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An algorithm is developed for the purpose of extracting metric information from a Thermo CRS A465 manipulator
using a camera-based data acquisition system and a measurement artifact. The algorithm uses common image pro-
cessing techniques to extract the location of a point in the X-Y plane of the robot workspace. This measurement point
will be used in the future to calibrate the Thermo CRS manipulator. The process used to calibrate the algorithm and a
validation of its resolution are also presented. A characterization of the manipulator repeatability using this system is
performed and the results presented in this paper.

1 Introduction

The kinematic calibration[1] of a serial manipulator
with six revolute axes generally requires a system for
measuring the error in the position and orientation
(pose) of the robot end-effector (EE). This error
refers to the difference between the pose of the robot
EE as determined by some external measurement sys-
tem and the pose of the robotEE as determined by the
robot joint encoders. By implementing a kinematic
model based on the Denavit-Hartenberg parameters,
robot kinematic calibration can be achieved requiring
only the external measurement of relative positional
error in the robotEE. The measurement of this posi-
tional error in three directions is obtained through the
implementation of aCCD camera and a laser distance
sensor mounted to the robotEE. The distance sensor
is oriented parallel to the camera optical axis.

The CCD camera captures images of a precision
ruled surface that must be digitally processed in order
to extract accurate metric information. The acquisition
of these measurements requires that the precise loca-
tion, orientation and representative equations of all ob-
jects in the image be determined in the image pixel co-
ordinate system. The scale of an image is determined
by estimating the pixel distance between adjacent lines
in any single image. A comparison of images taken be-
fore and after a linear robot motion parallel to the ruled
surface produces the relative positional error resulting
from that motion. It is these positional errors that are

used to calibrate the kinematic model of the robot.
In this paper we develop the algorithm for extract-

ing accurate metric information from images of a mea-
surement artifact. This algorithm will be applicable to
the previously outlined calibration system. There are a
multitude of techniques[2] in the realm of image pro-
cessing that might be used for this purpose. The core
image processing algorithm that we employ consists
of noise compensation, thresholding, edge-detection,
edge-scanning and linear regression techniques. A
comparison is presented between the measurement ac-
curacy achieved through the use of several different
methods of noise compensation and several different
parameter values within the edge-scanning algorithm.
The results of this comparison are used to determine
the best algorithm for this calibration system. A char-
acterization of the repeatability of the Thermo CRS
A465 manipulator is also presented.

2 Equipment

The Thermo CRS A465 robotic manipulator is a robot
arm consisting of 6 serially connected revolute joints
and a total arm span of710mm. This robot is rated
as having a repeatability of±0.05mm. The data pre-
sented in this paper is produced using the A465.

The measurement head consists of a camera, lens,
mounting structure and appropriate power/data ca-
bling. The combined mass of these devices does not
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Figure 1: A465 robot and data acquisition system

exceed the2.0kg payload of the robot.
The camera is a Pulnix TM-200. This camera has

horizontal and vertical resolutions of 768 and 494 pix-
els, respectively, and a minimum signal to noise ratio
of 50dB. Mounted to the camera through a C-mount
interface is a Rodenstock Macro 1X lens. This lens has
a field of vision of6.4× 4.8mm at a working distance
of 68mm.

The camera and lens are mounted to the robot us-
ing a stainless steel measurement head designed and
manufactured at Carleton University. The complete
camera/lens/head system integrated with the robot end
effector can be viewed in Figure 1. Images produced
by the camera are captured using the National Instru-
ments PCI-1409 Image Acquisition Card integrated
into a personal computer. The program IMAQ is im-
plemented for the simple capture and saving of images.

All measurements are performed through the extrac-
tion, processing and comparison of images depicting a
measurement artifact. The artifact in question is a thin
block of aluminum with a pattern precision-machined
onto its surface. The pattern on the artifact consists
of a set of intersecting perpendicular grooves of depth
2mm and a line width of0.794mm ( 1

16”). The ac-
curacy on these dimensions has an upper limit of
+0.000” and a lower limit of−0.002”. The lengths of
the grooves are approximately2cm each, much larger
than the field of view of the camera and lens. The
grooves are partially filled with black enamel paint to
provide sharp contrast between the grooves and sur-
face of the artifact. All processing of images and data
is performed in the MATLAB environment using cus-
tom developed high-level image processing software
and pre-packaged MATLAB library functions.

The calibration and validation of results is per-
formed using the components described above, ex-
cluding the A465 robotic manipulator, and including

the Mitutoyo Vernier X-Y Table0− 2”, with a resolu-
tion of 0.0002”.

3 Image Processing

The A465 robotic manipulator is programmed to ma-
nipulate a measurement head into a pose such that an
image of a measurement artifact can be captured. A
typical pose can be viewed in Figure 1. This image
indicates the initial position that the robot will attempt
to return to throughout the repeatability test. After the
image is captured, the robot moves through a single
motion or series of motions and then attempts to return
to the initial position. Another image of the artifact is
captured. This new image indicates the projection in
the plane of the camera of the positional error that the
manipulator has produced while attempting to return
to the original pose. This process is repeated multi-
ple times to produce sets of images. These raw images
captured by the data acquisition system contain the in-
formation that is used to characterize the repeatability
of the robot. Digital image processing is required to
extract the metric information from these sets of im-
ages.

3.1 Image Characteristics

The selection of an image processing algorithm is
based on the type of application in which it will be
used. In this paper, the algorithm is required to extract
precise metric information from an image captured by
a data acquisition system. Figure 2 shows a typical
image captured by the data acquisition system in ques-
tion. This image clearly displays the measurement ar-
tifact, including surface irregularities on the aluminum
and reflected light from the black enamel paint located
in the groove of the artifact. The position of the robot
during image acquisition is indicated by the crossing
of the exact centreline of the horizontal and vertical
lines located on the artifact. The image processing al-
gorithm is required to extract the location of this point
from each image.

The images in question are 8-bit monochrome im-
ages. Each pixel contains a possible value in the range
0 to 255, where a value of 0 represents the shade black
and 255 represents the shade white. The values be-
tween 0 and 255 are shades of gray.

The size of an image is640(H) × 480(V )pixels.
Since the field of view of the lens is6.4(H) ×
4.8(V )mm, each pixel represents a field of approxi-
mately10(H) × 10(V )um. It can be noted that the
pixel length is an order of magnitude smaller than the
repeatability of the robot.
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Figure 2: Raw image captured for processing

In order to determine the location of the artifact cen-
trepoint, both lines can be described in terms of their
two binding edges. The vertical line, when described
from the left to the right side of the image, is bound by
a light-to-dark edge and, subsequently, a dark-to-light
edge. Since these two edges were machined to be com-
pletely linear, the first-order equations of each of these
edges can be extracted and then combined to produce
the equation of the line directly between them. This
same procedure can then performed on the horizontal
line resulting in the first order equation of its centre-
line. The solving of two first-order functions can result
in only one solution and, in the case of the crossing
lines in question, this solution is the point of intersec-
tion.

Figure 3: Image with four edges labelled

The processing of the images consists of extracting
the first-order equations of the 4 edges located in each
image. These four edges are labelled in Figure 3. The
algorithm used to extract this information is described
in the following section.

3.2 Algorithm Selection

The first step in the processing of an image is obtaining
the image data. For the 8-bit monochrome images used
in this paper, the data is represented by a640×480 el-
ement matrix where each element in the matrix repre-
sents the intensity observed by the corresponding pixel
in the camera.

3.2.1 Noise Filtering

The image data contains at least 2 types of noise of
varying effects which are inherent in digital CCD cam-
eras. Salt and pepper noise is the random inclusion
of peaks and valleys across the image data. These
peaks and valleys appear as a distribution of lighter
and darker pixels which can skew calculations involv-
ing pixel intensities. Gaussian noise affects the inten-
sities of pixels in a manor proportional to the Gaussian
distribution. There are several different means of deal-
ing with noisy data. This paper explores the results of
applying two different convolution masks to the data.

A convolution mask is ann ×m dimensional win-
dow that is centered on each element in the image data
matrix. The elements in the mask can be weighted,
as in the Gaussian filter, or not, as in the Mean fil-
ter. The elements in the mask are then combined with
the corresponding elements in the image data matrix
to produce a weighted or non-weighted sum of the im-
age data which represents the value of the filtered data
pixel at that location in the matrix.

The Mean filter implemented in this paper is a3×3
matrix with all elements equal to a value of one. 1 1 1

1 1 1
1 1 1

 (1)

This mask sets the value of each element in the data
matrix equal to the mean value of its surrounding pix-
els. The benefit of implementing this filter is that local
peaks and valleys in pixel intensity caused by noise
will be reduced. The possible problem with imple-
menting this filter is the smoothing of possible edges
resulting in a reduction of contrast used to position
edges.

The Gaussian filter implemented in this paper is a
7x7 Gaussian mask with elements chosen from the
two-dimensional zero-mean Gaussian distribution,

g[i, j] = ce−
i2+j2

2σ2 (2)

A typical convolution mask described by this distri-
bution is used in the development of this algorithm.
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1 1 2 2 2 1 1
1 2 2 3 2 2 1
2 4 8 16 8 4 2
2 2 4 8 4 2 2
1 2 2 4 2 2 1
1 1 2 2 2 1 1

 (3)

The benefits of this filter are similar to those of the
Mean filter, but the Gaussian filter is suited to filter-
ing out noise with a Gaussian distribution. The partial
processing of one image using both Mean and Gaus-
sian filtering can be viewed in Figure 4.

Figure 4: Comparison of raw image, mean-filtered im-
age, and gauss-filtered image

3.2.2 Edge Detection

After filtering, the image contains data with most of
the noise-related spikes in pixel intensity removed.
The next step of the processing is the accentuation of
possible edge pixels through the use of an edge detec-
tion operator. An edge detection operator is another
type of convolution mask with its elements weighted
in such a way that the weighted sum of the elements in
the data matrix produce larger intensities in the prox-
imity of sharp transitions from one pixel intensity to
another. The elements of these convolution masks
can be weighted in such a way as to accentuate pixels
containing horizontal or vertical edges with transitions
from high to low or low to high intensity. The edge de-
tection mask implemented in this algorithm is known
as the Prewitt operator, −1 −1 −1

0 0 0
1 1 1

 (4)

Figure 5: Basic result of edge-detection

This operator is a3 × 3 element convolution mask
that uses pixels in the two columns adjacent to the cur-
rent pixel under investigation and along the length of
the edge being detected to determine whether or not an
edge is present. Figure 5 shows a graphic description
of the edge-detection by such an operator. As the Pre-
witt operator passes over pixels of equal intensity, the
resulting pixels are nearly unchanged. When the oper-
ator passes over a sharp transition from high to low or
low to high intensity, the calculated resulting pixel is
either attenuated or accentuated depending on the bias
of the operator being used. Four distinctly weighted
Prewitt operators are required to distinguish between
the two possible horizontal transitions and two possi-
ble vertical transitions. The mask shown in Equation 4
is used to reveal horizontal edges that transition from
low-intensity pixels located above the edge to high-
intensity pixels below the edge. The 3-dimensional
inverted view of the filtered image is shown in Fig-
ure 6. This figure illustrates how the transition in the
X-direction from pixels of low intensity to pixels of
high intensity is accentuated using the Prewitt operator
in Equation 4. The three other Prewitt operators will
have a similar effect on the other 3 edges. In the case
of this algorithm, each of the four edges is processed
separately.

One possible benefit to using the Prewitt edge-
detector is that this operator also acts as a partial noise
filter by including a3 × 3 pixel area in all calcula-
tions. Using the pixels located in adjacent columns
will reduce the effect of noise in the calculation. This
reduces the necessity of using a separate noise filter.

3.2.3 Applying a Threshold

After the edge-detection operator is applied, it is pos-
sible to eliminate many of the pixels in the image as
possible edge locations by applying a threshold limit.
The elements in the data matrix with larger values are
more likely to belong to the edge being characterized.
The elements with lower values are not located on the
visible edge. The application of a threshold limit in-
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Figure 6: Results of Prewitt edge detection

sures that only the most likely pixels are considered
as possible edge locations. After experimentation, it
was determined that a threshold of approximately 30
percent of the maximum pixel intensity works to re-
tain the information required for the line-scanning al-
gorithm described in the following section.

3.2.4 Segmentation

The line-segmentation algorithm makes use of both the
processed and unprocessed image data in determining
the most likely location of the artifact edge currently
being processed. The result of this segmentation is
a slope/y-intercept form of the equation that best de-
scribes the edge. Several considerations must be taken
in order to achieve this result.

The processed data at this point in the algorithm is
a matrix containing elements whose intensity values
are larger at coordinates where a certain transition in
a certain direction (an edge) is located. Following the
example in the Figure 6, the transition in question oc-
curs from a low to a high intensity (dark to light) in
the vertical direction (from the top to the bottom of the
image). The edge under segmentation is primarily hor-
izontal. The pixels along this edge must be extracted
so that they can be used in determining the location of
the edge. The algorithm is able to focus on extracting
a maximum of one pixel for each column along the
edges length. This will result in a maximum of640
pixels used in the computation of any horizontal edge
and480 pixels used in the computation of any vertical
edge. These values represent the maximum possible
elements used for each edge computation, but in prac-
tice there is a certain class of pixel which is excluded
from any line computation. These pixels are located
in the neighborhood of the intersection between the
edge currently being segmented and any perpendicu-

lar edge. At these locations, the measurement artifact
displays a gradual round between the two perpendicu-
lar edges, as illustrated in Figure 7. Any pixels located
on this transition are not located along the linear edge
being segmented. Special consideration is given to the
removal of these pixels.

Figure 7: Round between horizontal and vertical edges

The segmentation of the edge is performed as a se-
ries of scans across the width of the artifact edge with
a window referred to as theTestBox. This window
starts from the upper-left corner of the processed im-
age and travels downwards in search of pixels belong-
ing to the edge currently being segmented. When the
window detects a pixel belonging to the edge, the lo-
cation of this pixel is recorded, the window shifts one
pixel to the right and several pixels upwards,and the
scanning then continues downwards in the image until
another pixel is recorded. The scanning stops when,
column by column, the entire length of the edge has
been scanned.

Figure 8:TestBox used in segmenting edges

The window, illustrated in Figure 8, is used to ex-
tract pixels that meet a predefined set of requirements.
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As the window scans the processed image, pointC is
centered over the pixel under investigation. There are
several requirements that must be met in order for this
pixel to be considered part of the edge. First, the pixel
must have an intensity greater then zero. All pixels
that contain intensity levels below the threshold limit
explained in the previous section are not considered to
belong to edge. This requirement insures that they are
not considered. Second, the intensity at pixelC must
be the maximum intensity of all the pixels in the1×m
column referred to in Figure 8 as columnA. This re-
quirement insures that pixelC is the most likely pixel
in columnA to belong to the edge. The length of col-
umnA is a variable defined as,

m = (2× TESTHEIGHT ) + 1 (5)

whereTESTHEIGHT is the number of pixels
above or below the pixel under consideration that
should be used in determining its edge-worthiness. An
image containing lines located closer together might
use a smallerTESTHEIGHT value to be able to
distinguish between adjacent lines. The third require-
ment is that the two1×m matrices referred to in Fig-
ure 8 as columnsE andF must both contain at least
one non-zero element. These two columns, spaced a
distance defined by,

n = (2× TESTWIDTH) + 1 (6)

pixels apart, are used to exclude the pixel atC if
it is located close to any edges perpendicular to the
edge being segmented. Figure 9 illustrates that, after
the Prewitt line detection and threshold are applied, the
transitions that do not occur in the direction being de-
tected by the line detector are no longer visible in the
image data. The rounded transitions between perpen-
dicular edges are present, but by scanning a distance
TESTWIDTH ahead and behind the pixel under
consideration and searching for the region where all
vertical edges have disappeared, pixels located on the
rounded transitions can be excluded. With these three
requirements met, the pixel located atC is added to a
data matrix containing all pixels considered part of the
edge.

A parameter referred to asSKIP is used to select
the spacing of pixels along the length of an edge that
are used in determining its location in the image. This
parameter can be set to a value of 10 allowing only
every tenth pixel along the length of the edge to be
used in subsequent calculations. ASKIP value of 10
will provide a faster result since less calculations will
be performed by the computer, but it is expected that
the use of more pixels in calculating the edge location
will provide a more accurate result.

Figure 9: Off-edge pixels near vertices

After the segmentation of one edge is complete, an
array of data is created containing thei andj coordi-
nates of all pixels in the image that are considered to
belong to the edge. Since each pixel represents an area
of 10 × 10um, using these pixels in the linear regres-
sion computation of the edge will result in a possible
10um error in both thei andj coordinates. This error
can be reduced through the use of a moment calcula-
tion in two directions[3]. Figure 10 illustrates pixe-
lated representation of an edge in an image. By ap-
plying the moment calculation, one can observe that
the coordinates are effectively shifted based on the in-
tensities of the surrounding pixels and a sub-pixel ac-
curacy is achieved. The moment calculations are im-
plemented using a convolution mask and the following
equations,

x =
∑∑

x× IP (x, y)∑∑
IP (x, y)

(7)

y =
∑∑

y × IP (x, y)∑∑
IP (x, y)

(8)

whereIP (x, y) is the intensity of the pixel at the lo-
cation(x, y). These values are summed over a3 × 3
area. The pixel intensityIP is taken from the raw im-
age data so that any bias introduced by the processing
is removed. A calculation is performed for each of the
two coordinates at the location specified by the coor-
dinates in the segmented data array.

After the moment calculation, the segmented data
array contains a list of the pixel coordinates, at sub-
pixel accuracies, determined by processing to belong
to the edge under segmentation. An attempt is then
made to optimize the linearity of this set of data points
using a recursive function. The data matrix is sent to
the recursive function and linear regression is used to
fit a line through the data. Using this ’best fit’ line,
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Figure 10: Shift caused by the moment calculation

the perpendicular distance between the line and each
of the sets of coordinates is calculated. Another set
of data is created containing all coordinates from the
original data set excluding the one set of coordinates
with the largest perpendicular distance. The linear cor-
relation coefficient is calculated for both sets of data,
resulting in the current linear correlation coefficient
and the potential difference in the coefficient if the
specified coordinate is removed. If either the coeffi-
cient or the difference are below a pre-determined tol-
erance then the smaller data set is used in the subse-
quent recursion of the function. The recursion is set
to continue until both of the requirements are met or
a maximum of 50 coordinates are removed. The final
result of this function is the calculation of the slope/y-
intercept form of the ’best fit’ line through the opti-
mized data.

This same segmentation continues for all four edges
located in each image. The algorithm for segmenting
each edge is very similar with only a few exceptions;
when segmenting the lower horizontal edge in an im-
age, theTestBox scans the edge from the lower-left
corner travelling upwards; when scanning the vertical
edges, the entire image is transposed and the same al-
gorithm is used as that for the horizontal edges (this
results in the slope/x-intercept of the lines).

3.2.5 Projective Transformation

The image data at this point in the algorithm consists
of four first-order slope/intercept equations describing
the four edges in the image. By solving the appropriate
equations together, the coordinates of the four points
of intersection can be calculated. These four coordi-
nates are described in terms of pixels rather then an
applicable unit such as millimeters, and they contain
distortion caused by the inclusion of perspective in the
images. The removal of distortion and the proper scal-
ing of the data is performed through the use of a pro-
jective transformation.

Figure 11: Four points used to calculateT matrix

The measurement artifact was machined to a width
of 1/16” along both the horizontal and vertical
grooves. Using each of the four vertices located at the
intersection of the edges, four points can be charac-
terized with the coordinates shown in Figure 11. The
pixel-based location of these four points is extracted
from the image of the measurement artifact, although
the location of these points is distorted by perspective
and given in pixel units. Using these eight coordinates,
a solution can be found for the following set of equa-
tions,

ρW = Tw (9)

ρX = Tx (10)

ρY = Ty (11)

ρZ = Tz (12)

where W,X,Y, and Z are each one of the four scaled
coordinate sets and w,x,y, and z are the corresponding
image coordinates.ρ is a scaling factor set equal to
one. The solution to these equations, a transformation
matrix T, can be constructed to transform points from
the image space to a scaled world coordinate system.
The origin of the image (pixel(1, 1)) is then trans-
formed to the world coordinate system and shifted to
its origin. This transformation shifts the location of
the measurement artifact vertices to a location in the
positive x and y directions.

3.2.6 Centre Point

At this point in the algorithm, the data consists of the
four coordinates of the measurement artifact scaled to
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the proper dimensions and comprising the vertices of
a perfect square. A simple mean-value calculation in
both the x and y directions results in the centre coor-
dinate of the artifact with respect to the image origin
using the units millimeters.

4 Validation and Calibration

The algorithm is able to extract measurements charac-
terizing the position in the X-Y plane of the robot end-
effector with respect to the location of the measure-
ment artifact. The resolution of these measurements is
not known. In order to determine and improve this res-
olution, a calibration and validation procedure is per-
formed.

The Vernier X-Y table is a displacement device that
controls the position of an object in the X-Y plane. The
device, displayed in Figure 12, has two perpendicular
axes. The displacement along each axis is manipulated
by one manually controlled actuator with a resolution
of 5.08um (0.0002”). The validation procedure uses
this device to determine the resolution of the image
processing output.

Figure 12: The Mitotoyo Vernier X-Y table

The measurement artifact is fixed onto the Vernier
X-Y table and placed into the robot workspace. The
robot and measurement head are positioned such that
the camera can clearly extract images of the measure-
ment artifact for processing. Both the robot and mea-
surement head remain stationary for the calibration
procedure. The Vernier X-Y table is used to displace
the measurement artifact within the field of view of
the camera, into 40 positions. At each position, an im-
age of the artifact is extracted and processed. These
40 positions construct a square pattern of dimensions
50.8x50.8um. This pattern can be viewed in Figure
13. The displacement of the measurement artifact is

also extracted from the images taken at each location.
By comparing the displacement from the images with
that of the Vernier X-Y table, a reasonable estimate of
the resolution of the image processing algorithm can
be obtained.

Figure 13: The displacement pattern plotted by the X-
Y table

After this test was performed several times, it was
determined that the two axes of the Vernier X-Y table
might not be positioned exactly perpendicular to each
other. As a result, the comparison of image-extracted
displacements to the displacements measured using
the Vernier X-Y table uses a ’well-fit’ parallelogram.
The use of this parallelogram eliminates most of the
error that would be incurred from the use of the offset
Vernier X-Y table.

A diagram of a typical comparison of image data to
actual data can be viewed in Figure 14. In this fig-
ure, data points extracted from an image are marked
with a plus(+) sign. The points as measured using
the Vernier X-Y table are marked with small circles
(o). The lines between the markers represent the error
between that image point and the actual point. For the
data in Figure 14, the calculated mean displacement
error is determined to be0.0170mm and the maximum
displacement error is measured at0.0372mm. A cali-
bration exercise is used to improve this result.

The discrepancy in values between the image data
points and Vernier Table points is partially a result of
the resolution of the Vernier Table, but mostly a re-
sult of poor optimization of the image processing al-
gorithm. There are several parameters within the body
of the algorithm must be properly selected in order to
increase the measurement accuracy of the camera.

The parameter names are FILTER,
TESTHEIGHT , TESTWIDTH, and SKIP .
The parameterFILTER refers to the use of one
of the two filters mentioned in section 3.2.1. The
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Figure 14: Comparison between actual and measured
data (Trial 1)

Table 1: Parameter optimization table
Trial Filter SK TW TH MaxE Mean E

1 None 20 5 10 0.0372 0.0170
2 None 10 5 10 0.0197 0.0106
3 None 1 5 10 0.0170 0.0081
4 Mean 1 5 10 0.0150 0.0081
5 Gauss 1 5 10 0.0160 0.0083
6 None 1 25 10 0.0177 0.0085
7 None 1 5 5 0.0168 0.0080
8 None 1 5 15 0.0171 0.0081
9 None 1 5 20 0.0171 0.0081

parameters TESTHEIGHT , TESTWIDTH,
and SKIP are all explained in section 3.2.4. The
proper selection of these parameters will result in a
higher resolution of the measurements produced by
the algorithm.

The calibration procedure consists of setting each
of the four parameters and then performing the vali-
dation procedure to establish the mean and maximum
error in the readings. The algorithm is optimized by
selecting parameters that produce a lower mean and
maximum error. Table 1 documents several results of
this optimization where the valuesSK, TW , TH re-
fer to the parametersSKIP , TESTHEIGHT , and
TESTWIDTH respectively.

The parameters that produce the best combination
of mean and maximum error correspond to Trial 7 in
Table 1. Figure 15 is a plot of the error associated with
each measurement during Trial 7.

5 Repeatability Test

The algorithm developed in this paper will be used in
the camera-based robot calibration system. The algo-

Figure 15: Comparison between actual and measured
data (Trial 7)

rithm is able to extract measurements to a maximum
resolution of0.0168mm with an average resolution of
0.0080mm. Since both of these values are well below
the 0.05mm repeatability of the Thermo CRS A465
manipulator, this algorithm, along with the measure-
ment head and data acquisition equipment, can be used
to characterize the repeatability of this device.

The repeatability of a robot is established as its abil-
ity to reproduce certain measurements under the re-
peated application of a stated value and under certain
conditions[4]. In terms of calculations the repeatabil-
ity is given by[5],

Repeatability = l + 3σ (13)

whereσ is the standard deviation andl is the mean
attained position. The following equations are used to
calculateσ andl,

Attained Positioni: Xai, Yai

Mean Attained Position:

X =
1
N
×

∑
Xai (14)

Y =
1
N
×

∑
Yai (15)

li =
√

(Xai −X)2 + (Yai − Y−)2 (16)

l =
1
N
×

∑
li (17)

σ =

√∑
(li − l)2

N − 1
(18)

where li is the attained position. The experiment
will test the manipulator at approximately 50 percent
of its 2kg rated load and approximately80 percent of
its maximum velocity. The repeatability tests consist
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Table 2: Results of joint repeatability test
Joint Repeatability (mm)

1 0.01664
2 0.01813
3 0.02321
4 0.01671
5 0.05299
6 0.01601

of separate actuation of each of the robots six joints
followed by two sequences of arbitrary robot motion
using all six joints. The results of the repeatability test
can be viewed in Table 2 and in Figure 16 and Figure
17.

6 Conclusions and Future Work

The algorithm for extraction of metric information has
been designed and validated. According to the vali-
dation procedure, the algorithm produces a maximum
error of 0.0168mm and a mean error of0.0080mm.
This error is well below the repeatability of the A465
manipulator (havinf a range of0.1mm) and can be
used in its calibration. Future work on this project
will involve the integration of a laser displacement
sensor for the measurement of displacement in the Z-
direction. This reading can also be included in the cal-
culation of the repeatability of the manipulator, as it
is in standard practice. The algorithm must also be
tailored to extract information from a second measure-
ment artifact that resembles a ruler. This second ar-
tifact will be used in the manipulator calibration. A
thorough optimization of the four parameters will be
performed in an attempt to further reduce the measure-
ment error.
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