
Simulation of a Kinematic Calibration Procedure
that Employs the Relative Measurement Concept

N.W. Simpson, M.J.D. Hayes
Department of Mechanical & Aerospace Engineering, Carleton University,

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada,
nsimpson@mae.carleton.ca

jhayes@mae.carleton.ca

Presented in this paper is a project in which an autonomous camera-based calibration system is being developed.
As with all other calibration methods, the desired goal is to improve the accuracy of a robot to the same degree as
its repeatability. The distinct feature of this system is that it will employ the novel Relative Measurement Concept
(RMC) to identify the discrepancies between nominal robot parameters, defined by its specified geometry, and the
actual parameters defined by its manufacture. The geometry of a KUKA KR 15/2 was chosen for the simulation as
a preliminary experiment was performed with this particular serial robot, however, substitution of other serial robot
geometries is possible. Derivation of the error model will be presented along with discussion on the components of
the simulation. Program components include Pieper’s solution method to the inverse kinematic problem and Singular
Value Decomposition (SVD). Results from the absolute measurement case and the relative measurement case, in its
current form, will be presented. The RMC method allows for the identification of 20 of the 24 robot parameters, in its
present state, and will be experimentally validated with a Thermo CRS A465 six-axis serial robot.

1 Motivation

The aim of the current work is to validate the Relative
Measurement Concept (RMC) through its incorpora-
tion into a calibration scheme for an industrial robot.
To ensure accurate off-line programmed positioning of
six degree-of-freedom serial manipulators, up to their
repeatability, some form of calibration must be per-
formed. A kinematic calibration procedure involving
the RMC was developed to address this necessity.

A robot’s accuracy is a measure of how well
the programmed end-effector position and orientation
matches the actual case. Repeatability is the limit to
accuracy as it gauges how well the robot can return to
the same taught configuration. A Thermo CRS A465
six-axis serial robot has been procured to aid in the de-
velopment and validation of the calibration procedure.

There are two main facets to the project, which are
being pursued concurrently. The first attends to the
hardware construction and digital image processing re-
quired for data acquisition. The second, which is the
focus of this paper, is the robot programming and soft-
ware development for both simulation and experimen-
tal verification of the kinematic calibration procedure.

The first step of this component of the project was

to develop a kinematic error model in which parame-
ter errors could be identified. This was achieved us-
ing simple mechanisms via several simulations writ-
ten in Matlabc© [1]. A more involved model, follow-
ing the same overall structure as the previous one but
more modular, was then developed for a six-axis se-
rial robot. A set of modules, capable of being easily
referenced in Matlabc©, were devised for each of the
components of the simulation. These program mod-
ules are sub-programs that are referenced in the main
or shell program, given the appropriate data. These
sub-programs can be accessed by any future simula-
tions. They address data acquisition from data files,
inverse kinematics, Jacobian element calculation and
were coded as the need arose.

The simulation was written to emulate the prelim-
inary experiment with a KUKA KR 15/2. Absolute
measurements were simulated to ensure that the in-
dividually coded program modules were functioning
correctly. Displacement and angular measurements
taken from a fixed reference coordinate system are
defined as absolute measurements. As this yielded a
positive result, current efforts are focused on adapt-
ing this simulation to employ the RMC. Experimental
trials will be conducted with the Thermo CRS A465
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to validate and improve the RMC. Once both of these
tasks are completed, an autonomous camera-based cal-
ibration system, capable of interfacing with an existing
controller, will be designed and implemented.

This paper will describe in detail the progress of the
research project in terms of the activities bound to the
kinematic calibration procedure. A definition of the
RMC will be given, followed by derivation of the kine-
matic error model, discussion on the simulation and
experimental verification steps. Any issues that were
confronted in the process will be noted along with how
they were resolved. The remaining sections will out-
line future considerations for the research project and
concluding remarks.

2 The Relative Measurement
Concept

The RMC differs from all other current approaches to
measurement acquisition for absolute kinematic cal-
ibration in that it uses relative measurements as re-
ported in [2]. This measurement data is obtained by
computing the difference between actual robot posi-
tions, recognized through the analysis of sequential
CCD camera images of a precision-ruled straight edge,
and the commanded robot positions with respect to a
defined reference position. The CCD camera is rigidly
mounted to the robot.

There are two ways to view the reference position.
The first is that the reference position is taken as the
first image of the first graduation of the precision-ruled
straight edge. Each subsequent measurement is ob-
tained by comparing images of graduations, in sequen-
tial positions as the robot moves in the direction of the
length of the ruler, with the first image. The second is
that the reference position is simply the previous im-
age as it moves along the length of the ruler. Exper-
imentation will establish whether the choice of refer-
ence influences the output of the calibration procedure.

To illustrate these interpretations, refer to Figure 1.
The x-direction is defined to be along the length of
the ruler, thez-direction perpendicular to the plane of
the ruler and they-direction completing the right-hand
convention.

To apply this concept in a calibration procedure for
an experimental setup requires a CCD camera, with
an adequate resolution and suitable lens, and digital
image processing algorithms. With custom designed
software, metric information can be extracted from im-
ages of the precision-ruled straight edge.

The error data is obtained by teaching an initial ref-
erence position on the straight edge to the end-effector
of the robot, the attached camera. The end-effector

Figure 1: Relative measurement reference

of the robot is aligned perpendicularly with the plane
of the straight edge and centred on the top of the
first graduation. This is done with the teach pendant.
However, there is a discernable difference between the
robot configuration stored in the controller and how
it is actually configured. This is largely due to the
geometric errors induced during the robot’s construc-
tion. The robot is then commanded to move linearly
in constant increments along the length of the straight
edge. Theoretically, each image is expected to be visu-
ally identical, however, due to the inherent deviations
from the nominal kinematic parameters of the robot,
this is not the case. Any offsets in the images, com-
puted with the digital image processing algorithms, are
recognized as errors as illustrated in Figure 2. This ac-
counts for thex- andy-coordinate directions. Thez-
direction error data can be obtained through use of a
displacement sensor incorporated as part of the mea-
surement head.

Figure 2: Error data acquisition
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In the experimental case, data collection is rather
simple. The robot is moved to a suitable pose with
the teach pendant. Once taught, off-line programming
involving this pose can be coded. From the taught po-
sition, where the end-effector is centred on the first
graduation as previously discussed, it is programmed
to move in increments along the length of the ruler.
For the Thermo CRS A465, the RAPL-III language
is used for off-line programming with the Robcomm3
communication software. Simulation of this process
is more complicated. No images are taken and gener-
ating the error vector requires knowledge of the con-
troller positions and the actual positions. This will be
discussed in Section 4.3.

3 Calibration Procedure

The purpose of an error model is to allow the user to
identify and compensate for the kinematic parameter
errors of a robot. This forms the core of the calibration
procedure. Other elements of the procedure include
data gathering methods, representational schemes, in-
verse kinematics and decomposition methods.

Incorporated into our calibration simulation are dif-
ferent parameter representations, specifically the com-
monplace Denavit-Hartenberg (DH) parameters [3],
the GDH parameters (a variant employing the Hayati
parameter [4] with the DH), and the Modified Denavit-
Hartenberg (MDH) parameters as outlined in Craig
[5], along with Pieper’s solution method to the inverse
kinematic problem [5] and Singular Value Decompo-
sition (SVD).

3.1 Error Model

As previously stated, an error model defines the robot
parameter errors to be identified. The identification of
these parameters is accomplished by obtaining a set of
measurements and these are compared to the controller
values to comprise the error vector. The error vector is
then used in a relation to solve for the parameter errors.

With an experimental setup, this measurement in-
formation will usually be provided by the differ-
ence between the controller and absolute pose mea-
surements obtained with coordinate measurement ma-
chines, tracking laser theodolites, or photogramme-
try. The parameter deviations are unknown. To simu-
late this situation requires the application of the robot
transformations with the nominal parameters and then
again with specified parameter deviations. This yields
two distinct sets of position and orientation data where
only the three-dimensional positional data is used.

In the simulated case, the user has to specify the pa-
rameter deviations in order to generate data and the
aim of the remainder of the program is to correctly
identify those deviations. The method in which rela-
tive measurements are obtained in the simulation will
be addressed in Section 4. However, in terms of abso-
lute measurement data, we have two sets based on the
nominal parameters and the actual parameters seen in
Equations 1 and 2.

pController = f(θ, d, a, α) (1)

pActual = f(θ + ∆θ, d + ∆d, a + ∆a, α + ∆α) (2)

{∆pxyz} = {pActual} − {pController} (3)

The parametersθ, d, a, and α are the DH param-
eters (and the MDH parameters, but under different
circumstances) and represent the joint angles, link off-
sets, link lengths and joint twists, respectively. The
deviations in each of these parameters are signified by
∆θ, ∆d, ∆a and∆α. The termpController represents
the three-dimensional position of the end-effector as
interpreted by the controller, andpActual represents
the actual case. The difference between the two sets,
∆pxyz, comprises the error vector, seen in Equation 3.

The errors in the robot parameters can be related to
the three-dimensional positional error through use of a
Jacobian according to Equation 4. A Jacobian relates
linear velocities to angular velocities. However, it can
be used in this capacity as the errors are not unlike
small changes in end-effector position as interpreted
from the velocity standpoint. As it is desired to iden-
tify the parameter deviations, the relation is suitably
arranged as in Equation 5.∆Θ is defined as a collec-
tion of the parameter deviations seen in Equation 6.
The order that is followed in this vector is the same as
with the derivation of the Jacobian matrix.

{∆pxyz} = [J ]{∆Θ} (4)

{∆Θ} = [J ]−1{∆pxyz} (5)

{∆Θ} =



∆θ1

...
∆θn

∆d1

...
∆dn

∆a1

...
∆an

∆α1

...
∆αn



(6)
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As the Jacobian matrix is non-invertible in general,
the solution must be approximated by an appropriate
method. SVD was chosen as it provided other use-
ful information in its application. The final working
equation is seen in Equation 7. The contents of this
equation will be defined in Section 3.3.

{∆Θ} = [V ]·


1
s1

0 · · · 0
0 1

s2
· · · 0

...
...

... 0
0 0 0 1

sn

·[U ]−1{∆pxyz}

(7)
The Jacobian matrix was derived analytically

through use of Maplec©. It had to be re-derived for
each representational scheme or if a different number
of modelled parameters was considered. Each of the
translational elements of the general robot transform
are differentiated with respect to each of the modelled
kinematic parameters. This constructs a 3× n matrix.
Typically, the value ofn is 24 as this corresponds to
the 4 types of parameters multiplied by 6 degrees-of-
freedom. The Jacobian matrix is computed for each
robot pose, or joint angle set, and then stacked to-
gether. The individual Jacobian matrices appear as
in Equation 8 whereJθ, Jd, Ja, and Jα are defined
in Equations 12. How the Jacobian matrix is imple-
mented in the simulation will be discussed in Section
4.1.

[J ] =
[

Jθ Jd Ja Jα

]
(8)

Jθ =


δpx

δθ1
· · · δpx

δθn
δpy

δθ1
· · · δpy

δθn
δpz

δθ1
· · · δpz

δθn

 Jd =


δpx

δd1
· · · δpx

δdn
δpy

δd1
· · · δpy

δdn
δpz

δd1
· · · δpz

δdn


Ja =


δpx

δa1
· · · δpx

δan
δpy

δa1
· · · δpy

δan
δpz

δa1
· · · δpz

δan

 Jα =


δpx

δd1
· · · δpx

δdn
δpy

δd1
· · · δpy

δdn
δpz

δd1
· · · δpz

δdn


(9)

3.2 Parametric Representations

Different parametric representations of robot kinemat-
ics are used in robotics as required by particular tasks.
In the simulation of the calibration procedure, Pieper’s
solution method to the inverse kinematic problem was
used to obtain joint angles given a specific tool point
position. This method requires the use of the MDH
parameters since under this parameterization the last
three joint axes intersect. Also, both of the robots of
interest are wrist-partioned. However, parameter iden-
tification required the DH parameters. Different pa-
rameter sets were used in the absolute version of the

simulation to identify which set would be pursued, and
this will be discussed in Section 4.1.

3.3 Singular Value Decomposition

As noted in the derivation of the error model, the in-
verse of the Jacobian matrix is required to identify the
parameter errors. SVD is a powerful technique which
will not only solve over-constrained systems of linear
equations in a least-squares sense, but can be further
analyzed to identify any numerical problems that may
result. SVD produces three matrices:U, a column-
orthogonal matrix,S, a diagonal matrix with entries
that comprise the singular values, and the transpose
of V, an orthogonal matrix. Thus, any matrixJ can
be decomposed as per Equation 10 andSappears as in
Equation 11 where thesi represent the singular values.

[J ] = [U ] · [S] · [V ]T (10)

[S] =


s1 0 · · · 0
0 s2 · · · 0
...

...
... 0

0 0 0 sn

 (11)

All of these matrices are invertible and thus the inverse
of J can then be obtained as in Equation 7. One con-
cern of this method is that it may compute a singular
value that is close to the numerical precision of the ma-
chine. In this case, as allowing it to continue through
the program will corrupt any results, it is set to zero.
If this action is not taken, the inversion of a singular
value of the magnitude10−15 will likely produce a so-
lution dominated by round-off error [6].

4 Simulation

The current state of the simulation of the calibra-
tion procedure was achieved through an expansive ap-
proach, where a set of goals was set, attained and then
a more complicated set of goals was pursued. This al-
lowed for testing of all the different modules created
and used in the core program. Other independent pro-
grams were also devised to test various components of
the simulation.

The simulation attempts to emulate an experiment
performed at the University of Leoben. In this experi-
ment, the end-effector of a KUKA KR 15/2 robot was
commanded to move 80 cm along a ruler in 1 cm in-
crements. Metric information was obtained for use in
a calibration procedure. Unfortunately, this data has
not been successfully analyzed in such a procedure
and access to this robot for additional testing is, for
all intensive purposes, impossible. Thus a simulation
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was attempted that could reproduce the experiment to
some extent. Following this course allowed the use of
a joint angle set in the simulation with the added secu-
rity that the desired robot poses were within the robot’s
reachable workspace.

The simulation evolved by addressing different as-
pects of the procedure as they appeared and this is
how they will be reported. The first was the deriva-
tion of the Jacobian and implementing it in such a
way that it could be accessed by multiple programs.
After this step, the procedure was refined using ab-
solute measurements and sufficient testing could take
place to ensure proper operation. To allow for rela-
tive measurements required an inverse kinematic so-
lution method due to the nature of the measurement
technique. Pieper’s method was chosen to generate the
joint angles from arbitrary increments in three dimen-
sions. Finally, the current simulation, based on relative
measurements, will be discussed along with the unre-
solved issues that remain.

4.1 Absolute Measurement Simulation

After creating several simulations based on simpler
robots and absolute measurements [1], the absolute
simulation required full calibration of a 6 degree-of-
freedom robot. Absolute measurements would again
be used as these had been previously established to
yield correct results. The major difference between
previous programs and this next phase was the Jaco-
bian matrix.

The derivation of the Identification Jacobian ma-
trix was outlined in Section 3.3. Complete calibra-
tion requires the identification of 24 independent pa-
rameters. Measurement data consisted of position er-
rors expressed along the three axes of the robot base
frame. A3 × 24 matrix results. This matrix consists
of 72 elements that require differentiating very large
equations. This was done analytically in Maplec© and
then converted to Matlabc© code. To allow for multi-
ple program access each element was kept separate as
a function call or program module. Each module re-
quires a set of inputs based on the geometry and posi-
tion of the robot and responds with the element value.
Each of these modules can be accessed by any pro-
gram in Matlabc© given the correct inputs. These mod-
ules are only valid for a six-axis serial robot that fol-
lows one geometric parameterization. Currently, five
exist for this robot. They are based on the DH pa-
rameters, DH with the tool tip tranformation, a com-
bination of the DH and General Denavit-Hartenberg
(GDH) that copes with parallel axes, MDH parameters
and the MDH parameters with base and tool transfor-
mations (MDH BT).

Also incorporated into the simulation was the ability
to either randomly generate joint angles or read them
directly from a data file. The origins of the joints could
then be plotted and displayed. A visualization of the
KUKA KR 15/2 data as well as a randomly generated
sample can be seen in Figure 3. The inclusion of ran-
domly generated noise of a specified magnitude was
also accomplished and this will be discussed in Sec-
tion 5

Figure 3: Visualization of KUKA KR 15/2 Data and
Randomly Generated Data

This phase of the simulation netted positive results,
in that almost all the parameters were identified with
the DH parameters. This was accomplished with only
two applications of SVD. The results can be seen in
Table 1. The MDH parameters suffered from the fact
that the general robot transform described the wrist
centre-point rather than the end-effector. Therefore,
the last two joint angles could not be identified. The
remainder of the parameters were identified almost to
the same degree as those in the DH case besides sev-
eral to be noted shortly. The MDH BT parameters in-
cluded the base and tool transformations and describe
the same point in space as do the DH parameters.
However, certain deficiencies were noticed with this
parameter set, quite possibly due to the introduction
of two new parameters. The GDH parameters were
included in a variant with the DH parameters in an ef-
fort to decouple the identified errors ofd2 andd3. The
GDH parameters were used for joints 2 and 3 in this
model while the rest were represented with the DH pa-
rameters. It was discovered later that the cause of the
coupling arises from the specified error.

What could be seen in all cases is thatd2 andd3

were not correctly identified and came out as the same
value. Also interesting to note is that the sum of these
incorrect identified deviations was equal to that of the
actual deviations. To explain this result, closer inspec-
tion of the expressions for their respective Jacobian
elements was required. Due to the geometry of the
KUKA KR 15/2, these two elements were practically
the same. In the nominal case they are identical as the
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Table 1: Results for Absolute Measurement Simula-
tion - DH Parameters with 2 Iterations

Specified Identified
Parameter Deviations Deviations

(m× 10−6) (m× 10−6)
θ1 16.0000 16.0000
θ2 34.0000 34.0002
θ3 -56.0000 -56.0004
θ4 -27.0000 -27.0000
θ5 22.0000 22.0008
θ6 13.0000 12.9999
d1 38.0000 38.0000
d2 -14.0000 -33.5000
d3 -53.0000 -33.5000
d4 61.0000 61.0000
d5 -30.0000 -29.9997
d6 24.0000 24.0000
a1 -17.0000 -17.0000
a2 89.0000 89.0000
a3 64.0000 64.0001
a4 -45.0000 -45.0000
a5 37.0000 36.9999
a6 22.0000 22.0000
α1 -11.0000 -11.0000
α2 8.0000 8.0000
α3 19.0000 19.0000
α4 21.0000 21.0000
α5 -15.0000 -14.9980
α6 14.0000 0.0000

expression ford3 simplifies to the expression ford2. In
general, the Jacobian elements ford2 andd3, with re-
spect to thex-, y-, andz-directions are as in Equations
12-17.

d2x = sin θ1 sinα1 (12)

d3x = cos θ1 sin θ2 sinα2 + sin θ1 sinα1 cos α2

+sin θ1 cos α1 cos θ2 sinα2 (13)

d2y = − cos θ1 sinα1 (14)

d3y = sin θ1 sin θ2 sinα2 − cos θ1 sinα1 cos α2

− cos θ1 cos α1 cos θ2 sinα2 (15)

d2z = cos α1 (16)

d3z = − sinα1 cos θ2 sinα2 + cos α1 cos α2 (17)

As α2 is nominally0, the elements ford3 simplify
to those ofd2. This creates a linear dependency in
their respective columns in the Jacobian. As a result,
their collective error is simply split between the two
parameters. Thus, these two parameters can only be
successfully identified when there is a sufficient error

present. It was discovered through trial and error that
to be suitably identified an error of at around 0.000050
rad had to exist. The two identified parameters remain
equal with an error less than 0.0000001rad. In be-
tween, the two diverge towards their proper values as
the error is increased. The results of the simulation
with revised errors of greater magnitude are displayed
in Table 2. The error in identified values ford2 andd3

are noticeably the same.
The last joint offset,α6, could not be identified us-

ing any of the parameter sets. Due to the nature of
the general transformation matrices,α6 did not appear
in the translational part,{px; py; pz; 1}, and thus the
derivative was expectedly zero with respect to these
entries. The column in the Jacobian matrix is there-
fore zero. Also, the rotation caused byα6 is the last
elementary motion of the chain for the entire robot.
The effect of this rotation is simply not measured thus
it cannot be identified.

As the DH parameterization produced the best re-
sult, this representational scheme was chosen for the
relative measurement simulation. To construct the new
simulation, another module was require to perform
Pieper’s inverse kinematic solution method, which re-
quired the use of the MDH parameters.

4.2 Pieper’s Solution to the Inverse Kine-
matic Problem

A solution to the inverse kinematic problem was
needed to calculate joint angles for motions along the
length of the precision-ruled straight-edge. The first
point was chosen to be at the first graduation of the
ruler. Increments in thex-, y-, andz-coordinate direc-
tions, defined to be along the axes of the robot base
frame, could then be specified in order to move to the
next graduation and then this routine would supply the
required joint angles. Pieper’s method requires that the
last three joint axes intersect and the KUKA KR 15/2
meets this requirement. However, in the DH represen-
tational scheme the last three joint axes do not inter-
sect. Thus, for one part of the program the MDH pa-
rameters had to be used while the remainder employed
the DH parameters as previously established.

Pieper’s method yields 32 possible solutions. To
solve forθ3 one must obtain the roots of a4th order
polynomial and two2nd order polynomials forθ2 and
θ1. There are also two solution sets for the last three
joint angles,θ4, θ5, andθ6, which are solved using the
Z-Y-Z Euler angle convention. Thus, there are 32 pos-
sible outcomes. However, many of these roots can be
complex conjugate pairs which are immediately dis-
counted.

Obviously, some comparison must be made to elim-
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Table 2: Results for Absolute Measurement Simula-
tion - DH Parameters with 5 Iterations and Larger Er-
rors

Specified Identified
Parameter Deviations Deviations

(m× 10−6) (m× 10−6)
θ1 1176.0000 1176.0000
θ2 -834.0000 840.0000
θ3 589.0000 589.0000
θ4 -1004.0000 -1004.0000
θ5 103.0000 103.0000
θ6 267.0000 267.0000
d1 -71.0000 -71.0000
d2 693.0000 692.9733
d3 -1084.0000 -1083.9733
d4 1158.0000 1158.0000
d5 -244.0000 -244.0000
d6 -371.0000 -371.0000
a1 345.0000 345.0000
a2 -912.0000 -912.0000
a3 113.0000 113.0000
a4 87.0000 87.0000
a5 -882.0000 -882.0000
a6 459.0000 459.0000
α1 -93.0000 -93.0000
α2 50.0000 50.0000
α3 -565.0000 -565.0000
α4 -487.0000 -487.0000
α5 -719.0000 -719.0000
α6 352.0000 0.0000

inate the 31 undesirable solutions. In our case, the end-
effector is commanded to move in known increments
along the length of the ruler. The difference in joint
angles between two adjacent poses is relatively small,
thus whichever solution is closest to the previous set
of joint angles is the appropriate solution. Thus, in
the solution of theθ3 (the first angle identified in this
method), the four results in the solution of that polyno-
mial are compared to the third joint angle of the previ-
ous set. This angle is then used in the identification of
the second joint angle and then the first. The last three
follow an ZYZ Euler angle convention and are solved
simultaneously by using trigonometric identities.

One item of note which was encountered in the sim-
ulation data is what course to follow when the data
changes signs. When a joint angle came sufficiently
close to zero due to the configuration of the robot,
the next iteration would result in, for example with
the third joint angle, two unusable solutions and two
others that were mirrored through zero. These two ac-

ceptable solutions were smaller in magnitude than the
third joint angle from the previous set. Thus, the rou-
tine would choose the one closest to the previous third
joint angle and therefore it would not be possible to
change signs. As a temporary resolution to this issue,
and the knowledge that the end-effector is moving in
a straight line, the solution with the opposite sign was
chosen despite the fact that it may be closer to the pre-
vious joint angle. Once this was implemented in the
solution of all joint angles, the experimental data po-
sitions could be reproduced with Pieper’s method. At
this point, all the modules and tools necessary to begin
experimentation with the conversion to the RMC were
prepared.

4.3 Relative Measurement Simulation

Essentially, the only change from the previous phase
to the current one is how the measurement data is sup-
plied. To simulate the acquisition of the measure-
ment data, Pieper’s method was coded successfully
and could be referenced as a function call just as all
other items developed for the procedure. As the 4th

column of the general0T6 matrix employing the DH
parameters describes the translation to the tool flange
centre-point while the MDH complement describes the
wrist centre-point (it lacks the tool flange transforma-
tion), the base and tool transformations had to be re-
moved to apply Pieper’s Method. This was simply
done using Equation 18.

[TWCP ] = [TB ]−1 · [TEE ] · [TT ]−1 (18)

As previously stated, the first taught pose of the
KUKA KR 15/2 in the experimental data was used as
the reference position. Increments could be specified
in terms of the three world axes. Currently, increments
in all three directions are necessary to obtain good re-
sults. Deviations in geometry are specified in the same
manner as in the absolute version of the simulation.

To acquire the measurement data, the robot was first
configured using an initial set of joint angles. Incre-
ments in the three coordinate directions were specified
and they were added to the first controller position.
Two sets of points were computed: those based on
the nominal parameters and those based on the nomi-
nal parameters with the specified deviations added to
them. Joint angles were computed for the controller
positions through use of Pieper’s method. These poses
are based on the nominal parameters and are accurate
down to 10−12m with Pieper’s method. Now with
these computed joint angles, another set of positions
were computed with the nominal parameters plus the
specified deviations. These points are where the robot
actually went. Where the robot was supposed to go
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was calculated by adding the same increments to the
first actual position. The difference between these last
two sets of positions is the error vector,pM , for the
simulated case as seen in Figure 4. In the absolute ver-
sion of the program, thepT vector is directly measured
and is considered the total error.

Figure 4: Relative Measurement Data

With the relative version, only part of the total error
is measured and is essentially considered to act at the
computed points rather than the actual points. This is
illustrated by Equations 19-21.

{∆Θ} = [J ]−1{pT } (19)

{∆Θ} = [J ]−1{pC + pM} (20)

{∆Θ} = [J ]−1{pC}+ [J ]−1{pM} (21)

The [J ]−1{pC} term is ignored as it is never mea-
sured. Ideally, the edges of the imaginary ruler and the
actual ruler are parallel lines. In reality, due to the er-
rors in the geometry of the robot, they are skew lines
that are very close to being parallel. Thus,pC is not a
constant vector but can be considered constant in the
simplified case where the edges are parallel. This ef-
fectively removes three influences in the data set by
taking measurements in this manner.

After modifying the program to collect data with
this approach, the first attempt was executed. The re-
sults were mixed. Many of the parameters were suc-
cessfully identified with one application of SVD. It
was theorized that others would stabilize on the correct
value after several iterations, but first a check on all the
program modules was performed to ensure they were
indeed functioning properly. After eliminating smaller
trivial errors, it was thought that the Jacobian elements
might be incorrect. Although they weren’t doubted in
the absolute case they had not been properly confirmed
besides the fact that the absolute version appeared to
have been successful. Thus, an independent program,
separate from the calibration procedure, was designed

to ensure that these modules functioned correctly. As a
Jacobian relates linear velocities of the end-effector to
joint rates, a simple program was devised to test how
well the linear velocities were predicted with the Jaco-
bian versus a time-step approach. In the time-step ap-
proach, constant joint rates were individually applied
to the joints. The linear velocity of the end-effector
was calculated with the Jacobian and velocity equa-
tions. The derived Jacobian elements passed the test
and thus our efforts had to be focussed on some other
cause.

Another issue related to the Jacobian was the choice
of increment sizes. Increment sizes that are too small
result in small angle changes in the joints. If these are
too small then then the Jacobian becomes singular as
the rows become linearly dependent. Thus, a suitable
increment size was investigated through trial and er-
ror. A total displacement of10.0mm to 20.0mm was
found to be acceptable. The upper bound was cho-
sen to ensure that the system remained suitably over-
constrained.

From the first execution, the corrections for two
of the parameters were enormous and thus unusable.
Specifically, the corrections ford1 and d6 were ap-
proximately1m in magnitude. Also,θ6 was insignif-
icant relative to its respective specified deviations. In
accordance with the absolute case,d2 andd3 appeared
as the same value despite the fact that sufficient error
was selected forα2. Again, under the circumstances of
the DH parameters,α6 can’t be identified. This leaves
three unidentified parameters and this seems to relate
to the three removed influences. This may be the lim-
itation of using relative measurements but will be ex-
plored further. Thus, the iterative application of SVD
was pursued along with some convergence criterion.

Currently, one application achieves, to some degree,
successful results but iteration is required. Ford1 and
d6, the corrections outputted from the simulation were
excessively large. Thus, a limit was set to exclude
those corrections that we deemed too large. Unfor-
tunately, this hinders the calibration process but other-
wise it would simply corrupt it and no iteration would
be possible.

As the measurements taken in this calibration pro-
cedure are relative, some means of imitating the abso-
lute scheme was pursued. In the absolute calibration
scheme, a set of absolute positions would be measured
and the error would be calculated with the controller
positions. A set of corrections would be computed and
the controller positions would then be updated. A new
error vector would then be used to compute new cor-
rections and this would repeat until some acceptable
threshold value is reached. Due to the nature of the
measurements obtained in this procedure,pM , and the
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elimination of pC , this routine can not be followed.
So, to construct an iterative routine an estimate ofpC

for the first data point was utilized. After the first iter-
ation, many of the parameters are correctly estimated.
These corrections are used to compute a new first data
point that in theory should be closer to the actual first
point. The measurement data is then translated to this
point and then the process can continue iteratively. Af-
ter several iterations, a new estimate is computed and
the process can begin again. However, this did not
unveil the three unidentified parameters and the con-
troller point computed via the forward kinematics and
the nominal parameters could only get closer to actual
point and then reach a plateau. The identified param-
eters were reasonably accurate to their respective true
values. The results produced by the RMC simulation
are promising as a great number of the robot parame-
ters were successfully identified. They are presented
in Table 3. What is immediately seen is that the cor-
rections for the unidentifiable parameters are relatively
large compared to the rest. Thus, they are easy to dif-
ferentiate.

5 Conclusions and Future Work

The calibration procedure, in terms of the error model,
was highly successful with absolute measurements and
is thus a valid method to pursue. Only one parameter,
α6, remained unidentified. However, this is an artifact
of the parameterization and as such no compensation
can be performed. As seen in the data for the adapted
RMC simulation, the results are promising and further
study is warranted. It is felt that it is only a matter of
time before all facets of the simulation will be fully
understood and then efforts towards the existing and
future experimental data can be analyzed with more
scrutiny and a larger knowledge base.

As mentioned in Section 4.1, the option of ran-
domly generated noise was incorporated into the ab-
solute version of the simulation. Noise has a tremen-
dous effect on the accuracy of the parameter identifi-
cation of the procedure. Random values of specified
magnitudes were added to the measurement data. It
was found that noise with a magnitude of10−11m to
10−9m was relatively acceptable. Anything above this
level would degrade the calibration process so that at
10−6m, only a handful of parameters could be iden-
tified. It is hoped that an investigation into some fil-
tering technique, such as Kalman filters, could rectify
the issue. This is key to successful implementation of
the calibration system as some degree of noise is ex-
pected in the data acquisition process. The Thermo
CRS A465 has a stated repeatability of±0.05 mm

Table 3: Results for Relative Measurement Simulation
- DH Parameters with 3 Measurement Sets each with
5 Iterations

Specified Identified
Parameter Deviations Deviations

(m× 10−6) (m× 10−6)
θ1 16.0000 15.9603
θ2 34.0000 32.5418
θ3 -56.0000 -54.0462
θ4 -27.0000 -26.2206
θ5 22.0000 20.0544
θ6 13.0000 -20896.2858
d1 38.0000 3273.5742
d2 -14.0000 118501.8863
d3 -53.0000 -118569.0088
d4 61.0000 61.0767
d5 -30.0000 -29.9782
d6 24.0000 3273.4827
a1 -17.0000 -16.9995
a2 89.0000 89.0000
a3 64.0000 63.7029
a4 -45.0000 -45.0000
a5 37.0000 37.2073
a6 22.0000 24.8497
α1 -11.0000 -11.0000
α2 8.0000 7.9999
α3 19.0000 18.8244
α4 21.0000 20.3125
α5 -15.0000 -14.2963
α6 14.0000 0.0000

which has been confirmed through experimentation.

A Thermo CRS A465 has been procured to aid in
the development of the calibration system. Already,
an investigation into the effects of repeatability has be-
gun by acquiring images of custom-built targets. A
new experimental setup, involving the precision-ruled
straight edge, has been devised. The ruler can be
placed in any orientation with respect to the Thermo
CRS A465 in the horizontal plane. Pictured in Figure
5 is the Thermo CRS A465 with an attached Pulnix
CCD camera and a 1X Rodenstock lens. In the back-
ground are the development computer, the data acqui-
sition computer, and the C500C controller. Pictured in
Figure 6 is the measurement area constructed for the
Thermo CRS A465. There are 9 10-24 threaded holes
in the surface that allows the placement of the ruler
in various orientations with shouldered cap screws.
Also, various measurement targets and artifacts can be
placed on the surface. The Thermo CRS A465 will be
used to validate the Relative Measurement Concept as

CSME 2004 Forum9



a viable calibration method and experimentation will
begin shortly.

Figure 5: Thermo CRS A465 Experimentation Setup

Figure 6: Measurement Area with Target and Ruler
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