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Abstract— The Atlas motion simulator platform is the focus of
a multi-year multi-disciplinary fourth year project at Carleton
University. It is a state of the art motion platform that allows for
unlimited rotation of a cockpit housed in a 9.5 foot diameter
sphere about any axis driven by three mecanum wheels, in
addition to three decoupled orthogonal translations provided by
a translational motion stage. The inverse of the Jacobian matrix
is used to map the required speed of the three mecanum wheels
to the desired angular velocity of the sphere. The work reported
in this paper examines the validity of the Jacobian and the
accuracy of the programs that implement it. It is determined,
through a number of tests, that the elements in the matrix are
valid and that the sphere rotates at its specified angular velocity
vector accurately with acceptably low error.

I. INTRODUCTION

The Carleton University Simulator Project (CUSP) is one of
the fourth year capstone engineering design projects at Carleton
University. It is a multi-year project that features a multi-
disciplinary team, having students from Mechanical, Aerospace,
and Systems and Computer Engineering departments through-
out the project life. Over the last ten years, CUSP has focused
on the development of a novel motion simulator platform called
Atlas [1]. The Atlas motion platform was introduced as a
practical alternative to the Gough-Stewart hexapod architecture
[2, 3].

Conventional motion simulator platforms use a Gough-
Stewart platform in order to provide the six degrees-of-freedom
(DOF) necessary for simulate motion cues. Motions are achieved
by varying the lengths of the six active prismatic legs. The
issue with this method is that the platform has a relatively small
workspace due to the kinematic coupling of the actuators, and
the potential for leg interference. There are few simulators in
the world that are able to overcome this restriction. One is
the Eclipse II motion platform [4], being developed at Seoul
National University in Korea. It uses three tethers attached to
a circular guide that provide three angular DOF to the central
motion platform. Circular guides allow the central platform to
continuously rotate about two axes. The major drawback to this
architecture is that there is no closed form algebraic model for

its kinematics. The velocity level kinematics require estimating
parameters numerically. The other arcitecture that is capable of
providing unlimited angular displacements is the Desdemona
motion platform [5]. The Desdemona simulator, developed by
TNO Defence, Security & Safety in The Netherlands, uses a
fully gimballed system to allow for rotation about any axis. Its
range of motion allows up to 8 meters of horizontal translation,
and 2 meters of vertical displacement. However, because of the
gimbal arrangement, the orientation workspace is not free of
singularities because of the potential of gimbal-lock.

Atlas overcomes the limitations of other motion platforms
by providing an unbounded orientation workspace that is singu-
larity free. This is achieved by employing an actuation system
that uses three mecanum wheels whose contact points are the
vertices of an equilateral triangle. Different linear combinations
of mecanum wheel speeds yield angular displacements of the
sphere about different axes through its geometric centre. A
mecanum wheel, illustrated in the right-hand side of Figure 1,
is a wheel that transmits force in the tractional direction while
allowing slip transverse to that direction. This is in contrast to
the original omni wheel design, also illustrated in Figure 1 on the
left, which allows slip in the transverse direction, however two
offset races are required [6, 7]. The difficulty with omni-wheels
is that the two offset castor roller races inject significant vibra-
tions to the sphere during rotations [8]. The mecanum wheel
orientation stage is mounted on a Gough-Stewart platform that
is used to provide translational displacements. Although the ori-
enting capability of the Gough-Stewart platform could be used,
the decoupling of the orientation and translation workspaces
require that it is not.

The Atlas concept emerged from the desire to establish a
flexible simulation facility at Carleton University capable of six
DOF motion and the ability to accept various cockpit configura-
tions for the purpose of simulating any vehicle type [1]. It was
originally believed that by actuating three omni wheels in the
correct configuration, it would be possible to rotate the sphere
about any axis. It was then necessary to prove the theories on
a small scale prototype before further developing the concept
into a full-scale motion platform. Hence, in the third year of
the project, the Atlas Lite tabletop demonstrator, illustrated in
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Figure 1. Omni wheel model (left) and mecanum wheel model (right).

Figure 2, was designed and built for testing viability. In the
following year surge, sway, and heave stages were added to the
platform to generate translations. The resulting motion platform
has six DOF with rotation decoupled from translation.

Over the next two years the Atlas Lite platform received
additional hardware and software improvements including the
development of an inertial orientation sensor (IOS). Work on
the Atlas Lite visual orientation system (VOS) was significantly
advanced using coloured markers to track absolute sphere ori-
entation. Additionally, a 4 foot diameter half-scale sphere and a
sphere support structure were constructed. The purpose of this
was to explore composite manufacturing techniques, large-scale
actuation of the sphere with omni wheels, as well as to provide
further evidence of the feasibility of the design. This model was
named the Atlas Technology Demonstrator Platform (TDP).

Year seven brought with it closed-loop control of the Atlas
Lite system. The previous in house I0S sensor was replaced
with a commercial 3D gyroscope. The VOS system evolved
further and a simple sensor fusion algorithm was developed. The
TDP sphere was completed and a new base was manufactured,
incorporating three drive motors with omni wheels, that was
capable of open loop control about the pitch, roll, and yaw
directions.

Next, the VOS closed-loop control system of Atlas Lite
was implemented with a new marker scheme. Three six inch
omni and mecanum wheels were purchased to facilitate dynamic
comparison of the wheels on the Atlas TDP. It was discovered
it would be unlikely that any omni wheels large enough for
the full-scale Atlas prototype would be available. Moreover, it
was determined that the vibration due to the shape of the castor
rollers in two offset races and the relatively small contact patch
between the sphere and castor rollers necessitated the change to
mecanum wheels.

Also that year, a new Jacobian was developed to account for
the geometry of the mecanum wheels. Material properties for
the Atlas TDP composite panels were determined. Research into
sandwich composite structures was undertaken for full-scale
panel construction and weight reduction. Motor specifications
were also chosen for the full-scale Atlas prototype and a new

Figure 2. Atlas Lite (2008/2009).

real-time processing system was implemented on Atlas TDP.

The full-scale prototype is called the Atlas simulator and the
current 3D solid model is shown in Figure 3. The unique design
of Atlas decouples translational actuation in three orthogonal
directions from general unbounded rotational actuation about
an arbitrary, continuously variable axis. This year has seen the
purchase and installation of a MOOG Gough-Stewart platform,
the finalized design of many Atlas components, and the manu-
facturing of support structures and interface platform, illustrated
in Figure 3.

Figure 3. Full-scale Atlas platform concept.
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The development of Atlas has been progressing steadily for
a decade. As the implementation of the full-scale hardware
is completed, elements of the final control system are also
being fine-tuned. The main goal of this paper is to investigate
the accuracy of the Jacobian matrix and its implementation in
driving the active mecanum wheels for Atlas TDP. In order to
do this, four different tests were designed and implemented.
The analysis of the resulting data has enabled validation of the
Jacobian.

II. KINEMATICS

While the use of mecanum wheels for the actuation of
Atlas offers a greater range of motion over typical motion
simulators, this increased freedom of motion involves more
complex kinematics than the standard omni wheel due to castor
roller orientation. A Jacobian was developed in [9] to map the
angular velocity of the individually driven mecanum wheels to
the motion of the Atlas sphere.

A. The Atlas Jacobian

The Atlas Jacobian is a 3 x 3 matrix that uses the geometry
of the mecanum wheel contact point locations and caster roller
orientation to populate its nine elements. It has the form [9]:
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and where S, C, and T are abbreviations for sine, cosine, and
tangent, respectively. The nomenclature for Equations (1) and
(2) is listed in Table 1.

The Jacobian maps the three mecanum wheel angular speeds
to the sphere angular velocity. It’s nine elements are functions
of the geometry of the mecanum wheel contact point locations
and caster roller orientation relative to a non-moving coordinate
system whose origin is at the geometric centre of the sphere,
see Figure 4. The unique property of this Jacobian is that it is
time invariant. Each of it’s nine elements is a function of fixed
geometric design constants which have been selected such that
the Jacobian always possesses full rank. This means that the
orientation workspace is unbounded and free from configuration
and representational singularities.

To generate a desired sphere angular velocity, the Jacobian
must be inverted so the three required mecanum wheel speeds
can be computed. However, because the Jacobian is free from
singularities of any kind, and it’s condition number is identically
equal to unity, it can always be inverted, yielding the mapping
from the angular velocity vector of the sphere to the angular
speeds of the three mecanum wheels:
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B. Jacobian Matrix Constants

The geometry of Atlas’ mecanum wheel contact point loca-
tions and rollers are illustrated in Figures 4 and 5. The associated
angles 6, the angle from the x-y plane of the non-moving
coordinate system affixed to the centre of the sphere to the
mecanum wheel contact points, which is assumed to be the same
for all three wheels; the angles about the non-moving z-axis to
each respective mecanum wheel with mecanum wheel 1 being
the datum, are ¢ = 0°, ¢2 = 120°, and ¢35 = 240°; and finally o
is the axis angle of the caster roller with respect to the mecanum
wheel axis. The variables and constants for Equation (4) are
summarized in Table I.

III. EXPERIMENTAL TEST PLAN

To drive the wheels, a LabVIEW VI uses the inverse Ja-
cobian to achieve the desired sphere angular velocity. There-
fore, validating the inverse Jacobian is an important step in
the development of the Atlas TDP, and the full-scale Atlas
prototype. A series of tests was created in order to systematically
check the validity of the Jacobian. For all tests performed, it
was chosen that 42 different angular velocities would be used
to obtain results. All sampled data within the same angular
velocity profile was averaged to ensure consistent results. The
tests performed were on the half-scale Atlas TDP, and the results
are expected to reflect the full scale model. Furthermore, the
tests were performed using open-loop control, whereas the full-
scale model is expected to run closed-loop control, and thereby
enhance accuracy by controlling error.

Test 1 was designed to verify that the inverse Jacobian is
properly calculated by LabVIEW and that its output is equal to
the output read by the virtual encoders on the Atlas TDP. This
verifies that the specified input is what the encoders are reading.
During these tests, a sample population of 60, or greater, was
used and averaged to compare to the expected results during
each of the 42 trials. Agreement between the computed inverse
Jacobian and motor encoders implies that the inverse Jacobian
is being computed properly within LabVIEW, and the motors
are receiving the proper command input from the software to
achieve the prescribed angular velocity of the sphere.

Test 2 involves using a timer to establish how long it takes
for the mecanum wheels to complete N rotations, where N
is the number of rotations such that the elapsed time of the
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TABLE I. Jacobian variables and constants for the Atlas TDP.

] SYMBOL | DESCRIPTION TYPE VALUE
Qy Sphere angular velocity about the x-axis (roll) Input -
Q, Sphere angular velocity about the y-axis (pitch) Input -
Q. Sphere angular velocity about the z-axis (yaw) Input -
R Radius of sphere Constant | 24.127 in
r Radius of mecanum wheel Constant | 3.005 in
0 Angle from sphere center to the center of the active mecanum wheels | Constant 514°
01 Angle about the z-axis to mecanum wheel 1 Constant 0°
2 Angle about the z-axis to mecanum wheel 2 Constant 240°
o3 Angle about the z-axis to mecanum wheel 3 Constant 120°
« Angle between the mecanum roller and the contact patch of the sphere | Constant 45°
w1 Mecanum wheel 1 angular speed Output -
wo Mecanum wheel 2 angular speed Output -
w3 Mecanum wheel 3 angular speed Output -
y z
o, + Roller Axis
o
3
P / l
Wheel Axis R
/ )
y “o,
-~ {Pz
W, ('
2 Figure 5. Mecanum wheel roller axis for Atlas.
H x
F ’ z spinning at the correct rate as indicated by the software. This
is done for all 42 angular velocities. The accuracy of the tests
is estimated to be 1/16'" of a period of a wheel rotation. The
first and second tests of the validation process do not explicitly
validate the inverse Jacobian, but rather ensure the model is
Zz performing as expected in order to carry out the Jacobian
validation.
1 2.4
0 Test 3 establishes the axis about which the sphere rotates
given a prescribed angular velocity. From the sphere’s motion,
the angular acceleration is measured using an Xsens MTi 3D
Motion Tracker I0S. The benefit of using the Xsens sensor is
that it can immediately output angular velocity, and thereby
2,3 1

Figure 4. Configuration of three driven wheels for Atlas.

test is greater than 30 seconds. Then the motor angular speed
calculated by the time interval and number of rotations is
compared to the angular speed recorded by the virtual encoders
and to the computed Jacobian, to verify that the motors are

eliminates the need to integrate within LabVIEW. The IOS is
mounted onto a rigid beam in the middle of the sphere, and is
calibrated such that all inputs were zeroed. The sphere is run for
42 different angular velocities, data exported to Microsoft Excel,
and the average of a minimum of 30 samples for each angular
velocity was computed for each of the 42 angular velocities.

Test 4 examined the trueness of the sphere’s rotation. The
sphere is commanded to rotate for exactly one revolution for all
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42 angular velocity inputs based on the time required to perform
one revolution. An OptoTrak Certus motion capture system
compares initial and final orientation coordinates of markers on
the sphere. Based on these coordinates, the chord between the
sphere’s original and final orientations can be calculated, and the
displacement arc of the sphere is able to be calculated based on
the radius of the model, and the chord length. The displacement
is the absolute error in the system, should any exist. Though
Test 3 implicitly validates Test 4, it is still needed for error
quantification.

When a problem arose during testing, it was isolated, re-
viewed, corrected, and all tests repeated. These four above-
mentioned tests serve to empirically validate the Atlas Jacobian.

IV. EXPERIMENTAL RESULTS AND ERRORS

The tests were carried out on the Atlas TDP, and after
much troubleshooting of both software and hardware, the results
reflect the true Atlas model. The empirical results for each
of the four tests were plotted, analyzed, and compared to
the theoretical expected value based on the Jacobian matrix
elements and the angular velocity of the sphere. Plausible errors
for each test are discussed in this section. During Test 1, the
inverse Jacobian is calculated in LabVIEW and the signal is sent
to the motors to spin at the required angular speed to achieve the
sphere’s angular velocity. The test observed that the Jacobian
input was indeed very close to virtual encoder output.
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3
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g 12 45678 9101112131415
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2.5
2 = = = = Empirical
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Data Sampling

Figure 6. Jacobian vs. virtual encoders (rad/s) about x-axis.

Figure 6 shows the angular speed of each motor compared to
the Jacobian input to the system for the sphere’s angular velocity
about the x-axis. Similarly, Figure 7 shows the result about the
y-axis, and Figure 8 about the z-axis. Considering the system
is in open-loop control, the Jacobian and encoders agree within
reason and are considered satisfactory. Errors for each motor
averaged for all tests are listed in Table II, and can be attributed
to backlash in the motor gearboxes, as well as fluctuations in the
encoder data logged during the tests.

For Test 2, a stopwatch was used to count the time taken for
each mecanum wheel to complete N rotations, where number of
rotations is such that the time elapsed for the test is a minimum

TABLE II. Motor errors for Test 1.

Motor 1 | Motor 2 | Motor 3
0.23% 0.18% 0.08%
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Figure 7. Jacobian vs. virtual encoders (rad/s) about y-axis.
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Figure 8. Jacobian vs. virtual encoders (rad/s) about z-axis.

of 30 seconds, and then compared to the expected time elapsed
for the 42 angular velocity inputs. The tests observed that the
physical motor rotations agreed with the value read by the
encoders.

Figure 9 shows the number of rotations required for each
motor when the sphere is rotating about the x-axis to achieve
30 seconds of testing. Figure 10 shows the angular speed of
each motor being compared to the virtual encoder value for the
sphere’s angular velocity about the x-axis. Figure 11 shows the
number of rotations required for each motor when the sphere
is rotating about the y-axis to achieve 30 seconds of testing.
Figure 12 shows the motor angular speed for the sphere’s
angular velocity about the y-axis. Figure 13 shows the number
of rotations required for each motor when the sphere is rotating
about the z-axis to achieve 30 seconds of testing, whereas
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Figure 9. Number of rotations required for each motor about x-axis.
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Figure 10. Time taken to for each motor about x-axis.

Figure 14 shows the motor angular speeds for the sphere’s
angular velocity about the z-axis. The errors listed in Table III
can be attributed to the open-loop control and backlash in the
system.

TABLE III. Motor errors for Test 2.

Motor 2
0.37%

Motor 3
0.36%

Motor 1
0.28%

Associated errors are higher than those in Test 1 because
Test 2 relies on a user to start and stop the timer; however, these
errors are deemed to be satisfactory.

Test 3 used an IOS system to measure the angular velocity.
The sphere is then run for 42 different angular velocities, and the
data exported to Microsoft Excel. The average of a minimum of
30 samples for each angular velocity was taken for each of the
42 angular velocities.
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Figure 11. Number of rotations required for motors about y-axis.
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Figure 12. Time taken to for each motor about y-axis.
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Figure 13. Number of rotations required for each motor about z-axis.

The results indicated that there was considerable error in
the sphere’s motion. Figures 15, 16, and 17 show how the
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Figure 14. Time taken to for each motor about z-axis.

angular velocities behave about roll, pitch, and yaw axis when
commanded to rotate about the x-axis (roll), y-axis (pitch), and
z-axis (yaw), respectively.
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Figure 15. Theoretical vs. experimental angular velocity (rad/s) about x-axis.

Errors computed for roll, pitch, and yaw, listed in Table IV,
are much higher than the first two tests. When observing the
tests, it is immediately noticeable that high levels of vibration
and gyration exist in the sphere’s motion, and that these cause
the sphere’s motion to be jerky. It is also observed that the
angular velocity vector direction slowly changes over the course
of longer test runs due to this error. This explains the errors
increasing as time increases, as shown in the three figures.
Because the tests were run continuously, it is unknown if slip
is a large factor in the IOS test results; though based on the
gyration, it is expected to exist. The sphericity of the model is
also questionable, as well as the condition of the sphere, having
incurred divots along its surface from general wear and tear.

Test 4 uses the Optotrak Certus to measure the initial
and final orientation of the sphere. From the coordinates, the
displacement arc between the two points is calculated. The
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Figure 16. Theoretical vs. experimental angular velocity (rad/s) about y-axis.
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Figure 17. Theoretical vs. experimental angular velocity (rad/s) about z-axis.

results are shown in Figures 18, 19, and 20 for roll, pitch, and
yaw, respectively. The errors, shown in Table V, are similar to
those during Test 3.

The errors associated with Test 4 are similar to those found
in Test 3. Since the tests were run discretely of one another, there
is less vibration and gyration present, which accounts for the
smaller error. It is evident from this test, however, that slip does
exist during starting and stopping, confirming errors associated
with Test 3.

V. CONCLUSION

This paper has presented a model of the angular motion
of a composite sphere driven by three mecanum wheels. Four
individual tests were used in order to validate the trueness

TABLE IV. Angular velocity vector errors for Test 3.

Q, Q, Q.
1039% | 8.61% | 5.61%
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Figure 18. Experimental displacement length for each angular velocity about
the x-axis.
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Figure 19. Experimental displacement length for each angular velocity about
the y-axis.
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Figure 20. Experimental displacement length for each angular velocity about
the z-axis.

TABLE V. Displacement errors for Test 4.

Displacement | Displacement | Displacement
about X about Y about Z
6.19% 8.42% 8.83%

of the sphere’s rotation. These tests are useful because they
can be used to estimate potential sources of error for the full
scale Atlas. For instance, the sphericity of the model will be
significantly improved for the full-scale model and mechanical
error will decrease with the addition of normal loads on the
sphere. Secondly, during Tests 3 and 4 it was noted that much of
the error could be associated with the gyration and vibration due
to imperfect sphere radius. Aside from model and mechanical
error, the remainder of the associated error can be attributed to
measurement hysteresis.

The full scale Atlas simulator will be one of only a handful
of simulators in the world that are capable of a full range
of unlimited angular motion. It will allow pilots to gain real
flight experience for just about any situation imaginable. The
work reported in this paper is just one more step towards the
realization of nearly a decade of work and a state of the art
motion platform for vehicular simulation.
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