
Chapter 5

Linear Geometry

The kinematic analysis and synthesis of mechanisms, or any type of linkage, is
greatly facilitated by suitable geometric representation, or algebraic formulation
in a geometry that results in the simplest complete solution. Most engineers
are only acquainted with 2D and 3D variants of Euclidean geometry. What
other geometries are there? This of course begs at least three questions. What
is geometry? How can “geometry” be defined? How can one geometry be
differentiated from another?

The word geometry, which is originally a Greek word, means earth-measure.
Its first applications were to determine the area of farms so taxes on the land
could be levied. The 13 books of The Elements [1], compiled by Euclid in about
300 BC, summarized the state of the art of geometry 2300 years ago. The
Elements also contains a great amount of number theory. We tend to equate
synthetic geometry with the propositions and axioms set down in The Elements
and using them to derive and prove theorems. The term analytic geometry
shifts to the cartesian representation of Euclidean geometry developed by Rene
Descartes, 1596-1650, so we can use coordinates and develop algebraic equations
relating the coordinates. It is widely believed that the geometry contained in
Euclid’s Elements is perfect and complete: there are no flaws in the text, and
all of geometry is to be found there. It turns out that Euclidean geometry is
but one in an infinite series. Let’s take a quick look at how this came to be
known, and in so doing, come to understand what geometry really implies.

5.1 Euclid’s Basic Assumptions

In Book I of The Elements, Euclid states ten assumptions as his basis for proving
all theorems using logic and only a collapsible compass, like a piece of string, and
a straight edge without a scale. All proofs can be traced back to the assump-
tions which are taken to be self-evident truths. They consist of five postulates
and five axioms, or common notions. The postulates are of a geometric nature,
whereas the axioms are more general. Today however, we tend to use the words
postulate and axiom interchangeably.
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Common Notions (Axioms)

1. Things which are equal to the same thing are also equal to one another.

2. If equals are added to equals, the wholes are equal.

3. If equals are subtracted from equals, the remainders are equal.

4. Things which coincide are also equal.

5. The whole is greater than the part.

Postulates

1. A straight line may be drawn between two distinct points.

2. A finite straight line may be produced to any length in a straight line.

3. A circle may be described with any center and any distance from the
center.

4. All right angles are equal.

5. If a straight line meets two other straight lines, so as to make the two
interior angles on one side of it together less than two right angles, the
other straight lines will meet if produced on that side on which the angles
are less than two right angles.

Figure 5.1: Euclid’s parallel postulate.

The fifth postulate, or parallel postulate as it has come to be known, which
is illustrated in Figure 5.1, has been the subject of study since the time it was
published 2300 years ago. In fact, attempts to “prove” the parallel postulate led
to the discovery of the non-Euclidean geometries: elliptic and hyperbolic, where
the fifth postulate is pushed to opposite extremes. Before briefly examining
the validity of the parallel postulate in elliptic and hyperbolic geometry, let us
restate it in a more convenient form as:

for each line l and each point P not on l, there is exactly one, i.e.
one and only one, line through P parallel to l.
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5.2 Riemannian Elliptic Geometry

G.F Bernhard Riemann, 1826-1866, was a German mathematician who made
significant contributions to analysis, number theory, and geometry [2, 3]. He
observed that in the elliptic plane, the parallel postulate is inconsistent. That
is, given a line l and a point P not on l, there are no lines containing P parallel
to l. This observation is based on the model he devised in 1854 for the elliptic
plane, which is described next.

Analogous to the straight line in the plane is the geodesic line on a curved
surface. The geodesic is the shortest curve on the surface connecting two points.
The elliptic plane is modeled by central projection of the points in E2 onto the
surface of a hemisphere, see Figure 5.2. Each point P in the plane σ yields a line

Figure 5.2: Central projection model of the elliptic plane.

OP , joining it to O, the centre of the sphere. This diameter intersects the sphere
in two antipodal points, similar to north and south poles, P1 and P2 which are
both images of the the same point P under the central projection. Each line l in
σ yields a plane Ol, joining it to O. This diametral plane intersects the sphere
in a great circle: a circle whose center is coincident with the sphere center O.
Great circles on a sphere are its only geodesics. Hence, all great circles are
straight lines on the sphere. If we allow the plane σ to be bounded by the line
at infinity, L∞, then the equator are the points at infinity, doubly mapped. We
abstractly define the antipodal points to be one and the same point.

All parallel lines in σ intersect the sphere as arcs of great circles that all meet
at the same points on the equator. This is because every pair of great circles
on a sphere intersect in a pair of antipodal points. Since the antipodal points
are defined to be the same, all parallel lines in the elliptic plane, modelled by
great circles on the sphere, intersect in the same point at infinity. But, lines in
different directions have different points at infinity, all on the same line, L∞.
When L∞ is treated like any other line, the elliptic plane becomes a model
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for the real projective plane, as will soon seem obvious, but more needs to be
discussed.

The main conclusion is that in the elliptic plane the fifth postulate of Euclid
must be replaced with:

given line l and point P not on l, there are no lines containing P
that are parallel to l. In other words, all lines in the plane which
contain P intersect l.

5.3 Hyperbolic Geometry

Hyperbolic geometry was discovered independently in about 1826 [2] by Nikolai
Lobachevsky (1782-1856), Janos Bolyai (1802-1860), and Carl Friedrich Gauss
(1777-1855). This was the first truly non-Euclidean geometry compared to
Riemann’s elliptic geometry which dates to about 1854. The model of the

Figure 5.3: Model of the hyperbolic plane.

hyperbolic plane is a subset of the Euclidean plane. The points of the hyperbolic
plane are those on the interior of a circle in the Euclidean plane, excluding those
points on the circumference. Thus lines are finite, but unbounded, chords of the
given circle. The geometry on this surface is hyperbolic geometry. Distance
and angles are defined in a different way compared to Euclidean and elliptic
geometry. But it is easy to see in Figure 5.3 that for a given line l and point
P not on it there are infinite lines that contain P that do not intersect l, and
hence are parallel to l. Thus we must replace Euclid’s fifth postulate with:

given line l and point P not on l, there are an infinite number of
lines containing P that are parallel to l.

Many of Euclid’s axioms and postulates are valid in elliptic and hyperbolic
geometry, but many, such as the fifth postulate, are not. The point to emphasize
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is that for 2200 years there was only Euclidean geometry. Then in the space of
30 years suddenly there were two new, axiomatically consistent, non-Euclidean
geometries. Suddenly, geometry was realized to be far from a closed subject. The
19th century brought about many great advances. Those who made significant
discoveries in the subjects we will examine were Julius Plücker (1801-1868), his
Ph.D. student Felix Klein (1849-1925), and Arthur Cayley (1821-1895), among
many others.

Before looking at Klein’s Erlangen Programme, an analytical way to system-
atically derive different geometries, we’ll examine synthetic projective geometry.
It turns out that projective geometry is the most general linear geometry, from
which all other linear geometries, including elliptic, hyperbolic, and Euclidean
geometry, also called parabolic, are derived [4], these conic monikers are dis-
cussed further in Section 5.7.5. In fact, Cayley’s collected mathematical papers
[5] from 1889, on page 592 contains the following famous quote.

“The more systematic course in the present introductory memoir
would have been to ignore altogether the notions of distance and
metrical geometry . . . Metrical geometry is a part of descriptive
geometry, and descriptive geometry is all geometry.”

Cayley used the word descriptive where today we would say projective. But
the observation is clear: projective geometry is the foundation of all linear
geometries.

Figure 5.4: (A) What we see. (B) What is really there.

5.4 Synthetic Projective Geometry

We can think of projective geometry as Euclidean geometry with some axioms
“left out”, or changed. For instance, there is no parallelism, and no way to
measure angles, or the distance between points. In fact, with our vision we see
a 2D stereo projection of a 3D Euclidean world. Our view of E3 changes every
time we move our eyes. We see a projection of E3 onto the projective plane, P2,



150 CHAPTER 5. LINEAR GEOMETRY

of our vision. What we see with our eyes is physically vastly different from the
things we are looking at, train tracks for example, see Figure 5.4.

It was exactly this problem of reconciling the geometry of our local macro
physical existence with the very different geometry of our vision that led people
like Albrecht Durer (1471-1526), Johann Kepler (1571-1630), Gerard Desargues
(1593-1662), and Blaise Pascal (1623-1662) to create a set of axioms that would
be consistent with what we see. Their work ultimately led to the discovery of the
most general geometry, proved by Klein in 1872 [6], in which colinear points map
to colinear points. It is now known as projective geometry. The development of
projective geometry was inspired by the troubling observation that lines which
are known to be parallel appear to intersect when viewing them from a specific
vantage point. The illustration in Figure 5.5 depicts a generalisation of this
problem. In the figure, Durer’s assistant plots the locations of points on the
lute that are projected onto the plane that the assistant measures in, and then
transfers the locations to the paper. Note that the projector is a piece of string
attached to a pointer at one end which passes through an eye attached to the
wall. The string is attached to a weight at the opposite end to keep the projectors
approximately straight lines. All projectors pass through the eye attached to
the wall so that it functions as a vantage point for observing the lute, thereby
approximating what one would see if the focal point of their eyes was located
at the eye in the wall.

For another example, the “parallel” lines of a pair of train tracks appear
to converge at a point on a third line, the horizon L∞, which is illustrated in
Figure 5.6. In that figure points A and B lie on Line r while points C and D
lie on line s. Similar to the eye attached to the wall in Figure 5.5, the human
eye in Figure 5.6 is located at the vantage point, while the conceptual plane of
vision is pierced by lines r and s at points A and C, respectively. In the plane
of vision the projected points B′ and D′ appear to be closer together than the

Figure 5.5: Albrecht Durer projections.
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actual points. Moreover, the projections of lines r and s appear to intersect in
a point on a line orthogonal to their directions, labelled L∞.

Figure 5.6: The parallel lines of a pair of train tracks appear to converge to a
point on a third line, the horizon, or the line at infinity, L∞.

In general, in projective space P3, any two parallel lines from E3 meet at
a point on a line which is perpendicular to the two parallel lines. In fact, all
lines parallel to r and s will appear to converge to exactly the same point. This
point is called the point at infinity of the class of parallel lines to which r and
s belong. So, for every unique direction there is a unique point at infinity, also
called an ideal point. We can extend E3 by adding a point at infinity for each
direction. The totality of all the points at infinity in a plane lie on the line at
infinity, L∞. The totality of all lines at infinity lie on the plane at infinity, π∞.

To synthesize projective geometry let’s take five non-metric theorems from
E3 and remove from them the idea of parallelism.

Euclidean Theorems

E1: Two distinct points determine one and only one line.

E2: Three distinct non-colinear points, also any line and a point not on the
line, determine one and only one plane.

E3: Two distinct coplanar lines either intersect in one point, or are parallel.

E4: A line not in a given plane either intersects the plane in a point or is parallel
to the plane.

E5: Two distinct planes either intersect in a line or are parallel.
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Projective Theorems

P1: Two distinct points determine one and only one line.

P2: Three distinct non-colinear points, also any line and a point not on the
line, determine one and only one plane.

P3: Two distinct coplanar lines determine one and only one point.

P4: A line not in a given plane intersects the plane in one point.

P5: Two distinct planes determine one and only one line.

Comparing the Euclidean (E) and projective (P ) theorems we see the P
theorems are shorter and free from “either/or” constructions. But a far more
important gain is the concept of duality. For each theorem in the projective
plane P2 another is obtained by simply exchanging key words. In the projective
plane P2 the dual elements are line and point: compare P1 and P3; P1 is
obtained from P3 by changing the words point and line. The dual elements of
projective space are point and plane, compare P1 and P5.

5.4.1 Theorem of Pappus

Figure 5.7: Theorem of Pappus: hexagon theorem.

Pappus of Alexandria was one of the last great Greek mathematicians of An-
tiquity. He is known for his Collection, circa 340 AD [7], which is a compendium
of mathematics in eight volumes, the bulk of which still survives! In the book
Pappus uses the terms analysis and synthesis in the way they are defined in
modern mathematics and kinematic geometry. The Collection also contains his
famous hexagon theorem, also called simply the theorem of Pappus. Nothing is
known of his life other than from his own writings where he identifies himself as
a teacher in Alexandria. The theorem of Pappus is a nice example of projective
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Figure 5.8: Dual Theorem of Pappus.

duality in P2. Because it is a theorem that is independent of measurements
of lengths and angles it is equally valid in E2 as well as P2. However, Pappus
did not know that, as all he ever knew was the Euclidean plane, E2. To begin,
consider the following definitions:

1. AB · CD is the point of intersection of line segments joining point pairs
AB and CD.

2. ab ·cd is the line on the points of intersection of line pairs ab and cd, where
a, b, c, and d are lines.

Theorem: In the projective plane P2, let A1, A2, A3 be any distinct points on
any line r and B1, B2, B3 be any other three distinct points on any other
line s; then the points C1 = A2B3 · A3B2, C2 = A1B3 · A3B1, C3 =
A1B2 ·A2B1 are collinear, see Figure 5.7.

The reason this theorem is called the hexagon theorem is because it was
originally stated as: if the six vertices of a hexagon lie alternately on two
lines, the three points of intersection of pairs of opposite sides are collinear.
Of course, the edges of this hexagon self-intersect and it is therefore not
convex, but it is still a six sided planar figure with six vertices and six
edges.

Dual: Let a1, a2, a3 be any three distinct lines on any point R and b1, b2,
b3 be any other three distinct lines on any other point S; then the lines
c1 = a2b3 · a3b2, c2 = a1b3 · a3b1, c3 = a1b2 · a2b1 are concurrent, see
Figure 5.8.

The vertices of the hexagon to which Pappus refers are more obviously visible
in Figure 5.8 illustrating the dual theorem as the points of intersection of the
three lines on each of points R and S where the line pairs with different indices
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in each set intersect. Pappus’ theorem and its dual involve nine points and
nine lines which can be drawn in an infinite number of ways; although they are
apparently different, they are projectively equivalent [7].

5.4.2 Pascal’s Theorem

Blaise Pascal, 1623-1662, was a French mathematician, physicist, and inventor.
He was an important mathematician, helping create two major new areas of
research: he wrote a significant treatise on the subject of projective geometry
at the age of 16 and later corresponded with Pierre de Fermat on probability
theory, strongly influencing the development of modern economics and social
science. Pascal’s earliest work was in the natural and applied sciences where
he made important contributions to the study of fluids, which is the work he
is best known for among engineers. Moreover, the SI unit for pressure is the
Pascal. In a treatise on geometry that Pascal published as a 16 year old in 1640,
he proved an important theorem, illustrated with two examples in Figure 5.9.

Theorem: In the projective plane P2, if a simple hexagon A1A2A3A4A5A6,
either concave or convex, is inscribed in a conic, the intersections

R = A1A2 ·A4A5, S = A2A3 ·A5A6, T = A3A4 ·A6A1,

of the three pairs of opposite sides are collinear.

Figure 5.9: Pascal’s theorem.

The line dual of Pascal’s theorem was proved by Charles Julien Brianchon,
1783-1864, a French mathematician and chemist, in 1806, 166 years after Pascal
proved his. However, Brianchon did not use the principle of duality and proved
his theorem using synthetic geometric reasoning, so this dual theorem properly
carries Brianchon’s name. If a mathematician from today was transported back
to 1640 to meet with Pascal and describe the point-line duality of the projective
plane they would have been able to show Pascal that he actually had proved
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two theorems by simply exchanging the words point and line. Brianchon could
have then directed his attention to other work.

Both the theorems of Pascal and Brianchon fail in E2 for regular hexagons
and hexagons with different edge lengths but whose opposite edges are still
parallel and hence do not intersect. But, in P2 the extensions of the pairs of
opposite sides meet on the line at infinity, see Figure 5.10. For a degenerate conic
consisting of two lines, Pascal’s theorem and the theorem of Pappus are identical.
In fact, in P2 Pascal’s and Pappus’ theorems are abstractly isomorphic, in other
words identical, period! In E2 Pappus’ theorem is always true, but not Pascal’s
theorem.

Figure 5.10: Pascal’s theorem is always true in P2, but not in E2.

Moral of the Story

One must use the appropriate geometry depending on the goal. For dimensional
synthesis the goal is to identify sizes and relative locations of links in a mech-
anism. If the location of the axis of a prismatic joint is needed then E2 is not
sufficient. You must identify a geometry that is axiomatically consistent with
the needs of the design problem. This requires geometric thinking. No software
package can help with that.

5.4.3 Losses and Gains

The extension of E2 and E3 with the ideal elements of points, lines, and planes
at infinity results in a much more elegant geometry because of duality. However,
we lose the metric, similarity, and betweeness.
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Every line in P2,3 has a unique point at infinity; you get to this point no
matter which direction you travel on the line. This means we can model a
projective line as a closed curve, see Figure 5.11.

Figure 5.11

Direction To get to B from A you can go in either direction. Hence, we lose
the concept of direction.

Betweeness Is C between B and A? Or, is A between C and B? We can
only have separation between sets of 4 points. For example, in Figure 5.12
points B and D separate points A and C.

Figure 5.12: Points B and D separate Points A and C.

5.5 Homogeneous Coordinates

Let O be the origin of the Cartesian coordinate system, shown in Figure 5.13.
Let S be a distinct point in the plane. The ray passing through O and S is
described by the coordinate pair (x, y). Another distinct point Q ̸= O, on ray
OS is described by the pair (µx, µy), where µ ∈ R (ie., a real number). As
µ → ±∞ the seemingly meaningless pair (∞,∞) is obtained [8].

To remedy this representational problem, the point pairs may be represented
by two ratios, given by ordered triples (x0, x1, x2). If x0 ̸= 0, then the point S
can be uniquely described as:

x =
x1

x0
, y =

x2

x0
. (5.1)

Then any triple of the form (λx0, λx1, λx2) (for λ ̸= 0) describes exactly the
same point S. In other words, two real points are equal if the triples representing
them are proportional. This is because

λx1

λx0
=

x1

x0
= x, and

λx2

λx0
= y.
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Figure 5.13: Cartesian coordinates in E2.

The corresponding coordinates (x0 : x1 : x2) are called homogeneous coordinates.
When x0 = 1 the Cartesian coordinate pair (x, y) is recovered.

The Cartesian coordinates (µx, µy), µ ̸= 0, of the family of points on the
ray through Q in Figure 5.13 can be expressed in homogeneous coordinates as
ratios:

(µx, µy) = (x0 : µx1 : µx2) = (
x0

µ
: x1 : x2).

In E2 as µ → ±∞ the homogeneous coordinates (0 : x1 : x2) are obtained.
There is no point on the line OS to which this triple can correspond because
E2 is unbounded. However, in the projective extension of the Euclidean plane1

the triple (0 : x1 : x2), P2 describes the point at infinity (ideal point) on the
line OS. Since the same triple is obtained regardless if µ → +∞ or µ → −∞, a
unique point at infinity is associated with the line OS in P2. Hence, an ordinary
line adjoined by its point at infinity is a closed curve [10].

For x0 = 0 the triple (0 : 0 : 0) describes neither an ideal point nor a real
point on OS. (0 : x : y) = (0 : 0 : 0) seems to imply that S = O, which is a
contradiction in the construction of the ray OS. The trivial triple (0 : 0 : 0)
is therefore not included in the point set comprising the projective extension of
E2.

All lines in E2 which are extended to their points at infinity have the ho-
mogenising coordinate x0 = 0. The totality of all the existing points at infinity,
with the exception of (0 : 0 : 0), are described by x0 = 0. The extended Eu-
clidean plane which includes all the points at infinity is called the projective

1The projective plane, P2, can be thought of as the Euclidean plane, E2, to which the line
at infinity has been added. The generalisation of this concept of extension is attributed to
Herman Grassmann [9].
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plane P2. Since x0 = 0 is a linear equation, it represents the line at infinity,
L∞.

Figure 5.14: Cartesian coordinates in E3.

Entirely analogous statements can be made for 3D Euclidean space, E3.
This space is covered by a Cartesian coordinate system with origin O and
axes x, y, z. The axes are usually defined as orthogonal. Such an orthogonal
Cartesian system is illustrated in Figure 5.14. The homogeneous coordinates
(x0 : x1 : x2 : x3) of the point S ∈ E3 are defined as:

x =
x1

x0
, y =

x2

x0
, z =

x3

x0
, x0 ̸= 0. (5.2)

As in two dimensional projective space, when x0 = 1 the Cartesian coordinate
triple (x, y, z) is recovered. It should be noted that in general the choice of
homogenising coordinate is arbitrary. Over the course of time the following
conventions have developed.

1. In North America and the British Commonwealth the homogenising coor-
dinate is taken to be the last one. The coordinate indices begin with the
number 1. In the plane, (x1 : x2 : x3) represent the coordinates of a point,
with x3 the homogenising coordinate. In space, a point is described with
(x1 : x2 : x3 : x4), x4 being the homogenising coordinate. In general, the
homogenising coordinate in an nD space has the index n+ 1.
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2. In Europe the first coordinate, given the index 0, is taken to be the ho-
mogenising one. Thus, x0 represents the homogenising coordinate regard-
less of the dimension of the coordinate space.

Both conventions shall be employed henceforth. This is to underscore the
idea that such a restriction is arbitrary and unnecessary in the context of pro-
jective geometry, discussed in Section 5.7. However, where required the ho-
mogenising coordinate shall be explicitly identified.

5.6 Duality: Point, Line, and Plane Coordinates

In the Euclidean plane a general line has the equation

Ax+By + C = 0, (5.3)

where A, B and C are arbitrary constants defining the slope and intercepts with
the coordinate axes. The x and y that satisfy the equation are points on the
line. Using homogeneous coordinates this linear equation becomes

X0x0 +X1x1 +X2x2 = 0, (5.4)

where the Xi characterise lines (i.e., X0 = C, X1 = A, X2 = B) and the
xi characterise points. Now Equation (5.4) represents Equation (5.3) as an
equation that is linear in the Xi as well as the xi. Every term in Equation (5.4)
is bilinear, or homogeneously linear. This should explain the etymology of the
term homogeneous coordinates. The Xi are substituted for the A, B and C to
underscore the bilinearity and symmetry.

Equation (5.4) may be viewed as a locus of variable points on a fixed line,
or as a pencil of variable lines on a fixed point. The Xi define the line and are
hence termed line coordinates, indicated by the ratios [X0 : X1 : X2]; whereas
the xi define the point and bear the name point coordinates, indicated by the
ratios (x0 : x1 : x2). Note the distinction that line coordinates are contained in
square brackets, [ ], while point coordinates have parentheses for delimiters, ( ).
Equation (5.4) is a bilinear equation describing the mutual incidence of point
and line in the plane. Thus, point and line are considered as dual elements in the
projective plane P2. The importance of this concept is that any valid theorem
concerning points and lines yields another valid theorem by simply exchanging
these two words [11]. For example, the proposition

any two distinct points determine one and only one line

is dualised by exchanging the words point and line giving a different proposition,

any two distinct lines determine one and only one point.

In space the mutual incidence of point and plane is given by the bilinear
equation

X0x0 +X1x1 +X2x2 +X3x3 = 0, (5.5)
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where the xi remain point coordinates, however the Xi are now plane coor-
dinates, the dual elements of 3D projective space P3 being point and plane.
Because of the duality, the roles of coefficient and variable are interchangeable.
For instance, Equation (5.5) can represent the family points on a fixed plane,
or the family planes on a fixed point.

The importance of the principle of duality as a conceptual tool can not be
over-emphasised. It shall be employed frequently in the analysis presented in
subsequent lectures.

5.6.1 Computing Point, Line, and Plane Coordinates

A necessary and sufficient condition that three distinct points in the plane,
represented by the homogeneous coordinates as (x0 : x1 : x2), (y0 : y1 : y2) and
(z0 : z1 : z2), be collinear is that [11, 12, 13, 14]∣∣∣∣∣∣

x0 x1 x2

y0 y1 y2
z0 z1 z2

∣∣∣∣∣∣ = 0.

It then follows that the line determined by two distinct points (y0 : y1 : y2) and
(z0 : z1 : z2) has an equation that is easily obtained employing Grassmannian
expansion [4, 9, 15]:∣∣∣∣∣∣

x0 x1 x2

y0 y1 y2
z0 z1 z2

∣∣∣∣∣∣ =

∣∣∣∣ y1 y2
z1 z2

∣∣∣∣x0 −
∣∣∣∣ y0 y2
z0 z2

∣∣∣∣x1 +

∣∣∣∣ y0 y1
z0 z1

∣∣∣∣x2 = 0,

where a variable point on a fixed line has point coordinates (x0 : x1 : x2) and,
dually, a variable line on a fixed point has line coordinates

[X0 : X1 : X2] =

[ ∣∣∣∣ y1 y2
z1 z2

∣∣∣∣ : ∣∣∣∣ y2 y0
z2 z0

∣∣∣∣ : ∣∣∣∣ y0 y1
z0 z1

∣∣∣∣ ] , (5.6)

note that the columns in the middle determinant have been exchanged to elim-
inate the negative sign. Comparing the coordinates, it is to be seen that Equa-
tion (5.4) represents this exact duality.

A similar relation exists when the equation of a plane is written using homo-
geneous coordinates. In E3 a necessary and sufficient condition that four points,
whose homogeneous point coordinates are (x0 : x1 : x2 : x3), (y0 : y1 : y2 : y3),
(z0 : z1 : z2 : z3) and (w0 : w1 : w2 : w3), be coplanar is that [10, 11]∣∣∣∣∣∣∣∣

x0 x1 x2 x3

y0 y1 y2 y3
z0 z1 z2 z3
w0 w1 w2 w3

∣∣∣∣∣∣∣∣ = 0.

It follows that the plane determined by three distinct points has an equation,
again obtained with the Grassmannian expansion, given by Equation (5.5). A
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variable point on a fixed plane has point coordinates (x0 : x1 : x2 : x3), while
the principle of duality means that a variable plane on a fixed point has plane
coordinates

[X0 : X1 : X2 : X3] = ∣∣∣∣∣∣
y1 y2 y3
z1 z2 z3
w1 w2 w3

∣∣∣∣∣∣ :
∣∣∣∣∣∣

y0 y3 y2
z0 z3 z2
w0 w3 w2

∣∣∣∣∣∣ :
∣∣∣∣∣∣

y0 y1 y3
z0 z1 z3
w0 w1 w3

∣∣∣∣∣∣ :
∣∣∣∣∣∣

y0 y2 y1
z0 z2 z1
w0 w2 w1

∣∣∣∣∣∣
 ,

where again, to eliminate the negative multipliers, two columns in the second
and fourth determinants have been exchanged.

5.7 Definition of Linear Geometry

Every geometry of space whose group of transformations are collineations which
contain the sub-group G7 can be derived from projective geometry. This geome-
try has the smallest set of invariants. It is also the most general. This means that
not every theorem valid in projective geometry is valid in the sub-geometries
defined by less general collineations, recall the discussion on the theorems of
Pappus and Pascal in Sections 5.4.1 and 5.4.2. The sub-geometries usually have
a larger set of invariants. It was Arthur Cayley who first realised that “projec-
tive geometry is all geometry” [16] however, it was Felix Klein who provided the
means to systematically derive the sub-geometries [4].

5.7.1 The Erlangen Programme

In 1872 Felix Klein gave his famous inaugural address at the Friedrich-Alexander
University in Erlangen, Germany, the text of which is now known as the Erlan-
gen Programme [6]. Relying on the earlier work of Arthur Cayley [16], it was
intended to show how Euclidean and non-Euclidean geometry could be estab-
lished from projective geometry. However, Klein’s contributions turned out to
be more general, leading to a whole series of new geometries. Today, they are
known as Cayley-Klein2 geometries and the spaces in which they are valid are
Cayley-Klein spaces [19] (discussed in Section 5.7.5). The following summary of
the Erlangen Programme was provided by Klein, himself, in [4]:

Given any group of transformations3 in space which includes the
principal group, G7, as a sub-group, then the invariant theory of this
group gives a definite kind of geometry, and every possible geometry
can be obtained in this way.

According to the Erlangen Programme, the following dual propositions are
always valid [20]:

2This term is attributed to Sommerville[17, 18].
3The terms transformation and linear transformation shall be used interchangeably. This

is because all transformations used in this work are linear.
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1. A geometry on a space defines a group of linear transformations4 in that
space.

2. A group of linear transformations in a space defines a geometry on that
space.

Moreover, the character of a geometry is determined by the relations which
remain invariant under the associated group of linear transformations [4, 24].

These linear transformations are of the form

Ax = kb, (5.7)

where x and b are the n + 1 homogeneous coordinates of two points in an
n dimensional space, A is a nonsingular (n + 1) × (n + 1) matrix and k is a
proportionality constant arising from the use of the homogeneous coordinates.

An invariant is defined [4, 22, 24] as a function of the coordinates under the
transformation such that

ϕ(b0, . . . , bn) = ∆pϕ(x0, . . . , xn), (5.8)

where ∆ is the determinant of the matrixA (which is, by definition, nonsingular)
and p is a weighting factor, and the n + 1st coordinates are those with the 0
index. If p = 0 then ϕ is an absolute invariant, otherwise it is a relative invariant
with weight p [22]. Klein’s definition of a geometry involves absolute invariants,
i.e., functions of the coordinates which remain unchanged by the associated
group of transformations [20].

5.7.2 Transformation Groups

Projective Transformations

The projective transformations in projective space P3 may be thought of as
4 × 4 matrix operators that are collineations. It is important to note that an
(n+1)D homogeneous coordinate space is required to analytically describe the
elements of an nD projective space. These matrices are non-singular by defini-
tion. They are sometimes referred to as structure matrices [25] since changing
the structure of the matrix changes the character of the geometry it represents.
A transformation of P3 may be written as

P =


a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

 , (5.9)

4The modern understanding of linear transformation is limited to those defined on met-
ric vector spaces. However, in this work the term linear transformation refers to any non-
singular injective collineation (i.e., a one-to-one transformation that maps collinear points
onto collinear points), in any space. We use the transformations as n × n matrix operators,
but care must be taken because they operate on n×1 matrices, and not vectors. For instance,
a vector space can not be defined on P3 using 4D vectors, whose elements are composed of
homogeneous coordinates, because there is no 0 element, which, when added to any other
element v leaves v unchanged: v+0 = v. In P3 the point (0 : 0 : 0 : 0) is not defined. Hence,
the more general definition must be used. The interested reader is directed to [21, 22, 23].



5.7. DEFINITION OF LINEAR GEOMETRY 163

where the 16 elements are arbitrary, but all contain a common factor owing
to the use of homogeneous coordinates. Hence, the projective group of all
collineations in P3 has fifteen parameters, and is termed G15 [4]. Because there
are no restrictions on the elements, with the exception that the determinant of
the matrix never vanishes, they are the most general linear geometric transfor-
mations in 3D space. The fundamental invariant of G15 in particular, and n
dimensional projective geometry in general, is the cross ratio of four collinear
points. The cross ratio is the fundamental invariant of all linear transformation
groups, and hence all linear geometries.

Cross Ratio

The concept of cross ratio is one of the oldest now known to be part of projec-
tive geometry. It is the only invariant of projective geometry, but is also the
fundamental invariant in every linear geometry. It is believed that the theory
was known to Pappus of Alexandria, who lived between approximately 290-350
[2, 14, 26]. We can work with the cross ratio using metric concepts from Eu-
clidean geometry and making the required extensions to allow for elements at
infinity, but here it will be analytically defined in the plane as follows [14]:

Definition 5.7.1 If the collinear points A, B, C, and D, at least three of which
are distinct, on a projective line have coordinates (a0 : a1), (b0 : b1), (c0 : c1)
and (d0 : d1), respectively, then the real number

CR(A,B;C,D) =

∣∣∣∣ a0 a1
c0 c1

∣∣∣∣ ∣∣∣∣ b0 b1
d0 d1

∣∣∣∣∣∣∣∣ b0 b1
c0 c1

∣∣∣∣ ∣∣∣∣ a0 a1
d0 d1

∣∣∣∣ (5.10)

if it exists is the cross ratio of the four points in the order A, B, C, D. If the
number does not exist, the cross ratio is said to be infinite.

It is important to note that the coordinate with the 0 index is the homogenising
coordinate while the coordinate with the index 1 is essentially the location of
the point along the line. Evaluating the first determinant in Equation 5.10
yields a0c1 − c0a1 which can be interpreted as the directed distance from A to
C. Normalising the projective coordinates of a point in the plane on a line by
dividing all the coordinates by the homogenising coordinate means that we can
use metric concepts and the cross ratio of the four collinear points is expressed
as the ratios of directed distances along the line as

CR(A,B;C,D) =

(
AC

BC

)(
BD

AD

)
. (5.11)

Consider the four points on the line illustrated in Figure 5.15. Without loss
in generality the points can be spaced at equidistant intervals relative to the
coordinate system attached to the line. Considering the coordinates of points
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A, B, C, and D to be (a0 : a1) = (1 : 2), (b0 : b1) = (1 : 3), (c0 : c1) = (1 : 4),
(d0 : d1) = (1 : 5), the cross ratio of the points in the order A, B, C, D is

CR(A,B;C,D) =

(
AC

BC

)(
BD

AD

)
=

(
4− 2

4− 3

)(
5− 3

5− 2

)
=

4

3
.

Figure 5.15: Cross ratio of four points on a line.

If one of the points along the line is at infinity, then the ratio containing the
homogenising coordinate that is 0 is simply not included in the computation.
In general, when C is midway between A and B while D is at infinity then
CR = −1 and the four points are said to be in a harmonic sequence, however
any four finite points on a line whose cross ratio is CR = −1 are in a harmonic
sequence.

Affine Transformations

The equations of general affine transformations in affine space A3 contain twelve
arbitrary coefficients. Thus, the affine group is indicated by G12. It should be
apparent that G12 ⊂ G15. This transformation group of A3 is typically expressed
as:

A =


1 0 0 0
a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3

 . (5.12)

Affine geometry can be considered as more rich than projective geometry
because its set of invariants includes more than just the cross ratio. For example,
affine transformations leave the plane at infinity, x0 = 0, invariant, which is
generally not the case for projective transformations.
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Euclidean Transformations

The group of Euclidean transformations of E3, also a subgroup of G15, are
represented by

E =


1 0 0 0
a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3

 . (5.13)

However, E contains a 3× 3 proper orthogonal sub-matrix i.e., having a deter-
minant of +1 representing a change in orientation [27]. The principal group,
G7, represents the most general Euclidean collineations [21]. The Euclidean
displacement group G6 is characterised by the property that both distance and
sense are invariant under G6 [7].

5.7.3 Invariants

Recall that an absolute invariant is defined to be a function of the coordinates of
an element in the given geometry which remains invariant under the associated
linear transformation group [4, 14]. The Euclidean displacement group G6 is
defined in a metric space, see Section 5.7.4. In addition to the preservation of
distance and sense, its set of invariants contains a special imaginary quadratic
form. First consider G3 ⊂ G6. The equation of an arbitrary circle, k, in E2 with
radius r and centre C(xc, yc) is:

(x− xc)
2 + (y − yc)

2 = r2. (5.14)

Expressing Equation (5.14) using homogeneous coordinates x = x1
x0

, y = x2
x0

produces

(x1 − xcx0)
2 + (x2 − ycx0)

2 = r2x2
0. (5.15)

The intersection with the line at infinity x0 = 0 is given by the equations

x2
1 + x2

2 = 0, x0 = 0. (5.16)

The constants r, xc and yc which characterise the circle do not appear in the
result. Thus, every circle in the plane intersects the line at infinity in exactly
the same two points, namely,

I1(0 : 1 : i), I2(0 : 1 : −i). (5.17)

They are widely called the imaginary, or absolute circle points [4, 10, 23, 28]. It
can be shown, in the same way, that every sphere cuts the plane at infinity in
the imaginary conic:

x2
1 + x2

2 + x2
3 = 0, x0 = 0, (5.18)
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which is called the imaginary, or absolute sphere circle.
These absolute quantities account for the apparent deficiency of Bezout’s

theorem [22, 29] for the intersections of algebraic curves and surfaces. That
is, two curves of order n and m will intersect in at most nm points; similarly,
two surfaces of order n and m will intersect in a curve of, at most, order nm.
Clearly, two circles intersect in at most two points, while two spheres intersect
in a circle; a second order curve. Since every circle contains I1 and I2, two
circles intersect in at most four points, and Bezout’s theorem is seen to be true.
The same applies for spheres; they intersect in a curve which splits into a real
and an imaginary conic.

To summarise, the invariants of G3 include those of the projective and affine
planes, but additionally include the line at infinity and two imaginary conjugate
points on it, namely I1 and I2. The invariants of G6 include those of projective
and affine 3D space, including the plane at infinity and an imaginary conic on
it: the imaginary sphere circle.

5.7.4 Metric Spaces

The material on metric spaces presented here is reproduced from Chapter 3 for
convenient reference. Metric and non-metric geometries may be looked upon
as special cases of projective geometry. Before continuing, some definitions are
required.

Definition 5.7.2 The Cartesian Product of any two sets, S and T , denoted
S × T , is the set of all ordered pairs (s, t) such that s ∈ S and t ∈ T .

Definition 5.7.3 Let S be any set. A function d mapping S × S into R is a
metric on S iff [30]

1. ds1s2 = 0 iff s1 = s2;

2. ds1s2 ≥ 0, ∀ si ∈ S;

3. ds1s2 = ds2s1 , ∀ si ∈ S;

4. ds1s2 + ds2s3 ≥ ds1s3 , ∀ s1, s2, s3 ∈ S.

A metric space is a set S, together with a metric d defined on S. A metric
geometry on that space is defined by the group of linear transformations which
leave the metric invariant. For example, Euclidean space is a metric space
because it contains the set P of all points. The metric defined on P is Euclidean
distance,

d =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, (5.19)

which is an invariant of G6. Thus, Euclidean geometry is a metric geometry. It
is important to note that a rule to measure distance in a space is not sufficient
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to make the space metric. All four conditions in Definition 5.7.3 must be satis-
fied. An example of a geometry containing a distance rule and distinct points
with zero distance between them is Isotropic Geometry. The transformations
associated with the isotropic plane are [31] 1

X
Y

 =

 1 0 0
a 1 0
b c 1

 1
x
y

 . (5.20)

Distance in this geometry is measured by the difference of the x-coordinates of
two points: d = x2 − x1. The distance between two points is clearly invariant
under the transformation in Equation 5.20, but it is also clear that there ex-
ist an infinite number of distinct points possessing the same x-coordinate and
therefore have zero distance between them. The complete enumeration of all
such degenerate geometries was given by Sommerville in [17].

5.7.5 Cayley-Klein Spaces and Geometries

Projective geometry can be developed from the fundamental elements of point,
line, plane and Hilbert’s axioms [32] of incidence, order and continuity indepen-
dently of the concept of metric. Thus, in projective geometry there is no rule to
measure and the only absolute invariant is the cross ratio of four points [2]. In
defining a Cayley-Klein space one could start with projective geometry and de-
fine a rule to measure distance. Usually this is done by introducing a quadratic
form. For instance, Euclidean geometry can be developed from projective geom-
etry by building upon the foundation of Cayley’s principle [16] that projective
geometry is all geometry using Klein’s Erlangen Programme, i.e., the theory
of algebraic invariants. Euclidean geometry can be obtained by adjoining, or
constraining, P3 with the special quadratic form [4]

x2
1 + x2

2 + x2
3 = 0, (5.21)

which represents the absolute sphere circle, obtained in Equation 5.18. It is an
imaginary quadric containing all points with a vanishing norm. This quadratic
form is induced by the Euclidean distance function between the homogeneous
coordinates of points (x0, x1 : x2 : x3) and (y0 : y1 : y2 : y3)

d =

√
(x1y0 − y1x0)2 + (x2y0 − y2x0)2 + (x3y0 − y3x0)2

x0y0
. (5.22)

The quadratic form, or norm, belonging to this rule is

x2
1 + x2

2 + x2
3.

Equations (5.21) and (5.22) are fundamental invariants of G6. However, Equa-
tion (5.21) is independent of x0. An entirely different quadratic form in P3 can
be obtained by adding x2

0 to Equation (5.21):

x2
0 + x2

1 + x2
2 + x2

3 = 0. (5.23)
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Changing the quadratic form changes the rule for measuring magnitudes. For
instance, the signs could be changed as follows:

x2
0 − x2

1 + x2
2 + x2

3 = 0. (5.24)

Each new rule gives a different form of space. These are the Cayley-Klein
spaces. The first quadratic form, Equation (5.21) gives Euclidean, or parabolic
space. Equation (5.23) gives Riemann non-Euclidean, or elliptic space, while
Equation (5.24) gives Lobachevskii non-Euclidean, or hyperbolic space [4, 19].
In each of these spaces there is a group of transformations that leaves the norm
invariant. These characterise the corresponding geometries [33].

Equation (5.21) may be viewed as sphere with no volume. The distance
between two distinct points on this virtual quadric vanishes. The term vir-
tual means that only complex points lie on it. Similarly, Equation (5.23) may
be viewed as a virtual ellipsoid. Whereas, Equation (5.24) represents a real
hyperboloid of two sheets.

The non-Euclidean geometries were serendipitously discovered by efforts to
prove Euclid’s parallel axiom: given a line g and a point P , not on g, there is
one, and only one line p through P that does not intersect g. The Euclidean
model of Riemann’s elliptical plane is a unit sphere, recall Figure 5.2. Straight
lines on a sphere are geodesics, i.e., great circles. All great circles intersect in
two anti-podal points. If the they are taken to be the same point, then there
are no parallel lines in the elliptic plane, because all lines intersect in a point
[3].

The Euclidean model for Lobachevskii’s hyperbolic plane is the points con-
tained in a unit circle, excluding points on the circumference, recall Figure 5.3.
Straight lines are chords of the circle, the end points excluded. Thus, given
a line g and a point P not on g in the hyperbolic plane there are an infinite
number of lines through P that do not intersect g [3].

Klein was the first to make use of the terms elliptic, parabolic and hyperbolic
to classify these geometries [4]. The use of these names implies no direct con-
nection with the corresponding conic sections, rather they mean the following.
A central conic is an ellipse or hyperbola according as it has no asymptote or
two asymptotes. Analogously, a non-Euclidean plane is elliptic or hyperbolic
according as each of its lines contains no point at infinity, or two [7].

However, many other possibilities exist. For instance 4D Minkowskian ge-
ometry [34] is well known for its application to Einstein’s Special Theory of
Relativity [2]. It differs from the other geometries in that time differentials
are among its set of elements. In the following hierarchy, each geometry can
be derived from the one above it by some kind of condition imposed on the
transformation group [2].

Projective

Affine HyperbolicElliptic

MinkowskianEuclidean
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5.8 Representations of Displacements

It is convenient to think of the relative displacement of two rigid-bodies in E3 as
the displacement of a Cartesian reference coordinate frame E attached to one
of the bodies with respect to a Cartesian reference coordinate frame Σ attached
to the other [28]. Without loss of generality, Σ may be considered as fixed while
E is free to move. Then the position of a point in E in terms of the basis of Σ
can be expressed compactly as

p′ = Ap+ d, (5.25)

where, p is the 3×1 position vector of a point in E, p′ is the position vector of the
same point in Σ, d is the position vector of the origin of frame E expressed in Σ,
OE/Σ, and A is a 3× 3 proper orthogonal rotation matrix, i.e., its determinant
is +1.

It is clear from Equation (5.25) that a general displacement can be decom-
posed into a pure rotation and a pure translation. The representation of the
translation is straightforward: it is given by the position vector in Σ of 0E . How-
ever, there are many ways to represent the orientation. For example fixed angle
or Euler angle representations may be used. There are twelve distinct ways to
specify an orientation in each representation. This is because the rotation is
decomposed into the product of three rotations about the coordinate axes in a
certain order, with twelve distinct permutations. The axes of the fixed frame
are used in the fixed angle representation, also called roll, pitch, yaw angles [27],
while the axes of the moving frame are used for the Euler angle representation.

5.8.1 Orientation: Euler-Rodrigues Parameters

An invariant representation for rotations is given by the Euler-Rodrigues pa-
rameters [35]. Using Cayley’s formula for proper orthogonal matrices [27, 28],
matrix A in Equation (5.25) can be rewritten in the following form [28]:

A = ∆−1

 c20 + c21 − c22 − c23 2(c1c2 − c0c3) 2(c1c3 + c0c2)
2(c1c2 + c0c3) c20 − c21 + c22 − c23 2(c2c3 − c0c1)
2(c1c3 − c0c2) 2(c2c3 + c0c1) c20 − c21 − c22 + c23

 , (5.26)

where

∆ = c20 + c21 + c22 + c23,

and the ci, called Euler-Rodrigues parameters [28, 36], are defined as

c0 = cos φ
2 ,

c1 = sx sin
φ
2 ,

c2 = sy sin
φ
2 ,

c3 = sz sin
φ
2 .
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The ci may be normalised such that ∆ = 1, in which case s = [sx, sy, sz]
T

is a unit direction vector parallel to the axis and φ is the angular measure of a
given rotation about that axis. The Euler-Rodrigues parameters are quadratic
invariants of any given rotation [36].

Since s is a unit vector, it is immediately apparent that the ci are not
independent, but related by

c20 + c21 + c22 + c23 = 1.

The geometric interpretation of the four Euler-Rodrigues parameters is that
an orientation may be viewed as a point on a unit hyper-sphere in a four-
dimensional space. Assembled into a 4×1 array, the Euler-Rodrigues parameters
are the unit quaternions invented by Sir William Hamilton [35]. The group of
spherical displacements, SO(3), are elegantly represented with unit quaternions.

5.8.2 Displacements as Points in Study’s Soma Space

In 1903 Eduard Study showed [37] that Euclidean displacements may be repre-
sented by eight parameters, or coordinates in a seven dimensional homogeneous
projective space. Thus, displacements can be represented as points; fundamen-
tal elements in this space. His work was undoubtedly inspired by that of Julius
Plücker and Felix Klein. Klein’s Erlangen Programme gave rise to a systematic
method for constructing new geometries based on the algebraic invariants of the
associated transformation groups. However, it was Plücker who first suggested
the idea of taking the line as the fundamental element of space [38]. Vari-
ous types of line coordinates were introduced by Cayley and Grassmann [39];
Plücker adopted a coordinate system which is a special form of these. The suc-
cess of Plücker’s work was hindered by the Cartesian analysis that he employed
[38, 40, 41]. Klein, Plücker’s student, introduced the system of coordinates de-
termined by six linear complexes in mutual involution: on any line common to
two linear complexes a one-to-one correspondence of points is determined by the
planes through the line by taking the poles of each plane for the complexes. If
a certain condition is satisfied connecting the coefficients of the two complexes,
then these pairs of points form an involution [39]. Moreover, Klein’s observation
that the line geometry of Plücker is point geometry on a quadric contained in
a five dimensional space was of critical importance in the conceptualisation of
the soma space [18].

Plücker and soma coordinates are analogous in that the set of all lines, in
the case of Plücker coordinates, and the set of all displacements, in the case of
soma coordinates both exist as the set of points covering special quadric surfaces
in higher dimensional spaces. Points not on the respective quadrics represent
neither lines nor displacements. Since both quadrics have identical forms, it is
instructive to first examine how Plücker coordinates come about, and the nature
of their constraint surface, before moving on to Study’s soma.
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5.8.3 Plücker Coordinates

Plücker developed line coordinates [40, 41] to address the need of describing
lines as the fundamental elements of his neue Geometrie [38]. Line coordinates
may be obtained from Cartesian coordinates by considering the following: a line
on the intersection of two planes, or dually the ray on two points. In the former
case, the Plücker coordinates specify the linear pencil of planes and are generally
called axial Plücker coordinates. In the latter case, they are called ray Plücker
coordinates. If X(x0 : x1 : x2 : x3) and Y (y0 : y1 : y2 : y3) are the homogeneous
coordinates of two different points on a line, theGrassmannian sub-determinants
[4] of the associated 2× 4 matrix composed of the point coordinates, comprise
the homogeneous Plücker coordinates of the line [42]:

pik =

∣∣∣∣ xi xk

yi yk

∣∣∣∣ i, k ∈ {0, . . . , 3}, i ̸= k.

Of the twelve possible Grassmannians, only six are independent, since pik =
−pki. Traditionally, the following six are used

(p01 : p02 : p03 : p23 : p31 : p12). (5.27)

These six coordinates collected in a 6× 1 matrix are called the Plücker array.
The six Plücker coordinates in the sequence given in Equation (5.27) can be

interpreted as consisting of two sets of three parameters which are each a vector
in E3, called Plücker vectors. Assuming that the first three Plücker coordinates
are not all zero, then both vectors can be normalised thus:

p =
(p01 : p02 : p03)√
p201 + p202 + p203

, (5.28)

p =
(p23 : p31 : p12)√
p201 + p202 + p203

. (5.29)

The two vectors, p and p are duals of each other, and the space in which they
exist can be considered a dual vector space. The first vector, consisting of the
elements of p, is proportional to the direction of the distance between points
x and y on the line in E3, while the dual three, consisting of the elements
of p, represent the moment of the line segment with respect to the origin of
the coordinate system in which x and y are defined. Considering the Plücker
array as two dual vectors leads to some elegant analytic methods for robot
analysis, where lines can represent the R-pair axes and P -pair directions in a
robot mechanical system. Some of these methods are described in Chapter 5,
Analytic Projective Geometry.

A line, however, is uniquely determined by a point and three direction
cosines. The Plücker coordinates are super-abundant by two, hence there are
two constraints on the six parameters. First, because the coordinates are ho-
mogeneous, there are only five independent ratios. It necessarily follows that

(p01 : p02 : p03 : p23 : p31 : p12) ̸= (0 : 0 : 0 : 0 : 0 : 0). (5.30)
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Second, the six numbers must obey the following quadratic condition:

p01p23 + p02p31 + p03p12 = 0. (5.31)

The first condition, Equation (5.30), is known as the non-zero condition. The
quadric condition, represented by Equation (5.31) is called the Plücker identity
[39], also known as the Plücker condition. Geometrically, it represents a four-
dimensional quadric hyper-surface in a five-dimensional projective homogeneous
space, called Plücker’s quadric, P2

4 [2, 26]. Distinct lines in Euclidean space are
distinct points on P2

4 , but an array of six numbers that doesn’t satisfy the
Plücker condition does not represent a line.

The Plücker quadric can be derived in the following way [42]. Consider the
determinant of a matrix composed of the homogeneous coordinates of two points
X(xi) and Y (yi), i ∈ {0, 1, 2, 3}, counted twice. Obviously, the determinant
vanishes because of the linear dependence between rows 1 and 3, and between
rows 2 and 4. This determinant can be expanded using 2× 2 sub-determinants,
known as minors, along the first two rows, according to the Laplacian expansion
theorem [21]. That is, multiply the product of the minor with its complement,
the determinant of the matrix of the rows and columns not in the minor, by
(−1)h, where h is the sum of the numbers denoting the rows and columns in
which the minor appears. This gives

0 =

∣∣∣∣∣∣∣∣
x0 x1 x2 x3

y0 y1 y2 y3
x0 x1 x2 x3

y0 y1 y2 y3

∣∣∣∣∣∣∣∣ = (−1)3+(1+2)

∣∣∣∣ x0 x1

y0 y1

∣∣∣∣ ∣∣∣∣ x2 x3

y2 y3

∣∣∣∣+
(−1)3+(1+3)

∣∣∣∣ x0 x2

y0 y2

∣∣∣∣ ∣∣∣∣ x1 x3

y1 y3

∣∣∣∣+ (−1)3+(1+4)

∣∣∣∣ x0 x3

y0 y3

∣∣∣∣ ∣∣∣∣ x1 x2

y1 y2

∣∣∣∣+
(−1)3+(2+3)

∣∣∣∣ x1 x2

y1 y2

∣∣∣∣ ∣∣∣∣ x0 x3

y0 y3

∣∣∣∣+ (−1)3+(2+4)

∣∣∣∣ x1 x3

y1 y3

∣∣∣∣ ∣∣∣∣ x0 x2

y0 y2

∣∣∣∣+
(−1)3+(3+4)

∣∣∣∣ x2 x3

y2 y3

∣∣∣∣ ∣∣∣∣ x0 x1

y0 y1

∣∣∣∣ = 2(p01p23 − p02p13 + p03p12). (5.32)

Since p13 = −p31, Equation 5.32 simplifies to Equation 5.31.
Now attention is turned towards determining the structure of the quadric

hyper-surface P2
4 . The important observation is that Equation (5.31) contains

only bilinear cross-terms. This implies that the quadric has been rotated out of
its standard position, or normal form [43]. The quadratic form associated with
P2
4 , can be represented using a 6× 6 symmetric matrix, M [44]:

pTMp = [p01, · · · , p12]


0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2
1/2 0 0 0 0 0
0 1/2 0 0 0 0
0 0 1/2 0 0 0


 p01

...
p12

 .
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This quadratic form can be orthogonally diagonalised with another 6×6 matrix
P, constructed with the eigenvectors of M. The matrix P is easily found to be

P =

√
(2)

2


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 .

Now, pre-multiplying M with the transpose of P and post-multiplying with P
itself gives the diagonalised matrix, D, i.e., PTMP = D:

D =
1

2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 .

Matrix D reveals the normal form of P2
4 in canonical form [43] from the matrix

multiplication pTDp = pT (PTMP)p:

p201 + p202 + p203 − p223 − p231 − p212 = 0. (5.33)

Observing the signs on these six pure quadratic terms, one immediately sees that
the Plücker quadric, P2

4 , has the form of an hyperboloid in the five dimensional
space. In this space, only the points on P2

4 represent lines.

5.8.4 Study’s Soma

A general Euclidean displacement of reference frame E with respect to Σ, as
given by Equation (5.25), depends on six independent parameters: three are
required for the orientation of E and three for the position of OE . Regard-
ing this situation geometrically, distinct Euclidean displacements of E may be
represented as distinct points in a six-dimensional space. Hence, a displace-
ment is an element of a six-dimensional geometry. However, Study showed [37]
that a coordinate space of dimension eight is necessary to ensure that all the
relations among the entries of Equation (5.25) are fulfilled. Thus, an array of
eight numbers can represent a displacement as a fundamental element in a seven
dimensional homogeneous projective space. These eight numbers were termed
soma by Study [45]. Similar to the Plücker array, Study’s soma are

(c0 : c1 : c2 : c3 : g0 : g1 : g2 : g3).

The first four of Study’s soma coordinates are the Euler-Rodrigues param-
eters, ci, defined in Section 5.8.1. The remaining four, gi i ∈ {0, . . . , 3}, are
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linear combinations of the elements of d, from Equation (5.25), and the ci such
that the following quadratic condition is satisfied:

c0g0 + c1g1 + c2g2 + c3g3 = 0. (5.34)

Study defined these four parameters to be

g0 = d1c1 + d2c2 + d3c3,

g1 = −d1c0 + d3c2 − d2c3,

g2 = −d2c0 − d3c1 + d1c3,

g3 = −d3c0 + d2c1 − d1c2. (5.35)

Owing to the homogeneity of the Euler-Rodrigues parameters there is an
additional quadratic constraint on the soma, stemming from the denominator
of Equation (5.26), which is similar to the non-zero condition for the Plücker
coordinates:

c20 + c21 + c22 + c23 ̸= 0. (5.36)

Thus, of the eight soma coordinates only six are independent, but all eight are
required to uniquely describe a displacement [37].

Equation (5.34) represents a six-dimensional quadric hyper-surface in a seven-
dimensional space. It is called Study’s quadric, S2

6 [46]. Its form can be deter-
mined in a way analogous to that used for P2

4 . After applying the same diag-
onalisation procedure to the quadratic form, the normal form of S2

6 is revealed
to be:

c20 + c21 + c22 + c23 − g20 − g21 − g22 − g23 = 0.

We see immediately that S2
6 has the form of an hyperboloid in the soma space.

Of all the points in the soma space, only those on S2
6 represent displacements.

5.8.5 Vectors in a Dual Projective Three-Space

Another way of looking at the eight soma coordinates is to consider them as
two sets of four parameters, each of which can represent a vector in a four-
dimensional coordinate space [47, 48]. A spatial Euclidean displacement can
then be mapped into the set of two Study vectors in the four-dimensional space
in an analogous way that a line in Euclidean space can be mapped to sets
of two Plücker vectors. Employing this concept, Ravani [47] introduced the
idea of representing a Euclidean displacement as a point in a dual projective
three-space. This, however, leads directly to the representation of displacements
in terms of dual quaternions, see Blaschke [49], Bottema and Roth [28], or
McCarthy [50] for example.

Although this representation and that of Study are analytically identical,
they represent completely different geometric interpretations. In the latter
case, displacements are represented by points on Study’s quadric in its seven-
dimensional projective space, while the former represents displacements by two
vectors in a dual projective three-space.



5.9. KINEMATIC MAPPINGS OF DISPLACEMENTS 175

5.8.6 Transfer Principle

A representation identical to the one discussed in the last section can be ob-
tained using the transfer principle (Bottema and Roth [28], Ravani and Roth
[48]). Spherical displacements are readily represented using the four Euler-
Rodrigues parameters. That is, if a spherical displacement is mapped into the
points of a real three-dimensional projective space where the coordinates are
four-tupples of Euler-Rodrigues parameters, then spatial displacements can be
mapped into a similar, but dual, space. In other words, the representation of a
spatial displacement is obtained simply by dualising the corresponding spherical
displacement (Ravani and Roth [48]).

5.9 Kinematic Mappings of Displacements

So far in this chapter we have discussed various ways to represent displace-
ments. In all of them, at least six independent numbers are required. This
led Study, in 1903 [45], to the idea of mapping distinct displacements in Eu-
clidean space to the points of a seven-dimensional projective image space. The
homogeneous coordinates of the image space are the eight soma coordinates.
As mentioned earlier, these eight coordinates are not independent. They are
super-abundant by two. However, two quadratic constraints must be satisfied.
The non-zero condition, Equation (5.36), and the displacement must be a point
on S2

6 , Equation (5.34). It is natural to expect that a six-dimensional image
space would suffice. However, as previously mentioned, Study [37] showed that
an 8D coordinate space is required.

5.9.1 General Euclidean Displacements

NOTE: for the remainder of the chapter the material presented will
use the North American convention for homogeneous coordinates.

Study’s kinematic mapping of general Euclidean displacements is given by the
following equations in terms of the eight Study soma {ci : gi}

(x1 : x2 : x3 : x4 : y1 : y2 : y3 : y4) = (c1 : c2 : c3 : c0 :
g1
2

:
g2
2

:
g3
2

:
g0
2
).

Equation (5.25) can always be represented as a linear transformation by
making it homogeneous, see McCarthy [50] for example. Let the homogeneous
coordinates of points in the fixed frame Σ be the ratios [X : Y : Z : W ], and
those of points in the moving frame E be the ratios [x : y : z : w]. Then
Equation (5.25) can be rewritten as

X
Y
Z
W

 = Q


x
y
z
w

 , (5.37)
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where

Q = ∆−1


c20 + c21 − c22 − c23 2(c1c2 − c0c3) 2(c1c3 + c0c2) d1
2(c1c2 + c0c3) c20 − c21 + c22 − c23 2(c2c3 − c0c1) d2
2(c1c3 − c0c2) 2(c2c3 + c0c1) c20 − c21 − c22 + c23 d3

0 0 0 ∆

 ,

with ∆ = c20+ c21+ c22+ c23, and the di are the components of the position vector
of OE/Σ.

Let the transformation matrix T be the image of the elements of Q under
the kinematic mapping. Since ∆ ̸= 0 by one of the quadratic constraints, it’s
value is arbitrary and represents a scaling factor whose value is meaningless in
a projective space. Recall, the homogeneous coordinates of [λx : λy : λz] and of
[γx : γy : γz] represent the same point in the projective plane for any non-zero
scalar constants λ and γ. Then we may write

T =


x2
1−x2

2−x2
3+x2

4 2(x1x2−x3x4) 2(x1x3+x2x4) 2(y4x1−y3x2+y2x3−y1x4)

2(x1x2+x3x4) −x2
1+x2

2−x2
3+x2

4 2(x2x3−x1x4) 2(y3x1+y4x2−y1x3−y2x4)

2(x1x3−x2x4) 2(x2x3+x1x4) −x2
1−x2

2+x2
3+x2

4 2(−y2x1+y1x2+y4x3−y3x4)

0 0 0 x2
1+x2

2+x2
3+x2

4

 .

This transforms the coordinates of points in frame E to coordinates of the same
points in frame Σ (assuming that the two frames are initially coincident) after
a given displacement in terms of the coordinates of a point on S2

6 .

5.9.2 Planar Displacements

The transformation matrix T simplifies considerably when we consider displace-
ments that are restricted to the plane. Three DOF are lost and hence four Study
parameters vanish. The displacements may be restricted to any plane. Without
loss in generality, we may select one of the principal planes in Σ. Thus, we
arbitrarily select the plane Z = 0. Since E and Σ are assumed to be initially
coincident, this means


X
Y
0
W

 = T


x
y
0
w

 . (5.38)

This requires that d3 = 0: since Z = z = 0, E can translate in neither the Z
nor z directions. It also requires that sx = sy = 0, and sz = 1 because the
equivalent rotation axis is parallel to the Z and z axes. All of this, in turn,



5.9. KINEMATIC MAPPINGS OF DISPLACEMENTS 177

means

c1 = 0,

c2 = 0,

c3 = sinφ/2,

c0 = cosφ/2,

g1 = −d1c0 − d2c3,

g2 = −d2c0 + d1c3,

g3 = 0,

g0 = 0,

which leaves us with only four soma coordinates to map:

(x3 : x4 : y1 : y2) = (c3 : c0 :
g1
2

:
g2
2
). (5.39)

The corresponding homogeneous linear transformation matrix reduces to

T =


x2
4 − x2

3 −2x3x4 0 2(y2x3 − y1x4)
2x3x4 x2

4 − x2
3 0 −2(y1x3 + y2x4)

0 0 x2
3 + x2

4 0
0 0 0 x2

3 + x2
4

 . (5.40)

We may eliminate the third row and column because they only provide multiples
of the trivial equation

Z = z = 0. (5.41)

Thus, T reduces to a 3× 3 matrix,

T =

 x2
4 − x2

3 −2x3x4 2(y2x3 − y1x4)
2x3x4 x2

4 − x2
3 −2(y1x3 + y2x4)

0 0 x2
3 + x2

4

 . (5.42)

Planar displacements still map to points on S2
6 , but we need only consider a

special sub-set of these points. In fact, we may change our geometric interpreta-
tion altogether. We see that planar displacements can be represented by points
in a three-dimensional projective image space. The coordinates of the points
are the four Study parameters (x3 : x4 : y1 : y2). In this sub-space, the points
are not restricted to a special quadric. They can take on any value with the
exception that x3 and x4 are not simultaneously zero. Points on the real line
defined by x3 = x4 = 0 are not the images of real planar displacements because
this sub-space is still contained in the soma space, where the non-zero quadratic
condition requires x2

1 + x2
2 + x2

3 + x2
4 ̸= 0. It is easy to see that if x1 = x2 = 0

the quadratic non-zero condition can only be violated if x3 = x4 = 0. This
condition is of little interest since we are only interested in real displacements.
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5.10 Blaschke-Grunẅald Mapping of Plane Kine-
matics

Another mapping of planar displacements, which is seen to be isomorphic to the
Study mapping, can be derived in a somewhat more intuitive way. Very detailed
accounts may be found in Bottema and Roth [28], De Sa [20] and Ravani [47].
It was introduced in 1911 simultaneously, and independently, by Grünwald [51]
and Blaschke [52].

The idea is to map the three independent quantities that describe a dis-
placement to the points of a 3D projective image space called Σ′. A general
displacement in the plane requires three independent parameters to fully char-
acterise it. The position of a point in E relative to Σ can be given by the
homogeneous linear transformation X

Y
Z

 =

 cosφ − sinφ a
sinφ cosφ b
0 0 1

 x
y
z

 , (5.43)

where the ratios (x : y : z) represent the homogeneous coordinates of a point in
E, (X : Y : Z) are those of the same point in Σ. The Cartesian coordinates of the
origin of E measured in Σ are (a, b), while φ is the rotation angle measured from
the X-axis to the x-axis, the positive sense being counter-clockwise. Clearly, in
Equation (5.43) the three characteristic displacement parameters are (a, b, φ).
Image points, points in the 3D homogeneous projective image space, are defined
in terms of the displacement parameters (a, b, φ) as

X1

X2

X3

X4

 =


a sin(φ/2)− b cos(φ/2)
a cos(φ/2) + b sin(φ/2)

2 sin(φ/2)
2 cos(φ/2)

 . (5.44)

By virtue of the relationships expressed in Equation (5.44), the transforma-
tion matrix from Equation (5.43) may be expressed in terms of the homogeneous
coordinates of the image space, Σ′. This yields a linear transformation to ex-
press a displacement of E with respect to Σ in terms of the image point: X

Y
Z

 =

 (X2
4 −X2

3 ) −2X3X4 2(X1X3 +X2X4)
2X3X4 (X2

4 −X2
3 ) 2(X2X3 −X1X4)

0 0 (X2
4 +X2

3 )

 x
y
z

 . (5.45)

Comparing the elements of the 3×3 transformation matrix in Equation (5.45)
with the one in Equation (5.42) it is a simple matter to show that the homoge-
neous coordinates of the image space Σ′ and those of the soma space are related
in the following way:

(X1 : X2 : X3 : X4) = (y2 : −y1 : x3 : x4). (5.46)

Comparing Equation (5.44) with Equation (5.39) it is evident that the two
transformations are isomorphic.
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Since each distinct displacement described by (a, b, φ) has a corresponding
unique image point, the inverse mapping can be obtained from Equation (5.44):
for a given point of the image space, the displacement parameters are

φ = 2arctan(X3/X4),

a = 2(X1X3 +X2X4)/(X
2
3 +X2

4 ), (5.47)

b = 2(X2X3 −X1X4)/(X
2
3 +X2

4 ).

When computing the inverse tangent function to obtain a numerical value for
φ, the two argument inverse tangent function [27], atan2(y/x), should be used
since it accounts for the sines of the values of X3 and X4 and placed the angle in
the correct quadrant in Σ. Equations (5.47) give correct results when either X3

orX4 is zero. Caution is in order, however, because the mapping is injective, not
bijective: there is at most one pre-image for each image point [53]. Thus, not
every point in the image space represents a displacement. It is easy to see that
any image point on the real line X3 = X4 = 0 has no pre-image and therefore
does not correspond to a real displacement of E. From Equation (5.47), this
condition renders φ indeterminate and places a and b on the line at infinity.

5.10.1 Dervation of the Mapping

Recall from Chapter 2, the pole of a planar displacement is the real invari-
ant point associated with the displacement transformation matrix for the given
a, b, φ corresponding to it’s sole eigenvalue. It’s easy to show that:

Xp = xp =
1

2
a sin(φ/2)− 1

2
b cos(φ/2),

Yp = yp =
1

2
a cos(φ/2) +

1

2
b sin(φ/2), (5.48)

Zp = zp = sin(φ/2),

where Zp = sin(φ/2) is an artifact of the derivation.
The image of the pole of the displacement under the kinematic mapping

is called the image point. The image point defined by the Blaschke-Grunẅald
mapping is defined using the pole coordinates. The image space is a 3D projec-
tive space described by the homogeneous coordinates (X1 : X2 : X3 : X4). The
mapping is:

(X1 : X2 : X3 : X4) = (Xp : Yp : Zp : τZp),

where

(X1 : X2 : X3 : X4) ̸= ((0 : 0 : 0 : 0),

τ ≡ cot(φ/2),

and (Xp, Yp, Zp) depend on (a, b, φ).
Using the mapping Equations (5.44) we can express the linear transformation

matrix in Equation (5.43) in terms of the homogeneous coordinates of the image
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space. Let

A =

 cosφ − sinφ a
sinφ cosφ b
0 0 1

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

We have a11 = a22, which may be re-expressed in terms of X3 and X4.
Recall X3 = 2 sin(φ/2), X4 = 2 cos(φ/2). Then:

X2
4 −X2

3 = (2 cos(φ/2))2 − (2 sin(φ/2))2,

= 4

(
1 + cosφ

2

)
− 4

(
1− cosφ

2

)
,

= 4 cosφ.

In the above derivation we have used the identities:

cos2 (φ/2) =
1 + cosφ

2
, sin2 (φ/2) =

1− cosφ

2
.

Next a12 = −a21. We obtain a21 from

2X3X4 = 2(2 sin(φ/2))(2 cos(φ/2)).

We use the identity 2 sin(φ/2) =
sinφ

cos(φ/2)
giving:

2

[(
sinφ

cos(φ/2)

)
2 cos(φ/2)

]
= 4 sinφ.

a13 is obtained as:

2(X1X3+X2X4) = 2[(a sin(φ/2)−b cos(φ/2)2 sin(φ/2)+(a cos(φ/2)+b sin(φ/2))2 cos(φ/2)],

= 4[a sin2(φ/2)−b cos(φ/2) sin(φ/2)+a cos2(φ/2)+b cos(φ/2) sin(φ/2)],

= 4a[cos2(φ/2)+sin2(φ/2)],

= 4a.

a23 is:

2(X2X3−X1X4) = 2[(a cos(φ/2)+b sin(φ/2)2 sin(φ/2)−(a sin(φ/2)−b cos(φ/2))2 cos(φ/2)],

= 4[a cos(φ/2) sin(φ/2)+b sin2(φ/2)−a cos(φ/2) sin(φ/2)+b cos2(φ/2)],

= 4b[cos2(φ/2)+sin2(φ/2)],

= 4b.

a33 is

X2
3 +X2

4 = (2 sin(φ/2))2 + (2 cos(φ/2))2,

= 4.
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Notice that 4 is a common factor to all non-zero terms ofA when transformed
using the relations above. This just implies that

4X = 4Ax

and the constant 4 can safely be factored out of the equation. Substituting the
above relations into A gives: X

Y
Z

 =

 X2
4 −X2

3 −2X3X4 2(X1X3 +X2X4)
2X3X4 X2

4 −X2
3 2(X2X3 −X1X4)

0 0 X2
4 +X2

3

 x
y
z

 . (5.49)

This transforms the coordinates of points in E to those of Σ after a displace-
ment specified by (a, b, φ). But, the transformation is in terms of the coordinates
of the image space. The result is a projective parametric equation. i.e.:

X = (X2
4 −X2

3 )x− (2X3X4)y + 2(X1X3 +X2X4)z,

Y = (2X3X4)x+ (X2
4 −X2

3 )y + 2(X2X3 −X1X4)z,

Z = (X2
4 +X2

3 )z.

The right-hand side of the equations are composed of terms that are homoge-
neously linear in the homogenous coordinates (x : y : z), and homogeneously
quadratic in the image space coordinates.

5.11 Geometry of the Image Space

A group of collinieations that leaves the absolute quadric invariant gives rise to
various Cayley-Klein geometries. The geometry is hyperbolic when the absolute
quadric is real and elliptic when complex, and the quadric is second-order in
terms of all coordinates.

The geometry of the planar kinematic mapping image space is determined
by the invariants of the group of linear transformations described by Equa-
tion (5.49). They are:

1. Two complex conjugate planes:

V1 : X3 + iX4 = 0,

V2 : X3 − iX4 = 0.

2. The real line of intersection of V1 and V2 described by the equations X3 =
X4 = 0:

l = V1 ∩ V2 = (X3 = 0) ∩ (X4 = 0).

3. Two complex conjugate points on l:

J1 = (1 : i : 0 : 0),

J2 = (1 : −i : 0 : 0).
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The complex conjugate points J1 and J2 are analogous to the imaginary circular
points in the plane. Every circle in planes parallel to X3 = 0 contains them, as
does every circle in planes parallel to X4 = 0.

The planes V1 and V2 comprise a degenerate imaginary quadric containing
two factors:

(X3 + iX4)(X3 − iX4) = X2
3 +X2

4 = 0.

Blaschke observed that this is a special limiting case of the elliptic absolute
quadric

ρ(X2
1 +X2

2 ) +X2
3 +X2

4 = 0.

As ρ → 0 the degenerate invariant quadric of the image space is obtained. Since
this is a limiting case, the geometry of the image space is termed quasi-elliptic
[20, 52]. The term quasi-elliptic owes its existence to Blaschke [31].

Distinct image space points not on the line X3 = X4 = 0 are distinct dis-
placements. Of interest are two special cases:

1. The (180◦) half-turns in E2:

X3 = ±1, X4 = 0,

⇒ φ = π.

2. (a) The pure rectilinear and curvilinear translations in E2:

X3 = 0 ⇒ X4 = 1,

⇒ φ = 0.

(b) BothX1 andX2 vary butX3 = non-zero constant andX4 = non-zero
constant means that φ = constant such that 0 < φ < 180◦. These are
rectilinear and curvilinear translations in the Euclidean plane where
the moving frame E maintains a constant non-zero angle with respect
to the fixed frame Σ.

5.12 Kinematic Constraints

For planar displacements there are only two lower pairs: R- and P -pairs. This
means there are only three practical planar dyads in a 4-bar linkage:

RR, PR, and RP

These 3-link chains are designated according to the type of joints connecting
the links, and listed in series starting with the joint connected to the ground,
each illustrated in Figure 5.16. When a pair of dyads are joined, a 4-bar linkage
is obtained. However, the designation of the output dyad changes. For example,
consider a planar 4-bar linkage composed of an RR-dyad on the left-hand side
of the mechanism, and a PR-dyad on the right-hand side, where the input link
is the grounded link in the RR-dyad.
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Figure 5.16: Types of dyads.

If R1 is actuated by some form of torque supplied by an electric rotary motor
transferred by a transmission in turn driving the input link, l1. The linkage is
designated by listing the joints in sequence from the ground fixed actuated joint,
starting with the input link listing the joints in order. Thus, the mechanism
composed of a driving RR-dyad, and an output PR-dyad is called an RRRP
linkage, see Figure 5.17, where the order of PR is switched to RP . If the output
were an RP -dyad, the mechanism would be an RRPR linkage. If the input were
an RP -dyad while the output was an RR-dyad, the resulting mechanism would
be an RPRR linkage, with no noticeable alteration in the name.

R

R

R

P
1

2

4

1

2

3
3

l

l

l

l

input link, 

output link, 

left-hand side right-hand side

Figure 5.17: A four bar linkage with RR-dyad on the left-hand side and PR-
dyad on the right-hand side.
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Both synthesis and analysis require a geometric model of the mechanical
system. To use kinematic mapping, we need a model that describes the dis-
placement of moving frame E with respect to frame Σ.

A very nice feature of kinematic mapping is that the resulting transformation
matrix form is independent of choice of E and Σ. Rather, the transformation
converts coordinates of points given in E to those of the same point described
in Σ.

The motion of the distal link in a dyad is two parameter motion. For in-

R

R

1

2

1

2

l

l

Figure 5.18: The motion of the distal link in a dyad is two parameter motion.

stance, l2 can rotate about the revolute center R2, while R2 is free to rotate
about R1 (assuming, for now, R1 is conceptually passive).

If we are going to use kinematic mapping, a good question to ask is “What
does the motion, a continuum of constrained displacements, look like in the
image space?” First let’s assign coordinate systems E and Σ. This assignment
is arbitrary, but we want to have the fewest terms in our resulting equations. So
we place them as shown in Figure 5.19 for convenience. Notice that the origin
of E, OE , which has constant coordinates in E, is constrained to move on a
circle centered at OΣ with radius r = l1. The transformation characterizing
the displacement of E WRT Σ is a function of a, b, φ. To transform a point
(x, y, z) in E to (X,Y, Z) in Σ, we write:

 X
Y
Z

 =

 X2
4 −X2

3 −2X3X4 2(X1X3 +X2X4)
2X3X4 X2

4X
2
3 2(X2X3 −X1X4)

0 0 X2
3X

2
4

 x
y
z

 .
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Figure 5.19: Assignment of coordinate systems E and Σ.

Expanding, we get:

X = (X2
4 −X2

3 )x− 2X3X4y + 2(X1X3 +X2X4)z,

Y = 2X3X4x+ (X2
4 −X2

3 )y + 2(X2X3 −X1X4)z, (5.50)

Z = (X2
3 +X2

4 )z.

We can characterize the constraints imposed by the RR-dyad by observing that
one point on l2 is constrained to move on a circle, centered at OΣ, with radius
r = l1.

The general equation of a circle in E2 is:

(X −Xc)
2
+ (Y − Yc)

2 − r2 = 0.

Set X =
X

Z
and Y =

Y

Z
and substitute:

(
X

Z
−Xc

)2

+

(
Y

Z
− Yc

)2

− r2 = 0

Expand to get:(
X

Z

)2

− 2

(
X

Z

)
Xc +X2

c +

(
Y

Z

)2

− 2

(
Y

Z

)
Yc + Y 2

c − r2 = 0.

Multiply by Z2 to get:

X2 + Y 2 − 2XcXZ − 2YcY Z +X2
c + Y 2

c − r2Z2 = 0. (5.51)
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Let

k0 = arbitrary non-zero real number,

k1 = −Xc,

k2 = −Yc,

k3 = X2
c + Y 2

c − r2 = k21 + k22 − r2,

and substitute these into Equation (5.51):

k0(X
2 + Y 2) + 2k1XZ + 2k2Y Z + k3Z

2 = 0. (5.52)

When k0 = 0, Equation (5.52) represents a line. When k0 = 1, Equation (5.52)
represents a circle. Moreover, when k0 = 1, Equation (5.52) represents exactly
the constrained motion of the point on l2 that is forced to move on a circle of
radius r = l1, centered at (Xc, Yc), which is in this particular case OΣ.

(X : Y : Z) are the homogenous coordinates of points on the circumference
of a circle k0 = 1 or a line k0 = 0. These coordinates are expressed in Σ.

But, the constraint expressed by Equation (5.52) describes exactly that of
an RR-dyad: a point with fixed point coordinates in frame E is constrained
to move on a circle, with fixed circle coordinates in frame Σ. The homogenous
point coordinates are (X : Y : Z), while (k0 : k1 : k2 : k3) are the homogenous
circle coordinates in this dual expression.

(a) Family of all points on a fixed circle. (b) Family of all circles on a fixed point.

Figure 5.20: Duality in projective geometry.

Equation (5.52) is a projective dualistic expression that means the following.

1. The family of all points on the circumference of a fixed circle (fixed center
and constant radius), see Figure 5.20a.
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2. The family of all circles on a fixed point, see Figure 5.20b.

But, the RR-displacement constraint involved a fixed point in E that moves on
a fixed circle in Σ. So, we transform the coordinates of the point from E to Σ.

To exploit the quasi-elliptic properties of the kinematic mapping image
space, we can transform the coordinates using Equation (5.51). The kinematic
constraint in terms of the displacement coordinates is obtained by substituting:

X = (X2
4 −X2

3 )x− 2X3X4y + 2(X1X3 +X2X4)z,

Y = 2X3X4x+ (X2
4 −X2

3 )y + 2(X2X3 −X1X4)z,

Z = (X2
3 +X2

4 )z.

into the circle constraint Equation (5.52). But before we look at the constraint
equation in the image space, let’s establish the constraints associated with PR-
and RP -dyads .

The circular constraints are only created by planar RR-dyads and are con-
cisely summarised in the following definition.

RR-Dyad: A point in E with fixed point coordinates, (x : y : z) is constrained
to move on a circle with fixed circle coordinates (k0 : k1 : k2 : k3) in Σ.

Whereas PR- and RP -dyads generate linear constraints described as follows.

PR-Dyad: A point with fixed point coordinates (x : y : z) in E is constrained
to move on a line with fixed line coordinates (k0 : k1 : k2 : k3) in Σ

RP -Dyad: A line with fixed line coordinates (k0 : k1 : k2 : k3) in E is con-
strained to move on a point with fixed point coordinates (x : y : z) in
Σ.

For circular constraints k0 = 1, and for linear constraints k0 = 0. However,
leaving k0 unspecified will allow us to derive a single relation expressing all
three constraints in terms of coordinates in the image space.

Note that the RP - and PR-dyad constraints are not only duals, but the roles
of E and Σ are, in a sense, inverted. That is, if we consider E to be fixed and
Σ to be moving for the PR-dyad, then PR-dyad and RP -dyad constraints are
identical. This suggests using the inverse transform to obtain the coefficients of
the constraint equation in the image space. If X

Y
Z

 = T

 x
y
z

 ,

then  x
y
z

 = T−1

 X
Y
Z

 .
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Because T represents the group of Euclidean planar displacements, it is always
invertible. Expanding both, we get:

X = (X2
4 −X2

3 )x− 2X3X4y + 2(X1X3 +X2X4)z,

Y = 2X3X4x+ (X2
4 −X2

3 )y + 2(X2X3 −X1X4)z,

Z = (X2
3 +X2

4 )z,

and

x = (X2
4 −X2

3 )X − 2X3X4Y + 2(X1X3 +X2X4)Z,

y = 2X3X4X + (X2
4 −X2

3 )Y + 2(X2X3 −X1X4)Z,

z = (X2
3 +X2

4 )Z.

Substituting both sets of relations into the general circular constraint Equa-
tion (5.52) we get an equation that splits into two factors:

1

4

[
X2

3 +X2
4

] [
k0z

2(X2
1 +X2

2 ) + (−k0x+ k1z)zX1X3 + (−k0y + k2z)zX2X3

∓ (k0y + k2z)zX1X4 ± (k0x+ k1z)zX2X4 ∓ (k1y − k2x)zX3X4

+
1

4
(k0(x

2 + y2)− 2z(k1x+ k2y) + k3z
2)X2

3

+
1

4
(k0(x

2 + y2) + 2z(k1x+ k2y) + k3z
2)X2

4 ] = 0

The first factor is exactly
1

4
times the non-zero condition, which must be sat-

isfied for a point to be the image of a real displacement. This factor must be
non-zero and may be safely factored out. What remains is a general second-order
equation in the Xi.

The general quadric is the geometric image of the kinematic constraint. If
the kinematic constraint is a fixed point in reference frame E bound to a circle
(k0 = 1) or a line (k0 = 0) with fixed coordinates in Σ, then (x : y : z) are the
coordinates of the fixed point in E, and the upper signs apply. If the kinematic
constraint is a fixed point in Σ bound to move on a circle (k0 = 1) or line
(k0 = 0) with fixed coordinates in E, then (X:Y:Z) are the coordinates of the
fixed reference point in Σ, which are substituted for (x : y : z). Moreover, the
lower signs apply.

The second factor can be simplified under the following assumptions:

1. No mechanism of practical significance will have a point at infinity, so we
can set z = 1.

2. Half-turns (rotations of φ = π) have images in the plane X4 = 0. Because
the Xi are implicitly defined in terms of the pole of the displacement,
when φ = ±π we get

(X1 : X2 : X3 : X4) = (a : b : ±2 : 0).

When we remove the two parameter family of image points for orientations
of ±π, we can, for convenience, normalize the image space coordinates by
setting X4 = 1
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However, let’s be careful. We start with four homogenous coordinates in
the 3D projective image space defined by:

X1 = a sin(φ/2)− b cos(φ/2),

X2 = a cos(φ/2) + b sin(φ/2),

X3 = 2 sin(φ/2),

X4 = 2 cos(φ/2).

Setting X4 = 1 means dividing all four coordinates by 2 cos(φ/2) (which
is now possible because φ = π has been removed). We now get:

X1 =
1

2
(arctan(φ/2)− b),

X2 =
1

2
(a+ b tan(φ/2)),

X3 = tan(φ/2),

X4 = 1.

Applying all these assumptions gives the following second-order surface:

k0(X
2
1 +X2

2 ) + (k1 − k0x)X1X3 + (k2 − k0y)X2X3

∓(k0y + k2)X1 ± (k0x+ k1)X2 ∓ (k1y − k2x)X3 (5.53)

+
1

4
[k0(x

2 + y2)− 2(k1x+ k2y) + k3]X
2
3

+
1

4
[k0(x

2 + y2) + 2(k1x+ k2y) + k3] = 0.

Equation (5.53) is a general expression that represents the kinematic constraints
in the kinematic mapping image space (projected onto the hyperplane X4 = 1)
for RR, PR, and RP dyads. It can be shown that when k0 = 0 the resulting
equation is an hyperbolic paraboloid, otherwise the surface is an hyperboloid of
one sheet. When k0 = 1, the constraint surface corresponds to an RR-dyad.

5.13 RR-Dyad Constraint Surface

When we set k0 = 1 and complete the squares in X1 and X2 in Equation (5.53)
we get, after some algebra:[

X1 −
1

2
((x− k1)X3 + y + k2)

]2
+

[
X2 −

1

2
((y − k2)X3 − x− k1)

]2
=

1

4
[(k21 + k22 − k3)(X

2
3 + 1)]. (5.54)

In planes where X3 = constant, Equation (5.54) represents a circle of the form:

(X1 −Xc)
2 + (X2 − Yc)

2 = R2,
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where:

Xc =
1

2
((x− k1)X3 + y + k2),

Yc =
1

2
((y − k2)X3 − x− k1),

R =

√
1

4
(k21 + k22 − k3)(X2

3 + 1).

As X3 is varied from −∞ to ∞, the locus of circle centers is a line. Setting
X3 = t, the parametric equation of the locus of circle centers is: X1

X2

X3

 =
1

2

 y + k2
−x− k1

0

+
t

2

 x− k1
y − k2

2

 .

The quadric surface is a family of generally non-concentric circles whose center
points are all collinear. By Equation (5.54) we see that the smallest circle in
this family occurs in the hyper-plane X3 = 0, and has radius:

Rmin =

√
1

4
[k21 + k22 − k3].

As X3 increases in value the circles become larger, regardless of the sign of X3.
Thus the quadric surface extends to infinity in two directions.

There are only nine distinct types of quadric surfaces [3]:

1. spheres;

2. ellipsoids;

3. parabolic cylinders;

4. hyperbolic cylinders;

5. elliptic cylinders;

6. cones;

7. hyperboloid of one-sheet;

8. hyperboloid of two sheets;

9. hyperbolic paraboloids.

Spheres and ellipsoids contain circles, but are finite. Parabolic cylinders extend
to infinity, but in only one direction, and no real plane intersections contain
circles. Hyperbolic cylinders extend to infinity in two directions, but no real
plane intersections contain circles. Elliptic cylinders contain real circles, but
all have the same diameter. Cones also contain circles, but all contain one
with vanishing diameter. Plane intersections with hyperbolic paraboloids are
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Figure 5.21: Graphical representation of how dyad constraints map to a con-
straint surface in the image space.

parabolas, hyperbolas, or two lines, but never circles. Hyperboloids of two sheets
are not continuous. By process of elimination, the RR-dyad constraint surface
must be an hyperboloid of one sheet.

The locus of circle centers is not generally perpendicular to the plane con-
taining a circle. Thus, it is generally not a surface of revolution. However, the
hyperboloid always intersects the planes parallel to X3 = constant in circles.
Hence, it is simple to write a parametric equation for the constraint hyperboloid
projected into the hyperplane X4 = 1. All we have to do is write the parametric
equation for the hyperboloid circle in any plane X3 = t. Any point P on the

Figure 5.22: An arbitrary hyperboloid circle.

circle with radius Rx3
centered at Pc is simply:

p = pc +Rx3
(ξ).

Recall Rx3 =

√
1

4
(k21 + k22 − k3)(X

2
3 + 1). Substitute k3 = k21 + k22 − r2 and
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X3 = t to get:

Rx3
=

1

2
r
√
t2 + 1,

where r is the radius of the circle that the point with fixed coordinates in E is
constrained to move on. Rx3

is the hyperboloid circle radius in the planeX3 = t.
Therefore the parametric equation of the image space constraint hyperboloid for
an RR-dyad is: X1

X2

X3

 = (1/2)

 ((x− k1)t+ y + k2) + (r
√
t2 + 1) cos ξ

((y − k2)t− x− k1) + (r
√
t2 + 1) sin ξ

2t

 ,

t ϵ {−∞, · · · ,∞},
ξ ϵ {0, · · · , 2π}.

Figure 5.23: A projection of a constraint hyperboloid of one sheet in the hyper-
plane X4 = 1.

5.14 PR-and RP -Dyad Constraint Surface

A fundamentally different constraint surface corresponds to the dual PR- and
RP -dyad motion constraints. Recall the verbal description.

PR-Dyad: A point with fixed point coordinates in E moves on a line with fixed
line coordinates in Σ.

RP -Dyad: A line with fixed line coordinates in E moves on a point with fixed
point coordinates in Σ.
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These conditions require the ki to be proportional to planar line coordinates.
Thus, we set k0 = 0 in the general homogenous circle equation

k0(X
2 + Y 2) + 2k1XZ + 2k2Y Z + k3Z

2 = 0.

This leaves the following quadratic:

Z(2k1X + 2k2Y + k3Z) = 0. (5.55)

The general quadratic equation splits into the two linear factors given in Equa-
tion (5.55): the line at infinity Z = 0, and the line involved in the PR- and
RP -dyad constraints.

Figure 5.24: Any line in the plane can be characterized by its Grassmann line
coordinates.

We can safely factor out Z = 0, because only finite lines need be considered
for practical designs. The ki are related to the Grassmann line coordinates by:

[k1 : k2 : k3] = [12L1 : 1
2L2 : L3].

The ki are determined by expansion of the determinant of two known points
on the line. Two points on the line are (FX/Z : FY/Z : FZ/Z) and the point at
infinity given by the direction of the line in Σ cos(ϑE) : sin(ϑE) : 0) Because
FZ/Σ is an arbitrary scaling factor, we can set it equal to 1. The Grassmann
line coordinates are: X Y Z

FX/Z FY/Z 1
cos(ϑΣ) sin(ϑΣ) 0

 = L1X + L2Y + L3Z,

= sin(ϑE)X + cos(ϑE)Y +(
F(X/Z) sin(ϑE)− F(Y/Z) cos(ϑE)

)
Z.
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To use these line coordinates in the line equation derived from the circle equation
we must divide L1 and L2 by 2, giving:

[k1 : k2 : k3] = [ 12L1 : 1
2L2 : L3],

=

[
−1

2
sin(ϑE) :

1

2
cos(ϑE) :

(
F(X/Z) sin(ϑE)− F(Y/Z) cos(ϑE)

)]
.

Substituting k0 = 0 in Equation (5.53), the general constraint surface after
setting X4 = Z = 1 gives:

(k1X3 ± k2)X1 + (k2X3 ± k1)X2 +
1

4
(k3 − 2(k1x+ k2y))X

2
3

±(k2x− k1y)X3 +
1

4
(k3 + 2(k1x+ k2y)) = 0. (5.56)

For PR-dyads use the upper signs. For RP -dyads the derivation is identical,
except use use lower signs and substitute (X,Y ) for (x, y).

Figure 5.25: A projection of a constraint hyperbolic paraboloid in the hyper-
plane X4 = 1.

Equation (5.56) is quadratic in the Xi, but very different in form from
Equation (5.54). To compare them we investigate what happens when Equa-
tion (5.56) intersects planes parallel to X3 = constant. We get:

a(X3)X1 + b(X3)X2 + c(X3) = 0.

As X3 is varied from −∞ to ∞ we get a family of mutually skew lines, all
parallel to a plane (X3 = constant), but not to each other. The PR- and RP -
dyad constraint surface is therefore an hyperbolic paraboloid. It is a little more
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involved to parameterize this surface compared to the RR-dyad hyperboloid
of one sheet, but it is still easily done. Like the hyperboloid of one sheet, the
hyperbolic paraboloid is a doubly-ruled surface. That means two distinct families
of lines lie evenly on the surface.

Each family of lines is called a regulus, R, see Figure 5.26. All the lines in
one regulus are mutually skew (no line in the regulus intersects any other line
in the same regulus), and are all parallel to a plane. The lines in one regulus
are parallel to X3 = 0. The lines in the opposite regulus are all parallel to some
other plane. But each line in one regulus intersects every line in the opposite
regulus. Thus, each line in one regulus is a directrix for the opposite regulus.
Let’s define L0 to be the line of the constraint hyperbolic paraboloid in the

Figure 5.26: Regulus of a ruled surface.

plane X3 = 0, see Figure 5.27. The regulus that L0 is a member of is R0. Now,
consider the plane π that also contains L0, but is perpendicular to X3 = 0

The X3 − axis is parallel to π. There is one, and only one line L contained
in the other regulus that intersects plane π. Because L0 and L are in opposite
regulii they intersect. Since L intersects every line in the regulus R0, each
distinct point on L represents a distinct intersection of a distinct line Li in R0.
We will use L as the directrix to generate the lines in R0.

We start by observing that the locus of point on L is a function of X3 = t. A
general line in space can be represented parametrically by a fixed point on the
line and a direction. For each ith value of t, there is a unique point on directrix
L, which is the point of intersection with LiϵR0.

The direction of Li is also a function of X3 = t, since every line in R0 must
be parallel to X3 = t. Stepping in the direction of the ith line in R0, Li, by
varying a second linear parameter s yields the locus of points on Li:
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Figure 5.27: Constructing an hyperbolic paraboloid.

Li =

 f(ti)
g(ti)
ti

+ s

 a(ti)
b(ti)
0

 .

This collection of lines is the regulus R0. It is clearly quadratic by virtue
of the second order bi-linear terms sa(ti) and sb(ti). Deriving the functions
f(t), g(t), a(t), b(t) will yield a parametrization of the general constraint (PR-
dyad) hyperbolic paraboloid.

An important feature of the parametrization is that it is free from repre-
sentational singularities. Some components of the parametric equation usually
involve ratios. The denominators must be free from dependence on the param-
eters. Using the proposed directrix gives a parametrization that can always be
drawn since there can be no divide-by-zero conditions generated by the need to
divide by t = 0 or s = 0.

5.15 Parametrization Steps

Step 1

Determine plane π perpendicular to X3 = 0. We obtain the equation of L∞ by
setting X3 = 0 in Equation (5.56):

L0 : −k2X1 + k1X2 +
1

4
(k3 + 2[k1x+ k2y]) = 0. (5.57)

The line L0 is the axis of a pencil of planes. It is the line of intersection of
the plane X3 = 0 and the desired perpendicular plane π. Thus, we can solve
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Equation (5.57) for either X1 or X2, and allowing X3 and X1 or X2 to vary as
well. Solving we get:

π =


X1 =

1

k2

(
k1X2 +

1

4
[k3 + 2(k1x+ k2y)]

)
X2 = X2

X3 = X3,

(5.58)

and

π =


X1 = X1

X2 =
1

k1

(
−k2X1 +

1

4
[k3 + 2(k1x+ k2y)]

)
X3 = X3

(5.59)

Note, k1 and k2 cannot simultaneously vanish because they are proportional to
real line coordinates. i.e. if k1 = 0 ⇒ k2 ̸= 0. Similarly if k2 = 0 ⇒ k1 ̸= 0.

Either representation for π may be used leading to identical results. Without
loss in generality we may assume k2 is sufficiently large for symbolic derivation.

Equations (5.58) mean that any point [X1 : X2 : X3 : 1] ϵ π is given by
choosing values for X2 and X3. X1 is then a function of X2. Since X3 varies
linearly, π is perpendicular to the plane X3 = 0, and it contains L0 so it is the
plane we wanted.

Step 2

Find an expression for L ϵ R. i.e. determine the line equation for the directrix,
a single line in π. It is the unique line in R and π that intersect every line in
R0. The observation that L is the line of intersection of π and R makes this
easy. Substitute Equation (5.58) into the implicit equation of the constraint
hyperboloid, Equation (5.56). We get:

X3

4k2

(
4[k2

1 + k2
2]X2 + [k2k3 − 2(k2

2y + k1k2x)]X3 + 2[k2
1 + 2k2

2]x− 2k1k2y + k1k3
)
=0,

assuming k2 large enough. The two factors appear to be the plane X3 = 0, and
the desired line:

L : 4[k21+k22]X2+[k2k3−2(k22y+k1k2x)]X3+2[k21+2k22]x−2k1k2y+k1k3 = 0.

This appears to contradict the theorem that a plane must intersect a quadric
surface in a curve of order two. In our case, this conic section (a planar curve
of order two) should degenerate into two lines, namely L0 and L. Well... in
fact, it does. The factor X3 = 0 is an artifact of representation. Recall that the
plane X3 = 0 contains L0, and no other line in R0. The second factor must be
an expression of L, since it is a line contained in the intersection of plane π that
is not L0.

Solve the equation of L for X2 and set X3 = t, giving the X2 coordinate of
the locus of points on L ϵ R:

g(t) =
[(2(k1k2x+ k22y)− k2k3)t− 2(k21 + 2k22)x+ 2k1k2y − k1k3]

4(k21 + k22)
.
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The X1 coordinate is obtained by substituting the expression for X2 = g(t) into
the first of equations (5.58) (the equation for plane π), which yields another
function of only t:

f(t) =
[(2(k1k2 + k21x)− k1k3)t+ 2(2k21 + k22)y + 2k1k2x+ k2k3]

4(k21 + k22)
.

This gives the parametric equation for L = [f(t), g(t), t]T .
Note that the sum of squares k21 + k22 never vanishes. Now we require direc-

tion vectors for the Li ϵ R0. We can re-write Equation (5.56), the hyperbolic
paraboloid constraint surface as:

aX1 + bX2 + cX2
3 + dX3 + e = 0,

where a and b are both functions of X3 = t:

a(t) = k1t− k2,

b(t) = k1 + k2t.

In an arbitrary plane X3 = t, the direction of the corresponding line in R0 is
given by the coefficient ratio −b/a, i.e., the slope of the line in the given plane.
In other words, the line Li is parallel to the direction given by

a(t)X1 + b(t)X2 = 0.

Non trivial solutions require:

a(t) = X2, b(t) = −X1,

or
a(t) = −X2, b(t) = X1.

These are equivalent conditions because the linear sum vanishes. Thus, the
locus of points on a line in the direction of Li is: X1

X2

X3

 = s

 −b(t)
a(t)
0

 =

 −k1 − k2t
k1t− k2

0

 .

Combining the points on the directrix L with the loci of points in the directions
of Li in the opposite regulus R0 gives the desired representational singularity-
free parametric equation: X1

X2

X3

 = s

 f(t)
g(t)
t

+

 −k1 − k2t
k1t− k2

0

 .
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