
Chapter 3

Kinematic Analysis

At first glance it may seem surprising how rich and deep the study of mech-

anism kinematics has become considering how commonplace four-bar linkages

are. A mechanical system typically comprises a power source and a linkage that

transforms the power into a desired motion in a controlled, predictable, and

repeatable way. Our focus will be on the linkage itself, and how to design and

analyse the resulting motion. The motion design employs the many techniques

of kinematic synthesis, while the study of the generated motion requires the

tools and techniques of kinematic analysis, some of which will be examined in

this chapter.

Modern day kinematic analysis and synthesis are rooted in the geometry of

antiquity: in both the axiomatic structure of synthetic geometry and the metric

structure of analytic geometry. Indeed, the modern understanding of axiomatic

and non-Euclidean geometries arose from careful reflection on Euclid’s work [1]

over the course of the last 2400 years. Consider the following quote from [2],

page 11:

The Greeks called an axiomatic approach synthetic because it syn-

thesizes [sic] (proves) new results from statements already known.

The Greeks often used a process they called analysis to find new

results that they then proved. They analyzed [sic] a problem by

assuming the desired solution and worked backward to something

known. We mimic this procedure in what we call analytic geometry

and algebra by assuming that there is an answer, the unknown x,

and solving for it. In modern times synthetic geometry has come to

mean geometry without coordinates because coordinates are central

to analytic geometry.
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3.1 Planar Mechanisms

In this section we will examine the elementary kinematics of planar four-bar

mechanisms from an advanced standpoint. The last sentence, while true, is a

grammatical nod to Felix Klein [3]. Kinematic constraints will first be discussed,

followed by a novel development of the input-output (I-O) equation for planar

4R mechanisms, which turns out to represent the I-O equation for any planar

four-bar topology.

3.1.1 Kinematic Constraints

In the context of mechanism kinematics, a dyad is a binary link coupled to two

other rigid bodies with two kinematic pairs [4]. In a planar four-bar linkage the

two other rigid bodies are a relatively non-moving ground link, while the other

is the coupler when coupled to another dyad. For planar displacements there

are only two types of lower pair that can be used to generate a planar motion:

R- and P -pairs. This means there are only four practical planar dyads

RR, PR, RP , and PP .

These 3-link serially connected open kinematic chains of rigid bodies are the

building blocks of every planar mechanism. They are designated according to

the type of joints connecting the rigid links, and listed in series starting with

the joint connected to ground, each illustrated in Figure 3.1.

Figure 3.1: Types of dyads.

When a pair of dyads are joined, a four-bar linkage is obtained. However, the

designation of the output dyad changes. For example, consider a planar four-bar

linkage composed of an RR-dyad on the left-hand side of the mechanism, and
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a PR-dyad on the right-hand side, where the input link is the grounded link in

the RR-dyad, see Figure 3.2.

Suppose revolute joint R1 is actuated by some form of torque supplied by

an electric rotary motor transferred by a transmission, in turn driving the input

link, l1. The linkage is designated by listing the joints in sequence from the

ground fixed actuated joint, starting with the input link listing the joints in

order. Thus, the mechanism composed of a driving RR-dyad, and an output

PR-dyad is called an RRRP linkage, where the order of PR is switched to RP .

If the output were an RP -dyad, the mechanism would be an RRPR linkage.

If the input were an RP -dyad while the output was an RR-dyad, the resulting

mechanism would be an RPRR linkage, with no noticeable alteration in the

designation.

Since there are only two linearly independent translations and a single rota-

tion available for the displacement of a rigid body in the plane, the maximum

number of relative degrees of freedom (DOF) is three. Many mechanical sys-

tems are designed to provide only a single DOF meaning that only one motor

is needed. Regardless, a planar four-bar linkage can be designed to generate

coupled translations and rotations, as in the rigid body guidance problem. In

this case the motion of the coupler is considered, link c in Figure 3.3. Alter-

nately, only a fixed axis rotation, or displacement along a fixed line may be the

required output. In this case, the linkage is generally termed a function gener-

Figure 3.2: A four-bar linkage with RR-dyad on the left-hand side and PR-dyad

on the right-hand side.
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ator, since it typically uses the linkage geometry to move the output link, link

b in Figure 3.3, as a function of the input, link a in this case. The function is

generally expressed as the output angle in terms of the input angle, ϕ = f(ψ).

The function is inverted if link b is the input while link a is the output.

Figure 3.3: 4R four-bar mechanism.

3.1.2 Planar 4R Mechanism

The first type of linkage that will be analysed contains four rigid links coupled

by four R-pairs forming a simple closed kinematic chain. These linkages are

generally denoted as 4R mechanisms.

3.1.2.1 Input-output Equation

The material presented in what follows is from [5, 6], but new results are included

as well. A planar 4R function generator correlates driver and follower angles

in a functional relationship. The mechanism essentially generates the function

ϕ = f(ψ), or vice versa, see Figure 3.3. Design methods typically employ the

Freudenstein synthesis equations to identify link lengths required to generate the

function [7, 8]. For over-determined sets of prescribed input-output (I-O) angle

pairs, these equations are linear in the three unknown Freudenstein parameters,

which are ratios of the link lengths, and can be solved for using any least squares

method to minimise a specified performance error. To the best of the authors

knowledge, there are no alternative algebraic models of the function generator

displacement equations in the accessible literature.
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Design and structural errors are important performance indicators in the

assessment and optimisation of function generating linkages arising by means of

approximate synthesis. The design error indicates the error residual incurred by

a specific linkage in satisfying its I-O synthesis equations. The structural error,

in turn, is the difference between the prescribed linkage output value and the

actual generated output value for a given input value [9]. From a design point

of view it may be successfully argued that the structural error is the one that

really matters, for it is directly related to the performance of the linkage.

It has been observed [10, 11] that as the cardinality of the prescribed dis-

crete I-O data set increases, the corresponding four-bar linkages that minimise

the Euclidean norm of the design and structural errors tend to converge to

the same linkage. The important implication is that minimising the Euclidean

norm, or any p-norm, of the structural error can be accomplished indirectly

by minimising the same norm of the design error, provided that a suitably

large number of I-O pairs is prescribed. The importance arises from the fact

that the minimisation of the Euclidean norm of the design error leads to a lin-

ear least-squares problem whose solution can be obtained directly as opposed

to iteratively [12, 13], while the minimisation of the same norm of the struc-

tural error leads to a nonlinear least-squares problem, and hence, calls for an

iterative solution [9]. In [11] the trigonometric Freudenstein synthesis equa-

tions are integrated in the range between minimum and maximum input values,

thereby reposing the discrete approximate synthesis problem as a continuous one

whereby the objective function is optimised over the entire I-O range. Hence,

the long-term goal of research in this area is to determine a general method

to derive motion constraint based algebraic I-O equations that may be used

together with the method of continuous approximate synthesis [11] to obtain

the very best linkage that can generate an arbitrary function. The goal of what

is now presented is to develop one in the hope of providing new insight into

the continuous approximate synthesis of function generators, while mitigating

numerical integration error. Of course, the same equation will be obtained by

making the tangent half-angle substitutions directly into the Freudenstein equa-

tion then collecting terms after factoring, normalising, and eliminating non-zero

factors. But that must be the case since the geometric relations require that

outcome, however this is irrelevant because the goal is to generalise a method

to develop constraint based algebraic I-O equations for continuous approximate

synthesis of planar, spherical, and spatial linkages.

The Freudenstein equation relating the input to the output angles of a planar

4R four-bar mechanism, with link lengths as in Figure 3.3, was first put forward
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in [14]. In the equation the angle ψ is traditionally selected to be the input

while ϕ is the output angle:

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi − ϕi). (3.1)

Equation (3.1) is linear in the ki Freudenstein parameters, which are defined in

terms of the link length ratios as

k1 ≡ (a2 + b2 + d2 − c2)

2ab
,

k2 ≡ d

a
,

k3 ≡ d

b
.


⇔



d = 1,

a =
1

k2
,

b =
1

k3
,

c = (a2 + b2 + d2 − 2abk1)1/2.

The new idea starts the same as with the Freudenstein method, writing the

displacement constraints in terms of the I-O angles. Continuing with tradition,

we select ψ to be the input angle and ϕ to be the output angle, see Figure 3.3.

Let Σ be a non moving Cartesian coordinate system with coordinates X and Y

whose origin is located at the centre of the ground fixed R-pair connected to the

link with length a. Let E be a coordinate system that moves with the coupler

of length c whose origin is at the centre of the distal R-pair of link a, having

basis directions x and y.

The displacement constraints for the origin of E can be expressed in terms

of Σ as

X − a cosψ = 0,

Y − a sinψ = 0,
(3.2)

while those for point F , located at the centre of the distal R-pair on the output

link with length b are

X − d− b cosϕ = 0,

Y − b sinϕ = 0.
(3.3)

Next, we use a planar projection of Study’s soma coordinates [15] to establish

the I-O equation. While Study’s soma will be explained in detail in Chapter

5: Geometry, a few words of introduction are given here. Any displacement

in Euclidean space, E3, can be mapped in terms of the coordinates of a 7-
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dimensional projective image space using the transformation [16]

T =


x2
0+x2

1+x2
2+x2

3 0 0 0

2(−x0y1+x1y0−x2y3+x3y2) x2
0+x2

1−x2
2−x2

3 2(x1x2−x0x3) 2(x1x3+x0x2)

2(−x0y2+x1y3+x2y0−x3y1) 2(x1x2+x0x3) x2
0−x2

1+x2
2−x2

3 2(x2x3−x0x1)

2(−x0y3−x1y2+x2y1+x3y0) 2(x1x3−x0x2) 2(x2x3+x0x1) x2
0−x2

1−x2
2+x2

3

 . (3.4)

This transforms the coordinates of any point described in a moving 3D coor-

dinate system E to the coordinates of the same point in a relatively fixed 3D

coordinate system Σ, assuming that the two coordinate systems are initially

coincident, after a given displacement of E relative to Σ in terms of the coor-

dinates of a point on the Study quadric, S2
6 . Study’s soma coordinates are the

eight ratios

(c0 : c1 : c2 : c3 : g0 : g1 : g2 : g3).

The first four of Study’s soma coordinates are the Euler-Rodrigues parameters

ci, which are also the elements of a quaternion [16]. They are defined as

c0 = cos ϕ2 ,

c1 = sx sin ϕ
2 ,

c2 = sy sin ϕ
2 ,

c3 = sz sin ϕ
2 .

When the ci are normalised such that they represent a unit vector in which

case s = [sx, sy, sz]
T is a unit direction vector parallel to the axis and ϕ is the

angular measure of a given rotation.

The last four gi linear combinations of the Euler-Rodrigues parameters and

elements of the vector elements of the position vector d = (d0 : d1 : d2 : d3)T of

the origin of E expressed in Σ. The gi are defined as

g0 = d1c1 + d2c2 + d3c3,

g1 = −d1c0 + d3c2 − d2c3,

g2 = −d2c0 − d3c1 + d1c3,

g3 = −d3c0 + d2c1 − d1c2. (3.5)

The elements of the transformation in Equation (3.4) are the coordinates of

Study’s kinematic mapping image space, where distinct 3D displacements are

represented by distinct points, are given by the following equations in terms of

the eight Study soma

(x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) =
(
c0 : c1 : c2 : c3 :

g0
2

:
g1
2

:
g2
2

:
g3
2

)
.
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General points in the kinematic mapping image space are described the eight

ratios {xi : yi}. In order for a point in the image space to represent a real

displacement, and therefore to be located on S2
6 , the non-zero condition of x21 +

x22 + x23 + x24 6= 0 must be satisfied.

The transformation matrix T simplifies considerably when we consider dis-

placements that are restricted to a plane. Three degrees of freedom are lost and

hence four Study parameters vanish. The displacements may be restricted to

any plane. Without loss in generality, we may select one of the principal planes

in Σ. Thus, we arbitrarily select the plane Z = 0. Since E and Σ are assumed

to be initially coincident, this means
W

X

Y

0

 = T


w

x

y

0

 . (3.6)

This planar case requires that d3 = 0 since Z = z = 0 because reference frame E

can translate in neither the Z nor z directions. It also requires that sx = sy = 0

and sz = 1: the equivalent rotation axis is parallel to both the Z and z axes.

This, in turn, annihilates four soma coordinates because

x1 = c1 = sx sin
ϕ

2
= 0,

x2 = c2 = sy sin
ϕ

2
= 0,

2y0 = g0 = d1c1 + d2c2 + d3c3 = 0,

2y3 = g3 = −d3c0 + d2c1 − d1c2 = 0.

Therefore displacements restricted to the plane Z = z = 0 leaves us with only

the four soma coordinates

(x0 : x3 : y1 : y2). (3.7)

The non-zero condition is now x20+x23 6= 0, and the fourth row and column of the

reduced T contains only this condition as the last element, with zeros elsewhere,

leading to the trivial equation Z = z = 0. We can therefore eliminate the fourth

row and column and normalise the coordinates with the nonzero condition giving

the planar mapping equation

T =
1

x20 + x23


x20 + x23 0 0

2(−x0y1 + x3y2) x20 − x23 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x20 − x23

 . (3.8)
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We can now express a point in Σ in terms of the soma coordinates and the

corresponding point coordinates in E as
1

X

Y

 = T


1

x

y

 =
1

x2
0+x

2
3


x2
0+x

2
3

2(−x0y1+x3y2)+(x2
0−x

2
3)x−(2x0x3)y

−2(x0y2+x3y1)+(2x0x3)x+(x2
0−x

2
3)y

 . (3.9)

The novelty of the approach begins with the creation of two Cartesian vec-

tor constraint equations containing the nonhomogeneous coordinates in Equa-

tions (3.2) and (3.3), but substituting the values in Equation (3.9) for (X,Y ).

These two vector equations are F1 = 0 and F2 = 0:

F1 =
1

x2
0+x

2
3

 2(−x0y1+x3y2)+(x2
0−x

2
3)x−2x0x3y−(a cosψ)(x2

0+x
2
3)

−2(x0y2+x3y1)+2x0x3x+(x2
0−x

2
3)y−(a sinψ)(x2

0+x
2
3)

 = 0;

F2 =
1

x2
0+x

2
3

 2(−x0y1+x3y2)+(x2
0−x

2
3)x−2x0x3y−(b cosϕ+d)(x2

0+x
2
3)

−2(x0y2+x3y1)+2x0x3x+(x2
0−x

2
3)y−(b sinϕ)(x2

0+x
2
3)

 = 0.

Now we determine equations for the coupler. The coordinate system that moves

with the coupler has its origin, point E, on the centre of the R-pair, as in

Figure 3.3, having coordinates (x, y) = (0, 0), while point F is on the R-pair

centre on the other end having coordinates (x, y) = (c, 0). One more vector

equation, H1 is obtained by substituting (x, y) = (0, 0) in F1, and another, H2

is obtained by substituting (x, y) = (c, 0) in F2. Next H1 and H2, two rational

expressions, are converted to factored normal form. This is the form where

the numerator and denominator are relatively prime polynomials with integer

coefficients. The denominators for both H1 and H2 are the nonzero condition

x20 + x23, which can safely be factored out of each equation leaving the following

two vector equations with polynomial elements:

H1 =

 −a cosψ(x2
0+x

2
3)+2(−x0y1+x3y2)

−a sinψ(x2
0+x

2
3)−2(x0y1+x3y2)

 = 0; (3.10)

H2 =

 −(b cosϕ+d)(x2
0+x

2
3)+c(x

2
0−x

2
3)+2(−x0y1+x3y2)

−b sinϕ(x2
0+x

2
3)+2c(x0x3)−2(x0y2+x3y1)

 = 0. (3.11)

The system of four displacement constraints on the I-O equations are H1 = 0

and H2 = 0. However, these are trigonometric equations. We convert them to
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algebraic ones using the tangent of the half-angle substitutions

u = tan
ψ

2
, v = tan

ϕ

2
,

and

cosψ =
1− u2

1 + u2
, sinψ =

2u

1 + u2
,

cosϕ =
1− v2

1 + v2
, sinϕ =

2v

1 + v2
.

The usual constraint equations in the kinematic mapping image space are

obtained by considering H1 and H2 with the tangent of the half-angles, giving

four new algebraic polynomials when considering the individual elements con-

verted to factored normal form. The denominators are u2 + 1 and v2 + 1 which

can safely be factored out because they are always non-vanishing. The resulting

four algebraic equations are expressed in terms of the elements of K1 = 0 and

K2 = 0:

K1 =

 (au2−a)(x2
0+x

2
3)+2u2(−x0y1+x3y2)+2(−x0y2+x3y1)

−2au(x2
0+x

2
3)−2(1+u2)(−x0y2+x3y1)

 = 0; (3.12)

K2 =

 (v2(b−d)+b−d)(x2
0+x

2
3)+(cv2+c)(x2

0−x
2
3)+2(1+v2)(−x0y1+x3y2)

2cv2x0x3−2(v2+bv+1)(x2
0+x

2
3)+2cx0x3

 = 0. (3.13)

Factoring the resultant of the first and second elements of K1 = 0 with respect

to u, as well as the first and second elements of K2 = 0 with respect to v yields

the two displacement constraint equations in the image space:

a2(x20 + x23)− 4(y21 + y22) = 0,

( b2 − c2 − d2)(x20 + x23) + 2cd(x20 − x23) + 4c(x0y1 + x3y2)+

4d(−x0y1 + x3y2)− 4(y21 + y22) = 0.

Inspection of the quadratic forms of these two equations reveals that they are

two hyperboloids of one sheet, which is exactly what is expected for two RR

dyads [17]. But these are not the constraints we are looking for. We want to

eliminate the image space coordinates using K1 = 0 and K2 = 0 to obtain an

algebraic polynomial with the tangent half angles u and v as variables and link

lengths as coefficients.

To obtain this algebraic polynomial we start by setting the homogenising

coordinate x0 = 1, which can safely be done since we are only concerned with
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real finite displacements. Next, observe that the two equations represented by

the components of K1 = 0 (Equation (3.12)) have a simpler form than those

of K2 = 0 (Equation (3.13)), and are linear in y1 and y2. Solving these two

equations for y1 and y2 reveals that

y1 =
1

2

a(u2 − 2ux3 − 1)

u2 + 1
, (3.14)

y2 =
1

2

a(u2x3 + 2u− x3)

u2 + 1
. (3.15)

Equations (3.14) and (3.15) reveal the common denominator of u2+1, which

can never be less than 1, and hence may be factored out. Now we back-substitute

these expressions for y1 and y2 into the array components of Equation (3.13),

thereby eliminating these image space coordinates, and factor the resultant with

respect to x3 which yields four factors. The first three are

4c2, (u2 + 1)3, (v2 + 1)3.

None of these three factors can ever be zero and at the same time represent a

real displacement constraint, hence they are eliminated. The remaining factor

is a polynomial with only u and v as variables and link lengths a, b, c, and d,

as coefficients. This is exactly the constraint equation we desire. It is factored,

and the terms collected then distributed over u and v revealing

Au2v2 +Bu2 + Cv2 − 8abuv +D = 0, (3.16)

where:

A = (a− b− c+ d)(a− b+ c+ d) = A1A2;

B = (a+ b− c+ d)(a+ b+ c+ d) = B1B2;

C = (a+ b− c− d)(a+ b+ c− d) = C1C2;

D = (a− b+ c− d)(a− b− c− d) = D1D2.

Equation (3.16) is an algebraic polynomial of degree four which represents

the I-O equation for any planar 4R mechanism. As shown in [6], it has two sin-

gular points at infinity, namely those of the u- and v-axes, see Section 3.6.2.4.

Singular points on planar algebraic curves are individual points of the curve,

if they exist, that are unique compared to the regular points on the curve in

that they not only satisfy the equation of the curve but they also possess spe-

cial distinct properties. The existance of singular points can be determined by

homogenising the equation. We will use the new coordinate w and redefine
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the angle parameter values as u/w and v/w, and manipulate the equation by

multiplying it through by w to obtain a version of the I-O equation that is

homogeneously of degree four in all variables u, v, and w, resulting in the new

homogeneous expression of curve kh:

kh := Au2v2 +Bu2w2 + Cv2w2 − 8abuvw2 +Dw4 = 0. (3.17)

The singular values of Equation (3.17), if they exist, are determined by

solving the three partial derivatives of kh with respect to the three variables u,

v, and w. These three homogeneous equations of degree three are

∂kh
∂u

= 2Auv2 + 2Buw2 − 8abvw2 = 0,

∂kh
∂v

= 2Au2v + 2Cvw2 − 8abuw2 = 0,

∂kh
∂w

= 2Bu2w + 2Cv2w − 16abvw + 4Dw3 = 0.


(3.18)

Equations (3.18) have two common solutions which are independent of the link

lengths a, b, c, and d embedded in the coefficients A, B, C, and D:

S1 := {u = 1, v = 0, w = 0}, S2 := {u = 0, v = 1, w = 0}. (3.19)

These two points, called double points, common to all algebraic I-O curves for

every planar 4R four-bar mechanism are the points on the line at infinity w = 0

of the u- and v-axes, respectively. Each of these double points can have real

or complex tangents depending on the values of the link lengths, which in turn

determines the nature of the mobility of the linkage, as well as the number of

assembly modes (the maximum is two), and the number of folding assemblies

(the maximum is three). Each of these two double points can be either crunodes

where the curve intersects itself, or acnodes, which are isolated, or hermit points

in the solution set of a polynomial equation in two real variables, again see

Section 3.6.2.4. When both are crunodes the mechanism is a double crank,

when both are acnodes the mechanism is a double rocker. In the event the

mechanism is a folding four-bar then the degree of Equation (3.16) is less than

four.

It is the nature of the tangents at the double points that determine the

mobility of the input and output links. Both double points can have real, or

complex tangents, depending on the values of the four link lengths. The pos-

sible combinations of these cases have different meanings for the corresponding

linkages. The following three cases are demonstrated and proved in [6].
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1. When the tangents of both points are real then both input and output

links can fully rotate, and the mechanism is a double-crank.

2. One pair of double point tangents is real and the other complex conjugate

means that one on the input or output links is a crank while the other

is a rocker. The double point corresponding to the complex conjugate

tangents is always an acnode, or hermit point, and the link that is the

rocker depends on which double point is the acnode.

3. When both pairs of tangents are complex conjugates then both double

points are acnodes and the mechanism is a double rocker.

The discriminant of an algebraic equation, evaluated at a double point,

reveals whether that double point has a pair of real or complex conjugate tan-

gents [18, 19] in turn yielding information about the topology of the mecha-

nism [6, 19]. If the tangents are complex conjugates the double point is an

acnode: a hermit point that satisfies the equation of the curve but is isolated

from all other points on the curve. The discriminant and the meaning of its

value are [18, 19]

∆ =

(
∂2kh
∂u∂w

)2

−∂
2kh
∂u2

∂2kh
∂w2



> 0 ⇒ two real distinct tangents :

the double point is a crunode;

= 0 ⇒ two real coincident tangents :

the double point is a cusp;

< 0 ⇒ two complex conjugate tangents :

the double point is an acnode.

The genus of an algebraic curve is defined as the deficiency between the

maximum number of double points for a curve of it’s order less the actual number

of double points the curve possesses [20]. While the algebraic properties of a

planar algebraic curve will be discussed in greater detail in Section 3.6.2, we

will hint at the material here. The maximum number of double points, DPmax,

a curve of order n can have is

DPmax =
1

2
(n− 1)(n− 2). (3.20)

Hence, a curve of order n = 4 can have a maximum of three double points. The

algebraic I-O curve possesses only two as proved by the existence of only a pair

common solutions to Equations (3.18), therefore it is always deficient by one.

In other words, the genus of the algebraic I-O curve is 1.

The genus of a curve plays a very important role in the theory of curves

[21, 22]. We can define the genus of an algebraic curve, G, as the maximum
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number of possible double points, DPmax, less the actual number, DPact as an

equation to make it easier to remember:

G = DPmax −DPact. (3.21)

If G = 0 the curve possesses it’s maximum number of double points, in other

words DPact = DPmax, then the coordinates of any point on the curve can be

expressed as rational algebraic functions of a single variable parameter. This

means that an n-dimensional curve with G = 0 can be parametrised and the

coordinates may be expressed as rational algebraic functions of parameter t as

x1 = f1(t)

x2 = f2(t)

...

xn = fn(t).

If however the genus of the curve is G > 0, then there is no way to parametrise

the curve. Because the genus of the algebraic version of the I-O curve has genus

G = 1, it cannot be parametrised, and it is defined to be an elliptic curve [22].

This definition does not mean that the curve has the form of an ellipse, rather

it means that the curve can be expressed, with a suitable change of variables,

as an elliptic curve. In the plane, every elliptic curve with real coefficients can

be put in the standard form

x22 = x31 +Ax1 +B

for some real constants A and B.

3.2 Design Parameter Octahedron

In the projection of the design parameter space into the hyperplane d = 1,

the eight linear factors in Equation (3.16) can be interpreted as the eight faces

of a regular octahedron determined by the six vertices V = (a, b, c) : V1 =

(1, 0, 0); V2 = (−1, 0, 0); V3 = (0, 1, 0); V4 = (0,−1, 0); V5 = (0, 0, 1); V6 =

(0, 0,−1), see Figure 3.2.
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Figure 3.4. Design parameter

octahedron.

Each face of the octahedron lies en-

tirely in one of the eight quadrants

in the parameter space. Considering

the design parameter octahedron, four

questions naturally arise.

1. What do the six vertices imply?

2. What is the significance of

points on the octahedron edges?

3. What is the significance of

points on the octahedron faces?

4. What is the significance of the

location of a general point in the

parameter space?

3.2.1 The Six Octahedron Vertices

With reference to Figure 3.4, each of the six octahedron vertices lie at the

terminal ends of the design parameter space basis unit vectors, a, b, and c. They

comprise the six points V1,2 = (±1, 0, 0), V3,4 = (0,±1, 0), V5,6 = (0, 0,±1).

Each vertex is the point common to the planes of four faces and represents a

degenerate planar four-bar mechanism with no mobility because it contains two

links of zero length and two links of unit length.

3.2.2 The Twelve Octahedron Edges

Again, referring to Figure 3.4, each of the twelve octahedron edges is the line

in common with two octahedron faces excluding the vertices. Each edge lies

entirely in one of eight design parameter sub-space coordinate planes. For ex-

ample, the edge that lies in the coordinate plane spanned by the positive basis

vectors a and b is the intersection of the face planes defined by the vertices

{V1, V3, V5} and {V1, V6, V3}. Each edge represents a degenerate four-bar mech-

anism with no mobility because it contains one link of zero length.
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3.2.3 Points on the Eight Octahedron Faces

Because of the beautiful structure of the eight linear factors in Equation (3.16),

it may be shown in a straightforward way that each of the linear factors defines

one of eight planes containing one of the octahedron faces. In Euclidean space,

E3, a necessary and sufficient condition that four points, whose homogeneous

point coordinates are (x0 : x1 : x2 : x3), (y0 : y1 : y2 : y3), (z0 : z1 : z2 : z3) and

(w0 : w1 : w2 : w3), be coplanar is that [23, 24, 25]∣∣∣∣∣∣∣∣∣
x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

w0 w1 w2 w3

∣∣∣∣∣∣∣∣∣ = 0. (3.22)

It follows that the plane determined by three distinct points has the equation

X0x0 +X1x1 +X2x2 +X3x3 = 0, (3.23)

where the plane coordinates [X0 : X1 : X2 : X3] are obtained by Grassmannian

expansion [3, 25] of the matrix in Equation (3.22), giving

(3.24)

∣∣∣∣∣∣∣
y1 y2 y3

z1 z2 z3

w1 w2 w3

∣∣∣∣∣∣∣x0 +

∣∣∣∣∣∣∣
y0 y3 y2

z0 z3 z2

w0 w3 w2

∣∣∣∣∣∣∣x1
+

∣∣∣∣∣∣∣
y0 y1 y3

z0 z1 z3

w0 w1 w3

∣∣∣∣∣∣∣x2 +

∣∣∣∣∣∣∣
y0 y2 y1

z0 z2 z1

w0 w2 w1

∣∣∣∣∣∣∣x3 = 0.

Employing the Grassmannian expansion we obtain the equation of the plane

containing the octahedron face defined by the vertices {V1, V6, V3} using their

homogeneous coordinates: V = (1 : a : b : c)⇒ V1 = (1 : 1 : 0 : 0), V6 = (1 : 0 :

0 : −1), V3 = (1 : 0 : 1 : 0). Using the determinants in Equation (3.24) and the

three vertices reveals the corresponding plane coordinates as

[X0 : X1 : X2 : X3] =
∣∣∣∣∣∣∣
1 0 0

0 0 −1

0 1 0

∣∣∣∣∣∣∣ :
∣∣∣∣∣∣∣
1 0 0

1 −1 0

1 0 1

∣∣∣∣∣∣∣ :
∣∣∣∣∣∣∣
1 1 0

1 0 −1

1 0 0

∣∣∣∣∣∣∣ :
∣∣∣∣∣∣∣
1 0 1

1 0 0

1 1 0

∣∣∣∣∣∣∣
 = [1 : −1 : −1 : 1].

Hence, the plane equation containing face {V1, V6, V3} can be expressed as

1− a− b+ c = 0. (3.25)
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When the coordinates in Equation (3.25) are homogenised, the relation can be

expressed as

a+ b− c− d = 0. (3.26)

Thus, the plane equation determined by the three vertices {V1, V6, V3} is pre-

cisely the linear factor C1 in Equation (3.16). The remaining seven linear factors

in Equation (3.16) are, similarly, the plane equations for the seven other octa-

hedron faces. If a point in the design parameter space satisfies Equation (3.26),

then it lies in the plane of the face spanned by the three vertices {V1, V6, V3},
and the corresponding mechanism has link lengths constrained by the relation

a + b = c + d. Depending on the lengths of the individual links satisfying

this relation the resulting mechanism can be a double crank, double rocker, or

crank rocker, and can have up to two folding configurations and assembly modes

[6, 26].

Similarly, points in the planes of the faces spanned by vertices {V2, V5, V3}
and by vertices {V1, V5, V4} lead to the plane equations

1 + a− b− c = 0 and 1− a+ b− c = 0,

which correspond to the linear factors A1 and D1 respectively, when the coor-

dinates are homogenised giving

a− b− c+ d = 0 and a− b+ c− d = 0.

Points laying in the planes of these two faces correspond to linkages with link

lengths constrained by the relations a + d = b + c and a + c = b + d. Again,

depending on the lengths, the resulting mechanisms can be a double-crank,

double-rocker, or crank-rocker, and can have up to two folding configurations

and assembly modes. However, points in the planes spanned by the remaining

five faces, corresponding to linear factors A2, B1, B2, C2, and D2 represent

linkages with zero finite mobility because either the sum of all the link lengths

is identically zero, or one link length is equal to the sum of the lengths of the

remaining three.

3.2.4 A General Point in the Design Parameter Space

The location of a single point in the design parameter space is a specific planar

4R whose link lengths satisfy Equation (3.16). The values of the link lengths are

directed distances, and hence can have positive or negative values. Clearly, if

one of the lengths is identically zero, then the resulting 3R linkage is a structure.
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The absolute values of the link lengths identified with Equation (3.16) lead

to an alternate form of the classification scheme for planar 4R linkages first

presented in [26] and later refined in [27], and hence to an expression for the

Grashof condition [28]. Recall that a Grashof four-bar linkage is one in which

the sum of the lengths of the longest and shortest links is less than the sum of

the lengths of the other two links. A Grashof planar 4R mechanism may contain

at least one link that can fully rotate, or both input and output angles rock in

a range between 0 and π if

l + s < p+ q, (3.27)

where l and s refer to the lengths of the longest and shortest links, while p and

q are the lengths of the two intermediate links.

There are three possibilities. The first four are the possible Grashof planar

4R mechanisms for which the following relations, stated without proof, are valid.

1. The four possible Grashof planar 4R mechanisms.

(a) Link a is a crank if it is the shortest link, and the output link b is a

rocker.

(b) Link b is a crank if it is the shortest link, and the input link a is a

rocker.

(c) If the relatively non-moving link, the base, is the shortest link, then

both the input and output links a and b are cranks.

(d) If the coupler is the shortest link, then both the input and output

links a and b are rockers.

2. If l + s > p + q then there are four different inversions of double rocker

mechanisms that result, which are all non-Grashof linkages.

3. If l + s = p + q the mechanism is known as a change-point mechanism,

because it can fold. These linkages are also known as folding linkages.

These are also non-Grashof linkages. There are two special cases.

(a) If all four links are of equal length, a = b = c = d, the change-point

linkage is known as a parallelogram linkage. All four inversions can

be double cranks if they can stay in the same branch of the coupler

curve, see Section 3.6.

(b) The deltoid linkage is the other special case where two equal length

short links are connected to two equal length long links.
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3.2.5 Continuous Sets of Points in the Design Parameter

Space

Planar four-bar linkages however are not exclusively jointed with R-pairs, they

often contain P -pairs. However, four-bar mechanisms containing more than two

P -pairs cannot move the coupler in general plane motion, rather they can only

generate translations and hence are not considered here. Any kinematic inver-

sion of an RRRP linkage will possess one variable link length and one variable

joint angle, typically called a slider-crank, see Figure 3.5. Hence the roles of

fixed constant and variable in Equation 3.16 can be reassigned to generate a

function of the form b = f(u), for example. The important thing to note is

that the same IO equation can be used for kinematic synthesis! The result-

ing mechanism however, will not be represented by a single point in the design

parameter space. Rather, it will be represented by a line parallel to the basis

vector direction representing the variable link length. The length of the line

will be determined by the extremities of the slider translation. This will be

interesting to investigate in function generation optimisation problems and is,

at the moment, an open research problem.

c

a

d

b

O

E

F

G
X

Y

x

y

2

1

Figure 3.5: An RRRP slider-crank.

The kinematic inversions of the elliptic-trammel PRRP linkage are the

RRPP and RPPR linkages known as the Scotch yoke and Oldham’s coupling,

respectively. These linkages possess two variable link lengths. It turns out that

Equation 3.16 can also be used for function generation synthesis of linkages poss-

ing two R- and two P -pairs. We believe this to be remarkable! Again, the roles
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of fixed constant and variable are reassigned. In this case the function generation

synthesis problem can be modelled with Equation 3.16 to generate functions of

the form b = f(a), while the angles represented by u and v are now constants

that are identified in the synthesis. In the design parameter space the resulting

mechanism will be represented by a curve that is the approximated functional

relationship between lengths a and b over the desired maximum input-output

range.

(a) Elliptical trammel, PRRP . (b) Scotch yoke, RRPP .

Figure 3.6: Kinematic inversions of the elliptical trammel.

The elliptical trammel is illustrated in Figure 3.6 (a). It consists of two

P -pairs with perpendicular longitudinal axes of symmetry and a coupler which

is attached to the sliders by R-pairs at fixed positions along the coupler. As the

P -pairs move back and forth, each along its channel, the points of the coupler

move in elliptical paths. The semi-major and semi-minor axes of the ellipse have

lengths equal to the distances from the coupler point to each of the two R-pair

centres. The elliptical trammel was known in antiquity and is frequently called

the trammel of Archimedes [29].

The Scotch yoke is illustrated in Figure 3.6 (b). The Scotch yoke, also

known as slotted link mechanism, is an RRPP linkage that generates recipro-

cating motion, converting the rotational motion of a ground fixed R-pair into

reciprocating translational motion, or vice versa. The first P -pair is directly

coupled to a sliding yoke with a slot that engages an R-pair on the rotating

link. The location of the first P -pair versus time is a sine wave of constant

amplitude, and constant frequency given a constant rotational speed.

The Oldham coupling, illustrated in Figure 3.7, is anRPPR kinematic chain.

It is used to connect two parallel shafts whose axes are at a small distance apart.
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Two flanges, each having a rectangular slot, are keyed, one on each shaft. The

two flanges are positioned such that, the slot in one is at right angle to the

slot in the other. To make the coupling, a circular disc with two rectangular

projections on either side and at right angle to each other, is placed between

the two flanges. During motion, the central disc, while turning, slides in the

slots of the flanges. Power transmission takes place between the shafts, because

of the positive connection between the flanges and the central disc [30].

Figure 3.7: The Oldham coupling, RPPR.

3.3 Classification of Planar 4R Mechanisms

In this section we present a classification of planar 4R mechanisms that builds

on the one originally proposed in [26]. First we consider the angular limits

on the input and output angles ψ and ϕ, if they exist. Next, we consider

the implications of the vanishing of the linear factors A1, C1 and D1 from

Equation (3.16). Finally, the signed numerical values of the same linear factors

A1, C1 and D1 are used, together with the limits on the input and output angles

to classify the mechanisms according to the associated mobility constraints. In

this way, this classification technique is additionally an alternate way to evaluate

the Grashof condition.

3.3.1 Input Link, a.

The limits of angular displacement for the input link, a, if they exist, can be

determined using the law of cosines and the two triangles formed by the lengths

a and d when the coupler and output link align, giving lengths c− b and c+ b,
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respectively, see Figure 3.10. In order for ψmin and ψmax to exist, then

−1 ≤ cos(ψ) ≤ 1. (3.28)

It can be shown using the methods in [27, 26] that the conditions leading to

X

Y

min

c-b
b

d

a

X

Y
max

c+b

d

a

Figure 3.10: The angular limits of the output link, if they exist, are ψmin/max.

−1 < cos(ψ) > 1 can be expressed as the product of two linear factors from

Equation (3.16). The fist product concerns the existence of ψmin:

(a+ b− c− d)(a− b+ c− d) > 0 (i.e. C1D1 > 0). (3.29)

If this condition is satisfied, then both factors must be either positive or negative,

and the input link has no ψmin. This implies that the input link can rotate

through ψ = 0 reaching angles below the line joining the centres of the two

ground fixed R-pairs. If this condition is not satisfied then one of either C1 or

D1 is negative and ψmin may be computed, using the upper sign (c− b)2, as1

ψmin
max

= cos−1

(
a2 + d2 − (c∓ b)2

2ad

)
. (3.30)

Referring again to Figure 3.10, the second product concerns the existence of

ψmax, and can be expressed as:

(a− b− c+ d)(a+ b+ c+ d) < 0 (i.e. A1B2 < 0). (3.31)

If this condition is satisfied then ψmax does not exist, and the input link can

rotate through π. Since B2 must always be positive, this condition simplifies to

a+ d < b+ c. (3.32)

1Note that cos(ψ) returns the same value for ±ψ. Hence, the cos−1 function leads to two

limiting values of ±ψmin and ±ψmax, one for each of the elbow up and elbow down assembly

modes of the linkage.
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If the condition in Equation (3.31) is not satisfied, then it must be that a+ d ≥
b+c, and ψmax may be computed using the lower sign (c+b)2 in Equation (3.30).

The classification, as in [26], uses the observation that if C1D1 > 0 and

A1 < 0 then neither ψmin nor ψmax exist, and the input link is a fully rotatable

crank and therefore the link lengths must satisfy the Grashof condition. If

C1D1 > 0 while A1 ≥ 0 then ψmax exists, but not ψmin, and the input link is

a 0-rocker because it rocks through 0 between the ±ψmax limits. If C1D1 ≤ 0

while A1 < 0 then ψmin exists, but not ψmax, and the input link is a π-rocker

because it rocks through π between the ±ψmin limits. Alternately, if C1D1 ≤ 0

and A1 ≥ 0 then both ψmin and ψmax exist and the input link is a rocker

which can pass through neither 0 nor π and rocks in one of two sperate ranges:

ψmin ≤ ψmax; or −ψmax ≤ −ψmin.

3.3.2 Output Link, b.

The limits of angular displacement for the output link, b, if they exist, can be

determined using the law of cosines and the two triangles formed by the lengths

b and d when the coupler and input link align, giving lengths c + a and c − a,

respectively, see Figure 3.11. Note that ϕ in this case is an exterior angle, and

the corresponding angle used in the law of cosines is π−ϕ necessitating as sign

change: − cos(π − ϕ) = cos(ϕ). In order for ϕmin and ϕmax to exist, then

−1 ≤ cos(ϕ) ≤ 1. (3.33)

The conditions leading to −1 > cos(ϕ) > 1 can be expressed as the products of

Y

X

a+c

Y

b
min

d

max

c-a b

X

a

d

Figure 3.11: The angular limits of the output link, if they exist, are ϕmin/max.

two linear factors from Equation (3.16). The fist product concerns the existence

of ϕmin:

(a− b+ c− d)(a+ b+ c+ d) > 0 (i.e. D1B2 > 0). (3.34)
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Since B2 is always positive, if the output link has no ϕmin and the condition

is satisfied, then D1 must be positive. This leads to the simpler expression for

this condition:

a+ c ≥ b+ d. (3.35)

If this condition is not satisfied, then the output link can rotate through ϕ = 0

reaching angles below the line joining the centres of the two ground fixed R-

pairs. When this condition is not satisfied then D1 is either identically zero or

negative and ϕmin may be computed using the upper sign (a+ c)2 as

ϕmin
max

= cos−1

(
(a± c)2 − (b2 + d2)

2bd

)
. (3.36)

Referring again to Figure 3.11, the second product concerns the existence of

ϕmax, and can be expressed as:

(a− b− c+ d)(a+ b− c− d) < 0 (i.e. A1C1 < 0). (3.37)

If this condition is satisfied then ϕmax does not exist, and the output link can

rotate through π. Satisfying this condition requires that one factor is positive

while the other is negative. If the condition in Equation (3.37) is not satisfied,

then it must be that A1 and C1 are either both positive or negative. In this

case ϕmax may be computed using the lower sign (a− c)2 in Equation (3.36).

Again, following [26], the Grashof condition for this case is A1C1 < 0 and

D1 > 0. Using these conditions as indicators, the output link can also be a

crank, a 0-rocker, a π-rocker, or a rocker restricted to one of the two separate

ranges bounded by 0 and π: ϕmin ≤ ϕmax; or −ϕmax ≤ −ϕmin.

3.3.3 Implications of Vanishing Linear Factors.

The remaining conditions to consider are if any one, or more, of the three factors

are identically zero. Consider the following zeros:

A1 = 0 ⇒ a− b− c+ d = 0 ⇒ a+ d = b+ c;

C1 = 0 ⇒ a+ b− c− d = 0 ⇒ a+ b = c+ d;

D1 = 0 ⇒ a− b+ c− d = 0 ⇒ a+ c = b+ d.

If only one of A1 = 0, C1 = 0, or D1 = 0, then the mechanism is a point on one

of the planes containing the faces of the octahedron spanned by either vertices

{V2, V5, V3}, {V1, V6, V3}, or {V4, V1, V5}, respectively. In each case, the linkage

has a single folding configuration. If two of the factors are identically zero,
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then the mechanism is represented by a point that lies on the line containing

the associated octahedron edge of the two corresponding faces. In this case,

the linkage has two folding configurations because of the equality in length

of two different sums of pairs of link lengths. Finally, if all three factors are

simultaneously identical to zero, the corresponding mechanism is represented

by the point common to the planes of all three associated octahedron faces. It

is a simple matter to show this leads to a third order equation with only one

solution: a = b = c = d. In the design parameter space normalised with d = 1,

this means the point (1, 1, 1), a rhombus parallelogram linkage possessing three

folding configurations.

3.3.4 Classification

Any planar 4R linkage can be classified according to the values of the three

linear factors A1, C1, and D1 which can each either be positive, identically zero,

or negative. Using the criteria from above the linkage type can be classified

according to it’s link lengths. There are 27 distinct permutations positive and

negative signs, taken three at a time, and all the corresponding 27 possible

mechanisms are listed in Table 3.1.

# A1 C1 D1 Input a Output b # A1 C1 D1 Input a Output b

1 + + + 0-rocker 0-rocker 15 0 0 - crank π-rocker

2 + + 0 0-rocker 0-rocker 16 0 - + π-rocker crank

3 + + - rocker rocker 17 0 - 0 crank crank

4 + 0 + 0-rocker crank 18 0 - - crank π-rocker

5 + 0 0 0-rocker crank 19 - + + crank crank

6 + 0 - 0-rocker π-rocker 20 - + 0 crank crank

7 + - + rocker crank 21 - + - π-rocker π-rocker

8 + - 0 0-rocker crank 22 - 0 + crank crank

9 + - - 0-rocker π-rocker 23 - 0 0 crank crank

10 0 + + crank crank 24 - 0 - crank π-rocker

11 0 + 0 crank crank 25 - - + π-rocker 0-rocker

12 0 + - π-rocker π-rocker 26 - - 0 crank 0-rocker

13 0 0 + crank crank 27 - - - crank rocker

14 0 0 0 crank crank

Table 3.1: Classification of all 27 possible planar 4R linkages. Shaded cells

satisfy the Grashof condition.
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We now briefly revisit the Grashof condition, stated by Equation (3.27).

Because of the conditions on the numerical value of the three factors A1, C1,

and D1 in Table 3.1 it is to be seen that the Grashof condition can be restated

in terms of the product of the numerical values, without explicit regard to link

lengths, as

A1C1D1 < 0. (3.38)

Consider the Grashof double-rocker listed in Element 3 of Table3.1. Because

A1 > 0 and C1D1 < 0, the input angle rocks in limits that are limited by

π < ψ > 0, and because A1C1 > 0 while D1 < 0 the output angle also rocks in

limits that are limited by π < ϕ > 0, and hence the linkage is a Grashof double-

rocker. The Grashof rocker-crank in Element 7 of the table is so determined

because A1 > 0 and C1D1 < 0 the input angle rocks in limits that are limited

by π < ψ > 0, however the output link is a fully rotatable crank because

A1C1 < 0 and D1 < 0. The Grashof double-crank listed in Element 19 is so

because A1 < 0 and C1D1 > 0, meaning that the input link a is a crank, and

because A1C1 < 0 while D1 > 0, so the output link b is also a crank. Finally,

Element 27 is a Grashof crank-rocker because A1 < 0 and C1D1 > 0, meaning

that the input link a is a crank, while A1C1 > 0 and D1 < 0 so the output link

b is a rocker that rocks in limits that are limited by π < ϕ > 0.

3.4 Coupler Angle

The goal of this section is to obtain an expression for the angle α the coupler c

makes with respect to the input link a in terms of the input and output angles,

ψ and ϕ, and the link lengths a, b, and d, see Figure 3.12.

This material is partly based on the material presented in [27]. Let α denote

the angle of the coupler c measured about E relative to the input link a. Hence,

the angle ψ + α measures the angle the coupler c makes with respect to the

X-axis of the relatively fixed coordinate system centred at O. The coordinates

of F can be defined in terms of α as[
FX

FY

]
=

[
a cosψ + c cos (ψ + α)

a sinψ + c sin (ψ + α)

]
. (3.39)

But, the coordinates of F can also be defined in terms of the output link b as[
FX

FY

]
=

[
d+ b cosϕ

b sinϕ

]
. (3.40)
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Figure 3.12: 4R four-bar mechanism parameters.

Equation Equations (3.39) and (3.40) yields the kinematic closure equations for

the four-bar linkage:

a cosψ + c cos (ψ + α) = d+ b cosϕ, (3.41)

a sinψ + c sin (ψ + α) = b sinϕ. (3.42)

For any value of the input angle ψ we can write

cos (ψ + α) =
d+ b cosϕ− a cosψ

c
, sin (ψ + α) =

b sinϕ− a sinψ

c
. (3.43)

We can solve Equation (3.43) for α revealing

α = tan−1

(
b sinϕ− a sinψ

d+ b cosϕ− a cosψ

)
− ψ. (3.44)

3.5 Performance Metrics

Various angles and ratios of a four-bar mechanism act as performance metrics

that can be used to evaluate how well a mechanism performs the task it is in-

tended for, or to compare the performance of different linkages at carrying out

the same task. While there is no single performance metric, or index of merit [30]

for all mechanisms, several have emerged as particularly useful. The transmis-

sion angle between the coupler c and output link b, ζ in Figures 3.12 and 3.13,

is a standard four-bar mechanism performance metric that can be used as a

measure of the mechanical advantage and velocity ratio of a particular linkage.

These three metrics will be discussed in the following two subsections.



82 CHAPTER 3. KINEMATIC ANALYSIS

3.5.1 Transmission Angle

If the only external loads on linkage are generated by torques on the input and

output links, then the forces FE and FF acting on the coupler at the centres

of the revolute joints connecting it to the input and output links must act in

opposite directions acting along the line connecting the two moving joint centres.

Hence, in general only a component of force FF is transferred to the output link

as output torque via the coupler depending on the transmission angle ζ. The

component of FF transmitted to the output link as torque is proportional to

sin ζ. The component proportional to cos ζ is transferred to the centre of the

ground fixed revolute joint at G and must be absorbed as a reaction force.

Figure 3.13: 4R four-bar mechanism parameters.

It is useful to have the transmission angle ζ expressed in terms of the input

angle ψ. To do this we can equate the cosine laws for the triangles 4OGE and

4GFE along the diagonal EG of the quadrangle formed by the revolute joint

centres OGFE. Referring to Figure 3.13, because ζ is an exterior angle this

gives

(|E−G|)2 = d2 + a2 − 2ad cosψ = b2 + c2 + 2bc cos ζ. (3.45)

Solving for the transmission angle ζ yields

ζ = cos−1

(
d2 + a2 − b2 − c2 − 2ad cosψ

2bc

)
. (3.46)



3.6. COUPLER CURVES 83

3.5.2 Mechanical Advantage and Velocity Ratio

Consider Figures 3.12 and 3.13 once again. If friction and inertia forces are

small compared to the actuation forces then the power supplied to the input

link a is the negative of the power applied to the output link b by the load.

Since power can be defined as the inner (dot) product of torque and angular

velocity vectors it must be that

Tin · ψ̇ = −Tout · ϕ̇. (3.47)

We can consider only the magnitudes of these vectors and re-express this relation

as the following equivalent ratios:

Tout
Tin

= − ψ̇
ϕ̇
. (3.48)

The first ratio in Equation (3.48) is the mechanical advantage of the linkage,

which is equivalent to the negative reciprocal of the velocity ratio. The velocity

ratio in Equation (3.48) can be expressed in terms of the two angles δ and β

illustrated in Figure 3.12. Since δ is π − ζ we additionally have

Tout
Tin

= − ψ̇
ϕ̇

= − b sin δ

a sinβ
. (3.49)

Equation (3.49) shows that the mechanical advantage approaches infinity when

the angle β approaches 0 or π. These configurations are called toggle config-

urations, and are illustrated in Figure 3.11. The two toggle configurations for

the linkage in Figure 3.11 correspond to β = 0 and β = π. Moreover, Equa-

tion (3.49) also shows that issues arise when δ → 0 and δ → π. These two

extremes for the transmission angle correspond to when ζ → π and ζ → 0.

In these configurations the mechanical advantage of the linkage becomes very

small, and then even a very small amount of friction or misalignment will cause

the mechanism to jam or lock. Hence, a design rule-of-thumb is that the best

four-bar linkage will have a transmission angle which deviates from a right angle

by the smallest amount [30].

3.6 Coupler Curves

The point equation for the coupler curve of a selected coupler point which is

generated by a planar 4R mechanism that is presented here is largely based

on the way it was originally derived in [31] and reported in [20], and subtly

modified in [27]. Referring to Figure 3.14, the ground fixed stationary reference
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coordinate system has it’s origin O at the centre of the left ground fixed R-pair

and uses coordinates (X,Y ). Let the coordinate system that moves with the

coupler be centred at E, with x-axis on the line between E and F . Let the

coordinates of any particular coupler reference point C be (xC , yC). Since the

Figure 3.14: 4R four-bar point coupler curve parameters.

coupler angle α is a function of the input angle ψ we will express the equation

of the coupler curve that point C traces as ψ changes in terms of the input

angle all expressed in the non-moving coordinate system. Since the location of

point C has constant coordinates (xC , yC) in the moving coordinate system, we

can always transform these coordinates to the non-moving frame coordinates

(XC , YC) with the coordinate transformation 1

XC(ψ)

YC(ψ)

 =

 0 0 1

cos(ψ + α) − sin(ψ + α) a cosψ

sin(ψ + α) cos(ψ + α) a sinψ


 1

xC

yC

 . (3.50)

The coupler geometry is fixed with the angle at the coupler reference point C

between sides f and e indicated by the constant angle γ. Hence, by eliminating

ψ from the equation, we can obtain a quasi-algebraic form of the coupler curve.

However, the equation is still essentially transcendental in terms of cos γ and

sin γ, so we call it quasi-algebraic. We will define the coordinates of the coupler
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point C is two ways. Let the coupler triangle4CEF in Figure 3.14 have lengths

c, e and f , where e and f are determined by the choice of coupler point C. These

two sides are determined by

f = |C−E| = (x2C + y2C)
1
2 , and e = |C− F| =

(
(xC − c)2 + y2C

) 1
2 . (3.51)

The angle λ is defined in the non-moving frame centred at O as the angle that

side f makes with respect to the X-axis, counter-clockwise being positive, while

the angle µ is the angle between the X-axis and side e. We therefore write

C−E =

 1

f cosλ

f sinλ

 , and C− F =

 1

e cosµ

e sinµ

 . (3.52)

Now de-homogenise and rearrange Equations (3.52) to isolate E and F:

E =

[
XC − f cosλ

YC − f sinλ

]
, and F =

[
XC − e cosµ

YC − e sinµ

]
. (3.53)

Substitute these results into the identities defined in the fixed frame

E ·E = a2, and (F−G) · (F−G) = b2.

The first dot product gives

E ·E = (XC − f cosλ)
2

+ (YC − f sinλ)
2

= a2.

After collecting terms and using the identity cos2 λ+sin2 λ = 1, and rearranging

the terms this simplifies to

E ·E = X2
C + Y 2

C − 2fXC cosλ− 2fYC sinλ+ f2 = a2. (3.54)

Since our fixed coordinate system is selected such that the X-axis is directed

from point O to point G, with the origin located at O, the difference of the two

vectors in the second dot product is

F−G =

[
XC − e cosµ− d
YC − e sinµ

]
.

Using the same approach, the second dot product simplifies to

(F−G) · (F−G) = X2
C + Y 2

C − 2eXC cosµ− 2eYC sinµ+

2de cosµ− 2dXC + d2 + e2 = b2. (3.55)
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The next step is to eliminate the variable angle µ from Equation (3.55) by

observing in Figure 3.14 that

µ = γ + λ

and substituting into Equation (3.55). The addition identities for sine and cosine

functions

cos (γ + λ) = cos γ cosλ− sin γ sinλ,

sin (γ + λ) = cos γ sinλ+ sin γ cosλ,

are used to separate the angle functions, and after rearranging the terms as in

Equation (3.55) gives

X 2
C + Y 2

C − 2e ((XC − d) cos γ + YC sin γ) cosλ −

2e (YC cos γ + (d−XC) sin γ) sinλ+ d2 + e2 − 2XCd = b2. (3.56)

The next step towards obtaining the quasi-algebraic point coupler curve ex-

pressed in the non-moving coordinate system in terms of XC and YC is to

linearly solve Equations (3.54) and (3.56) for cosλ and sinλ using Cramer’s

rule [32].

To apply Cramer’s rule to this system of equations, the equations must be

in the vector-matrix form Ax = b. Recall that if Ax = b represents a system

of n equations where all the elements of matrix A and vector b are known, and

the equations are linear in the unknown elements of vector x. If det(A) 6= 0

then the system has a unique solution for x = [x1, x2, · · · , xn]T given by [32]

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, · · · , xn =

det(An)

det(A)
,

where det(Aj) is the matrix obtained by replacing the entries in the jth column

of A by the elements in the vector b = [b1, b2, · · · , bn]T .

To apply Cramer’s rule, we first simplify Equations (3.54) and (3.56) by

collecting the terms that are scaled by cosλ and sinλ, and those that are inde-

pendent of the angles as

P1 cosλ+Q1 sinλ = R1,

P2 cosλ+Q2 sinλ = R2,

}
(3.57)

where
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P1 = 2XCf,

Q1 = 2YCf,

R1 = X2
C + Y 2

C + f2 − a2.

∥∥∥∥∥∥∥
P2 = 2e ((XC − d) cos γ + YC sin γ) ,

Q2 = 2e (YC cos γ − (XC − d) sin γ) ,

R2 = (XC − d)2 + Y 2
C + e2 − b2.

We can now arrange these equations in the desired form as[
P1 Q1

P2 Q2

][
cosλ

sinλ

]
=

[
R1

R2

]
. (3.58)

Note that the term (XC − d)2 in the coefficient R2 in Equations (3.57) is ob-

tained from the three terms X2
C −2dXC +d2 in Equation (3.56). Solving Equa-

tions (3.57) using Cramer’s rule for cosλ and sinλ yields

cosλ =

∣∣∣∣∣ R1 Q1

R2 Q2

∣∣∣∣∣∣∣∣∣∣ P1 Q1

P2 Q2

∣∣∣∣∣
=

R1Q2 −R2Q1

P1Q2 − P2Q1
, and (3.59)

sinλ =

∣∣∣∣∣ P1 R1

P2 R2

∣∣∣∣∣∣∣∣∣∣ P1 Q1

P2 Q2

∣∣∣∣∣
=

P1R2 − P2R1

P1Q2 − P2R1
. (3.60)

Finally we enforce the identity cos2 λ+ sin2 λ = 1 to obtain

(R1Q2 −R2Q1)2 + (P1R2 − P2R1)2 = (P1Q2 − P2Q1)2,

or

(R1Q2 −R2Q1)2 + (P1R2 − P2R1)2 − (P1Q2 − P2Q1)2 = 0. (3.61)

The Pi and Qi coefficients in Equation (3.61) are linear in the coordinates of

the coupler point XC and YC , while the Ri are quadratic. The products PiRj

and QiRj are therefore of order three (1 + 2), and the squares of the differences

are of order six (3 ∗ 2). Hence, the point coupler curve of an arbitrary planar

4R mechanism represented by Equation (3.61) is of order six (a sextic) agreeing

with the well known theory of planar mechanisms [20].
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3.6.1 Coupler Curve Examples

The following three examples of coupler curves from different mechanisms are

intended to illustrate that the nature of any particular coupler point in any

particular 4R linkage is tremendously varied. The first coupler curve plotted

in Figure 3.15 (a) is for the non Grashof double π-rocker with link lengths in

generic units of length of a = 9, b = 12, d = 6 and c implied by the coupler

edge lengths e = 8 and f = 8, and the angle γ = π
3 between sides f and e,

giving c =
√
e2 + f2 − 2ef cos γ = 8, obviously, since the coupler triangle must

be equilateral. Evaluating the signs of the three linear factors A1, C1, and D1

from Equation (3.16) then consulting Table 3.1 reveals the linkage is indeed a

non Grashof double π-rocker. Note the coupler curve possesses a single real

crunode (real double point).

YC

XC

(a)

XC

YC

(b)

XC

YC

(c)

Figure 3.15: Three different coupler curves.

The second linkage is a non Grashof 0-rocker, π-rocker determined by a = 6,

b = 7, d = 12 and c implied by the coupler edge lengths e = 10 and f = 5, and

the angle γ = π
3 between sides f and e, giving c =

√
e2 + f2 − 2ef cos γ ≈ 8.66.

The corresponding coupler curve is plotted in Figure 3.15 (b). This coupler

curve possesses two real crunodes.

The third linkage is a Grashof double crank determined by a = 6, b = 7,

d = 4 and c implied by the coupler edge lengths e = 4 and f = 6, and the angle

γ = π
3 between sides f and e, giving c =

√
e2 + f2 − 2ef cos γ ≈ 5.29. The

coupler curve, plotted in Figure 3.15 (c), has two distinct branches, one with a

real crunode the other without. This illustrates a synthesis issue known as the

branch defect because the linkage must be re-assembled in two different ways to

reach both branches of the coupler curve.
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3.6.2 Algebraic Properties of the Planar Coupler Curve

Discussion of the algebraic properties of the sextic coupler curve requires some

knowledge of plane algebraic curves and rational algebraic functions. This ma-

terial is discussed in great detail in [21], while the material presented in [22]

is, in the author’s own words: “intended to give the student a reasonably brief

introduction to the subject”. Some elementary material will be presented next

to highlight the properties of these sextic curves. In particular, it is instructive

to consider the order of the point equation of a curve as well as it’s circularity,

the class of the corresponding line equation of the curve, the number and type

of singular points, and the Plücker numbers that relate them by virtue of the

principle of duality. We will consider plane algebraic curves in general and the

sextic coupler curve in particular in the following four subsections.

3.6.2.1 Curve Order; Bézout’s Theorem; Imaginary Conjugate Cir-

cular Points; Circularity

A planar curve is algebraic if a point (x1, x2) which traces the curve satisfies an

equation f(x1, x2) = 0, where f is a rational integral algebraic function of the

coordinates x1 and x2. In other words a function is algebraic if

f(x1, x2) =
∑

aijx
i
1x
j
2 = 0

and the indices i and j take either finite integer values, or are zero, and aij is

some constant rational coefficient (i.e. a ratio of two integers) for each unique

term xi1x
j
2. The degree n of an algebraic planar curve is the highest power

of xi1 and xj2 combined: n = (i + j)max. Clearly, the degree of a curve is a

positive integer. In the study of algebraic curves, the degree of a particular

curve is usually called it’s order. When one, or more of the terms cannot be

expressed as a rational number (a ratio of integers) it is said to be irrational.

For example x = ey, or y = cosx are transcendental, since the expressions for

exponential and trigonometric functions represent infinite power series which

cannot be represented as ratios of integers.

In 1876 Alfred Bray Kempe, a mathematician best known for his work on

linkages, proved a theorem relating the properties of plane algebraic curves

to planar linkages, which can contain only P - and R-pairs: it is theoretically

possible to design a linkage to guide a point to trace any plane algebraic curve

[33]. Regardless, since that time no general method has been discovered for

identifying the best, or simplest mechanical system for tracing any particular

plane algebraic curve [20]. Hence, there remains keen interest throughout the
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world for advancing and developing new knowledge in linkage design methods,

performance metrics, and optimisation strategies. An excellent comprehensive

introduction to plane algebraic curves may be found in [22] but is beyond the

scope of this text. Nonetheless some of the concepts germane to planar four-bar

analysis and design will now be introduced.

An arbitrary line in the plane cuts an nth order algebraic curve in at most

n points. A plane algebraic curve can be described by an equation as a locus

of points, but it can also be described in a dual way by an equation as an

envelope of lines tangent to the curve. In this case, a general point in the

plane has at most n lines passing through it that are tangent to an algebraic

curve of nth class. Hence the distinction between the point equation and the

line equation of a curve. Line equations will be discussed in greater detail

later and are mentioned now only to hint at the great depth of the study of

plane algebraic curves since antiquity. We will focus on point equations for the

moment. Generalising the notion of how many times a line cuts a nth order

algebraic curve we can eliminate the phrase “at most” from the theorem if we

admit the existence of points of intersection that are imaginary, or infinite.

Because the point equation of a line is linear, it follows that it can intersect

an nth order algebraic curve in n points. By extension, Bézout’s theorem states

that two coplanar algebraic curves of orders n and m which do not share a

common component, that is, which do not have infinitely many common points,

intersect in general in nm points: the product of their orders. The theorem is

named after Étienne Bézout who published a proof in 1779 in a treatise entitled

Théorie Générale des Équations Algébriques [34], but the theorem was originally

essentially stated without proof by Issac Newton in his proof of Lemma 28 in

Volume 1 of his Principia in 1687 [35]. Regardless, history has justly recognised

Bézout and the theorem bears his name.

It is easy to confirm by inspection that a line can cut a conic section in no

more that two real points. Considering the plots in Figure 3.16, it is equally

easy to confirm that two general coplanar conics, second order plane algebraic

curves, can have at most four real points in common, unless they are coincident.

If a right circular cone is cut by a plane parallel to it’s base circle, but not at

it’s apex, the trace of the cone on the plane is a circle, a conic section, a general

plane algebraic curve of order two. In fact, a circle is a special case of an ellipse

whose major and minor axes have the same length. Yet two distinct coplanar

circles never intersect in more than two real points. A circle cuts any other

conic section in as many as four points, but not another circle! How is this so?

Does this suggest that our Cartesian representation of the algebraic equation of
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a circle in the Euclidean plane E2 is lacking the resolution needed to identify

two additional points of intersection? Are there two additional points that are

occluded by the representation using Cartesian coordinates? Let’s examine the

possibilities.

(a) Hyperbola and parabola. (b) Ellipse and parabola.

(c) Circle and ellipse. (d) Two circles.

Figure 3.16: Conic section intersections.

Consider the equation of an arbitrary circle, k, in the Euclidean plane E2

with radius r and centre C(xc, yc):

(x− xc)2 + (y − yc)2 = r2. (3.62)

Expressing Equation (3.62) using homogeneous coordinates x = x1
x0 , y = x2

x0
produces the corresponding circle in the projective extension of E2, called P2:(

x1
x0
− xc

)2

+

(
x2
x0
− yc

)2

= r2. (3.63)

The homogenising coordinate x0 can be considered a third length coordinate

that has the effect of scaling the circle. In the case of a circle the value of x0
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must be a positive number, or zero. When x0 = 1 Equations (3.62) and (3.63)

are identical. When the relative magnitude of x0 increases, the circle becomes

smaller and approaches it’s centre. As x0 ⇒ ∞ the circle diminishes in area

until it becomes vanishingly small and ultimately degenerates to a single point:

the centre. As x0 diminishes, the area of the circle increases, with the limiting

case being x0 = 0. Equation (3.63) is now said to be homogeneous in x0, x1,

and x2. This is seen more readily if we multiply it by x20 giving

(x1 − xcx0)2 + (x2 − ycx0)2 = r2x20. (3.64)

Now, every term in Equation (3.64) is homogeneously of degree two. When

x0 = 1 then x1 = 0 and x2 = 0 are the coordinate axes, but what happens when

x0 = 0 while x1, x2, xc, yc, and r remain finite? Just as lines x1 = 0 and x2 = 0

always intersect the circle in two real, or imaginary points, it must also be that

the line x0 = 0 intersects the circle in two points. Since the effect of setting

x0 = 0 gives the circle an infinitely large area and because x0 = 0 is a line, it

must be that x0 = 0 is a line at infinity. Because we are considering a circle in

a plane, there can only be one line at infinity that bounds the finite locations

in the plane. Hence, x0 = 0 is called the line at infinity.

The intersection of a circle with the line at infinity x0 = 0 is given by the

equations

x0 = 0, x21 + x22 = 0. (3.65)

In this case Equation (3.64) becomes

x21 + x22 = 0. (3.66)

Equation (3.66) factors into a degenerate conic section consisting of a pair of

complex conjugate imaginary lines

(x1 + ix2)(x1 − ix2) = 0 (3.67)

which possess one real point of intersection, namely (x1, x2) = (0, 0). There-

fore, the line at infinity intersects the circle where the complex conjugate lines

represented by Equation (3.67) meet the line at infinity, namely at the complex

conjugate points I1 and I2:

(x0 : x1 : x2) =

{
I1(0 : i : 1),

I2(0 : −i : 1).
(3.68)

The constants r, xc and yc which characterise the circle do not appear in the re-

sult. Thus, every circle represented in the projective extension of the Euclidean
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plane intersects the line at infinity in exactly the same two imaginary points,

called the conjugate imaginary circular points I1 and I2. They are also widely

called the imaginary absolute circle points [3, 16, 20, 24, 36]. It can be shown,

in the same way, that every sphere cuts the plane at infinity in the imaginary

conic:

x0 = 0, x21 + x22 + x23 = 0, (3.69)

which is called the imaginary, or absolute sphere circle.

These absolute quantities account for the apparent deficiency of Bézout’s

theorem [20, 37] for the intersections of algebraic curves and surfaces. That is,

two curves of order n and m will intersect in nm points; similarly, two surfaces

of order n and m will intersect in a curve of order nm. Clearly, two circles can

intersect in at most two real points, while two spheres intersect in a circle (a

second order curve). Since every circle contains the complex conjugate points I1

and I2, two circles can intersect in at most two more real points for a maximum

number of four. The same applies for spheres; they intersect in a curve that, if

it contains a real circle, always splits into a real and an imaginary conic. Hence

Bézout’s theorem is seen to be always true.

A double point, also known as a node, of a plane algebraic curve is a location

where the curve intersects itself such that two branches of the curve have distinct

tangent lines at that point. Double points are one type of singular point which

will be elaborated on in greater detail in Subsection 3.6.2.4. Ordinary double

points of plane curves are commonly known as crunodes. Ordinary double points

of a plane curve given by f(x1, x2) = 0 must satisfy

f(x1, x2) =
∂f

∂x1
=

∂f

∂x2
= 0.

A non-degenerate planar algebraic curve of order n can have at most

1

2
(n− 1)(n− 2) (3.70)

double points, real and/or imaginary. Hence, a sextic coupler curve can have as

many as
1

2
(6− 1)(6− 2) = 10 (3.71)

double points.

Because a circle contains the complex points I1 and I2 as two single complex

conjugate points, a circle is said to have a circularity of one. Curves that contain

I1 and I2 as double and triple points have circularity two and three, respectively.
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The circularity of the planar 4R coupler curve is determined by expressing the

coordinates of the coupler point C as homogeneous coordinates XC

WC
and YC

WC
in

the point coupler curve equation, Equation (3.61). The only terms that remain

after setting WC = 0 represent the intersection of the general 4R coupler curve

with the line at infinity:

4
(
(e cos γ)2 + (e sin γ)2 − 2ef cos γ + f2

)
(X6

C + Y 6
C)+

12
(
(e cos γ)2 + (e sin γ)2 − 2ef cos γ + f2

)
(X4

CY
2
C +X2

CY
4
C)−

16(e2f2 sin γ)2(X4
C + Y 4

C)− 32(ef sin γ)2(X2
C + Y 2

C) = 0.

It is to be understood that we are only considering non-degenerate point coupler

curves, in which case the constant coefficients do not vanish. It is shown in [20]

that the coupler curve intersects the line at infinity at points where

WC = 0,

(X2
C + Y 2

C)3 = 0,

}
(3.72)

namely at the complex conjugate circular points I1 and I2. We see that a

planar 4R non-degenerate coupler curve has the imaginary circular points as

triple points. Therefore the coupler curve has a circularity of three and is called

a tricircular sextic. Since these are complex conjugate points, a 4R coupler curve

can have at most four additional finite double points because Equation (3.70)

indicates that a sextic curve has at most 10 double points, and six are always

complex conjugates.

3.6.2.2 Duality

In the Euclidean plane a general line has the equation

Ax+By + C = 0 (3.73)

where A, B, and C are arbitrary constants defining the slope and intercepts

with the coordinate axes. The x and y that satisfy the equation are points on

the line. Using homogeneous coordinates this linear equation becomes

X0x0 +X1x1 +X2x2 = 0 (3.74)

where the Xi characterise lines (i.e., X0 = C, X1 = A, X2 = B) and the

xi characterise points. Now Equation (3.74) represents Equation (3.73) as an

equation that is linear in the Xi as well as the xi. Every term in (3.74) is

bilinear, or homogeneously linear. This should explain the etymology of the



3.6. COUPLER CURVES 95

term homogeneous coordinates. The Xi are substituted for the A, B and C to

underscore the bilinearity and symmetry. Now Equation (3.74) may be viewed

as a range of variable points on a fixed line, or as a pencil of variable lines on

a fixed point. The Xi define the line and are hence termed line coordinates,

indicated by the ratios [X0 : X1 : X2]; whereas the xi define the point and

bear the name point coordinates, indicated by the ratios (x0 : x1 : x2). Note

that [· · ·] are used to delimit line coordinates, while (· · ·) are used to delimit

point coordinates. Equation (3.74) is a bilinear equation describing the mutual

incidence of point and line in the plane. Thus, point and line are considered as

dual elements in the projective plane P2. The importance of this concept is that

any valid theorem concerning points and lines yields another valid theorem by

simply exchanging these two words. For example, the proposition

any two distinct points determine one and only one line

is dualised by exchanging the words point and line giving a very different propo-

sition,

any two distinct lines determine one and only one point.

This topic is covered more thoroughly in Chapter 5: Geometry in this collection

of notes and is introduced here as well for clarity in the description of the

important duality between curve order and the next topic: class.

3.6.2.3 Class of a Line Equation

Given an arbitrary point in the plane and a plane algebraic curve that does not

contain the point, the class of the curve is the number of lines that contain the

point and are tangent to the curve. The class of a line equation of a curve is

the line dual to the order of the point equation of the same curve. If the class

is equal to m, then there are m lines tangent to the curve through the point,

again these tangent lines may be real, imaginary, or at infinity. For curves of

orders one and two the class is also one and two, respectively. For curves of

order greater than two the class is generally a different positive integer. As a

concept class is quite important because sometimes in kinematics a curve may

be more efficiently expressed as the envelope of it’s tangent lines rather than as

the locus of it’s points. This can be especially true when P - and R-pairs are

both in the kinematic chain.

As an example consider the PRRP linkage illustrated in Figure 3.17. Recall

that this linkage is known as an elliptical trammel. When the P -pair longitudinal

axes of symmetry are orthogonal the coupler, line AB, envelops a four pointed
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Figure 3.17: An asteroid is generated when the P -pairs in an PRRP linkage

are orthogonal.

asteroid. The same asteroid would be traced by a circle of diameter AB
2 rolling

without slip on the interior of the larger circle defined by the four singular

apexes. Line AB has the homogeneous equation

x1
a cosϑ

+
x2

a sinϑ
− x0 = 0, (3.75)

where a is the length of the coupler AB.

Again, an arbitrary line in the plane has the homogeneous equation

X0x0 +X1x1 +X2x2 = 0. (3.76)

Comparing and equating the coefficients of x1 and x2 in Equations (3.75) and

(3.76) yields
X1

X0
= − 1

a cosϑ
,

X2

X0
= − 1

a sinϑ
.

 (3.77)

The angle ϑ can be eliminated from the coefficients in Equation(3.75) with

the line coefficients defined as in Equation(3.77) by squaring them and imposing
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the identity cos2 ϑ+ sin2 ϑ = 1 which yields the line equation of the asteroid:

a2X2
1X

2
2 −X2

0 (X2
1 +X2

2 ) = 0. (3.78)

The line equation for the asteroid in Equation(3.78) is of degree four, therefore

the class of the asteroid is m = 4. The locus of a point on a circle rolling without

slip on a plane is known as a cycloid. Hence, because the point equation for

the four pointed asteroid can be generated by a the locus of a point on the

circle rolling without slip inside a circle of larger diameter it is also known as a

hypocycloid.

Consulting the literature, one finds the point equation for the hypocycloid,

or four pointed asteroid is(
a2x20 − (x21 + x22)

)3 − 27a2x20x
2
1x

2
2 = 0. (3.79)

The point equation for the four pointed asteroid has order six, whereas the line

equation for the very same curve is of class four.

3.6.2.4 Singular Points

In the study of kinematic geometry, and algebraic geometry in general, a singular

point of a curve is a point P that is uniquely defined, hence singular. In the

geometric sense, at this point the tangent space of the curve may not be regularly

defined. A point that is not singular is a regular, or simple point. As we

have seen in Subsection 3.6.2.1 a curve of order, or class, greater than two can

intersect itself. The points where this happens are called multiple points. A

comprehensive account of multiple points is to be found in [21]. The type of

multiple point that occurs for planar 4R coupler curves are called double points,

or nodes. The curve intersects itself a single time at a double point, hence there

must be two tangents to the curve at that location. There are three species of

double points that arise when the tangents to the curve at the double point are

either a pair of distinct real lines, a pair of complex conjugate lines, or a pair of

real but coincident lines.

To illustrate the different nature of the three types of double point consider

the following cubic equation

y2 = (x− a)(x− b)(x− c) (3.80)

where the constant coefficients have rational positive magnitudes such that a <

b < c. This curve, illustrated in Figure 3.18 (a), is symmetric with respect to

the x-axis since every value of x gives equal and opposite values of y. The curve
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intersects the x-axis at the three points x = a, x = b, and x = c. When x < a

the value of y2 is negative, and y is imaginary. When a < x < b then y2 is

positive, and there are two real, equal and opposite values for y. For values of

b < x < c the value for y2 is again negative, and finally positive again for all

values c < x. The curve therefore consists of a closed oval between a and b and

an open branch beginning at c and extending infinitely in two directions beyond

it. The curve illustrated in Figure 3.18 has a = 2. b = 4, and c = 5. These

values are then manipulated to yield a crunode, an acnode, and finally a cusp

(spinode).

a b c

(a) Cubic with two real branches.

b=c
a

(b) A crunode.

Figure 3.18: Species of double points: crunode.

3.6.2.4.1 Crunode Now let b vary in magnitude between the range a ≤
b ≤ c. As b increases in value the oval circuit increases in size maintaining it’s

location at a but growing towards c until b = c and the curve crosses itself.

Inspecting the curve illustrated in Figure 3.18 (b) we see that at the double

point, or node, the two branches of the curve meet, and each branch has it’s

own real, distinct tangent. Such a point is called a crunode.

3.6.2.4.2 Acnode As b moves in the opposite direction towards a, the orig-

inal oval circuit in Figure 3.18 (a) now shrinks in size until b = a. The cubic now

possesses an isolated double point at x = a = b. Isolated points, also known as

hermit points satisfy the equation of the cubic but do not appear to lie on the

curve, see Figure 3.19 (a). Such points are called acnodes. The tangents to the

curve at an acnode are complex conjugate lines. No real line through the acn-

ode intersects the curve in more than one real point, confirming the necessary

condition that a real line cuts a cubic in at most three points.
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ca=b

(a) An acnode.

a=b=c

(b) A cusp, or spinode.

Figure 3.19: Species of double points: acnode and cusp (spinode).

3.6.2.4.3 Cusp (Spinode) The third species of double point occurs if the

equation of the tangent to the curve at a point becomes a perfect square. In

this case the tangents at the double point are two real, but coincident lines. In

the case of the cubic in Equation (3.80) if we allow both coefficients b and c to

approach a, the two distinct branches of the curve merge into a single branch

when a = b = c and Equation (3.80) becomes

y2 = (x− a)3. (3.81)

This situation is illustrated in Figure 3.19 (b). The double point where x = a =

b = c is called a cusp, or a spinode. They are also sometimes called stationary

points because if the curve is generated by the motion of a point then at a cusp

the motion of the point in one direction comes to a stop and changes direction.

The tangent at the cusp meets the curve in three coincident points at (a, 0) in

Figure 3.19 (b). An example we touched on earlier is the four pointed asteroid

in Figure 3.17. It contains four real cusps at the coordinates (±a, 0) and (0,±a).

3.6.2.5 Plücker’s Equations

When curves are generated as envelopes of tangent lines using line coordinates

there are three dual characteristic numbers for the order of a curve point equa-

tion, it’s number of cusps, and number of double points that are crunodes and

acnodes. These dual quantities are the class of the curve line equation (as we

have already discussed in Section 3.6.2.3), the number of inflection points, and

the number of bitangent lines, respectively. The symbols corresponding to these
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quantities and the corresponding dual quantities pairs:

order = n

class = m

}
dual;

number of double points = δ

number of bitangent lines = τ

}
dual;

number of cusps = κ

number of inflection points = ι

}
dual.

The dual of a cusp is an inflection point. A cusp is generated when a point

tracing the curve reaches a limit on it’s path and changes direction while an

inflection point is generated when a line enveloping a curve reaches a limiting

gradient and then reverses. The dual of a crunode double point is a single line

that is tangent to the curve at two distinct points and is called a double tan-

gent, or bitangent line. The bitangent line, by analogy to an acnode, may have

imaginary conjugate tangent points. In 1839 Julius Plücker published a com-

prehensive theory of algebraic curves [38] in which he identified five equations

relating these six numbers. The versions presented here were derived in detail

in [22], while different useful versions are derived in [21]:

n(n− 1) = m+ 2δ + 3κ; (a)

m(m− 1) = n+ 2τ + 3ι; (b)

3n(n− 2) = ι+ 6δ + 8κ; (c)

3m(m− 2) = κ+ 6τ + 8ι; (d)

3(n−m) = κ− ι. (e)


(3.82)

In this set of equations, enumerated simply as Equation (3.82), (a) and (b)

are duals of each other, as are (c) and (d), while (e) is self-dual [20]. They may be

cautiously used to establish limits on some of these numbers given knowledge

of others, but they do not always unequivocally give answers. For example,

one may compute the class of a curve if the order, number of double points,

and number of cusps is known, but doubt may remain because of the need to

distinguish between real and imaginary quantities as well as those at infinity.

3.7 Open Kinematic Chains

Recall from Chapter 1: Introduction that a kinematic chain is simple if each link

in the chain is coupled to at most two other links. The degree of connectivity
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(DOC) of a link indicates the number of rigid bodies joined to it. If all links

are binary (DOC = 2) the simple chain is closed. E.g. a four-bar mechanism.

Alternately the simple chain is open with the first and last links having DOC

= 1. Our analysis of planar four-bar mechanisms considered only closed simple

kinematic chains, we now turn our attention briefly to the analysis of open

chains.

Figure 3.18. A 3R planar serial

robotic arm.

Over the decades the study of

the kinematics and kinetics of open

kinematic chains has become largely

associated with the study of the dy-

namics and control of industrial se-

rial robots, see [39] for a comprehen-

sive introduction. Since the focus of

these notes is largely on closed kine-

matic chains the introduction given

here is intended only to illustrate

the difference between the analysis

of closed and open chains. Consider the 3R planar serial robotic arm illustrated

in Figure 3.18. The two fundamental questions involved in the kinematic anal-

ysis of serially jointed robot arms are known as the forward and the inverse

kinematics problems.

3.7.1 Forward Kinematics Problem

The forward kinematics problem involves computing the position and orienta-

tion of the end-effector given the individual joint angles. For the planar serial

robot in Figure 3.18 this requires determining the location of the origin of the

end-effector reference coordinate system, point E in this case, and the angle the

x-axis makes with respect to the X-axis of the non-moving ground-fixed refer-

ence coordinate system with origin located at point O, given the joint angles,

in this case ϑ1, ϑ2, and ϑ3.

Because this is a planar problem, the absolute orientation of the end-effector

reference coordinate system with respect to the X-axis, let’s call it ϕ, is simply

the sum of the three relative joint angles:

ϕ = ϑ1 + ϑ2 + ϑ3. (3.83)

To compute the location of the origin E of the end-effector coordinate system

the usual approach is to concatenate the appropriate homogeneous transforma-

tion matrices. However, in the planar case we may simply use the law of cosines.
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Because ϑ2 is the external angle of edge l2 with respect to edge l1 of triangle

4l1l2s we can use the alternate form of the cosine law to compute the distance

s between origins O and E as

s =
√
l21 + l22 + 2l1l2 cosϑ2. (3.84)

The angle that line s makes with respect to the X-axis is ϑs, given by

ϑs = ϑ1 − α = ϑ1 − cos−1

(
l21s

2 − l22
2l1s

)
. (3.85)

Finally, the position vector of E in the ground fixed coordinate system with

origin at O is

E =

[
s cosϑs

s sinϑs

]
. (3.86)

3.7.2 Inverse Kinematics Problem

The inverse kinematics problem involves computing the joint angles ϑ1, ϑ2, and

ϑ3 required to to give the moving coordinate system with origin E a particular

position and orientation within the reachable workspace of the arm. Since the

position and orientation of the coordinate system that moves with E is given

we know the angle ϕ and the position vector E, and hence length s, using

trigonometry and the cosine law we can compute

ϑs = tan−1

(
EY
EX

)
, and α = cos−1

(
l21 + s2 − l22

2l1s

)
. (3.87)

Next we compute

ϑ1 = ϑs + α. (3.88)

We again use the cosine law to obtain

ϑ2 = cos−1

(
l21 + l22 − s2

2l1l2

)
. (3.89)

Finally, since we are given the angle ϕ we can determine the last joint angle

with Equation (3.83)

ϑ3 = ϕ− ϑ1 − ϑ2. (3.90)

Of course, there are usually more than one solution, and in order for a solution

to exist it must be that the goal point given by length s is located within the

reachable workspace of the arm such that s ≤ l1 + l2.
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