximum area ellipse inscribing a polygon. Three papers
by the same author [8-10] appear to lead to a solution to the
general problem of finding the largest area ellipse inscribing an
n-sided convex polygon, however the papers focus on the proof
of the existence of a solution rather than an explicit algorithm
for computing the ellipse equation, or shape coefficients.

In this paper, we build on the approach presented in [4] to
identify the parametric equation of the maximum area ellipse
inscribing an arbitrary parallelogram, or trapezoid. A projective
collineation is a transformation that maps collinear points onto
collinear points in the projective plane. We propose to determine
the general planar projective collineation that maps the unit
circle inscribing a unit square onto an ellipse that inscribes
the prescribed convex polygon. Since the coordinates of the
vertices of both the unit square and the given polygon are
known, it is a simple matter to compute the transformation
that maps the vertices of the given polygon onto the unit
square. The inverse of the same transformation is then used
to map the homogeneous parametric equation of the inscribing
unit circle onto the corresponding ellipse that inscribes the
prescribed polygon. The unit circle that inscribes the unit square
is clearly its largest inscribing ellipse. The transformed ellipse
that inscribes an arbitrary convex quadrilateral will generally not
be the one possessing the largest area. However, if the prescribed
convex quadrilateral is either a parallelogram or a trapezoid,
then the resulting inscribing ellipse will indeed possess the
maximum area of the entire pencil of inscribing ellipses. Herein
we describe a simple construction for maximum area inscribing
ellipses in parallelograms and trapezoids. That is, we show how
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to identify the projective coordinate transformation that maps
a unit circle inscribing a unit square onto an ellipse inscribing
a given arbitrary convex parallelogram or trapezoid. By virtue
of the properties of parallelograms and trapezoids, we prove,
using synthetic arguments, that the resulting inscribing ellipses
mapped from the unit circle are indeed those possessing the
maximum area.

II. MATHEMATICAL BACKGROUND

It is well known that the closed second order curve possess-
ing the largest area that inscribes the unit square is the unit circle.
This is seen to be true when one considers that for an arbitrary
convex quadrilateral there is a one parameter pencil of inscribing
ellipses whose centres all lie along the open line segment joining
the midpoints of the two internal diagonals, or all ellipses in
the pencil possess the same centre when the diagonals intersect
at their midpoints [5]. The unit square is a special symmetric
parallelogram. It is well known that the area maximising ellipse
inscribed in a parallelogram is the one whose tangent points are
the midpoints of the parallelogram edges [5]. For the unit square,
the inscribing unit circle tangent points are the midpoints of the
edges of the square, and hence the unit circle possess the largest
area of the pencil of inscribing ellipses. The area maximising
ellipse that inscribes a trapezoid is the one whose centre is the
midpoint of the join of the diagonal midpoints [5].

A. Projective Transformations

Two distinct sets of four points in the projective plane P2

uniquely determine a projective collineation if the points in the
two sets are distinct, and if no three are on the same line. Let the
first set of four points have the coordinates W (W0 : W1 : W2),
X(X0 : X1 : X2), Y (Y0 : Y1 : Y2), and Z(Z0 : Z1 : Z2). Let
the second set of four points have the coordinates w(w0 : w1 :
w2), x(x0 : x1 : x2), y(y0 : y1 : y2), and z(z0 : z1 : z2).

When expressed as a vector, the ratios implied by the
homogeneous coordinates can be expressed by an arbitrary
scaling factor:

[w0 : w1 : w2]T = µ[w0 : w1 : w2]T . (1)

The corresponding Euclidean coordinates are

xw =
µw1

µw0
; yw =

µw2

µw0
. (2)

This is why different scalar multiples of a set of homogeneous
coordinates represent the same point in the affine or projective
plane.

The projective collineation may be viewed as a linear trans-
formation that maps the coordinates of a point described in a
particular coordinate system onto the coordinates of a different
point in the same coordinate system. The geometry can be
represented by the vector-algebraic relationship

λ

 W0

W1

W2

 = µ

 t11 t12 t13
t21 t22 t23
t31 t32 t33

 w0

w1

w2

 . (3)

Without loss in generality, we can set ρ = λ/µ and express
Equation (3) more compactly as

ρW = Tw, or Tw − ρW = 0. (4)

The elements of the linear transformation matrix depend on the
details of the mapping. As it represents a general projective
collineation there are no orthogonality conditions on the rows
or columns of T. This means that the elements can take on
any numerical value. Thus the mapping between two points
in an arbitrary collineation consists of nine variables. If we
wish to determine the mapping given a point and its image
then T represents nine unknowns, but, because of the use of
homogenous coordinates, at most eight are independent. Still,
to remain general the scaling factor ρ must be counted among
the unknowns because the given points come from a Cartesian
coordinate system imposed on the Euclidean plane while the
mapping is projective. The result is that the coordinates of four
points, along with those of their images, are enough to uniquely
define the eight independent elements of the transformation ma-
trix and the four independent scaling factors, ρi, i ∈ {1, 2, 3, 4}.

The vertices of an arbitrary quadrilateral represent four
points W , X , Y , and Z. We consider the image of these four
points w, x, y, and z, to be the vertices of the square containing
the unit circle centred on the origin of the Cartesian coordinate
system in which the quadrilateral is defined. Now a set of
equations must be written so that the elements of T can be
computed in terms of the point and image coordinates:

t11w0 + t12w1 + t13w2 − ρ1W0 = 0,
t21w0 + t22w1 + t23w2 − ρ1W1 = 0,
t31w0 + t32w1 + t33w2 − ρ1W2 = 0,
t11x0 + t12x1 + t13x2 − ρ2X0 = 0,

...
t31z0 + t32z1 + t33z2 − ρ4Z2 = 0.

(5)

Equations (5) represent 12 equations in 13 unknowns, 12 of
which are independent, hence we can arbitrarily scale the
elements of T by 1/t11, thereby setting t11 = 1. It is a simple
matter to solve for the 12 unknowns, however we only require
the eight independent elements of T.

B. Ellipses in the Euclidean Plane

A general conic in the Euclidean plane is a projection of a
unique projective curve. That is, a projective curve has many
different affine views: ellipses, hyperbolae, and parabolae are
all different affine views of the same projective curve projected
into the Euclidean plane using different points of perspective
of the curve in the projective plane [6]. Using homogenous
coordinates, any conic c in the affine and Euclidean planes can
be described by a general second order implicit polynomial
equation of the form

a00x
2
0 + a11x

2
1 + a22x

2
2 + 2a01x0x1 + 2a02x0x2+

2a12x1x2 = 0, (6)
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or in matrix form
xTAx = 0, (7)

where x is a vector representing the homogeneous coordinates
of a point on the conic, and A is a symmetric 3×3 matrix
with at least one non-zero element which represents the shape
coefficients of the conic. In component form the arrays are:

[
x0 x1 x2

]  a00 a01 a02
a01 a11 a12
a02 a12 a22

 x0
x1
x2

 = 0. (8)

For a conic to be one that is regular and non-degenerate it must
be that det(A) 6= 0. An affine classification for regular non-
degenerate conics is given by evaluating the discriminant of the
coefficient matrix A. The discriminant of A is defined to be
the 2×2 subdeterminant, denoted by ∆, of its quadratic form,
denoted by Q, such that

∆ :=

∣∣∣∣ a11 a12
a12 a22

∣∣∣∣ = a11a22 − a212. (9)

There are three possibilities [6]:

c is

 an ellipse
a parabola

an hyperbola

 iff ∆

 >
=
<

 0.

The centre of a central conic c can be computed using
the partial derivatives of the general conic, Equation (6), with
respect to x1 and x2, then solving the resulting pair of linear
equations for the pair of x1 and x2 [5]. The solution of this
linear system represents the Cartesian coordinates of the centre,
if it exists. However, the equations for the centre coordinates are
easily generalised.

∂c

∂x1
= 2a01x0 + 2a11x1 + 2a12x2 = 0, (10)

∂c

∂x2
= 2a02x0 + 2a12x1 + 2a22x2 = 0. (11)

Solving Equations (10) and (11) for x1 and x2 yields the centre
coordinates (x1cen , x2cen):[

x1cen
x2cen

]
=

1

a11a22 − a212

[
x0(a01a22 − a02a12)
x0(a01a12 − a02a11)

]
(12)

Note that the denominator on the left hand side of Equation (12)
is exactly the discriminant of the general conic coefficient
matrix. Hence, Equation (12) will reveal a unique solution for
the coordinates of the centre for any central conic (ellipse or
hyperbola); infinitely many solutions if the conic is a degenerate
pair of parallel lines; and no finite solution if the conic is a
parabola.

The matrix A and its discriminant can be used to evaluate
the area of a conic. If c is an ellipse then the area that it encloses
can be computed using the formula [7]

area(c) =

(
det(A)

∆3/2

)
π. (13)

Note that for hyperbolae and parabolae, where ∆ ≤ 0, the value
of this function is either purely imaginary, or infinite.

While we don’t require the major and minor axes of the
ellipses for the application in this paper, for completeness we
describe an algebraic method to determine them. The quadratic
form associated with the general planar implicit polynomial
equation of the second degree, Equation (6), is

a11x
2
1 + 2a12x1x2 + a22x

2
2 = 0, (14)

and the associated symmetric matrix is

Q :=

[
a11 a12
a12 a22

]
. (15)

The eigenvalues of the characteristic equation of the quadratic
form are defined as the determinant

|λI−Q| =
∣∣∣∣ λ− a11 −a12
−a12 λ− a22

∣∣∣∣ = 0, (16)

where the λ are the eigenvalues of Q and I is the 2× 2 identity
matrix. The resulting equation is a quadratic in terms of the
eigenvalues:

λ2 − λ(a11 + a22) + a11a22 − a212. (17)

The solutions to Equation (17) reveal two real eigenvalues for
every non-degenerate conic, which in general are:

λ=
1

2

(
a11+a12±

√
a211+2a11a12−4a11a22+5a212

)
. (18)

If the conic is an ellipse, then the eigenvectors associated with
each of the eigenvalues are parallel to the directions of the
major and minor ellipse axes: the major axis is parallel to
the eigenvector corresponding to the eigenvalue possessing the
smallest absolute value. Given the eigenvalues, the eigenvectors
are the solutions to

|λI−Q|
[
x1
x2

]
. (19)

Now the major and minor axes of an ellipse are obtained by
establishing the parametric equations of the lines through the
centre, established with Equation (12), which are parallel to the
eigenvectors.

C. Polar Lines and Pole Points With Respect to a Conic

The pole and polar are respectively a point and a line that
have a unique reciprocal relationship with respect to a given
conic section. If the point lies on the conic section, its polar is
the tangent line to the conic section at that point. Hence, given a
conic section and a line tangent to the conic, the corresponding
pole point is the tangent point between the polar line and conic.
For an ellipse that inscribes a convex quadrilateral, the edges of
the quadrilateral are polar lines to the ellipse, and the pole points
are the tangent points between the edges and the ellipse.
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Given the homogeneous coordinates of a pole point, denoted
by the vector p, on a general non-degenerate conic, the vector of
line coordinates, lp, for the corresponding polar line are obtained
with the product

lp = Ap. (20)

Hence, it is a simple matter to determine the pole point coordi-
nate vector given a polar line and a conic, which is:

p = A−1lp. (21)

Equation (21) will be used to determine the pole points for our
generated ellipses to prove that they are the inscribing ellipses
possessing the maximum area.

D. Relevant Properties of Squares, Parallelograms, and Trape-
zoids

The projective transformation method employed in this pa-
per to transform a unit circle inscribing a unit square to an ellipse
inscribing a parallelogram or trapezoid exploits the fact that
similar properties are preserved by the transformation. Consider
the square illustrated in Figure 1. There is a pencil of ellipses
inscribing the square, all centred at the midpoint of the two
diagonals, AC and BD, which is where they intersect at the
centre square. The one possessing the largest area is the circle,
whose pole points are the midpoints of the four edges, E, F, G,
and H.

Consider the parallelogram illustrated in Figure 2. The
similarity transformation that maps a square to a parallelogram
preserves the property that the largest inscribing ellipse, among
the pencil of inscribing ellipses centred at the intersection of the
diagonals AC and BD, has pole points located at the mid points
of the edges E, F, G, and H [5, 6].

Trapezoids are a geometric departure from parallelograms.
However, two opposite edges in a trapezoid are always parallel,
see Figure 3. The lines containing the two non parallel edges
always intersect in a finite point, G in Figure 3. While the

Figure 1. Pole points and centre of largest area Ellipse inscribing a square.

Figure 2. Pole points and centre of largest area Ellipse inscribing a
parallelogram.

two diagonals, AC and BD, intersect on the interior of the
trapezoid, they never both intersect at their midpoints, t and
s. Similar to any convex quadrilateral, any inscribing ellipse
has its centre located on the open line segment joining Points
t and s. The bounding ellipses in the one parameter pencil
inscribing the trapezoid, or any convex quadrilateral, are the two
diagonals (doubly mapped) whose centres are at points t and s,
respectively. The inscribing ellipse possessing the greatest area
is the one whose centre is located at the midpoint of the open
line segment joining the midpoints of the two diagonals [5, 6].

The similarity property that is maintained in the projective
correspondence between the square and trapezoid vertices in
the Euclidean plane is that the maximum area inscribing ellipse
has its centre at the midpoint of the open line segment joining
the midpoints of the two diagonals, and has pole points at the
midpoints of the two parallel edges [7]. Additionally, the line
joining the midpoints of the two diagonals is parallel to the

Figure 3. Pole points and centre of largest area Ellipse inscribing a trapezoid.
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two parallel edges, and the point where the extension of the
two non parallel edges intersect (G), the midpoints of the two
parallel edges (E and F), the intersection point of the two interior
diagonals, and the midpoint of the line segment joining the
midpoints of the two diagonals are all collinear.

III. EXAMPLES

We now consider two examples where the bounding quadri-
laterals are a parallelogram and a trapezoid, respectively.

Figure 4. Unit square and a boundary parallelogram.

A. Parallelogram

Consider the unit square and parallelogram shown in Fig-
ure 4. The homogeneous coordinates of the vertices of the
boundary quadrilateral are W (1 : 2 : 0), X(1 : 10 : −1),
Y (1 : 14 : 3), and Z(1 : 6 : 4), while the image points, the
square vertices, have homogeneous coordinates w(1 : 1 : 1),
x(1 : 1 : −1), y(1 : −1 : −1), and z(1 : −1 : 1). The projective
collineation defined by the vertices of the two quadrilaterals is

T =
1

18

 18 0 0
−26 4 −4
−20 1 8

 . (22)

The unit circle, centred on the origin, inscribing the unit
square is the largest area inscribing ellipse. The matrix T is used
to transform its parametric equation. But, because of how the
problem has been posed, the circle represents the image of the
ellipse that inscribes the boundary quadrilateral. To obtain the
parametric equation of the desired ellipse, the inverse of T pre-
multiplies the unit circle parametric equation:

e = T−1c, (23)

where c = [1 : cos(θ) : sin(θ)], and the resulting normalised
parametric ellipse equation is

e =

 1
8 + 4 cos(θ) + 2 sin(θ)

1/2(3− cos(θ) + 4 sin(θ))

 . (24)

The resulting ellipse is the affine image of the unit circle, see
Figure 5. Using Equation (24) it is a simple matter to compute

five points on the ellipse, and use these to obtain the implicit
form, i.e. Equation (6), of the ellipse, which is computed to be:

− 1075.71000x20 − 24.31791x21 − 114.43723x22+

354.75541x0x1 + 160.21212x0x2 + 22.88745x1x2. (25)

Now, using Equation (12), the Cartesian coordinates of the
ellipse centre are computed to be (8, 3/2), which are the same
as those of the mutual midpoints of the diagonals. Using
Equation (21), the Cartesian coordinates of the pole points of
the ellipse are (6, 1/2), (12, 1), (10, 7/2), and (4, 2), which are
the corresponding midpoints of the four parallelogram edges
illustrated in Figure 5. By virtue of these facts, the computed
ellipse is the one in the one parameter pencil of inscribing
ellipses possessing the greatest area. Using Equation (13), that
area is 28.27 square generic drawing units.

Figure 5. Maximum area ellipse inscribing a parallelogram.

B. Trapezoid

Consider the unit square and trapezoid illustrated in Figure 6.
The homogeneous coordinates of the vertices of the boundary
quadrilateral are W (1 : 2 : −1), X(1 : 6 : 1), Y (1 : 5 : 4),
and Z(1 : 3 : 3), while the image points, the square vertices,
have the same coordinates as before. The projective collineation
defined by the vertices of the two quadrilaterals is

T =
1

10

 10 1 −2
−28 7 0
−2 −3 6

 . (26)

Using Equation (23) we obtain the normalised parametric
equation for the ellipse:

e =
1

3 + sin(θ)

 3 + sin(θ)
4(3 + cos(θ) + sin(θ))
7 + 2 cos(θ) + 7 sin(θ))

 . (27)

The resulting ellipse is the affine image of the unit circle, see
Figure 7. The implicit form of the ellipse is computed to be:

− 2.794252x20 − 0.2315005x21 − 0.1299652x22+

1.6245650x0x1 − 0.0649826x0x2 + 0.1299652x1x2. (28)

Using Equation (12), the Cartesian coordinates of the ellipse
centre are (4, 7/4), which are the same as those of the midpoint
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Figure 6. Unit square and a boundary trapezoid.

of the open line segment joining the midpoints of the diagonals.
Using Equation (21), the Cartesian coordinates of the pole points
of the ellipse are (4, 0), (16/3, 3), (4, 7/2), and (8/3, 5/3), the
first and third corresponding to the midpoints of the two parallel
trapezoid edges, see Figure 7. By virtue of these facts, the com-
puted ellipse is the one in the one parameter pencil of inscribing
ellipses possessing the greatest area. Using Equation (13), that
area is computed to be 7.78 square generic drawing units.

Figure 7. Maximum area ellipse inscribing a trapezoid.

IV. CONCLUSIONS AND FUTURE WORK

In this paper projective transformations were used to map
the unit circle inscribing the unit square to ellipses inscribing
arbitrary parallelograms and trapezoids possessing the maxi-
mum area among the one parameter pencil of all inscribing
conics. Synthetic geometric arguments were used to prove the

claim that the derived projective transformations preserve the
property of the unit circle inscribing the unit square being the
inscribing ellipse possessing the largest area. This work has ap-
plications to determining the upper bound on error ellipses given
specific linear constraints, and for determining the maximum
area inscribing ellipse given linear constraints that form convex
quadrilaterals which characterize the velocity performance of
parallel mechanisms in the presence of actuation redundancy.

Given an arbitrary convex quadrilateral, there is a one
parameter pencil of inscribing ellipses all centred on the open
line segment joining the midpoints of the diagonals. Only one
possesses maximum area. Future work will aim to generalise
this approach to determine the maximum area ellipse inscribing
arbitrary convex quadrilaterals. After that, we will extend the
approach to n-sided arbitrary convex polygons.
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