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1. Motivation

The objective of the Carleton University Simulator Project 
(CUSP) is to design and build a complete reconfigurable 
motion simulation facility accommodating different 
vehicle types.  The design of the motion platform is one of 
the essential components of the facility.  Kinematic 
modeling is crucial for motion platform analysis and 
control [1]. Since the platform requires output in real time, 
developing a computationally efficient kinematic model is 
essential.  A simple study is currently being performed in 
order to determine the most efficient kinematic modeling 
technique.  The results of this study will determine the 
future path of the CUSP kinematic model development. 

2. Planar Parallel 3-RPR Manipulator

In order to study different kinematic models, a simple 
planar parallel manipulator was chosen.  Choosing a planar 
over a spatial manipulator is advantageous mainly because 
of its analytical simplicity; it is easier to analyze a 2D 
planar mechanism as compared to a 3D space mechanism. 
The 3-RPR planar manipulator selected for this study and 
presented in Figure 1, consists of a platform connected to 
the fixed base by three independent kinematic chains 
having one d.o.f joints, one of which is actuated [2].  Each 
chain is of RPR configuration where there are two passive 
revolute (R) joints and one active prismatic (P) joint in 
between. Two methods were selected to analyse the 
kinematics of the planar parallel 3-RPR manipulator: the 
first uses geometry in the Euclidian plane [1,3] and the 
second uses kinematic mapping [4]. 
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Figure 1: 3-RPR Manipulator 

3. Kinematics Using Plane Euclidian Geometry

Solving the kinematics of the planar 3-RPR manipulator 
using Euclidian geometry requires detailed analysis.  The 
solution of the inverse pose kinematics is quite trivial but 
solving the forward pose kinematics requires in depth 
analysis.  To solve for the inverse pose kinematics 
Williams approach [3] was used.  As for the forward pose 
kinematics, Gosselin�s methodology [1] is to be exercised. 

3.1 Inverse Pose Kinematics 

The inverse pose kinematics problem requires the 
calculation of the lengths Li between each set of two 
revolute joints connected by the prismatic joint. To 
calculate these lengths, the desired Cartesian pose X = {x y 
Φ} T, is given.   The revolute joint Ci located on the 
moving platform can easily be located with the given 
information.  To calculate the lengths, one requires to find 
the vector length between revolute joint Ci and its 
corresponding revolute joint Ai, located on the fixed base 
[4].  For each RPR chain, the following closed loop 
equation may be used: 

(1) 

Where MCi represents the revolute joint located in the 
moving platform and its location is given with respect to 
the moving frame. 

Once Ci is found, the lengths Li are calculated using the 
Euclidian norm: 

3.2 Forward Pose Kinematics 

The forward pose kinematics requires one to calculate the 
position and orientation of the platform X= {x y Φ} T, 
when all that is given are the lengths Li. There is no closed 
loop form for solving the forward pose kinematics. If 
Gosselin�s methodology is followed, one needs to compute 
a univariate polynomial of order 6.  The solution of this 
polynomial is easily obtained by using Matlab�s function 
ROOTS(C), which computes the roots of the polynomial 
whose coefficients are the elements of the vector. 
Gosselin�s method is outlined in detail in [1] and because 
of its lengthy analysis, the details are not shown here. 
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4. Kinematic Mapping  
 
Kinematic mapping was selected as the second method to 
be studied to solve the kinematics of the planar parallel 3-
RPR manipulator.  One of the biggest advantages of planar 
kinematic mapping is that its constraint equations can be 
used by any three legged planar platform possessing three 
degrees of freedom [5]. This method is explained in detail 
in [4,5] and for the purpose of this paper kinematic 
mapping will just be briefly introduced.  
 
4.1 Method 
 
Any planar displacement (a, b, φ), such as the one 
experienced by a point on the moving platform of a 3-RPR 
manipulator, may be described by a reference coordinate 
system E relative to a fixed plane with coordinate system 
∑.  This displacement is mapped to a distinct point in a 3-
D projective image space as seen in figure 2. 
 

 
Figure 2: Kinematic mapping. 

 
The kinematic mapping image coordinates are defined 
with respect to the Cartesian displacement (a, b, φ) as 
follows. 
 
 
 
                                                                                         (3) 
                                                                                          
 
 
 
Using various trigonometric substitutions, and the 
relationships in (3), any Euclidian planar displacement can 
be written in terms of image points. 
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4.2 Inverse Pose Kinematics 
  
In order to solve the inverse kinematics or the 3-RPR 
manipulator, the active P joint is locked in position and 

one R joint is fixed in ∑ while the other R joint 
represented by (a , b, φ) is constrained to rotate in a circle 
of fixed radius, clearly this radius represents the leg length 
Li which we are trying to solve for.  Writing the quadratic 
equation of this circle with respect to the image space 
coordinates and then solving for the unknown radius leads 
to the solution of the inverse pose kinematics problem. 
 
4.3 Forward Pose Kinematics 
 
Even with the kinematic mapping approach, there are no 
closed form solutions to the forward pose kinematics 
problem. One needs to solve 3 constraint equations 
simultaneously, or extract a 6th order univariate, which 
gives 6 possible solutions.   
 
5. Results of Methods� Efficiency 
 
In order to determine how efficient a certain method was, 
Matlab testing was performed.  The Matlab function 
FLOPS which returns the cumulative number of floating 
point operations was used for each method.  CPU time was 
also accounted for.  Table 1 outlines the results for each 
method implementing the inverse pose kinematics 
problem. 

 

Table 1: Results of Inverse Kinematics Problem 

 Euclidean 
Approach 

Kinematic 
Mapping 

# of Flops 68 386 
CPU time (s) 0.11 1.26 

 
6. Conclusion 
 
The Matlab test results indicate that the method which uses 
Euclidian geometry may be the most efficient. These two 
methods will soon be tested for the forward pose 
kinematics problem.  Once all the testing is performed, the 
results will be used to determine whether CUSP will 
engage in using Kinematic mapping or the Euclidian 
approach for further kinematic model development. 
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